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Abstract. Existence of solutions to martingale problems corresponding to singular dissipa-
tive stochastic equations in Hilbert spaces are proved for any initial condition. The solutions
for the single starting points form a conservative diffusion process whose transition semi-
group is shown to be strong Feller. Uniqueness in a generalized sense is proved also, and a
number of applications is presented.

0. Introduction

The purpose of this paper is to construct weak solutions (i.e. solution of the cor-
responding martingale problem) to stochastic differential equations on a Hilbert
space (norm | · |, inner product 〈·, ·〉) of type{

dX = (AX + F0(X))dt +
√
C dWt

X(0) = x ∈ H. (0.1)

HereC is a positive definite bounded self–adjoint linear operator onH,A : D(A) ⊂
H → H the infinitesimal generator of a C0 semigroup on H and

F0(x) := y0, where y0 ∈ F(x) such that |y0| = min
y∈F(x)

|y|, x ∈ D(F),

and

F : D(F) ⊂ H → 2H

is an m–dissipative map. We emphasize that the map F0 : D(F) → H has no
continuity properties in general.

Our strategy is based on first solving the Kolmogorov equations corresponding
to (0.1) on an appropriateL2–space, and then constructing a conservative diffusion
process (i.e. a strong Markov process with continuous sample paths and infinite
life time) having transition probabilities given by the solutions of the Kolmogorov
equations.
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To be more precise, let us describe the three steps to implement this approach
in more detail.

a) Solution of Kolmogorov equations on L2(H, ν)
(see Sections 1–4 below)

Let EA(H) be the linear span of all (real parts of) functions of the form ϕ =
ei〈h,·〉, h ∈ D(A∗), and define

N0ϕ(x) := 1

2
Tr [CD2ϕ(x)] + 〈x,A∗Dϕ(x)〉 + 〈F0(x),Dϕ(x)〉, ϕ ∈ EA(H).

Here D,D2 denotes first, second Fréchet derivatives respectively.
Let ν be a probability measure on H such that∫

H

N0ϕdν = 0, ∀ ϕ ∈ EA(H),

and setH0 := supp ν. (We should note that recently there has been a lot of results on
existence of such measures, called infinitesimally invariant, see e.g. V. Bogachev
and M. Röckner [6]).

We prove that (under some conditions) the closure (N2,D(N2)) of (N0, EA(H))
generates a Markovian C0–semigroup

Pt = etN2 , t ≥ 0,

on L2(H, ν), i.e. for all ϕ ∈ L2(H, ν)

d

dt
Ptϕ = N2Ptϕ, t ≥ 0, P0ϕ = ϕ,

giving a solution to the Kolmogorov equations corresponding to (0.1) onL2(H, ν).

Furthermore, at least in the case where C−1 is bounded (but see also Remark 4.4
below), we have the following regularizing (in particular strong Feller) property:
for all ϕ ∈ L∞(H, ν), t > 0, the L2(H, ν)–class Ptϕ has a Lipschitz–continuous
ν–version.

b) Construction of corresponding strong Feller probability kernels
(see Section 5 below).

We show that there exist probability kernels pt , t > 0, such that for all Borel
measurable and bounded functions ϕ : H → R, ptϕ is a Lipschitz continuous
ν–version of Ptϕ on H0. In particular, (pt )t>0 is strong Feller. Furthermore,

lim
t→0

ptϕ(x) = ϕ(x), ∀ ϕ ∈ C1
b(H), x ∈ H0.

c) Construction of the diffusion weakly solving (0.1)
(see Sections 6,7 below).

As a consequence of b) there exists a canonical normal Markov process M0 =
(�,F0, (F0

t )t≥0, (X
0
t )t≥0, (Px)x∈H0) with � = HR+

0 , X0
t : � → H0 being the

coordinate maps, F0
t := σ(X0

s | s ≤ t) and F0 := F0∞. We then prove that M0

has a modification with Px–a.s. continuous sample paths for all x ∈ H0. This is
done in two steps: first we show that for some modification the sample paths are
continuous Pν–a.s., where
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Pν :=
∫
H

Pxν(dx).

To this end we prove a general result verifying Kolmogorov’s continuity criterion
for Pν (see Theorem 6.3 below) based on the fact that N0 is a diffusion operator
(in the sense of e.g. Eberle [16, Appendix B]). Second, we employ a result due to
J. Dohmann [15] that shows how one can use the strong Feller property to deduce
continuity of sample paths Px–a.s. for all x ∈ H0.

We want to really stress at this point that our situation is entirely different from
the classical ones where the state space H is locally compact (i.e., in our case this
is equivalent to dimH <∞). On locally compact spaces the standard process con-
struction works if the semigroup maps C∞ into C∞, where C∞ are the continuous
functions vanishig at infinity. Only this way, one has control about right limits of
sample paths and about what happens at infinity, i.e. outside any compact set. In
our infinite dimensional situation, this notion makes no sense what so ever, and our
transition semigroups map bounded functions into continuous functions which are
merely bounded with no condition at “infinity”, whatever the latter means.

It is well known that the diffusion, whose construction we have described above,
constitutes a solution to the martingale problem given by (0.1) with test functions
space

{ϕ ∈ D(N2) ∩ Cb(H)| N2ϕ bounded} .
(More precisely, it is a strong Markov selection of such solutions in the sense of
Stroock and Varadhan, see [25, Section 12.2]).

So far, we have only discussed existence of a martingale solution of (0.1). How-
ever, our diffusion process is also unique in the sense that it is the (in distribution)
unique conservative Feller diffusion, solving (0.1) in the above sense whose tran-
sition semigroup (pt )t>0 consists of continuous operators on L2(H, ν). Details on
this are contained in Section 8 below.

In Section 9 we discuss applications, in particular, the gradient case.
Finally, to recover a weak solution for (0.1) from the solution of the correspond-

ing martingale problem is more or less standard providedH = H0. With respect to
the lenght of this paper we shall not give details here, but refer instead to the nice
and coincise presentation in [24, Chapter 3.2] for the finite dimensional case and
for the infinite dimensional case to [3, Section 6].

1. Notation and framework

Let H be a real separable Hilbert space (with norm | · | and inner product 〈·, ·〉),
and let A : D(A) ⊂ H → H and C ∈ L(H) (1) be linear operators such that

Hypothesis 1.1. (i) A is the infinitesimal generator of a strongly continuous semi-
group etA in H . There exists ω > 0 such that

〈Ax, x〉 ≤ −ω|x|2, ∀ x ∈ H.
1 L(H) denotes the set of all bounded linear operators on H.
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(ii) C is symmetric, nonnegative definite and such that Tr Q < +∞, where

Qx :=
∫ ∞

0
etACetA

∗
xdt, x ∈ H

and A∗ denotes the adjoint of A.

We denote by Rt the Ornstein–Uhlenbeck semigroup

Rtϕ(x) :=
∫
H

ϕ(etAx + y)NQt (dy),

where

Qtx :=
∫ t

0
esACesA

∗
xds, x ∈ H,

and NQt is the Gaussian measure in H with mean 0 and covariance operator Qt.

We shall denote byCb,2(H) the Banach space of all functions ϕ : H → R hav-
ing at most quadratic growth, that is ϕ(·)

1+|·|2 is uniformly continuous and bounded.
Endowed with the norm

‖ϕ‖b,2 := sup
x∈H

ϕ(x)

1 + |x|2 ,

Cb,2(H) is a Banach space. Moreover, C1
b,2(H) will represent the subspace of

Cb,2(H) of those functions ϕ that are continuously differentiable and such that

[ϕ]1,2 := sup
x∈H

|Dϕ(x)|
1 + |x|2 < +∞.

It is easy to see that Rt maps Cb,2(H) (resp. C1
b,2(H)) into itself for all t ≥ 0.

Let us define the infinitesimal generatorL ofRt through its resolvent by setting

R(λ,L)ϕ(x) =
∫ +∞

0
e−λtRtϕ(x)dt, x ∈ H, λ > 0.

Then R(λ,L) maps Cb,2(H) (resp. C1
b,2(H)) into itself for all λ > 0.

