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Abstract. Existence of solutions to martingale problems corresponding to singular dissipa-
tive stochastic equations in Hilbert spaces are proved for any initial condition. The solutions
for the single starting points form a conservative diffusion process whose transition semi-
group is shown to be strong Feller. Uniqueness in a generalized sense is proved also, and a
number of applications is presented.

0. Introduction

The purpose of this paper is to construct weak solutions (i.e. solution of the cor-
responding martingale problem) to stochastic differential equations on a Hilbert
space (norm | - |, inner product -, -)) of type

{dX = (AX + Fo(X))dt + +/C dW,

X0)=xeH. ©.1

Here C is a positive definite bounded self—adjoint linear operatoron H, A : D(A) C
H — H the infinitesimal generator of a Cp semigroup on H and

Fo(x) := yo, where yp € F(x) such that |yp| = H}}?) |yl, x € D(F),
YEF (x

and
F:D(F)yc H— 2"

is an m—dissipative map. We emphasize that the map Fy : D(F) — H has no
continuity properties in general.

Our strategy is based on first solving the Kolmogorov equations corresponding
to (0.1) on an appropriate L?—space, and then constructing a conservative diffusion
process (i.e. a strong Markov process with continuous sample paths and infinite
life time) having transition probabilities given by the solutions of the Kolmogorov
equations.
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To be more precise, let us describe the three steps to implement this approach
in more detail.

a) Solution of Kolmogorov equations on L>(H, v)
(see Sections 1-4 below)

Let £4(H) be the linear span of all (real parts of) functions of the form ¢ =
') e D(A*), and define

1
Nog(x) == = Tr [CD*p(0)] + (x, A*De(x)) + (Fo(x), De(x)), ¢ € Ea(H).

Here D, D? denotes first, second Fréchet derivatives respectively.
Let v be a probability measure on H such that

/ Nopdv =0, V¢ € E4(H),
H

and set Hy := supp v. (We should note that recently there has been a lot of results on
existence of such measures, called infinitesimally invariant, see e.g. V. Bogachev
and M. Rockner [6]).

We prove that (under some conditions) the closure (N2, D(N3)) of (No, E4(H))
generates a Markovian Co—semigroup

Pt=€tN2, tz(),

on L2(H, v), i.e. forall ¢ € LZ(H, V)

% Pip =NoPrp, t 20, Pog =9,

giving a solution to the Kolmogorov equations corresponding to (0.1) on L2(H, v).
Furthermore, at least in the case where C~! is bounded (but see also Remark 4.4
below), we have the following regularizing (in particular strong Feller) property:
forall p € L*°(H,v), t > 0, the L2(H, v)—class P;¢ has a Lipschitz—continuous
v—version.

b) Construction of corresponding strong Feller probability kernels
(see Section 5 below).

We show that there exist probability kernels p;, ¢ > 0, such that for all Borel
measurable and bounded functions ¢ : H — R, p;¢ is a Lipschitz continuous
v—version of P;p on Hy. In particular, (p;);~¢ is strong Feller. Furthermore,

lim pyg(x) = ¢(x). ¥ ¢ € Cy(H). x € Ho.

¢) Construction of the diffusion weakly solving (0.1)
(see Sections 6,7 below).

As a consequence of b) there exists a canonical normal Markov process M =
(Q, 7O (20, (X9)i50, (Py)xen,) With Q = HQ}**, X% : Q — Hy being the
coordinate maps, F? := o (X% s < t) and F° := FO . We then prove that M°
has a modification with [P,—a.s. continuous sample paths for all x € Hp. This is
done in two steps: first we show that for some modification the sample paths are
continuous P,—a.s., where
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P, ::/ Pyv(dx).
H

To this end we prove a general result verifying Kolmogorov’s continuity criterion
for P, (see Theorem 6.3 below) based on the fact that Ny is a diffusion operator
(in the sense of e.g. Eberle [16, Appendix B]). Second, we employ a result due to
J. Dohmann [15] that shows how one can use the strong Feller property to deduce
continuity of sample paths P,—a.s. for all x € H.

We want to really stress at this point that our situation is entirely different from
the classical ones where the state space H is locally compact (i.e., in our case this
is equivalent to dim H < 00). On locally compact spaces the standard process con-
struction works if the semigroup maps C, into C, Where Co are the continuous
functions vanishig at infinity. Only this way, one has control about right limits of
sample paths and about what happens at infinity, i.e. outside any compact set. In
our infinite dimensional situation, this notion makes no sense what so ever, and our
transition semigroups map bounded functions into continuous functions which are
merely bounded with no condition at “infinity”’, whatever the latter means.

It is well known that the diffusion, whose construction we have described above,
constitutes a solution to the martingale problem given by (0.1) with test functions
space

{o € D(N2) N Cp(H)| N2¢ bounded} .

(More precisely, it is a strong Markov selection of such solutions in the sense of
Stroock and Varadhan, see [25, Section 12.2]).

So far, we have only discussed existence of a martingale solution of (0.1). How-
ever, our diffusion process is also unique in the sense that it is the (in distribution)
unique conservative Feller diffusion, solving (0.1) in the above sense whose tran-
sition semigroup (p;);~( consists of continuous operators on Lz(H , V). Details on
this are contained in Section 8 below.

In Section 9 we discuss applications, in particular, the gradient case.

Finally, to recover a weak solution for (0.1) from the solution of the correspond-
ing martingale problem is more or less standard provided H = Hy. With respect to
the lenght of this paper we shall not give details here, but refer instead to the nice
and coincise presentation in [24, Chapter 3.2] for the finite dimensional case and
for the infinite dimensional case to [3, Section 6].

1. Notation and framework

Let H be a real separable Hilbert space (with norm | - | and inner product (-, -)),
andlet A: D(A) C H— H and C € L(H) (') be linear operators such that

Hypothesis 1.1. (i) A isthe infinitesimal generator of a strongly continuous semi-
group €' in H. There exists w > 0 such that

(Ax, x) < —a)|x|2, VxeH.

! L(H) denotes the set of all bounded linear operators on H.
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(ii) C is symmetric, nonnegative definite and such that Tr Q < +o00, where
o0 *
Ox :=/ e'ACe4 xdt, xe H
0
and A* denotes the adjoint of A.
We denote by R; the Ornstein—Uhlenbeck semigroup
Rip(x) == / (e x + y)Ng, (dy),
H

where
t *
Ox :=f eACe* A xds, x e H,
0

and Ny, is the Gaussian measure in H with mean 0 and covariance operator Q;.
We shall denote by Cj 2 (H) the Banach space of all functions ¢ : H — R hav-

ing at most quadratic growth, that is (p(|.')|2 is uniformly continuous and bounded.

1+
Endowed with the norm
gl a = sup —220_
' xeH 1+ |)C|

Cp2(H) is a Banach space. Moreover, C é »(H) will represent the subspace of
Cyp.2(H) of those functions ¢ that are continuously differentiable and such that

| Do (x)|
ven 1+ Ix[?

leli2 = < 400

It is easy to see that R; maps Cp 2(H) (resp. C;’Z(H)) into itself for all + > 0.
Let us define the infinitesimal generator L of R, through its resolvent by setting

+o00
R\, L)p(x) =/ e MRip(x)dt, x € H, A > 0.
0

Then R(A, L) maps Cp 2(H) (resp. C,;’Z(H)) into itself for all A > 0.
We set
D(L, Cp2(H)) = R(A, L)(Cp2(H)),
and
D(L,C),(H)) = R(\, L)(C}, ,(H)).

One can easily show that
1
Ly =5 Tr[CD*p] + (x, A"Dg), ¥ ¢ € E(H),

where E4(H) is the linear span of all (real parts of) functions of the form ¢(x) =
¢/ with h € D(A*). Note that E4(H) C D(L, Cp2(H)).
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We are also given an m—dissipative mapping
F:D(F)Cc H—2".
This means that D(F') is a Borel set in H and
(u—v,x—y) <0, Vx,y€e D(F), ue F(x), ve F(y),

and Range (I — F) = UxeD(F)(x — F(x)) = H (where obviously this union
consists of disjoint sets). For any x € D(F) the set F(x) is closed, non empty, and
convex; we set

Fo(x) := yp, where yg € F(x) such that |yg| = H}}{l) ly], x € D(F).
yeF(x

We are concerned with the differential operator
Nog := Lo + (Fo, D), ¢ € Ea(H).

Our goal in the following section is to prove that the closure of Ny is m—dissipative
in L2(H , V), where v is a suitable Borel measure on H such that v is infinitesimally
invariant, i.e.,

/ Nopdv =0, V¢ € E4(H).
H

We note that, since Ny is a diffusion operator, the latter always implies that (Np,
E4(H)) is dissipative on every L”(H, v), (see A. Eberle [16], Lemma 1.8, page
36, and also Proposition 2.1 below in the case p = 2). Hence it is, in particular,
closable in L2(H, v).

Our main assumptions are the following.

Hypothesis 1.2. There is a Borel probability measure v on H such that

(i) f (12" 4+ [Fo(x) 1> + 1x[*| Fo(x)|*)v(dx) < +oo.
D(F)

(ii) Forall ¢ € Eo(H) we have Nog € L*>(H, v) and

/ Nop dv = 0.
H

(iii) v(D(F)) = 1.

Remark 1.3. (i). For sufficient conditions of existence of infinitesimally invariant
measures as in Hypothesis 1.2 we refer e.g. to [6, Sections 5 and 7] and also to
Section 3 below.

(ii). We emphasize that fD(F) |x|12v(dx) < 400 is only needed below in the
proof of Theorem 6.3. Up to and including Section 35, fD(F) Ix|*v(dx) < +oo will
be sufficient (see however Remark 7.5 below). In particular, our result on m—dis-
sipativity of No in L?(H, v) holds under this weaker assumption. We could study
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m—dissipativity of Ng in LP(H,v), p > 1. We should only change Hypothesis
1.2—(i) by assuming

f (127 + [ Fo()|” + [x[P [ Fo(0)]P)v(dx) < +oo.
H

(iii). In many cases (cfr. [4, the main result]) Hypothesis 1.2 implies that v <<
Ng. For conditions implying supp v = H see [2].

We finish this section by giving some preliminaries. We first recall that when
F : H — H is dissipative and Lipschitz continuous, then the following result
holds, see [10, Propositions 1.3 and 3.3]

Proposition 1.4. Assume that F : H — H is dissipative and Lipschitz continuous.

Then there is a unique Borel probability measure v on H such that Ny is dissipative

in L2(H, v) and its closure N, is m—dissipative. IfC_1 € L(H) thenv << Ng.
Moreover the semigroup P; generated by N is given by

Pro(x) =Elp(X (1, x))],
where X (t, x) is the solution of the stochastic differential equation

dX = (AX + F(X))dt + ~/Cadw,
(1.1)
X(©0)=x € H,

and W; is a cylindrical Wiener process in a probability space (2, F, IP).

Let us introduce the Yosida approximations of F. For any o > 0 we set
1
Fo(x) == — (Jo(x) —x), x € H,
o
where
Jo(x):= (I —aF)'(x), x € H, a>0.

It is well known that

lirn0 Fy(x) = Fo(x), Yx e D(F).
7 (1.2)
[Fo(X)| < [Fo(x)|, Y x € D(F).

Moreover, Fy is Lipschitz continuous (but not differentiable in general), so Fy is
Borel measurable. Therefore, we introduce a further regularization by setting

Fo p(x) :/ eﬂBFa(eﬁBx—{-y)N% 3_1(62ﬁ371)(dy), o, B >0, (1.3)
H

where B : D(B) C H — H is a self—adjoint negative definite operator such that
B~ is of trace class.

Fy,p is dissipative, of class C . and has bounded derivatives of all orders, and
Fy,p — Fy pointwise, see [13, Theorem 9.19].
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2. m—dissipativity of N,

We assume here that Hypotheses 1.1 and 1.2 hold.
Proposition 2.1. Forall ¢ € E4(H) we have

1
/ Nog ¢ dv = -3 f ICY2Dg|? dv. (2.1)
H H

Consequently, Ny is dissipative in L*>(H, v).

Proof. Since
No(¢?) = 29N, C'2Dg?, Ve Ea(H
0(¢") = 2¢Nop + | o7, Yo ela(H),

the conclusion follows integrating with respect to v and using Hypothesis
1.2—(ii). ]

Since Ny is dissipative, it is closable in L%(H, v). (Here we recall that since
obviously £4(H) contains a countable subset separating the points of H, E4(H)
is dense in L?(H, v) by a monotone class argument.) We shall denote by N, its
closure and by D(N,) its domain. We are going to show that N, is m—dissipative.

Lemma 2.2, Let ¢ € D(L, Cé’z(H)). Then there exists g7 € Eo(H), n € N4,
such that for some c1 € (0, 00)

lor(0)| + |Dz(x)| < e1(1 + |x|?), V7 e N*

and ¢i(x) — @(x), Der(x) — De(x) forall x € H and ¢z — ¢ in No—graph
norm (%). Consequently

D(L,Cy,(H)) C D(N2).
Furthermore, for all ¢ € D(L, C;’Z(H)) we have
N2 = Lo + (Fo(x), D). (2.2)

Proof. Let ¢ € D(L, Cg ,(H)). Then, by [12, Proposition 2.5], there exists a
sequence {@i} = {@n,.ny.n3.ns} C Ea(H) such that, for some constant ¢ > 0,

or(x) = ¢(x), Lez(x) - Le(x), Dgp(x) - Dop(x), Vx € H.
low ()| + | Lgn(x)] + [Dgr(x)| < c1(1+ |x[)), Yx € H, n e N*.
It follows that

Nogr(x) = Lor(x) + (Fo(x), Dgr(x))

— Lo(x) + (Fo(x), Dp(x)), ¥V x € D(F).

2 Wesetnn = (ny, n2, n3, ng) and lim = lim lim lim lim
n—00 n|—00 Ny —00 N3—> 00 N4—> 00
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There is ¢; > 0 such that for all x € D(F)
INowr(x)| < ea(1 + |x[* + [Fo(x)| + [ Fo(x)[1x[?), Y7 e N*.

By Hypothesis 1.2—(i) it follows that the right hand side is in L?>(H, v). Conse-
quently,

Nogr — Lo (x) + (Fo(x), Dg) in L*(H, ),
and ¢ € D(N>) as claimed. O
Let us consider the approximating equation
Apa,p — L@a,p — (Fu,p, Dgap) = f, o, B > 0. (2.3)

where A > 0 and f € C(H). (%)
It is not difficult to see that equation (2.3) has a unique solution @y g €
D(L, C}, ,(H)) N Cj(H) given by

+o00
Pa,p(X) = /0 e MELf (Xa,p(t, ¥))]dt, 2.4

where Xy g (-, x) is the solution to problem (1.1) with F replaced by Fy, g. We have
moreover forall h € H,

+o0
(Dfpa,ﬂ(X),M:/o e ME[(Df (Xa,p(t, X)), DxXap(t, )h)1d1.  (2.5)

For any h € H we set ’72,,3 := Dy X4 g(t, x). Then we have (in the mild sense)

d
77 a1, %) = A (2, %) + D Fo (X (0, X)) (7, ) e

(0, %) = h.

Multiplying both sides of equation (2.6) by nz’ ﬁ(t, X), integrating with respect to
t and taking into account the dissipativity of D Fy g, we find

t
Il 5t )2 <2 /O (Al g(s, %), s 4 (s, x))ds + |h|*. 2.7)

This argument is a bit informal (realize that in general ’73, ﬂ(t, x) ¢ D(A)), but
it can be made rigorous by using the Yosida approximation, see e.g. [7, Proof of
Proposition 6.2.2]. Now, recalling Hypothesis 1.1-(i), we have

I Dx Xa,p(t, X)| < e, >0. (2.8)
Consequently by (2.5) it follows that
1
1Dgop) = — lIf I x € H. 2.9)

Now we can prove the following result.

3 CZ(H) is the space of all functions ¢ : H — R that are uniformly continuous and
bounded together with their first and second derivatives.
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Theorem 2.3. Under Hypotheses 1.1 and 1.2, N> is m—dissipative in L>(H, v).

Proof. Let f € C,%(H ) and let ¢y g be the solution to equation (2.3). Then by
Lemma 2.2 we know that ¢, g € D(N>) and we have

)“Pa,ﬂ - N2‘Poz,,8 =f+ (Fot,ﬂ — Fp, D‘Pa,m' (2.10)
We claim that

lim lim (Fy g — Fo, Dga.g) =0 in L*(H, v).

a—08—0

In fact by (2.9) it follows that

Iy p = / [{Fa,p — Fo, D(Pa,ﬁ”zdv
H
(2.11)

1 2 2
=< 2 Wl /H |Fo,p — Fol“dv.

Now, since for fixed & > 0, Fy g is Lipschitz continuous with a Lipschitz constant
that can be choosen independent of 8, we see that for any o > 0 there is ¢, > 0
such that

|[Fo,p(x)| < co(1 +|x]), x € H,

and so

. 1
limsup /o p < — ||f||%/ |Fy — Fol?dv.
B—0 A H

Now the claim follows, in view of the dominated convergence theorem, from (1.2)
and Hypothesis 1.2—(iii).
In conclusion we have proved that

lim lim (A — N2)gq g = f in L2(H, V).
a—08—0
Therefore the closure of the range of A — N> includes CZ(H ) which is dense in

L%(H, v). By the Lumer—Phillips theorem it follows that N, is m—dissipative as
required. O

As a consequence of the proof of Theorem 2.3 we have:

Corollary 2.4. Let f € CZ(H), . > 0. Then there exist ¢, € D(L, C} ,(H)) N
Cl%(H), n € N, such that ¢, — R\, N2) f asn — oo in L%(H,v) and

sup/ |N2<p,,|2dv < 400
n H

and

sup sup (| D@, (x)] + |gn (x)]) < oo.

n xeH

Here R(L, N2) := (. — No)~ L.
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Let
P[ = e[NZ, > 0,
be the Co—semigroup generated by N, on L?(H, v) (which exists by Theorem 2.3).

Corollary 2.5. (P;);>0 is Markovian, i.e. Pi1 = 1 and P, f > 0 for all nonnega-
tive f € L*(H,v) and all t > 0.

Proof. By A. Eberle [16, Appendix B, Lemma 1.9] P; is positivity preserving.
Since 1 € £E4(H) and Nyl = 0, it follows that P;1 = 1. O

3. Construction of an infinitesimally invariant measure v

We assume here that Hypothesis 1.1 holds, and consider an m—dissipative mapping
F:D(F)C H—2H.
For any a > 0 we consider the Kolmogorov operator (*)

Noy := Lo + (Fy, Dy), ¢ € Eo(H). (3.1

By Proposition 1.4 we know that there exists a unique probability measure v, on
H such that N, is dissipative in L>(H, v,) and its closure is m—dissipative.
Moreover, the corresponding semigroup P/ is given by

Pro(x) = Elp(Xa(t, x))],

where X, (¢, -) is the solution of the equation
Xo(t,x) =ex + /0 t eU=AE, (X (s, x))ds + Wa(t), (3.2)
and
Wa(t) = /Ot eU=IAC AW (s). (3.3)

Our goal is to show that, under additional assumptions, the sequence vy, is tight
and that any weak limit v fulfills Hypothesis 1.2.
We start with an a—priori estimate.