We set

D(L,Cb,2(H)) = R(λ,L)(Cb,2(H)),

and

D(L,C1
b,2(H)) = R(λ,L)(C1

b,2(H)).

One can easily show that

Lϕ = 1

2
Tr [CD2ϕ] + 〈x,A∗Dϕ〉,∀ ϕ ∈ EA(H),

where EA(H) is the linear span of all (real parts of) functions of the form ϕ(x) =
ei〈h,x〉 with h ∈ D(A∗). Note that EA(H) ⊂ D(L,Cb,2(H)).
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We are also given an m–dissipative mapping

F : D(F) ⊂ H → 2H .

This means that D(F) is a Borel set in H and

〈u− v, x − y〉 ≤ 0, ∀ x, y ∈ D(F), u ∈ F(x), v ∈ F(y),
and Range (I − F) := ⋃

x∈D(F)(x − F(x)) = H (where obviously this union
consists of disjoint sets). For any x ∈ D(F) the set F(x) is closed, non empty, and
convex; we set

F0(x) := y0, where y0 ∈ F(x) such that |y0| = min
y∈F(x)

|y|, x ∈ D(F).

We are concerned with the differential operator

N0ϕ := Lϕ + 〈F0,Dϕ〉, ϕ ∈ EA(H).

Our goal in the following section is to prove that the closure ofN0 ism–dissipative
inL2(H, ν), where ν is a suitable Borel measure onH such that ν is infinitesimally
invariant, i.e., ∫

H

N0ϕdν = 0, ∀ ϕ ∈ EA(H).

We note that, since N0 is a diffusion operator, the latter always implies that (N0,

EA(H)) is dissipative on every Lp(H, ν), (see A. Eberle [16], Lemma 1.8, page
36, and also Proposition 2.1 below in the case p = 2). Hence it is, in particular,
closable in L2(H, ν).

Our main assumptions are the following.

Hypothesis 1.2. There is a Borel probability measure ν on H such that

(i)
∫
D(F)

(|x|12 + |F0(x)|2 + |x|4|F0(x)|2)ν(dx) < +∞.

(ii) For all ϕ ∈ EA(H) we have N0ϕ ∈ L2(H, ν) and∫
H

N0ϕ dν = 0.

(iii) ν(D(F)) = 1.

Remark 1.3. (i). For sufficient conditions of existence of infinitesimally invariant
measures as in Hypothesis 1.2 we refer e.g. to [6, Sections 5 and 7] and also to
Section 3 below.

(ii). We emphasize that
∫
D(F)

|x|12ν(dx) < +∞ is only needed below in the

proof of Theorem 6.3. Up to and including Section 5,
∫
D(F)

|x|4ν(dx) < +∞ will
be sufficient (see however Remark 7.5 below). In particular, our result on m–dis-
sipativity of N0 in L2(H, ν) holds under this weaker assumption. We could study
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m–dissipativity of N0 in Lp(H, ν), p ≥ 1. We should only change Hypothesis
1.2–(i) by assuming∫

H

(|x|2p + |F0(x)|p + |x|2p|F0(x)|p)ν(dx) < +∞.

(iii). In many cases (cfr. [4, the main result]) Hypothesis 1.2 implies that ν <<
NQ. For conditions implying supp ν = H see [2].

We finish this section by giving some preliminaries. We first recall that when
F : H → H is dissipative and Lipschitz continuous, then the following result
holds, see [10, Propositions 1.3 and 3.3]

Proposition 1.4. Assume thatF : H → H is dissipative and Lipschitz continuous.
Then there is a unique Borel probability measure ν onH such thatN0 is dissipative
in L2(H, ν) and its closure N2 is m–dissipative. If C−1 ∈ L(H) then ν << NQ.

Moreover the semigroup Pt generated by N2 is given by

Ptϕ(x) = E[ϕ(X(t, x))],

where X(t, x) is the solution of the stochastic differential equationdX = (AX + F(X))dt +√
CdWt

X(0) = x ∈ H,
(1.1)

and Wt is a cylindrical Wiener process in a probability space (�,F,P).
Let us introduce the Yosida approximations of F. For any α > 0 we set

Fα(x) := 1

α
(Jα(x)− x), x ∈ H,

where

Jα(x) := (I − αF)−1(x), x ∈ H, α > 0.

It is well known that

lim
α→0

Fα(x) = F0(x), ∀ x ∈ D(F).

|Fα(x)| ≤ |F0(x)|, ∀ x ∈ D(F).
(1.2)

Moreover, Fα is Lipschitz continuous (but not differentiable in general), so F0 is
Borel measurable. Therefore, we introduce a further regularization by setting

Fα,β(x) =
∫
H

eβBFα(e
βBx + y)N 1

2 B
−1(e2βB−1)(dy), α, β > 0, (1.3)

where B : D(B) ⊂ H → H is a self–adjoint negative definite operator such that
B−1 is of trace class.

Fα,β is dissipative, of class C∞, and has bounded derivatives of all orders, and
Fα,β → Fα pointwise, see [13, Theorem 9.19].
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2. m–dissipativity of N0

We assume here that Hypotheses 1.1 and 1.2 hold.

Proposition 2.1. For all ϕ ∈ EA(H) we have∫
H

N0ϕ ϕ dν = −1

2

∫
H

|C1/2Dϕ|2 dν. (2.1)

Consequently, N0 is dissipative in L2(H, ν).

Proof. Since

N0(ϕ
2) = 2ϕN0ϕ + |C1/2Dϕ|2, ∀ ϕ ∈ EA(H),

the conclusion follows integrating with respect to ν and using Hypothesis
1.2–(ii). ��

Since N0 is dissipative, it is closable in L2(H, ν). (Here we recall that since
obviously EA(H) contains a countable subset separating the points of H , EA(H)
is dense in L2(H, ν) by a monotone class argument.) We shall denote by N2 its
closure and by D(N2) its domain. We are going to show that N2 is m–dissipative.

Lemma 2.2. Let ϕ ∈ D(L,C1
b,2(H)). Then there exists ϕn ∈ EA(H), n ∈ N4,

such that for some c1 ∈ (0,∞)

|ϕn(x)| + |Dϕn(x)| ≤ c1(1 + |x|2), ∀ n ∈ N4

and ϕn(x) → ϕ(x), Dϕn(x) → Dϕ(x) for all x ∈ H and ϕn → ϕ in N2–graph
norm (2). Consequently

D(L,C1
b,2(H)) ⊂ D(N2).

Furthermore, for all ϕ ∈ D(L,C1
b,2(H)) we have

N2ϕ = Lϕ + 〈F0(x),Dϕ〉. (2.2)

Proof. Let ϕ ∈ D(L,C1
b,2(H)). Then, by [12, Proposition 2.5], there exists a

sequence {ϕn} = {ϕn1,n2,n3,n4} ⊂ EA(H) such that, for some constant c1 > 0,

ϕn(x)→ ϕ(x), Lϕn(x)→ Lϕ(x), Dϕn(x)→ Dϕ(x), ∀ x ∈ H.

|ϕn(x)| + |Lϕn(x)| + |Dϕn(x)| ≤ c1(1 + |x|2), ∀ x ∈ H, n ∈ N4.

It follows that

N0ϕn(x) = Lϕn(x)+ 〈F0(x),Dϕn(x)〉

→ Lϕ(x)+ 〈F0(x),Dϕ(x)〉, ∀ x ∈ D(F).
2 We set n = (n1, n2, n3, n4) and lim

n→∞
= lim

n1→∞
lim
n2→∞

lim
n3→∞

lim
n4→∞
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There is c2 > 0 such that for all x ∈ D(F)
|N0ϕn(x)| ≤ c2(1 + |x|2 + |F0(x)| + |F0(x)||x|2), ∀ n ∈ N4.