Lemma 3.1. Assume, besides Hypothesis 1.1, that for some m € N there is k(m) >
m and ¢y, > 0 such that for any o > 0

E|Fou (Wa)*" < cnt*™, 1 = 0. (3:4)
Then there is c1, > 0 and an integer h(m) such that

E| X (t, X)*™ < c1 mt"™ (1 + 7 |x ™). 3.5)

4 Here we could consider instead N, g, but this does not seem to be necessary.
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Proof. Setting Y (1) = Xq(t, x) — Wa(t), Y (¢) is the solution to

Y'(t) = AY (t) + Fo (Y (1) + Wa(1))
(3.6)
Y(0) =x.

Multiplying the first equation by |Y (£)|*"~2Y (¢) and taking into account Hypoth-
esis 1.1-(i) and the dissipativity of Fy, for a suitable constant c3 ;, we obtain

1 d 2m 2m 2m—2
m i YOI < —olY (O™ + (Fa(Wa (1)), Y (0))|Y ()]
m dt

+ (Fo (Y (t) + Wa(D)) — Fo(Wa (), Y ()Y (1) 2

IA

—w|Y (O™ + | Fo (W) 1Y (1) P2

IA

w
=) 1Y ()™ + com Fou(Wa) >
By the Gronwall lemma it follows that
t
Y ()™ < ™™ x|*™ 4 2men / e MU= | F (Wa(s)) P ds,
0

and finally, for some c3

|Xo (2, X)P™ < 3 me | x|>m

t
+ 3m ( / e MU By (Wa(s))| P ds + |WA(r>|2’") :
0

Now the conclusion follows taking expectation since E|W4 P < ctkm for
some integer k(m). |

Corollary 3.2. Under the assumptions of Lemma 3.1 there is k1, > 0 such that

f 112" ve (dx) < ki . (3.7)
H

Proof. Integrating (3.5) with respect to v, and taking into account the invariance
of vy gives

f X" Vg (dx) < c1pnt® ™ (1 4 e f 112" vg (dx)). (3.8)
H H

Choose f¢ > 0 such that

cl,mt(’;(m)ef’"“’m <1,

then, setting in (3.8) t = 1y yields (3.7). O

To prove tightness of v, we shall assume that A is a variational operator A :
V — V' with V € H C V'’ with a compact embedding V C H, and that there
exists k > 0 such that
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(Ax,x) < —«|lx||}, x € D(A).

(3.9)

Proposition 3.3. Assume that the assumptions of Lemma 3.1 hold, that A is vari-
ational as above and, in addition, that there is § € (0,1/2) and cs > 0 such

that
E[Wa(D)I 34 < cst’, 1> 0.

Then there is c1,5 > 0 such that

/ X pyp Ve (dX) < €15
H

Therefore, vy are tight.

Proof. Proceeding as in the proof of Lemma 3.1 we obtain

d
— Ya O + &I Ya DI} < Yo (Ol Fo(Wa ()]
dt

Let A9 > 0 be such that |x| < Ag||x]lv. Then we have

N =

Ly oP + 5 12 * | Fo (Wo (1))
2 dt 2 V= T '
It follows that
t AZ t
Yo (D) +xf0 1Yo ()5 ds < [x]* + 70 fo | Fo(Wq (5))|%ds,

and so there is ¢; > 0 such that

! 2 2 )"% ! 2
[ raor s ser (P22 [ venPas ).
0 K 0

Consequently, there exists c¢(¢) > 0 such that

t
2 2
/0 E[Xa ()l _gpds = e+ [x]9).

Now we fix fg > 0 and by the invariance of v, we find for a constant ¢’

NET (dx)§c’(1+/ x (dx)),
/H D( A)5 o " o

and the conclusion follows.

(3.10)

@3.11)

O

Remark 3.4. Let v be a cluster point of v,. To check Hypothesis 1.2 it remains to

show that

(i) There exists a > 0 such that

f | Fo(x)|* v (dx) < +o0.
H

(3.12)
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(i1)) We have

lim | (Fy, De)dv, = / (Fo, Dp)dv, Y ¢ € E54(H). (3.13)
H

a—0 H

In fact by (3.7), (3.12) and the Holder inequality it follows that Hypothesis
1.2—(1) is fulfilled. Moreover by (3.13) it easily follows that f 1 Nogdv = 0 for all
o € EA(H).

A sufficient condition (fulfilled for reaction—diffusion equations) for (3.13) is
the following

x — (h, Fy(x)) is continuous V 1 € D(A*) and
[Fo(x) — Fa(x)| < a|G(x)],

with G : H — R Borel measurable such that sup,,. fH |G (x)]|dvy < c.
4. Strong Feller properties for the operator resolvent

We assume here that Hypotheses 1.1 and 1.2 are fulfilled. We denote by X, g the
solution of the following stochastic differential equation,

dXop = (AXy.p + Fup(Xap))dt +/CdW,
4.1)
Xq.5(0) =x € H,

and by PID"’8 the transition semigroup
PP p(x) = Elp(Xa p(t, ).
Then Pta’ﬂ is strong Feller (see the proof of Proposition 4.3 below). We set moreover

NP = Lo + (Fup(x), Do), ¢ € Ea(H).

By Proposition 1.4 there exists a unique invariant probability measure vy g for
Pto’”3 , so that we can extend the semigroup P,a{”3 to L2(H, Vy,g). Moreover its

infinitesimal generator Ng’ﬁ is precisely the closure of NS{”fi in L2(H, ve.p).
We denote the set of bounded Lipschitz functions on H by Lip,(H) and || - || Lip
denotes the Lipschitz norm.

Below we need a particular vy g—version of R(A, Ng B ) f, namely
+00
/ e M PYP fxydt, x e H,
0

which we denote again by R(A, Ng’ﬁ)f.

Proposition 4.1. Let A > Oand f € Lipy(H). Then

1
[R(A, N2) f — R(2, N;’ﬂ)fHLZ(H,v) =3 I flILipll 1Fa.p — Fol N22¢a,v)- (42)
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In particular,

lim lim R, NSP)f = RO\, No) f in L*(H, v).

a—06—0
Proof. Since f can be approximated pointwise by uniformly bounded functions
fn € Cp°(H) such that their first derivatives are bounded by || f|lLip we may

assume that f € Cg(H).
Let ¢4, be the solution of the equation

Aa,p — L@a,p — (Fa,p, Dpap) = f. (4.3)
By Lemma 2.2 we can write
Apa,p — No@ap = f + (Fop — Fo, Dgap)-
Consequently,
Pa,p = R, N)Lf + (Fap — Fo, Do p)].
Now the assertion follows by (2.9), (2.11) and the proof of Theorem 2.3. |

Remark 4.2. Since P,‘)"'5 are only bounded on L2(H , Vg, g) and not in L2(H , V), it
is not clear to us whether they converge to P; in the sense of Proposition 4.1.

Proposition 4.3. Assume that C~' € L(H)andlet} > 0.Then R(x, N») is strong
Feller. More precisely, let f : H — R be bounded and Borel measurable, then for
v-a.e.x,y € H

IRG-, N2) f (x) — RO N F )] < O/m) " 2IC Y2 1 Fllolx — 1, (4.4)
where || - ||o denotes the supremum norm.

Proof. Let us first recall the Bismut—Elworthy formula,
1 t
(DPP f(x). by = - E [f(xa,ﬂa, X)) /O (€712l 4(s.x), dW(s))] ., (45)

where h € H and 772,,3 = DXy g - h is the solution to (2.6).
By using the Holder inequality we find

1 ro
(PP F 0. WP = 5 IFIGE [/0 c ‘/an,ﬂ<s,x>|2ds]. (4.6)
Now by (2.8) and Hypothesis 1.1-(i), we have
Ik gt )% < A,
We deduce from (4.6) that
1
(D PSP fx), )P < e NG,

that yields
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PP ey — PP F ol < T VICT N 2 fllolx — vl xoy e Hoo (&)
Multiplying with ¢ ~** and integrating with respect to ¢ we obtain the assertion for
R(X, N;’ﬂ) replacing R(x, N»). Hence, if f € Lipy(H), Proposition 4.1 implies
(4.4). Since every bounded, Borel measurable f : H — R can be approximated in
L>(H,v) by f, € Lipp(H) such that || f,|lo < || fllo + ¢ for any & > 0, we obtain
the result. |

Remark 4.4. As will become clear later, (4.7) is crucial in subsequent sections. This

is the main reason why C~! € L(H) is assumed in subsequent sections. In fact,

except forTheorem 7.4 (where C —1 ¢ L(H) is used for other reasons), it would be

sufficient to assume (4.7) with ||C~!| replaced by any positive constant, to hold in

all those places. We therefore emphasize that, following S. Cerrai [7, Proposition

8.3.3], we can prove such an inequality also in some cases when C~! ¢ L(H).
Assume for instance that A is self—adjoint and that

C = (—A)77, forsome y € (0, 1].
Then by (2.7) we deduce that

t
/O (=) V2t (s, 0)ds < |AlP.
Since
C—l/2 — (_A)—(l—y)/Z(_A)l/Z’

we deduce that
t
fo [(=C)~ 2k g(s. 1) Pds < [[(=A) "2 n )%,

Consequently
(DPEP fx), k)| = % 1 ol (=A== |,
which still yields (4.7), with ||(—A)~1=7)/2|| replacing ||C~1||1/2.
Proposition 4.5. Let ¢ € Lipp(H), A > 0. Then for v—a.e. x,y € H
IR(., N2)o(x) = RO, NDo ()] < A7 lellLiplx — yl.

Proof. By the same argument as in the proof of Proposition 4.1 we may assume
that ¢ € C}]) (H). Let us prove that

1PAP o) — PEPo()] < llplhlx — yl. ¥ @ € Cy(H). (4.8)
But

PP o) = E[p(Xa 5. 0)].

and forany h € H,
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(DPPPp(x), h) = E[(Dg(Xap(t. %)), DXap(t, ) - h)].
Since
IDXap(t, )| < e, 120,
we find
UDP P o), h) < e llgllLiplhl,

that yields (4.8) since w > 0.
Multiplying (4.8) by e~'*, integrating over to ¢, and letting 8 — 0 and then
o — 0 we obtain the assertion. O

5. Strong Feller probability kernels

Assume throughout this section that C~! € L(H) (or more generally that (4.7)
holds, see Remark 4.4) and that Hypotheses 1.1 and 1.2 are fulfilled.

5.1. Resolvents

For a topological space X we denote its Borel o—algebra by B(X) and by Bp(X)
the set of all f : X — R, which are Borel measurable and bounded.

Define Hp := supp v.
Lemma5.1. Let A > 0 and f € Bp(H). Then R(A, N2)f has a v— version
R(A, N2) f, unique on Hy, such that for all x, y € Hy

IRGw N2) £ (x) — RGL N2 £ < /m) " 2IC 12 fllolx =yl (5.1
Furthermore, if g € Bp(H) is such that f{ = g v—a.e., then
RO N2) f(x) = R(A, Npg(x), ¥ x € H.

Proof. By Proposition 4.3, R(A, N2) f has a v—version satisfying the estimate in
Proposition 4.3 for all x, y in a dense subset of Hy. Defining R(m)f as the
continuous extension to all of Hy of this version we obtain the desired function
satisfying (5.1).

Since any other v—version of R(X, N») f satisfying (5.1) coincides with the one
just constructed v—a.s., hence on a dense subset of Hy, we have uniqueness of such
a version.

Finally, if f = g v-a.e., then

R(h, N2) f(x) = R(h, N2)g(x), for v ae. x € H,

hence as above for all x € Hp. |

Define for f € By(H) and A > 0,

Rif(x) := R(h, Na) f(x), x € Hp. (5.2)
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Proposition 5.2. (R;),~o defined in (5.2) is a resolvent of kernels from (Hy,
B(Hy)) to (H, B(H)) such that AR 1(x) = 1 for all x € Hy. Furthermore, for all
¢ € Lipp(H), A > 0,

AR (x) — AR (V)| < llellLiplx — yl, ¥V x,y € Ho, (5.3)
and hence
klgrgo AR p(x) = @o(x), YV x € Hp.
Furthermore, each R), satisfies (5.1), so is in particular strong Feller.

Proof. For two continuous functions f, g : Hy — R, f < gv-a.e. implies that
f(x) < g(x) for all x € Hy. Hence it follows that f — R, f(x) is linear and
positive on Bp(H) for all x € Hp because of the corresponding properties of
f — R(A, Ny) f. By the same argument

R, — Ry = (@ — MRyRy, Vo, > 0.
Now we want to show that for all . > 0, and f,, € B,(H), n € N, we have

fax){0asn —>ocoVxeH = lim R, f,(x) =0V x € Hy.
n—od

Since R;, f,,, — 0 v—a.e. for some subsequence and R, f;,(x) is decreasing for all
Xx € Hy, it follows that

A= {x € Hy : nlingo Ry fu(x) = 0]

has v measure equal to 1. Hence A is dense in Hy. Since {R; f,| n € N} is by
Lemma 5.1 equicontinuous it follows that

lim Ry f,(x) =0V x € Hy.
n—>oo

Furthermore, AR, 1(x) = 1 for v—a.e. x € H, hence as above for all x € Hp. So,
the first part of the assertion follows.
Furthermore, let ¢ € Lip,(H). Then by Proposition 4.5

ARy (x) — AR oV < ll@llLiplx — ¥

forv-a.e.x, y € Hpandall A > 0. Hence (5.3) follows. Consequently {)»R;L<p| A >
0} is equicontinuous. Now assume xo € Hyp and that for some sequence A, — 0

lim A, Ry, ¢(x0) # @(xo).
n—o0oo

Then there exists a subsequence such that )\,,kR;\nkfp(x) — ¢(x) as k — oo for

v-a.e.x € H, (since A, R;,¢ — ¢ in L%(H,v)). Hence by the same argument as
above

M Ry, 9(x) = @(x), Vx € Ho

which is a contradiction. O
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Corollary 5.3. Forall f € By(Hp), A >0

/Hmfdv=fodu. (5.4)

Proof. Lett >0, ¢ € E4(H). Then by Theorem 2.3 there exist ¢, € £4(H) such
that ¢, — P;¢ and No@, — N2 P, in L>(H, v). Hence

d
— / Ptfdv=/ N2 Py fdv = lim Nogndv =0,
dt Ju H H

n—o0

so that
/ P[ fdv = / de.
H H
Multiplying by Ae~*' and integrating we conclude that (5.4) holds with ¢ replacing
f- But then (5.4) holds for all f € B,(H) by a monotone class argument. |

Corollary 5.4. Forall A > 0 there exists r), : Hy x Hy — R4, B(Hy x Hp)-mea-
surable such that for all f € By(H)

Ryf(x) = /H Jri(x, y)v(dy), ¥V x € Hp.

In particular, ARy (x, Hy) = 1 for all x € Hy.
Proof. Fix A > 0. Let N € B(Hp) such that v(N) = 0. Then by Corollary 5.3

02/ lNdVZ/ AR 1ndv,
H H

so R 1y = 0 v-a.e.; hence Ry 1y(x) =0V x € Hy. Consequently,
Ry (x,dy) << v(dy) VY x € Hy.

That the density can be chosen jointly continuous is standard, since Hp is
polish. O

5.2. Semigroups

In contrast to the case of the resolvent we do not know whether

(im P*Pf =P fin L2(H,v)
for sufficiently many functions f. Therefore, the construction of strongly Feller
probability kernels is much more difficult. Our aim is to establish properties (4.7)
and (4.8) with P; replacing P,a’ﬂ , (cf. Proposition 5.7 below), then we can proceed
as in the case of the resolvent. Though property (4.7) implies “a lot of tightness”
for Pto"'3 f, f € Byp(H), we cannot just consider limit points, since convergent
subsequences would depend on (f and) ¢, so we cannot identify these to coincide
with P; f using Proposition 4.1 and the uniqueness of the Laplace transform. To
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make this work neverthless, we need to find v—versions 1317 of P; f, continuous on
Hy, so thatt — l;;}‘(x) is right continuous for all x € Hy, and for all f in a large
enough space S of functions on Hp. This is the content of Lemma 5.6 below.
First we define S. We introduce a countable set of smooth functions generating
the topology of H which we shall use several times below.
Fix h € Cg°(R) suchthat0 < h < 1, h(r) = Lif [r| <1, h(r) =0if |r| > 2,
and define

() = /rh(s)ds.
0

Furthermore, fix y; € H, k € N, so that {yx|k € N}isdensein H and {yi|k € N} N
Hy is dense in Hy. Define for k € N

fi(x) == ¥ (lx — yl?), x € H. (5.5)

Then fx, k € N, generate the topology of H and their restrictions to Hy that of
Hp. Consider the set

M :={mR,, fr| m € N, k € N} (5.6)
where R) is as defined in (5.2), and recount to get
M :={g,| n € N}. 5.7

Lemma 5.5. {g,| n € N} isa set of uniformly bounded, equi—Lipschitz continuous
functions generating the topology of Hy.

Proof. First note that as a consequence of Proposition 5.2, the functions g,, n € N,
are equi—Lipschitz continuous, since

I ficllt = 19 (- =xilPllo + 19 (| - =xe))2¢ = xp)llo

<2+ 1{|,7m5ﬁ} 201 - =xklllo < 2+ 24/2.

Since each g, is continuous, it remains to show that if x;, x € Hp,l € N, such
that g, (x;) — gn(x) forall n € N, then x; — x in Hy. The latter is equivalent to
fr(x;) = fr(x) for all k € N. But this holds, since for k € N fixed and all n € N

| fe(xn) = feo)| < limsup | fi (xn) — m Ry fi(xn)

m— 00

+sup [m Ry fi(xn) — mRuy fi(x)| + lim sup [m Ry, fie(x) — fr(x)I,

m—00

and since by Proposition 5.2 the two limsup’s are zero while by equicontinuity the
remaining term can be made arbitrarily small for large n. O
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There exists a countable subset Sy of Lip;(Hp) having the following property:
for all f € Lipy(Hp) there exists ¢, € Sp, n € N, such that

lim ¢, (x) = f(x), Vx € H,
n—oo

{ (5.8)
lgnllo = W1 fllo + — and flgnllip < W flLip + -

The existence of such a set is easily proved by approximating by cylinder functions
and applying the corresponding well known finite dimensional result. Define

Sy ={fT1feSolu{r|fes}.
where fT :=sup{f,0}, f~ := —inf {f, 0}. Set
St:={RuflmeN, feS5U{fi, keN}},

where f is as defined as in (5.5).
Recall that a function f : Hy — Ry is called «—supermedian for (R} );~¢ if

ARytof(x) < f(x), VA>0Vx € Hp.

Clearly, by the resolvent equation any function in S; is m—supermedian for some
m € N. Furthermore the a—supermedian functions form an inf stable convex cone,
invariant under Rg for all 8 > 0 and, containing the positive constant functions.
Hence we may consider the smallest set S> of bounded functions on Hy, a—super-
median for some o € Q% , having the following properties

S1C 8, Raf 1, fAgaf +BgeSif flge S, o peQl. (5.9

By [17, Lemma 6.1.1] S, is countable. Define the corresponding Q—vector space.
Define

S:=85—-5. (5.10)

Then S is countable and a vector lattice over Q containing M, hence in particular
S generates B(Hp).

Lemma 5.6. Let f € S. Then there exists a v—version p, f of P, f, t > 0, such
that for all x € Hy

t — p; f(x) is right continuous on [0, +00),
and fort > 0
x — p; f(x) is continuous on Hy.