By Hypothesis 1.2–(i) it follows that the right hand side is in L2(H, ν). Conse-
quently,

N0ϕn → Lϕ(x)+ 〈F0(x),Dϕ〉 in L2(H, ν),

and ϕ ∈ D(N2) as claimed. ��
Let us consider the approximating equation

λϕα,β − Lϕα,β − 〈Fα,β,Dϕα,β〉 = f, α, β > 0. (2.3)

where λ > 0 and f ∈ C2
b (H). (3)

It is not difficult to see that equation (2.3) has a unique solution ϕα,β ∈
D(L,C1

b,2(H)) ∩ C2
b (H) given by

ϕα,β(x) =
∫ +∞

0
e−λtE[f (Xα,β(t, x))]dt, (2.4)

whereXα,β(·, x) is the solution to problem (1.1) with F replaced by Fα,β .We have
moreover for all h ∈ H,

〈Dϕα,β(x), h〉 =
∫ +∞

0
e−λtE[〈Df (Xα,β(t, x)),DxXα,β(t, x)h〉]dt. (2.5)

For any h ∈ H we set ηhα,β := DxXα,β(t, x). Then we have (in the mild sense)
d

dt
ηhα,β(t, x) = Aηhα,β(t, x)+DFα,β(Xα,β(t, x))η

h
α,β(t, x)

ηhα,β(0, x) = h.

(2.6)

Multiplying both sides of equation (2.6) by ηhα,β(t, x), integrating with respect to
t and taking into account the dissipativity of DFα,β, we find

|ηhα,β(t, x)|2 ≤ 2
∫ t

0
〈Aηhα,β(s, x), ηhα,β(s, x)〉ds + |h|2. (2.7)

This argument is a bit informal (realize that in general ηhα,β(t, x) /∈ D(A)), but
it can be made rigorous by using the Yosida approximation, see e.g. [7, Proof of
Proposition 6.2.2]. Now, recalling Hypothesis 1.1–(i), we have

‖DxXα,β(t, x)‖ ≤ e−ωt , t ≥ 0. (2.8)

Consequently by (2.5) it follows that

|Dϕα,β(x)| ≤ 1

λ
‖f ‖1, x ∈ H. (2.9)

Now we can prove the following result.

3 C2
b (H) is the space of all functions ϕ : H → R that are uniformly continuous and

bounded together with their first and second derivatives.
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Theorem 2.3. Under Hypotheses 1.1 and 1.2, N2 is m–dissipative in L2(H, ν).

Proof. Let f ∈ C2
b (H) and let ϕα,β be the solution to equation (2.3). Then by

Lemma 2.2 we know that ϕα,β ∈ D(N2) and we have

λϕα,β −N2ϕα,β = f + 〈Fα,β − F0,Dϕα,β〉. (2.10)

We claim that

lim
α→0

lim
β→0

〈Fα,β − F0,Dϕα,β〉 = 0 in L2(H, ν).

In fact by (2.9) it follows that

Iα,β :=
∫
H

|〈Fα,β − F0,Dϕα,β〉|2dν

≤ 1

λ2 ‖f ‖2
1

∫
H

|Fα,β − F0|2dν.
(2.11)

Now, since for fixed α > 0, Fα,β is Lipschitz continuous with a Lipschitz constant
that can be choosen independent of β, we see that for any α > 0 there is cα > 0
such that

|Fα,β(x)| ≤ cα(1 + |x|), x ∈ H,
and so

lim sup
β→0

Iα,β ≤ 1

λ2 ‖f ‖2
1

∫
H

|Fα − F0|2dν.

Now the claim follows, in view of the dominated convergence theorem, from (1.2)
and Hypothesis 1.2–(iii).

In conclusion we have proved that

lim
α→0

lim
β→0

(λ−N2)ϕα,β = f in L2(H, ν).

Therefore the closure of the range of λ − N2 includes C2
b (H) which is dense in

L2(H, ν). By the Lumer–Phillips theorem it follows that N2 is m–dissipative as
required. ��

As a consequence of the proof of Theorem 2.3 we have:

Corollary 2.4. Let f ∈ C2
b (H), λ > 0. Then there exist ϕn ∈ D(L,C1

b,2(H)) ∩
C2
b (H), n ∈ N, such that ϕn → R(λ,N2)f as n→ ∞ in L2(H, ν) and

sup
n

∫
H

|N2ϕn|2dν < +∞

and

sup
n

sup
x∈H

(|Dϕn(x)| + |ϕn(x)|) <∞.

Here R(λ,N2) := (λ−N2)
−1.
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Let

Pt = etN2 , t > 0,

be theC0–semigroup generated byN2 onL2(H, ν) (which exists by Theorem 2.3).

Corollary 2.5. (Pt )t≥0 is Markovian, i.e. Pt1 = 1 and Ptf ≥ 0 for all nonnega-
tive f ∈ L2(H, ν) and all t > 0.

Proof. By A. Eberle [16, Appendix B, Lemma 1.9] Pt is positivity preserving.
Since 1 ∈ EA(H) and N01 = 0, it follows that Pt1 = 1. ��

3. Construction of an infinitesimally invariant measure ν

We assume here that Hypothesis 1.1 holds, and consider anm–dissipative mapping
F : D(F) ⊂ H → 2H .

For any α > 0 we consider the Kolmogorov operator (4)

Nαϕ := Lϕ + 〈Fα,Dϕ〉, ϕ ∈ EA(H). (3.1)

By Proposition 1.4 we know that there exists a unique probability measure να on
H such that Nα is dissipative in L2(H, να) and its closure is m–dissipative.

Moreover, the corresponding semigroup Pαt is given by

Pαt ϕ(x) = E[ϕ(Xα(t, x))],

where Xα(t, ·) is the solution of the equation

Xα(t, x) = etAx +
∫ t

0
e(t−s)AFα(Xα(s, x))ds +WA(t), (3.2)

and

WA(t) =
∫ t

0
e(t−s)A

√
C dW(s). (3.3)

Our goal is to show that, under additional assumptions, the sequence να is tight
and that any weak limit ν fulfills Hypothesis 1.2.

We start with an a–priori estimate.

Lemma 3.1. Assume, besides Hypothesis 1.1, that for somem ∈ N there is k(m) ≥
m and cm > 0 such that for any α > 0

E|Fα(WA(t))|2m ≤ cmt
k(m), t ≥ 0. (3.4)

Then there is c1,m > 0 and an integer h(m) such that

E|Xα(t, x)|2m ≤ c1,mt
h(m)(1 + e−mωt |x|2m). (3.5)

4 Here we could consider instead Nα,β , but this does not seem to be necessary.
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Proof. Setting Y (t) = Xα(t, x)−WA(t), Y (t) is the solution to
Y ′(t) = AY(t)+ Fα(Y (t)+WA(t))

Y (0) = x.

(3.6)

Multiplying the first equation by |Y (t)|2m−2Y (t) and taking into account Hypoth-
esis 1.1–(i) and the dissipativity of Fα , for a suitable constant c2,m we obtain

1

2m

d

dt
|Y (t)|2m ≤ −ω|Y (t)|2m + 〈Fα(WA(t)), Y (t)〉|Y (t)|2m−2

+〈Fα(Y (t)+WA(t))− Fα(WA(t)), Y (t)〉|Y (t)|2m−2

≤ −ω|Y (t)|2m + |Fα(WA(t))| |Y (t)|2m−2

≤ −ω
2

|Y (t)|2m + c2,mFα(WA)|2m.
By the Gronwall lemma it follows that

|Y (t)|2m ≤ e−mωt |x|2m + 2mc2,m

∫ t

0
e−mω(t−s)|Fα(WA(s))|2mds,

and finally, for some c3,m

|Xα(t, x)|2m ≤ c3,me
−mωt |x|2m

+ c3,m

(∫ t

0
e−mω(t−s)|Fα(WA(s))|2mds + |WA(t)|2m

)
.