Before we prove Lemma 5.6 we show that it implies the existence of strong
Feller probability kernels for P;:
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Proposition 5.7. (i) Let f € By,(H),t > 0. Then for v—a.e. x,y € H

[P f(x) — P fO)] < =21V Fllolx — vl (5.11)
(ii) Let f € Lipp(H),t > 0. Then for v—a.e. x,y € H
|Pf(x) — PofO)] < I flLiplx — vl (5.12)

(iii) Letfor f € By(H),t > 0, p; f denote the unique Lipschitz continuous v—ver-
sion of P; f on Hy. Then (p;)i>0 is a semigroup of strong Feller probability
kernels satisfying (5.11) and (5.12) with p; replacing P;. Furthermore, v is
an invariant measure for (p;):>o and for all f € Lip,(H)

lim p f(x) = f(x), V.x € Ho, (5.13)

and forall . > 0 and all f € By(H)

/ e Mp, f(x)dt = Ry, f(x), ¥ x € H.
0

(iv) Fort > O there exists p; : Hy x Hy — Ry, B(Hy x Ho)-measurable such
that for all f € By(H)

pof ) = fH FO) P, YIV(dy) ¥ x € Ho.

Proof. (iii) and (iv) follow from (i),(ii) by exactly the same arguments used in the
proofs of Proposition 5.2 and Corollaries 5.3, 5.4. So, we only have to prove (i),
(ii).

(i) Let N € N and let Yy denote the closed ball of radius ~/N | f|lo in
L*([0, N1, ds) equipped with the weak topology. So, Yy is compact. Let {/,| n € N}
be a dense set in L2([O, N1, ds) consisting of bounded functions. Then

o0
_ -1
dyy (h1,ha) =Y 27" (Il Loqo.nnds) + Mall 2o, w1.as) + 1)

n=1

inf (| IV 1, (s)(hi(s) — ha(s))ds], 1), hyhy € Yy,

defines a metric on Yy generating its topology, which is complete, since Yy is
compact.

Now consider the maps A‘I)‘v"3 : H — Yy defined for «, § > 0 by

AP ) = (s > PP f(x), s €[0,N]), x € H.

Then forall x,y € H, «, B > 0, by (4.7)

N
dYN(A‘,"V’"(xxA;"Vﬁ(y))s/O sTV2ds |2 fllolx — . (5.14)
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Since v is a probability measure on a polish space there exist K, C Hy, n € N,
compact and increasing, such that

lim v(Ho\K,) =0
n—o0
Defining
K, := supp [112,,”]’ neN,

it is easy to check (cf. the proof of Z. M. Ma and M. Réckner [19], Chapter I,
Proposition 3.8), that K,, C K, n € N, and still

Jim v(Ho\Ky) =0
and that, in addition,
K,.NU#0=v(K,NU) >0, Yopensets U C Hy, Vn € N. (5.15)
By Proposition 4.1 we can find «;,,8, > 0, n € N, such that
Tim R(, NPy f = RO, N2)f, YA >0 in L2(H,v) and v —ae.. (5.16)

Applying the Ascoli theorem and a diagonal argument, selecting a subsequence if
necessary, we obtain that there exists a map A : U, K,, — L*°([0, N], ds) such
that forall N € N

AX) o,y = lim A‘;\;”ﬁ” (x) uniformly for x € K,,, Vn € N. 5.17)
n—>oo
We show now that
A(-)(s)isa v — version of Psf fora.e.s € (0, 00). (5.18)

To prove (5.18) let A > 0. Then by (5.16), (5.17) and dominated convergence for
all g € L®°(H, v)

fo e_A‘Y/Hg(x)Psf(x)v(dx)=/Hg(X)R(A,N2)f(x)v(dx)ds
N
= / g(x) lim lim e PonPn £ (x)ds v(dx)
H n—oo N—oo 0
N
= / g(x) lim / e M A(x)(s)ds v(dx)
H N—oo Jo
= /Ooe—“/ g(X)A(x)(s) v(dx)ds,
0 H

where the interchange of limits is justified, since | Py’ B f )| < |l fllo and hence
[AX)($)| < I fllo for ds-a.e. s € [0, 00) and all x € |, K. So, (5.18) follows
by the uniqueness of the Laplace transform.
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Now we use Lemma 5.6 in a crucial way. If f € S, then by (5.15), (5.17) and
(5.18)

Ax)(@) =p,f(x) forae. tandall x € U K. (5.19)
neN

(since x — (t — p,f(x), t €[0, N]) is continuous from K, to Yy for every
n € N).

So,if f € S, and §; € C(‘)>o (R), k € N, approximate the identity, we obtain
forall x, y € |, ey Kn. that for some subsequence {k;} and a.e. t € (0, N)

N
Pif) =P f(y) = 113210]0 8k, (1 = 5)(Ps f (X) = Py f(¥))ds. (5.20)

But for [ € N the integral in (5.20) is by (5.19) and (5.17) equal to

N
lim [ 8 (t — s)(P2Pr f(x) — PEnPr f(y))ds,

n—oo 0

which by (4.7) is dominated by

N
/0 8, (t —5)s™ 2ds 1CT Y2 fllolx — yl — 2 0C M fllolx — vl
as | — oo.

Since t — p, f(x) is right continuous for all x € Hp, (5.11) follows if f € S.
Since S is a vector lattice containing the constants and generating B(Hp), (5.11)
follows for all f € By (Hp) and thus all f € B, (H) by a monotone class argument.

@ii). Let f € S.Then (5.12) follows by exactly the same arguments as above, but
employing (4.8) instead of (4.7).If f € So, thenmR,, f € S,m € N, |mRy, fllo <
[l fllo and by Proposition 5.2, lim,,;, oo m Ry, f (x) = f(x) for all x € Hp and

lmRm fliLip < I fllLip, ¥Ym € N.

Hence (5.12) follows by approximation for f € Sp. Consequently, using (5.8) we
can approximate again to obtain (5.12) for all f € Lipy(H). |

So, itremains to prove Lemma 5.6. This is done using a modification of the clas-
sical compactification for Ray—resolvents (cf. R. Getoor [18] and also [19, Chapter

4]).

Proof of Lemma 5.6. Consider the injective map
it x— (f(x)res

from Hy to l_[ [—11 fllo, Il f llo] which is equipped with the product topology, hence
fes
is compact and metrizable because S is countable.

By Lemma 5.5, i : Hy — i(Hp) is an homeomorphiin where i(Hp) is
equipped with the trace topology. We consider the closure Hy of Hy = i(Hp)
in 1_[ (=1 fllo, Il fllo]. Ho is then a compact separable metric space, so that every

fes
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f € S has a unique continuous extension f to Hy. By construction the space S of
all such extensions separate the points of Hy, hence the space S; of all extensions
of functions in S, separate the points of Hy. For A € Q% and f € S we define

Rif = Ri(fimy)- (5.21)

which is possible, since R) fin, € S. Here f|y, denotes the function f restricted
to Hy. By the Stone—Weiestrass theorem S is dense in C(Hp) with respect to the
uniform norm || - ||o Therefore, each R;, extends to a positive linear operator from
C(Hyp) into C(Hp). Clearly (R;) reQ:, satisfies the resolvent equation, hence

L— Ry, reQf,

is a Lipschitz continuous map into the space of bounded linear operators on C (Hp),
equipped with the usual operator norm. Consequently, it has a unique continuous
extension A — EA for all A > 0. By the Riesz—Markov theorem each Aﬁ;\, A>0,
is represented by a probability kernel (since AR, 1 = 1) on B(Hy), which we again
denote by AR;. Then the following hold by construction:

(R;)3~0 satisfies the resolvent equation, (5.22)

R, (C(Hp)) Cc C(Hy), VA >0, (5.23)

S, separates the points and consists of functions which are supermedian

with respect to (EA) A>0s (5.24)
Alim Aﬁkf(x) = f(x) Vx € Hy, f € C(Hp). (5.25)
—00

Apart from (5.25) all other properties are obvious. To see (5.25) note that it is

enough to prove this for f € S,. But then f is a—supermedian for some o € Q%

and

lim ARy f(x) =
reQt

A—>00, AE

lim  AR;4qf(x) = f(x) Vx € Hp,
. 2eQf

A—00

by Proposition 5.2. This implies (5.25) since A — R4 f is increasing by the
resolvent equation.

(5.22)—(5.25) imply that (R},);.~0 is a Ray—resolvent on the compact separable
metric space H with Hy contained in the set of its non—branching points. Hence by
[18, Theorem (3.6)], (see also [19, Chapter 4, Theorem 1.20]) there exists a unique
semigroup (p,);>o of probability kernels on B (Hp) such that,

Po(x,dy) = ex(dy) ¥ x € Hp, (5.26)
(where &, denotes the Dirac measure in x).

t — P, f(x) is right continuous on [0, 00) ¥ x € Hy, f € C(Hp). (5.27)
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o0
Rof = / e Mp,fdiY A >0, f e C(Hy). (5.28)
0
(5.28) implies that for f € S, A > 0,

R, f(x) = /OO e MPp, f(x)dt ¥ x € Hy.
0

Hence for all g € L°°(H, v) by (5.2)

o
/ e—“/ gPtfdvdtzf gR(x, No) fdv
0 H H

o0 o0
- f g / e B, Pladidv = / e / e, ) lmydvd.
H 0 0 H

Hence by the uniqueness of the Laplace transform and right continuity we can take

Dif =@ Py, t >0, feES,

as the desired versions. O
6. Kolmogorov’s continuity criterion and diffusion operators on L2(H, v)

Assume again in this section that C -1 ¢ L(H) (or more generally that (4.7) holds,
see Remark 4.4) and that Hypotheses 1.1 and 1.2 hold. Let (p;) be as constructed in
the previous section and Hy = supp v. By Kolmogorov’s standard construction
scheme there exist probability measures Py, x € Hy, on Q = H(])RJr, equipped with
product o—field F°, so that M := (Q, F?, (.7-'?),20, (X?),zo, (Px)xeH,) is a nor-
mal Markov process on Hy with transition semigroup (p;)s~o. Here X ? : H(])R+ —
Hy are the coordinate maps, and ]-',0 = (T(X?| s <t).

The following lemma is more or less obvious, but we include a proof for the
reader’s convenience. Define

P, ::/ P,v(dx). (6.1)
Hy

Lemma 6.1. (X ?)zzo is stochastically continuous under P,,. Hence there exists a
measurable process (X;);>o such that

P [x) £ X, ] =0, V>0
Proof. Fort > s, k € N, we have for f; asin (5.5)

2
dP,

[ |5 - ey
_ / / i) = fel0) pros (x, dy)v(dx)
HJH

=2 [ fav-2 [ fire. v
H H
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where we used that v is invariant for (p;). By the strong continuity of P; the latter
converges to 0 for [t — s| — 0. This implies the stochastic continuity of (X?)zzo
under P, since fi, k € N, generate the topology of Hp. The second part of the
assertion is a well known consequence, see e.g. [13, Proposition 3.2]. O

Remark 6.2. The following proposition is formulated in the situation studied in
this paper, but it is of quite general nature. It works for a large class of operators,
replacing N, which have a nice infinitesimally invariant measure and which are
diffusion operators in the sense of [16, Appendix B].

Theorem 6.3. Let . > 0, f € CZ(H), and

g =Rpf.

(with R, as defined in (5.2)). Then there exists a constant c(g) > 0 such that for
allt,s >0

/ 12(X%) — g(XO)1*dP, < c(g)lt — 2. 62)
Q

Proof. Lett > s.
Step1. Letg € E4(H).Theng, 902’ 903, 904 € E4(H) C D(N3).Hence setting
C(p, @) = |Cl/2D(,0|2 we obtain

/Q P (X)) — p(X))I*dPy = /Q lp(X0) — p(X)[*dP,
= /Q [ (X0) = 40> (X0 (X) + 662 (X)P* (X,)
—40(X)¢* (X,) + " (X,)|aP,

=2/ <p4dv —4/ P,_S<p3 odv —4/ P _s¢ (p3dv+6/ Pt_sfp2 <p2dv.
H H H H

It follows that

r—s
/ 0(X)) — 9(Xy)[*dP, =2 f odv — 4 f [0 + / Na(Pp¥)drlpdy
Q H H 0
t—s t—s
—4 f [+ / Na(Pr@)drlgidv+6 f [p* + / N2 (Pr¢*)drlp*dy
H 0 H 0
t—s t—s
=6 / dr / P (Nog?)@?dv — 4 / dr f P.(No@>)edv
0 H 0 H

t—s
—4/ dr/ Pr(No<p)<p3dU.
0 H
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Since

No(@?) = 3¢*Nop + 3¢T (¢, ¢),

we obtain

/;2 lp(X;) — QD(XS)|4dIPU
1—s
= 4/(; /;2[3¢2(X0)§0(Xr) - 3‘/’(X0)</’2(Xr) — B (X0)INow(X,)dP,

t—s
+6 f / [0*(X0) — 20(X0)9(X)IC2 Do (X,)*dP,,
0 Q
which can be written as

/Q lp(X;) — o(X,)[*dP,
—4 /0 ar fQ [P (X)) — p(X0) P Nog(X,)dP,
+6 /0 ar /Q [p(X,) — 9(X0)*|C'?Dp(X,)|*dP,
—4 / ar / 0(X,)* Nog(X,)dP,
0 Q

t—s
-6 / dr / (X)?ICY2Do(X,)*dP,.
0 Q
Since

No(p") = 49> Nop + 60°T (¢, ¢),

we see that the two last terms are equal to

i) / No(e)dv = 0
H

by the invariance of v. In conclusion we have

/Q lo(X,) — p(X,)|*dP,
t—s
—4 /0 dr fQ [0(X,) — (Xo)* Now (X, )dP,

t—s
+6 / dr f [0(X,) — o(X)2IC 2 De(X,)2dP, = Iy + I,
0 Q
(6.3)
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Step 2. Let ¢ € D(L, Cg’z(H)) N Cp(H). Let ¢, n € N*, be as in Lemma
2.2. Applying (6.3) to @5 replacing ¢, by Hypothesis 1.2—(i) and dominated con-
vergence, we can take limits as in Lemma 2.2 to obtain (6.3) for ¢. Now we note
that

/ lp(X,) — 9(Xo)|?dP, =2 / ¢*dv — / ¢ Prpdv
Q H H

.
=—2/ (p/ P, (Nop)dr'dv
a2 Jo (6.4)
.
<2llgllo /0 P (INogl)dr'dv

= 2rllelloliNo@ll L1 (r.vy = 2rll@lloliNo@ll L2(1.v)-

Consequently

t—s 1 1
] < 4/0 dr </;2 lo(X;) — <.0(X0)|661]P)v>2 (/;z |N090(Xr)|2dpv>2

1
t—s 2
< 4Q2l¢lo)? /0 dr ( /Q |¢(xr>—¢<xo>|2dm) INo@l 2¢1.0)-

Taking into account (6.4), it follows that

t—s
1
11| < 4Qlello)*ClielolNogll 12 (z.) " f r2dr|Nogll 2.0
0

(6.5)
172 5/2 3/2 3/2
Moreover,
t—s . 1/2
Ll <6 /0 dr ( /Q lo(X,) — p(Xo)| dIE%) IT (0, @)l 222,09
1—s 5 \? (6.6)
< 12||§0||0/0 dr (fg lp(X,) — p(Xo)| dIP’U> IT (0. @)1l 121109
3/2 1/2
< 2720l *INow 55y, (= 91T (@0, @)l L2110
So (6.5) and (6.6) imply
3/2 1/2
/ (X)) — p(XDI*dP, < 2llellg* I Nogll /o, )
Q (6.7)

x (IlollollNo@ll 21, + IT (@, @)l 2011.1y) ¢ — )2
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Step 3. Let g be as in the assertion. Let ¢, be as in Corollary 2.4. Then applying
(6.7) with ¢, replacing ¢ and taking the limit as » — oo, we obtain (6.2) for g.
O

Define a metric on Hy (which is in general not complete) by

dx,y) = Z 2

neN c(gn)

where the g, are as in (5.6), (5.7) and c¢(gy,) is as in (6.2) with g, replacing g. Then
the following is a straightforward consequence of Theorem 6.3 and Lemma 5.5.

—n

lnf{lgn(x) - gn()’)v 1} , X,y € H01 (68)

Corollary 6.4. (i) d generates the topology of Hy.
(ii) Forallt,s >0

/ d(x%, x%%ap, < |1 — s>
Q
7. Construction of a diffusion weakly solving SDE (0.1)

By the proof of Kolmogorov’s continuity criterion Corollary 6.4 implies that P,,—
a.e. path in ng is uniformly continuous on the dyadics with respect to the metric
d. Below we are going to apply the technique developed in [15] to show that this
is also true P—a.s., for all x € Hy.

Unfortunately, the results in [15] do not apply directly, but a modification of the
arguments leads to the desired conclusions. We shall give a reasonably self—con-
tained presentation below (but giving credit to [15] at respective points).

We consider the same situation as in the previous section and we also adopt the
notation there. In particular, d denotes the metric defined in (6.8), Q2 = H(])R * and
Hpy :=supp v.

For k, [ € N define (as in [15])

AD = {wteEln()Vnzno, Vs, teS,N[0,1], |s—t] <2770 :

(7.1)
d(X2(w), X0 (@) < 2—k}
where S, := {k27"| k € NU {0}}, and
Ao:= [) AP (7.2)

k,leN

Let ®, : Q — Q, t > 0, be the canonical shift, i.e. O;(w) = w(- + 1), w € Q.
Then it is easy to check that

O '(Ag) D Ao Vi eD, (7.3)

where D := |, oy Sn-(cf. [15]), and we know by the proof of Kolmogorov’s con-
tinuity criterion and Corollary 6.4 that

P,(Ag) = 1. (7.4)

The main trick is contained in the following lemma:
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Lemma 7.1. Suppose A € FO.t > 0, such that P, (@;1 (A)) = 1. Then
P, (©,'(A)) =1, V x € Hy. (7.5)
Proof. We have for all x € Hp by the Markov property that

Py (0; ' (A)) = Ex [Ec(14 0 6, FO)]
= Ex [Exo(1a)]

= pr(E.(14))(x),

where E, (+), E, (¢| ]_-to ) denotes expectation conditional expectation, with respect
to [P, respectively. By the strong Feller property of p; this implies that

x — P8, (A)
is continuous on Hy. But since P, (®; ! (A)) = 1, it follows that
P,(©,'(A)) =1 forv —ae. x € Hy.

Consequently (7.5) follows by continuity. O
Define as in [15]

Ap= () 7' (7.6)

teD,t>0

Then A consists of all paths locally uniformly continuous on (, c0) N D for all
t > 0. Set (as in [15])

Ay = {a) € Q| lim X%w) exists in Ho}, (7.7)
s40,s€D
and
A= AjN AL (7.8)

Then it suffices to show that
Py (A) =1 Vx € Hy. (7.9)

By Lemma 7.1, (7.3) and (7.4) we already know that P, (A(’)) = 1. So (7.9) follows
from the following result (whose proof is slightly different from the corresponding
result (i.e. Lemma 2.10) in [15].