Now the conclusion follows taking expectation since E|WA(t)|2m ≤ ct k̃(m) for
some integer k̃(m). ��

Corollary 3.2. Under the assumptions of Lemma 3.1 there is k1,m > 0 such that∫
H

|x|2mνα(dx) ≤ k1,m. (3.7)

Proof. Integrating (3.5) with respect to να and taking into account the invariance
of να gives ∫

H

|x|2mνα(dx) ≤ c1,mt
k(m)(1 + e−mωt

∫
H

|x|2mνα(dx)). (3.8)

Choose t0 > 0 such that

c1,mt
k(m)
0 e−mωt0 < 1,

then, setting in (3.8) t = t0 yields (3.7). ��
To prove tightness of να we shall assume that A is a variational operator A :

V → V ′ with V ⊂ H ⊂ V ′ with a compact embedding V ⊂ H, and that there
exists κ > 0 such that
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〈Ax, x〉 ≤ −κ‖x‖2
V , x ∈ D(A). (3.9)

Proposition 3.3. Assume that the assumptions of Lemma 3.1 hold, that A is vari-
ational as above and, in addition, that there is δ ∈ (0, 1/2) and cδ > 0 such
that

E|WA(t)|2D(−A)δ ≤ cδt
δ, t ≥ 0. (3.10)

Then there is c1,δ > 0 such that∫
H

|x|2
D(−A)δ να(dx) ≤ c1,δ. (3.11)

Therefore, να are tight.

Proof. Proceeding as in the proof of Lemma 3.1 we obtain

1

2

d

dt
|Yα(t)|2 + κ‖Yα(t)‖2

V ≤ |Yα(t)||Fα(Wα(t))|.

Let λ0 > 0 be such that |x| ≤ λ0‖x‖V . Then we have

1

2

d

dt
|Yα(t)|2 + κ

2
‖Yα(t)‖2

V ≤ λ2
0

2κ
|Fα(Wα(t))|2.

It follows that

|Yα(t)|2 + κ

∫ t

0
‖Yα(s)‖2

V ds ≤ |x|2 + λ2
0

κ

∫ t

0
|Fα(Wα(s))|2ds,

and so there is c1 > 0 such that∫ t

0
|Yα(s)|2D(−A)δds ≤ c1

(
|x|2 + λ2

0

κ

∫ t

0
|Fα(Wα(s))|2ds

)
.

Consequently, there exists c(t) > 0 such that∫ t

0
E|Xα(s)|2D(−A)δds ≤ c(t)(1 + |x|2).

Now we fix t0 > 0 and by the invariance of να we find for a constant c′∫
H

|x|2
D(−A)δ να(dx) ≤ c′

(
1 +

∫
H

|x|2να(dx)
)
,

and the conclusion follows. ��
Remark 3.4. Let ν be a cluster point of να . To check Hypothesis 1.2 it remains to
show that

(i) There exists a > 0 such that

∫
H

|F0(x)|2+aν(dx) < +∞. (3.12)
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(ii) We have

lim
α→0

∫
H

〈Fα,Dϕ〉dνα =
∫
H

〈F0,Dϕ〉dν, ∀ ϕ ∈ EA(H). (3.13)

In fact by (3.7), (3.12) and the Hölder inequality it follows that Hypothesis
1.2–(i) is fulfilled. Moreover by (3.13) it easily follows that

∫
H
N0ϕdν = 0 for all

ϕ ∈ EA(H).
A sufficient condition (fulfilled for reaction–diffusion equations) for (3.13) is

the following

x → 〈h, F0(x)〉 is continuous ∀ h ∈ D(A∗) and
|F0(x)− Fα(x)| ≤ α|G(x)|,

with G : H → R Borel measurable such that supα>0

∫
H
|G(x)|dνα ≤ c.

4. Strong Feller properties for the operator resolvent

We assume here that Hypotheses 1.1 and 1.2 are fulfilled. We denote by Xα,β the
solution of the following stochastic differential equation,dXα,β = (AXα,β + Fα,β(Xα,β))dt +

√
CdWt

Xα,β(0) = x ∈ H,
(4.1)

and by Pα,βt the transition semigroup

P
α,β
t ϕ(x) = E[ϕ(Xα,β(t, x))].

ThenPα,βt is strong Feller (see the proof of Proposition 4.3 below). We set moreover

N
α,β
0 ϕ = Lϕ + 〈Fα,β(x),Dϕ〉, ϕ ∈ EA(H).

By Proposition 1.4 there exists a unique invariant probability measure να,β for

P
α,β
t , so that we can extend the semigroup Pα,βt to L2(H, να,β). Moreover its

infinitesimal generator Nα,β
2 is precisely the closure of Nα,β

0 in L2(H, να,β).

We denote the set of bounded Lipschitz functions onH byLipb(H) and ‖·‖Lip
denotes the Lipschitz norm.

Below we need a particular να,β–version of R(λ,Nα,β
2 )f, namely∫ +∞

0
e−λtP α,βt f (x)dt, x ∈ H,

which we denote again by R(λ,Nα,β
2 )f.

Proposition 4.1. Let λ > 0 and f ∈ Lipb(H). Then

‖R(λ,N2)f − R(λ,N
α,β
2 )f ‖L2(H,ν) ≤

1

λ
‖f ‖Lip‖ |Fα,β − F0| ‖L2(H,ν). (4.2)
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In particular,

lim
α→0

lim
β→0

R(λ,N
α,β
2 )f = R(λ,N2)f in L2(H, ν).

Proof. Since f can be approximated pointwise by uniformly bounded functions
fn ∈ C∞

b (H) such that their first derivatives are bounded by ‖f ‖Lip we may
assume that f ∈ C2

b (H).

Let ϕα,β be the solution of the equation

λϕα,β − Lϕα,β − 〈Fα,β,Dϕα,β〉 = f. (4.3)

By Lemma 2.2 we can write

λϕα,β −N2ϕα,β = f + 〈Fα,β − F0,Dϕα,β〉.
Consequently,

ϕα,β = R(λ,N2)[f + 〈Fα,β − F0,Dϕα,β〉].
Now the assertion follows by (2.9), (2.11) and the proof of Theorem 2.3. ��
Remark 4.2. Since Pα,βt are only bounded on L2(H, να,β) and not in L2(H, ν), it
is not clear to us whether they converge to Pt in the sense of Proposition 4.1.

Proposition 4.3. Assume thatC−1 ∈ L(H) and let λ > 0.ThenR(λ,N2) is strong
Feller. More precisely, let f : H → R be bounded and Borel measurable, then for
ν–a.e. x, y ∈ H

|R(λ,N2)f (x)− R(λ,N2)f (y)| ≤ (λ/π)−1/2‖C−1‖1/2 ‖f ‖0|x − y|, (4.4)

where ‖ · ‖0 denotes the supremum norm.

Proof. Let us first recall the Bismut–Elworthy formula,

〈DPα,βt f (x), h〉 = 1

t
E

[
f (Xα,β(t, x))

∫ t

0
〈C−1/2ηhα,β(s, x), dW(s)〉

]
, (4.5)

where h ∈ H and ηhα,β = DXα,β · h is the solution to (2.6).
By using the Hölder inequality we find

|〈DPα,βt f (x), h〉|2 = 1

t2
‖f ‖2

0E

[∫ t

0
|C−1/2ηhα,β(s, x)|2ds

]
. (4.6)

Now by (2.8) and Hypothesis 1.1–(i), we have

|ηhα,β(t, x)|2 ≤ |h|2.
We deduce from (4.6) that

|〈DPα,βt f (x), h〉|2 ≤ 1

t
‖C−1‖ ‖f ‖2

0|h|2,

that yields
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|Pα,βt f (x)− P
α,β
t f (y)| ≤ t−1/2‖C−1‖1/2‖f ‖0|x − y|, x, y ∈ H. (4.7)

Multiplying with e−tλ and integrating with respect to t we obtain the assertion for
R(λ,N

α,β
2 ) replacing R(λ,N2). Hence, if f ∈ Lipb(H), Proposition 4.1 implies

(4.4). Since every bounded, Borel measurable f : H → R can be approximated in
L2(H, ν) by fn ∈ Lipb(H) such that ‖fn‖0 ≤ ‖f ‖0 + ε for any ε > 0, we obtain
the result. ��
Remark 4.4. As will become clear later, (4.7) is crucial in subsequent sections. This
is the main reason why C−1 ∈ L(H) is assumed in subsequent sections. In fact,
except forTheorem 7.4 (where C−1 ∈ L(H) is used for other reasons), it would be
sufficient to assume (4.7) with ‖C−1‖ replaced by any positive constant, to hold in
all those places. We therefore emphasize that, following S. Cerrai [7, Proposition
8.3.3], we can prove such an inequality also in some cases when C−1 /∈ L(H).

Assume for instance that A is self–adjoint and that

C = (−A)−γ , for some γ ∈ (0, 1].

Then by (2.7) we deduce that∫ t

0
|(−A)1/2ηhα,β(s, x)|2ds ≤ |h|2.

Since

C−1/2 = (−A)−(1−γ )/2(−A)1/2,
we deduce that∫ t

0
|(−C)−1/2ηhα,β(s, x)|2ds ≤ ‖(−A)−(1−γ )/2‖2|h|2.

Consequently

|〈DPα,βt f (x), h〉| = 1√
t
‖f ‖0‖(−A)−(1−γ )/2‖|h|,

which still yields (4.7), with ‖(−A)−(1−γ )/2‖ replacing ‖C−1‖1/2.

Proposition 4.5. Let ϕ ∈ Lipb(H), λ > 0. Then for ν–a.e. x, y ∈ H
|R(λ,N2)ϕ(x)− R(λ,N2)ϕ(y)| ≤ λ−1‖ϕ‖Lip|x − y|.

Proof. By the same argument as in the proof of Proposition 4.1 we may assume
that ϕ ∈ C1

b(H). Let us prove that

|Pα,βt ϕ(x)− P
α,β
t ϕ(y)| ≤ ‖ϕ‖1|x − y|, ∀ ϕ ∈ C1

b(H). (4.8)

But

P
α,β
t ϕ(x) = E

[
ϕ(Xα,β(t, x))

]
,

and for any h ∈ H,



276 G. Da Prato, M. Röckner

〈DPα,βt ϕ(x), h〉 = E
[〈Dϕ(Xα,β(t, x)),DXα,β(t, x) · h〉] .

Since

‖DXα,β(t, x)‖ ≤ e−ωt , t ≥ 0,

we find

|〈DPα,βt ϕ(x), h〉| ≤ e−ωt‖ϕ‖Lip|h|,
that yields (4.8) since ω > 0.

Multiplying (4.8) by e−tλ, integrating over to t, and letting β → 0 and then
α → 0 we obtain the assertion. ��

5. Strong Feller probability kernels

Assume throughout this section that C−1 ∈ L(H) (or more generally that (4.7)
holds, see Remark 4.4) and that Hypotheses 1.1 and 1.2 are fulfilled.

5.1. Resolvents

For a topological space X we denote its Borel σ–algebra by B(X) and by Bb(X)
the set of all f : X → R, which are Borel measurable and bounded.

Define H0 := supp ν.

Lemma 5.1. Let λ > 0 and f ∈ Bb(H). Then R(λ,N2)f has a ν– version
˜R(λ,N2)f , unique on H0, such that for all x, y ∈ H0

| ˜R(λ,N2)f (x)− ˜R(λ,N2)f (y)| ≤ (λ/π)−1/2‖C−1‖1/2 ‖f ‖0|x − y|. (5.1)

Furthermore, if g ∈ Bb(H) is such that f = g ν–a.e., then

˜R(λ,N2)f (x) = ˜R(λ,N2)g(x), ∀ x ∈ H.
Proof. By Proposition 4.3, R(λ,N2)f has a ν–version satisfying the estimate in
Proposition 4.3 for all x, y in a dense subset of H0. Defining ˜R(λ,N2)f as the
continuous extension to all of H0 of this version we obtain the desired function
satisfying (5.1).

Since any other ν–version ofR(λ,N2)f satisfying (5.1) coincides with the one
just constructed ν–a.s., hence on a dense subset ofH0,we have uniqueness of such
a version.

Finally, if f = g ν–a.e., then

˜R(λ,N2)f (x) = ˜R(λ,N2)g(x), for ν a.e. x ∈ H,
hence as above for all x ∈ H0. ��

Define for f ∈ Bb(H) and λ > 0,

Rλf (x) := ˜R(λ,N2)f (x), x ∈ H0. (5.2)



Singular dissipative stochastic equations in Hilbert spaces 277

Proposition 5.2. (Rλ)λ>0 defined in (5.2) is a resolvent of kernels from (H0,

B(H0)) to (H,B(H)) such that λRλ1(x) = 1 for all x ∈ H0. Furthermore, for all
ϕ ∈ Lipb(H), λ > 0,

|λRλϕ(x)− λRλϕ(y)| ≤ ‖ϕ‖Lip|x − y|, ∀ x, y ∈ H0, (5.3)

and hence

lim
λ→∞

λRλϕ(x) = ϕ(x), ∀ x ∈ H0.

Furthermore, each Rλ satisfies (5.1), so is in particular strong Feller.

Proof. For two continuous functions f, g : H0 → R, f ≤ gν–a.e. implies that
f (x) ≤ g(x) for all x ∈ H0. Hence it follows that f → Rλf (x) is linear and
positive on Bb(H) for all x ∈ H0 because of the corresponding properties of
f → R(λ,N2)f. By the same argument

Rλ − Rα = (α − λ)RλRα, ∀ α, λ > 0.

Now we want to show that for all λ > 0, and fn ∈ Bb(H), n ∈ N, we have

fn(x) ↓ 0 as n→ ∞ ∀ x ∈ H ⇒ lim
n→∞Rλfn(x) = 0 ∀ x ∈ H0.

Since Rλfnk → 0 ν–a.e. for some subsequence and Rλfn(x) is decreasing for all
x ∈ H0, it follows that

A :=
{
x ∈ H0 : lim

n→∞Rλfn(x) = 0
}

has ν measure equal to 1. Hence A is dense in H0. Since {Rλfn| n ∈ N} is by
Lemma 5.1 equicontinuous it follows that

lim
n→∞Rλfn(x) = 0 ∀ x ∈ H0.

Furthermore, λRλ1(x) = 1 for ν–a.e. x ∈ H, hence as above for all x ∈ H0. So,
the first part of the assertion follows.

Furthermore, let ϕ ∈ Lipb(H). Then by Proposition 4.5

|λRλϕ(x)− λRλϕ(y)| ≤ ‖ϕ‖Lip|x − y|
for ν–a.e. x, y ∈ H0 and all λ > 0.Hence (5.3) follows. Consequently

{
λRλϕ| λ >

0
}

is equicontinuous. Now assume x0 ∈ H0 and that for some sequence λn → 0

lim
n→∞ λnRλnϕ(x0) �= ϕ(x0).

Then there exists a subsequence such that λnkRλnk ϕ(x) → ϕ(x) as k → ∞ for

ν–a.e. x ∈ H, (since λnRλnϕ → ϕ in L2(H, ν)). Hence by the same argument as
above

λnkRλnk ϕ(x)→ ϕ(x), ∀ x ∈ H0

which is a contradiction. ��
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Corollary 5.3. For all f ∈ Bb(H0), λ > 0∫
H

λRλf dν =
∫
H

f dν. (5.4)

Proof. Let t > 0, ϕ ∈ EA(H). Then by Theorem 2.3 there exist ϕn ∈ EA(H) such
that ϕn → Ptϕ and N0ϕn → N2Ptϕ in L2(H, ν). Hence

d

dt

∫
H

Ptf dν =
∫
H

N2Ptf dν = lim
n→∞

∫
H

N0ϕndν = 0,

so that ∫
H

Ptf dν =
∫
H

f dν.

Multiplying by λe−λt and integrating we conclude that (5.4) holds with ϕ replacing
f. But then (5.4) holds for all f ∈ Bb(H) by a monotone class argument. ��

Corollary 5.4. For all λ > 0 there exists rλ : H0 ×H0 → R+, B(H0 ×H0)–mea-
surable such that for all f ∈ Bb(H)

Rλf (x) =
∫
H

f (y)rλ(x, y)ν(dy), ∀ x ∈ H0.

In particular, λRλ(x,H0) = 1 for all x ∈ H0.

Proof. Fix λ > 0. Let N ∈ B(H0) such that ν(N) = 0. Then by Corollary 5.3

0 =
∫
H

1Ndν =
∫
H

λRλ1Ndν,

so Rλ1N = 0 ν–a.e.; hence Rλ1N(x) = 0 ∀ x ∈ H0. Consequently,

Rλ(x, dy) << ν(dy) ∀ x ∈ H0.