Proposition 7.2. Let x € Hy. Then

limx%=x P, —as. (7.10)
tl0
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Proof. Let k,m € N and let f; be as defined in (5.5). Then (as is well known
and easily follows from the Markov property) (e mR,, fi (X?)),Zo is a positive
supermartingale, so by the martingale convergence theorem P,—a.s.

liﬁ)le_””mRmfk(X?) exists in R,
t

i.e. using the notation introduced in (5.6), (5.7)

1%1 gn(XY) existsin R, Vn e N. (7.11)
t

But since g, g,% are bounded and Lipschitz, it follows by Proposition 5.2 that for
alln e N

Ex [ (60 (X)) = 8 ()| = prgd () — 260000 prga @) + g2) — 0,
as t — 0, which in turn together with (7.11) implies that P,—a.s.

lim g,(X") = g,(x) ¥n eN.
110

Since g,, n € N, generate the topology, (7.10) follows. O

Taking e.g. right limits of (X%),cp, the above considerations imply that we
obtain a process having continuous sample paths IP,.—a.s. for all x € Hy. But since
our metric is not complete in general, the so constructed process will take values
only in the d—completion of Hp and may be not in Hy. To prove that this is, in
fact, not the case we have to employ methods based on the capacity determined
by (Rj)>0. These have been developed in detail in [23] and in a way, particularly
useful for our case, in [22]. In order to apply the corresponding result in [22] (i.e.
Theorem 1.9 in Chapter II), in addition to Hypotheses 1.1, 1.2 and C -l e L(H),
we need to assume:

Hypothesis 7.3. A is self-adjoint.
Now we can prove the main result of this section.

Theorem 7.4. (i) There exists a conservative strong Markov process M = (2, F,
(Fi)i=0, (X1)i=0, Px)xeH,) With continuous sample paths having transition
semigroup (p;)r>o (as defined in Proposition 5.7 (iii)).

(ii) For every x € Hy, Py solves the martingale problem for N, with test function
space

Dy :={p € D(N2) N Cp(H)| Nag € L¥(H, v)}
and initial condition x, i.e.. under P

t
w(Xt)—[ Nro(Xg)ds, t >0, (7.12)
0

is an (Fy)—martingale with Xo = x for all ¢ € Dy.
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Proof. (i). Since C~! € L(H) and Hypotheses 1.1, 1.2 and 7.3 hold, we can apply
[4, Theorem 1.1] to conclude that

v=p-Ng

and p'/? e W'2(H, Ny), i.e. the closure of Cg(H) with respect to the norm || - ||1 2
given by

ot i= [ (IC'2Dgl + ) dNo. o € (.
H
Then we can write for ¢ € E4(H)

Now = L% + (B, Dy)

where
CDp'/?
L% = Lo + 2<1—p, D¢>
p'/2
and
B = F ,CDp 2
=F)—-2——F—
0172

Note that L is symmetric on L>(H, v) and that 8 has v—divergence zero, i.e.

/(,3, Dop)dv =0, V¢ € Es(H).
H

So, we can apply [22, Chapter II, Theorem 1.9] to conclude that
P,(AgNAy) =1

where Ay is as in (7.2) and

Ay = {a) € Q| 1ime§?(w) exists in Q V¢ € [0, oo)} .
t,s€

sy

D denotes the dyadics as in the previous section. Repeating the arguments there
with Ag N A, replacing Ao we see that

P, (ANAy) =1, YVx e Hy,
where A is as defined in (7.8). Now we define forw € A N Aj

X/():= lim X%w)
slt,seD
to obtain continuous sample paths Py—a.s. for all x € Hy. It is standard to check
that this gives the desired Markov process, (see [15] for details). Also the strong
Markov property is obvious, since we have continuous sample paths and a (strong)
Feller transition semigroup.
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(ii). First note that for f € Bp(H), f > 0, x € Hp,

Ey [/t f(Xs)dSi| < 'E, [/oo e_sf(Xs)dS] =e'Rif(x).
0 0

In particular, this is always finite. If, in addition, f = 0 v-a.e., then by Corollary
5.4 also Ry f(x) = 0 for all x € Hy. Hence the integral in (7.12) is well defined
independent of the v—version taken for No¢, ¢ € Dy. Furthermore, we know that
for ¢ € Dy,

t
Py —¢= / P.Nypdr in LZ(H, V).
0

Hence, since p;¢, p,(N2¢) are v—versions of P.¢, P.(Nag) respectively, which
are continuous on Hy, it follows that

t
pro(x) — @(x) =/0 pr(N2@)(x)dr VY x € Hy

(by dominated convergence). The rest of the proof of (ii) is then standard by the
Markov property (cf. also the proof of Proposition 8.2 below). O

Remark 7.5. (i). Both assumptions C~! € L(H) and Hypothesis 7.3 were made to
avoid technical complications and can be relaxed. E.g. in Hypothesis 7.3 itis enough
to assume that A is sectorial, and C~! € L(H) can be dropped if (Ng, E4(H)) sat-
isfies the weak sector condition on L2(H , V), which in turn is the case if it is
symmetric.

(>i1). [22, Chapter II, Proposition 1.9] implies directly the continuity of sample
paths P, a.s.. Using this the above arguments can be shortened, since we can avoid
to use Corollary 6.4. We presented the proof above based on the results in Section
6, which are certainly of their own interest, because it is more transparent. In par-
ticular, no further assumptions are necessary to get continuity of sample paths on
dyadics. If, however, we assume that A is sectorial and C = L(H) and if we use
[22, Chapter II, Proposition 1.9] instead of Corollary 6.4, then in Hypothesis 1.2—(i)
the assumption fH Ix|"2v(dx) < oo can be weakened again to fH Ix[*v(dx) < o0o.

8. Uniqueness

Consider the situation of the previous section. We shall prove uniqueness in an
even larger class of diffusions. First we need to introduce a “v—version” of our
martingale problem. We restrict to the class of diffusion processes which are Feller,
i.e. their transition semigroups map C,(H) into Cp(H).

Definition 8.1. A Feller diffusion process M' = (Q', F', (F)i=0, (X})1>0.
(P))xeH,) on Ho with transition semigroup (p});>o is said to satisfy the LZ(H, V)—
martingale problem for (No, Eo(H)), if

(i) For some M’, ¢’ € (0, 00)

(Pl f)*dv <M | f*dv, ¥V f e Cy(H),t €(0,¢).
Hy Hy
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(ii) Forall o € E4(H)
t
(X)) — / Now(X\)ds. = 0,
0

is an (F])s=o—martingale under P}, := fHo PLv(dx).

Below as usual we denote the expectation, conditional expectation of P, by E/ (-),
E. (-| F?) respectively.

One should note that for any M’ as in the Definition 8.1 (as is easy to see)
(p))r=0 gives rise to a Co—semigroup (P/);>o on L?(H, v) and for its infinitesimal
generator N} we have for sufficiently big A > 0 that (A — N3)(D(N})) = L%(H,v)
and

o
R(A,Ny) =(h—Np~! :/ e MPldr. (8.1)
0

(see e.g. A. Pazy [20], Chapter I, Theorem 5.3 and its proof).
For E},(-) := [ E()v(dx) and f € L'(H, v) it follows that

t t
E, [| / f(X;>ds|]s / / P!\ fldsdv
0 Hy JO

< ef/ R, N3)Ifldv
Hy

< &' IRG NI F Ul 2p1,0) < 00

Hence, in particular, the expression in Definition 8.1—(ii) is well defined (i.e. inde-
pendent of the v—class taken for Nog) and in L' (Q', P).

Proposition 8.2. The diffusion M from Theorem 1.4 solves the L*>(H, v)—martin-
gale problem for (Ny, E4(H))

Proof. 8.1—(i) is obvious. To show 8.1-(ii) let ¢ € £4(H). (Note that 8.1—(ii) does
not follow directly from Theorem 7.4—(ii), since Ny¢ is not bounded in general.)
Then for ¢t > s and any Fy—measurable, bounded function Fy; : Q — R by the
Markov property

t
E, [F (w(Xt)—w(Xs)— / Nosa(xr)dr)}
= /1; v(dx)Ey [F;E, (p(Xy) — (X)) Fs)]
0
t
- / b(dx)E, [Fs / E, (N0¢(Xr)|fv)dr]
Hy s

- /H V(d0)E, [FEx, 0(Xi—y) — o(X,)]
0
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t
- / V(dD)E, [F / Ex, (Nogo(Xr_s»dr]
Hp

s

t—s
=E, |:Fs (pts(p(Xs) —(Xy) — /(; pr(NOQD)(Xs)dr):| .

]

=0. O

But since v is invariant for (p;),

Z/HO

Theorem 8.3. Let M/ = (X, F/, (F)120. (X})r=0, (Bl)rem,) be a Feller diffu-
sion process on Hy satisfying the LZ(H, v)—martingale problem for (Ngy, E4(H)).
Then M has the same finite dimensional distributions as M from Theorem 7.4.

t—s
Di—s@(Xs) — o(X;) — /0 pr(Now)(Xs)dr

r—s
Py — ¢ — / P.Nopdr
0

Proof. Let (p}):>0 be the transition semigroup of M and ¢ > 0. We have to show
that

/
Py = Dt
To this end, let ¢ € E4(H), g € L>(H, v). Then

t
/ g (Pt/(p -9 — / P;No(pds) dv
Hy 0

t
=E, [g(X@ (w(XD —p(Xp) — /0 Now(Xs)dS>:| =0.
Hence
t
Plo—¢= [ P/ Nowds,
0
S0 @ € D(Nﬁ) and Nop = Né(p. But £4(H) is a core for N (cf. Theorem 2.3),
consequently,
D(N2) C D(Nj) and N2 = Nj on D(N3),
hence forall A > 0
(= N5)(D(N3)) D (A — Np)(D(N2)) = L*(H, ).
So,
(A — N3)(D(Ny)) = (, — N3)(D(N2))
and taking A > 0 large enough it follows by (8.1) that
D(N3) = D(N2),
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consequently N, = N». Therefore,
P/ =P,
hence for all f € Cp(H)
pif(x)=p:f(x) forv—ae. x € H.
By continuity it follows that
pif(x) = p;f(x) forall x € Hy= supp v,

hence p; = p;, by a monotone class argument. ]

9. Application
9.1. Gradient systems

Let us first consider a general situation and then concrete examples. We adopt the
notation from the previous sections.