That the density can be chosen jointly continuous is standard, since H0 is
polish. ��

5.2. Semigroups

In contrast to the case of the resolvent we do not know whether

lim
α→0,β→0

P
α,β
t f = Ptf in L2(H, ν)

for sufficiently many functions f. Therefore, the construction of strongly Feller
probability kernels is much more difficult. Our aim is to establish properties (4.7)
and (4.8) with Pt replacing Pα,βt , (cf. Proposition 5.7 below), then we can proceed
as in the case of the resolvent. Though property (4.7) implies “a lot of tightness”
for Pα,βt f, f ∈ Bb(H), we cannot just consider limit points, since convergent
subsequences would depend on (f and) t, so we cannot identify these to coincide
with Ptf using Proposition 4.1 and the uniqueness of the Laplace transform. To
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make this work neverthless, we need to find ν–versions P̃tf of Ptf, continuous on
H0, so that t → P̃tf (x) is right continuous for all x ∈ H0, and for all f in a large
enough space S of functions on H0. This is the content of Lemma 5.6 below.

First we define S.We introduce a countable set of smooth functions generating
the topology of H which we shall use several times below.

Fix h ∈ C∞
0 (R) such that 0 ≤ h ≤ 1, h(r) = 1 if |r| ≤ 1, h(r) = 0 if |r| ≥ 2,

and define

ψ(r) :=
∫ r

0
h(s)ds.

Furthermore, fix yk ∈ H, k ∈ N, so that {yk|k ∈ N} is dense inH and {yk|k ∈ N}∩
H0 is dense in H0. Define for k ∈ N

fk(x) := ψ(|x − yk|2), x ∈ H. (5.5)

Then fk, k ∈ N, generate the topology of H and their restrictions to H0 that of
H0. Consider the set

M := {mRmfk| m ∈ N, k ∈ N} (5.6)

where Rλ is as defined in (5.2), and recount to get

M := {gn| n ∈ N} . (5.7)

Lemma 5.5. {gn| n ∈ N} is a set of uniformly bounded, equi–Lipschitz continuous
functions generating the topology of H0.

Proof. First note that as a consequence of Proposition 5.2, the functions gn, n ∈ N,
are equi–Lipschitz continuous, since

‖fk‖1 = ‖ψ(| · −xk|2)‖0 + ‖ψ ′(| · −xk|2)2(· − xk)‖0

≤ 2 + 1{|·−xk |≤√
2
} 2‖| · −xk|‖0 ≤ 2 + 2

√
2.

Since each gn is continuous, it remains to show that if xl, x ∈ H0, l ∈ N, such
that gn(xl) → gn(x) for all n ∈ N, then xl → x in H0. The latter is equivalent to
fk(xl)→ fk(x) for all k ∈ N. But this holds, since for k ∈ N fixed and all n ∈ N

|fk(xn)− fk(x)| ≤ lim sup
m→∞

|fk(xn)−mRmfk(xn)|

+ sup
m

|mRmfk(xn)−mRmfk(x)| + lim sup
m→∞

|mRmfk(x)− fk(x)|,

and since by Proposition 5.2 the two limsup’s are zero while by equicontinuity the
remaining term can be made arbitrarily small for large n. ��
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There exists a countable subset S0 of Lipb(H0) having the following property:
for all f ∈ Lipb(H0) there exists ϕn ∈ S0, n ∈ N, such that

lim
n→∞ϕn(x) = f (x), ∀ x ∈ H,

‖ϕn‖0 ≤ ‖f ‖0 + 1

n
and ‖ϕn‖Lip ≤ ‖f ‖Lip + 1

n
.

(5.8)

The existence of such a set is easily proved by approximating by cylinder functions
and applying the corresponding well known finite dimensional result. Define

S±0 := {
f+| f ∈ S0

} ∪ {f−| f ∈ S0
}
,

where f+ := sup {f, 0}, f− := − inf {f, 0} . Set

S1 := {
Rmf | m ∈ N, f ∈ S±0 ∪ {fk, k ∈ N}} ,

where fk is as defined as in (5.5).
Recall that a function f : H0 → R+ is called α–supermedian for (Rλ)λ>0 if

λRλ+αf (x) ≤ f (x), ∀ λ > 0 ∀ x ∈ H0.

Clearly, by the resolvent equation any function in S1 is m–supermedian for some
m ∈ N. Furthermore the α–supermedian functions form an inf stable convex cone,
invariant under Rβ for all β > 0 and, containing the positive constant functions.
Hence we may consider the smallest set S2 of bounded functions on H0, α–super-
median for some α ∈ Q∗+, having the following properties

S1 ⊂ S2, Rαf, 1, f ∧ g, αf + βg ∈ S2 if f, g ∈ S2, α, β ∈ Q∗
+. (5.9)

By [17, Lemma 6.1.1] S2 is countable. Define the corresponding Q–vector space.
Define

S := S2 − S2. (5.10)

Then S is countable and a vector lattice over Q containing M, hence in particular
S generates B(H0).

Lemma 5.6. Let f ∈ S. Then there exists a ν–version ptf of Ptf, t > 0, such
that for all x ∈ H0

t → ptf (x) is right continuous on [0,+∞),

and for t > 0

x → ptf (x) is continuous on H0.

Before we prove Lemma 5.6 we show that it implies the existence of strong
Feller probability kernels for Pt :
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Proposition 5.7. (i) Let f ∈ Bb(H), t > 0. Then for ν–a.e. x, y ∈ H
|Ptf (x)− Ptf (y)| ≤ t−1/2‖C−1‖1/2‖f ‖0|x − y|. (5.11)

(ii) Let f ∈ Lipb(H), t > 0. Then for ν–a.e. x, y ∈ H
|Ptf (x)− Ptf (y)| ≤ ‖f ‖Lip|x − y|. (5.12)

(iii) Let for f ∈ Bb(H), t > 0, ptf denote the unique Lipschitz continuous ν–ver-
sion of Ptf on H0. Then (pt )t≥0 is a semigroup of strong Feller probability
kernels satisfying (5.11) and (5.12) with pt replacing Pt . Furthermore, ν is
an invariant measure for (pt )t≥0 and for all f ∈ Lipb(H)

lim
t→0

ptf (x) = f (x), ∀ x ∈ H0, (5.13)

and for all λ > 0 and all f ∈ Bb(H)∫ ∞

0
e−λtptf (x)dt = Rλf (x), ∀ x ∈ H0.

(iv) For t > 0 there exists pt : H0 × H0 → R+, B(H0 × H0)–measurable such
that for all f ∈ Bb(H)

ptf (x) =
∫
H

f (y)pt (x, y)ν(dy) ∀ x ∈ H0.

Proof. (iii) and (iv) follow from (i),(ii) by exactly the same arguments used in the
proofs of Proposition 5.2 and Corollaries 5.3, 5.4. So, we only have to prove (i),
(ii).

(i) Let N ∈ N and let YN denote the closed ball of radius
√
N ‖f ‖0 in

L2([0, N ], ds) equipped with the weak topology. So,YN is compact. Let {ln| n ∈ N}
be a dense set in L2([0, N ], ds) consisting of bounded functions. Then

dYN (h1, h2) :=
∞∑
n=1

2−n
(‖ln‖L∞([0,N ],ds) + ‖ln‖L2([0,N ],ds) + 1

)−1

inf
(
| ∫ N0 ln(s)(h1(s)− h2(s))ds|, 1

)
, h1.h2 ∈ YN,

defines a metric on YN generating its topology, which is complete, since YN is
compact.

Now consider the maps ?α,β
N : H → YN defined for α, β > 0 by

?
α,β
N (x) := (

s → Pα,βs f (x), s ∈ [0, N ]
)
, x ∈ H.

Then for all x, y ∈ H, α, β > 0, by (4.7)

dYN (?
α,β
N (x),?

α,β
N (y)) ≤

∫ N

0
s−1/2ds‖C−1‖1/2‖f ‖0|x − y|. (5.14)
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Since ν is a probability measure on a polish space there exist K̃n ⊂ H0, n ∈ N,
compact and increasing, such that

lim
n→∞ ν(H0\K̃n) = 0

Defining

Kn := supp [1
K̃n
ν], n ∈ N,

it is easy to check (cf. the proof of Z. M. Ma and M. Röckner [19], Chapter III,
Proposition 3.8), that Kn ⊂ K̃n, n ∈ N, and still

lim
n→∞ ν(H0\Kn) = 0

and that, in addition,

Kn ∩ U �= ∅ ⇒ ν(Kn ∩ U) > 0, ∀ open sets U ⊂ H0, ∀ n ∈ N. (5.15)

By Proposition 4.1 we can find αn,βn > 0, n ∈ N, such that

lim
n→∞R(λ,N

αn,βn
2 )f = R(λ,N2)f, ∀ λ > 0 in L2(H, ν) and ν − a.e.. (5.16)

Applying the Ascoli theorem and a diagonal argument, selecting a subsequence if
necessary, we obtain that there exists a map ? : ∪nKn → L∞([0, N ], ds) such
that for all N ∈ N

?(x)|[0,N ] = lim
n→∞?

αn,βn
N (x) uniformly for x ∈ Kn, ∀ n ∈ N. (5.17)

We show now that

?(·)(s) is a ν − version of Psf for a.e. s ∈ (0,∞). (5.18)

To prove (5.18) let λ > 0. Then by (5.16), (5.17) and dominated convergence for
all g ∈ L∞(H, ν)∫ ∞

0
e−λs

∫
H

g(x)Psf (x)ν(dx) =
∫
H

g(x)R(λ,N2)f (x)ν(dx)ds

=
∫
H

g(x) lim
n→∞ lim

N→∞

∫ N

0
e−λsP αn,βns f (x)ds ν(dx)

=
∫
H

g(x) lim
N→∞

∫ N

0
e−λs?(x)(s)ds ν(dx)

=
∫ ∞

0
e−λs

∫
H

g(x)?(x)(s) ν(dx)ds,

where the interchange of limits is justified, since |Pαn,βns f (x)| ≤ ‖f ‖0 and hence
|?(x)(s)| ≤ ‖f ‖0 for ds-a.e. s ∈ [0,∞) and all x ∈ ⋃

n Kn. So, (5.18) follows
by the uniqueness of the Laplace transform.
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Now we use Lemma 5.6 in a crucial way. If f ∈ S, then by (5.15), (5.17) and
(5.18)

?(x)(t) = ptf (x) for a.e. t and all x ∈
⋃
n∈N

Kn. (5.19)

(since x → (
t → ptf (x), t ∈ [0, N ]

)
is continuous from Kn to YN for every

n ∈ N).
So, if f ∈ S, and δk ∈ C∞

0 (R), k ∈ N, approximate the identity, we obtain
for all x, y ∈ ⋃

n∈NKn, that for some subsequence {kl} and a.e. t ∈ (0, N)

ptf (x)− ptf (y) = lim
l→∞

∫ N

0
δkl (t − s)(psf (x)− psf (y))ds. (5.20)

But for l ∈ N the integral in (5.20) is by (5.19) and (5.17) equal to

lim
n→∞

∫ N

0
δkl (t − s)(P αn,βns f (x)− Pαn,βns f (y))ds,

which by (4.7) is dominated by∫ N

0
δkl (t − s)s−1/2ds ‖C−1‖1/2‖f ‖0|x − y| → t−1/2 ‖C−1‖‖f ‖0|x − y|,

as l → ∞.

Since t → ptf (x) is right continuous for all x ∈ H0, (5.11) follows if f ∈ S.

Since S is a vector lattice containing the constants and generating B(H0), (5.11)
follows for all f ∈ Bb(H0) and thus all f ∈ Bb(H) by a monotone class argument.

(ii). Let f ∈ S.Then (5.12) follows by exactly the same arguments as above, but
employing (4.8) instead of (4.7). If f ∈ S0, thenmRmf ∈ S, m ∈ N, ‖mRmf ‖0 ≤
‖f ‖0 and by Proposition 5.2, limm→∞mRmf (x) = f (x) for all x ∈ H0 and

‖mRmf ‖Lip ≤ ‖f ‖Lip, ∀ m ∈ N.

Hence (5.12) follows by approximation for f ∈ S0. Consequently, using (5.8) we
can approximate again to obtain (5.12) for all f ∈ Lipb(H). ��

So, it remains to prove Lemma 5.6. This is done using a modification of the clas-
sical compactification for Ray–resolvents (cf. R. Getoor [18] and also [19, Chapter
4]).

Proof of Lemma 5.6. Consider the injective map

i : x → (f (x))f∈S

fromH0 to
∏
f∈S

[−‖f ‖0, ‖f ‖0] which is equipped with the product topology, hence

is compact and metrizable because S is countable.
By Lemma 5.5, i : H0 → i(H0) is an homeomorphism where i(H0) is

equipped with the trace topology. We consider the closure H0 of H0 = i(H0)

in
∏
f∈S

[−‖f ‖0, ‖f ‖0]. H0 is then a compact separable metric space, so that every
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f ∈ S has a unique continuous extension f to H0. By construction the space S of
all such extensions separate the points of H0, hence the space S2 of all extensions
of functions in S2 separate the points of H0. For λ ∈ Q∗+ and f ∈ S we define

Rλf := Rλ(f|H0). (5.21)

which is possible, since Rλf|H0 ∈ S. Here f|H0 denotes the function f restricted
to H0. By the Stone–Weiestrass theorem S is dense in C(H0) with respect to the
uniform norm ‖ · ‖0 Therefore, each Rλ extends to a positive linear operator from
C(H0) into C(H0). Clearly (Rλ)λ∈Q∗+ satisfies the resolvent equation, hence

λ→ Rλ, λ ∈ Q∗
+,

is a Lipschitz continuous map into the space of bounded linear operators onC(H0),

equipped with the usual operator norm. Consequently, it has a unique continuous
extension λ→ Rλ for all λ > 0. By the Riesz–Markov theorem each λRλ, λ > 0,
is represented by a probability kernel (since λRλ1 = 1) on B(H0), which we again
denote by λRλ. Then the following hold by construction:

(Rλ)λ>0 satisfies the resolvent equation, (5.22)

Rλ(C(H0)) ⊂ C(H0), ∀ λ > 0, (5.23)

S2 separates the points and consists of functions which are supermedian

with respect to (Rλ)λ>0, (5.24)

lim
λ→∞

λRλf (x) = f (x) ∀ x ∈ H0, f ∈ C(H0). (5.25)

Apart from (5.25) all other properties are obvious. To see (5.25) note that it is
enough to prove this for f ∈ S2. But then f is α–supermedian for some α ∈ Q∗+
and

lim
λ→∞, λ∈Q∗+

λRλ+αf (x) = lim
λ→∞, λ∈Q∗+

λRλ+αf (x) = f (x) ∀ x ∈ H0,

by Proposition 5.2. This implies (5.25) since λ → Rλ+αf is increasing by the
resolvent equation.

(5.22)–(5.25) imply that (Rλ)λ>0 is a Ray–resolvent on the compact separable
metric spaceH 0 withH0 contained in the set of its non–branching points. Hence by
[18, Theorem (3.6)], (see also [19, Chapter 4, Theorem 1.20]) there exists a unique
semigroup (pt )t≥0 of probability kernels on B(H0) such that,

p0(x, dy) = εx(dy) ∀ x ∈ H0, (5.26)

(where εx denotes the Dirac measure in x).

t → ptf (x) is right continuous on [0,∞) ∀ x ∈ H0, f ∈ C(H0). (5.27)
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Rλf =
∫ ∞

0
e−λtptf dt ∀ λ > 0, f ∈ C(H0). (5.28)

(5.28) implies that for f ∈ S, λ > 0,

Rλf (x) =
∫ ∞

0
e−λtptf (x)dt ∀ x ∈ H0.

Hence for all g ∈ L∞(H, ν) by (5.2)∫ ∞

0
e−λt

∫
H

gPtf dνdt =
∫
H

gR(λ,N2)f dν

=
∫
H

g

∫ ∞

0
e−λt (ptf )|H0dtdν =

∫ ∞

0
e−λt

∫
H

g(ptf )|H0dνdt.