Hypothesis 9.1. (i) A is a self-adjoint linear operator on H such that there exists
o > 0 such that

(Ax,x) < —w|x|?, Vx € H,
and A~ is of trace class.
(ii) C := I. (Hence for Q from Hypothesis 1.1, we have Q = —% A~L)
(iii) Let U : H — (—00, +00] be convex, lower semicontinuous, such that {U <
—+o00} is open and pn({U < +o00}) > 0, where u := N, and such that
p:=2Z1e?V® ¢ LV (H, p)
with Z = fH e_w()‘)u(dx), so that v(dx) := p(x)u(dx) is a probability
measure on (H, B(H)).
(iv) Let 0U denote the subdifferential of U, i.e. D(0U) := {U < +oo} and for
x € DQU)
Ux):={ye HlUx+h)—U(x)>(y,h)Vhe H}.

Then F := 0U is maximal dissipative, so Fy can be defined as in §1. Assume
/ (11" + [ Fo(0)I” + Ix[* [ Fo(x)P)v(dx) < +oo.
H

Note that Hypothesis 9.1 implies that v(D(dU)) = 1. So Hypotheses 1.1, 1.2 and
7.3 and C~! € L(H) hold except for 1.2—(ii). But we have the following result.
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Proposition 9.2. Suppose p'/> € WY2(H, ) such that

Dp'/?

22—
ol1/2

= Fy.
Then, if as before,

1
Nog := 3 Tr [D%] + (-, A*Dg) + (Fy, Dg), ¢ € Ea(H),

we have
[ Nopdv =0V ¢ € E4(H).
H

So, Hypothesis 1.2—(ii) also holds, so all results in Sections 1-8 apply.

Proof. Let ¢, ¥ € E4(H). Then, e.g. by [21, Proposition 2.1] and the proof of
Theorem 3.5, in particular formula (3.17) in [5]

fWNmodv:/ @Noydv.
H H

Choosing ¥ = 1, the result follows. O

Example 9.3. Take H =R, —A=C =1, and

U) = {+£g); S
Then
x2, x>0,
pl) = {0, x<0.
and

Fo(x) = % x € D(F) = (0, 400).

So, Hypothesis 9.1 and the assumptions in Proposition 9.2 are satisfied. Hence by
Theorem 7.4 there exists a strong Feller diffusion process on supp v = [0, +00)
solving the martingale problem corresponding to

2
dX(@t)=|—-X@)+ ——= ) dt +dW(),
() ( ()+X(t)) +dW (1)
X(0) =x,
which is unique in the sense of Theorem 8.2.

Example 9.4. Let H be a separable Hilbert space, and take A as in Hypothesis
9.1-(i), C = I. Let B;(0) denote the open unit ball in H. Set
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_ | —log1 = Ix»), ifx € Bi(0),

U := {+oo, otherwise.

Then
_Ja—=1x1%»?% ifx € Bi(0),
p(x) = {O, otherwise,

and

Fo(x) = ——~ x € D(U) = B,(0).

1 —|x?

So, Hypothesis 9.1 and the assumptions in Proposition 9.2 are satisfied. Hence
by Theorem 7.4 there exists a strong Feller diffusion process on supp v = B1(0)
solving the martingale problem corresponding to
2X (1)
- X2

dX(t) = (—X(t)+ )dl+dW(t),

X(0) = x,

which is unique in the sense of Theorem 8.2. We note that both in this and in the pre-
vious example the relation of the martingale problem to the stochastic differential
equation is somewhat informal since supp v = Hy # H.

9.2. Applications to Reaction—Diffusion equations

Let D be an open bounded subset of R with regular boundary d D. Set H = L*(D)
and let A be the linear operator in H defined as

Ax = Agx, x € D(A),
9.1)
D(A) = H*(D) N H} (D).

It is well known that A is self—adjoint. Moreover there exist an orthonormal basis
{ex} in H and a nondecreasing sequence of positive numbers {ax} such that

Aer = —agey, k € NY,

Finally o 1 oo and oy behaves as |k|? at infinity, see e.g. [1, Theorem 14.6].
Therefore Hypothesis 1.1-(i) is fulfilled with @ = inf; o .
Setnow C := (—A)~® with § > 0, and Q = [;° Ce¥Adt = § (—A)~!17%.
Since

1
TrQ= ) o

keNd
Hypothesis 1.1—(ii) is fulfilled provided 2(1 + §) > d, i.e.

54 9.2)
> — — .
5L

that we shall assume from now on.
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Let us now consider a continuous decreasing function

fiR=>R, p— f(p).

We shall denote by f, its Yosida approximations.
We shall assume that

Hypothesis 9.5. There existm, N € N, a, b > 0 such that
| fa(@)| <a(l+|p™), Vo €R, a >0,

and

|fa(p) = () < ba(1+|p/™), Vp €R, a>0.
Finally for @ > 0, we set F,, (x) := fy ox, x € H, and
Fx)=fox,VxeD(F)={xeH| fox € H}.

Obviously Fy(x) = F(x).
Let us give an example. Define the non locally Lipschitz function

=P if p <0,

Then an easy calculation shows that Hypothesis 9.5 holds.

We are going to show that, under Hypothesis 9.5, F fulfills Hypothesis 1.2. For
this it is enough to show, by Remark 3.4, that for any m € N there exists ¢,;, > 0
such that

/H [ /D |x<s)|2'"ds} Ve (dx) = /H 1750y Ve () < €y (9.3)

where v, is the invariant measure of the operator N, defined by (3.1). This is a
consequence of the following lemma, which is a generalization of Lemma 3.1 and
Corollary 3.2.

Note that in comparison with Remark 3.4 we only have that for » € D(A*) =
D(A)

xe/Dh(s)fox@)ds

is continuous on L?" (D) rather than on H = L*(D) where m is as in Hypothesis
9.5. But because of (9.3) this is enough to get (3.13).

Lemma 9.6. For any m € N there exists ¢, > 0 such that (9.3) holds.
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Proof. We shall denote by X, the solution of (3.2) and by W4 the stochastic con-
volution defined by (3.3). Then we proceed in several steps.

Step 1. There exists ¢1 , > 0 such that

E|Fa(Wa() o) < clmt™, 12 0. 9.4)
The proof of Step 1 is straightforward.
Step 2. There is ¢z ;, > 0 such that

EXy (1, 0)*™ < comt™ (1 4 7" |x|?™). (9.5)

Setting Y (¢, &) = Xo(t, x)(§) — Wa(t, &), Y (¢, &) is the solution to

Y'(t,6) = AsY(t,86) + fa(Y (1, 8) + Wa(r, £))
(9.6)
Y(0) =x.

Multiplying the first equation by Y (r, £)*"~2Y (¢, &), and taking into account the
dissipativity of F,,, we obtain, for a suitable constant c3

1d Y(t, 6" = Y(t, ) AeY (1, §)
2m dt ’ ’ o

F(faY (1, 8) + WA, ) = fa(Walt, HY (1, 6™ o

+ foa (Wa(t, €)Y (2, £)*!

SY@EM T AY (1, E) + fu(Walt, )Y (1,6
Now notice that
f Y6, AeY (1, §)dE = —2m — 1) f Ve (0, §)1Y (1, §)" 2.
P P (9.8)
Then, integrating (9.7) with respect to &, and taking into account (9.8), yields

1 d
oo 7 [ Y@ ©MdE+@m—1) / IVeY (t, §)1PY (¢, £)*"2dE
m dt Jp D
(9.9)
< / S (Walt, )Y (1, €)1 de.
D
But, recalling the Poincaré inequality, there is c4 ,, > O such that
-~ 2m — 1
Qm — 1)[ Ve Y2 2dE = —— / IVeY (t, £)|%dE
D m D

(9.10)

v

Cam / Y (1, )" de.
D
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Moreover there exists cs_,; > 0 such that

fD Fa(Wa(t, )Y (1, 6)*" ds

9.11)
1
<5 e [ V08P besn [ fura o)
D D
Substituting (9.10) and (9.11) into (9.9) yields
G [reeomas < —mes [ vooma
dt Jp D
9.12)
+mes [ fura s,
D
By a classical comparison result we find
[ vuernag < e [ aernag
D D
(9.13)
t
+ 2mes / e meam(1=5) / fa(Y (s, )P déds,
0 D
and Step 2 follows from Step 1.
Step 3. Conclusion.
Arguing as in the proof of Corollary 3.2 we obtain (9.3). O

Remark 9.7. One can study the stochastic differential equation
dX = (A¢X + F(X))dt +V/CaW (1), X(0) = x,

and the corresponding transition semigroup, see [14, Theorem 11.4.1] and [7,
Proposition 6.2.2]. But in this way, in contrast to the “double approximation ”
performed in our paper, one cannot prove that the corresponding generator N; is
the closure of Ny with respect to L2(H , V). But, under the assumptions of [7] in
[11] it was proved that N3 is the closure of Ny, defined on a different core.

Remark 9.8. The semigroup P; is strong Feller provided § < 1. Since by (9.2)
d/2 — 1 < §, this is possible for d < 3. In this case all results in Sections 5-8,
apart from Theorem 7.4, apply.

Remark 9.9. We would like to emphasize that, as pointed out in the previous re-
mark, for the very particular examples studied in this section our general results are
more suitable to prove the strong Feller property of the transition semigroup rather
than existence and uniqueness of solutions to the underlying stochastic equation.
The latter could be proved by more direct techniques (under even weaker assump-
tions). We would like to thank one of the referees for pointing this out to us.
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