Hence by the uniqueness of the Laplace transform and right continuity we can take

ptf = (ptf )|H0 , t > 0, f ∈ S,
as the desired versions. ��

6. Kolmogorov’s continuity criterion and diffusion operators on L2(H, ν)

Assume again in this section that C−1 ∈ L(H) (or more generally that (4.7) holds,
see Remark 4.4) and that Hypotheses 1.1 and 1.2 hold. Let (pt ) be as constructed in
the previous section and H0 = supp ν. By Kolmogorov’s standard construction
scheme there exist probability measures Px, x ∈ H0, on� = HR+

0 , equipped with
product σ–field F0, so that M0 := (�,F0, (F0

t )t≥0, (X
0
t )t≥0, (Px)x∈H0) is a nor-

mal Markov process on H0 with transition semigroup (pt )t>0. Here X0
t : HR+

0 →
H0 are the coordinate maps, and F0

t := σ(X0
s | s ≤ t).

The following lemma is more or less obvious, but we include a proof for the
reader’s convenience. Define

Pν :=
∫
H0

Pxν(dx). (6.1)

Lemma 6.1. (X0
t )t≥0 is stochastically continuous under Pν . Hence there exists a

measurable process (Xt )t≥0 such that

Pν
[
X0
t �= Xt

]
= 0, ∀ t > 0.

Proof. For t > s, k ∈ N, we have for fk as in (5.5)∫
�

∣∣∣fk(X0
t )− fk(X

0
s )

∣∣∣2 dPν

=
∫
H

∫
H

(fk(y)− fk(x))
2pt−s(x, dy)ν(dx)

= 2
∫
H

f 2
k dν − 2

∫
H

fkPt−sfkdν
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where we used that ν is invariant for (pt ). By the strong continuity of Pt the latter
converges to 0 for |t − s| → 0. This implies the stochastic continuity of (X0

t )t≥0
under Pν, since fk, k ∈ N, generate the topology of H0. The second part of the
assertion is a well known consequence, see e.g. [13, Proposition 3.2]. ��
Remark 6.2. The following proposition is formulated in the situation studied in
this paper, but it is of quite general nature. It works for a large class of operators,
replacing N2, which have a nice infinitesimally invariant measure and which are
diffusion operators in the sense of [16, Appendix B].

Theorem 6.3. Let λ > 0, f ∈ C2
b (H), and

g := Rλf.

(with Rλ as defined in (5.2)). Then there exists a constant c(g) > 0 such that for
all t, s > 0 ∫

�

|g(X0
t )− g(X0

s )|4dPν ≤ c(g)|t − s|3/2. (6.2)

Proof. Let t > s.

Step 1. Let ϕ ∈ EA(H).Then ϕ, ϕ2, ϕ3, ϕ4 ∈ EA(H) ⊂ D(N2).Hence setting
B(ϕ, ϕ) := |C1/2Dϕ|2 we obtain∫
�

|ϕ(X0
t )− ϕ(X0

s )|4dPν =
∫
�

|ϕ(Xt )− ϕ(Xs)|4dPν

=
∫
�

[
ϕ4(Xt )− 4ϕ3(Xt )ϕ(Xs)+ 6ϕ2(Xt )ϕ

2(Xs)

− 4 ϕ(Xt )ϕ
3(Xs)+ ϕ4(Xs)

]
dPν

= 2
∫
H

ϕ4dν − 4
∫
H

Pt−sϕ3 ϕdν − 4
∫
H

Pt−sϕ ϕ3dν + 6
∫
H

Pt−sϕ2 ϕ2dν.

It follows that∫
�

|ϕ(Xt )− ϕ(Xs)|4dPν = 2
∫
H

ϕ4dν − 4
∫
H

[ϕ3 +
∫ t−s

0
N2(Prϕ

3)dr]ϕdν

− 4
∫
H

[ϕ+
∫ t−s

0
N2(Prϕ)dr]ϕ

3dν+6
∫
H

[ϕ2 +
∫ t−s

0
N2(Prϕ

2)dr]ϕ2dν

= 6
∫ t−s

0
dr

∫
H

Pr(N0ϕ
2)ϕ2dν − 4

∫ t−s

0
dr

∫
H

Pr(N0ϕ
3)ϕdν

− 4
∫ t−s

0
dr

∫
H

Pr(N0ϕ)ϕ
3dν.



Singular dissipative stochastic equations in Hilbert spaces 287

Since

N0(ϕ
3) = 3ϕ2N0ϕ + 3ϕB(ϕ, ϕ),

we obtain∫
�

|ϕ(Xt )− ϕ(Xs)|4dPν

= 4
∫ t−s

0

∫
�

[3ϕ2(X0)ϕ(Xr)− 3ϕ(X0)ϕ
2(Xr)− ϕ3(X0)]N0ϕ(Xr)dPν

+ 6
∫ t−s

0

∫
�

[ϕ2(X0)− 2ϕ(X0)ϕ(Xr)]|C1/2Dϕ(Xr)|2dPν,

which can be written as∫
�

|ϕ(Xt )− ϕ(Xs)|4dPν

= 4
∫ t−s

0
dr

∫
�

[ϕ(Xr)− ϕ(X0)]
3N0ϕ(Xr)dPν

+ 6
∫ t−s

0
dr

∫
�

[ϕ(Xr)− ϕ(X0)]
2|C1/2Dϕ(Xr)|2dPν

− 4
∫ t−s

0
dr

∫
�

ϕ(Xr)
3N0ϕ(Xr)dPν

− 6
∫ t−s

0
dr

∫
�

ϕ(Xr)
2|C1/2Dϕ(Xr)|2dPν .

Since

N0(ϕ
4) = 4ϕ3N0ϕ + 6ϕ2B(ϕ, ϕ),

we see that the two last terms are equal to

−(t − s)

∫
H

N0(ϕ
4)dν = 0

by the invariance of ν. In conclusion we have∫
�

|ϕ(Xt )− ϕ(Xs)|4dPν

= 4
∫ t−s

0
dr

∫
�

[ϕ(Xr)− ϕ(X0)]
3N0ϕ(Xr)dPν

+ 6
∫ t−s

0
dr

∫
�

[ϕ(Xr)− ϕ(X0)]
2|C1/2Dϕ(Xr)|2dPν := I1 + I2.

(6.3)
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Step 2. Let ϕ ∈ D(L,C1
b,2(H)) ∩ Cb(H). Let ϕn, n ∈ N4, be as in Lemma

2.2. Applying (6.3) to ϕn replacing ϕ, by Hypothesis 1.2–(i) and dominated con-
vergence, we can take limits as in Lemma 2.2 to obtain (6.3) for ϕ. Now we note
that ∫

�

|ϕ(Xr)− ϕ(X0)|2dPν = 2
∫
H

ϕ2dν −
∫
H

ϕPrϕdν

= −2
∫
H

ϕ

∫ r

0
Pr ′(N0ϕ)dr

′dν

≤ 2‖ϕ‖0

∫ r

0
Pr ′(|N0ϕ|)dr ′dν

= 2r‖ϕ‖0‖N0ϕ‖L1(H,ν) ≤ 2r‖ϕ‖0‖N0ϕ‖L2(H,ν).

(6.4)

Consequently

|I1| ≤ 4
∫ t−s

0
dr

(∫
�

|ϕ(Xr)− ϕ(X0)|6dPν

) 1
2
(∫

�

|N0ϕ(Xr)|2dPν

) 1
2

≤ 4(2‖ϕ‖0)
2
∫ t−s

0
dr

(∫
�

|ϕ(Xr)− ϕ(X0)|2dPν

) 1
2

‖N0ϕ‖L2(H,ν).

Taking into account (6.4), it follows that

|I1| ≤ 4(2‖ϕ‖0)
2(2‖ϕ‖0‖N0ϕ‖L2(H,ν))

1/2
∫ t−s

0
r

1
2 dr‖N0ϕ‖L2(H,ν)

= 211/2

3
‖ϕ‖5/2

0 ‖N0ϕ‖3/2
L2(H,ν)

(t − s)3/2.

(6.5)

Moreover,

|I2| ≤ 6
∫ t−s

0
dr

(∫
�

|ϕ(Xr)− ϕ(X0)|4dPν

)1/2

‖B(ϕ, ϕ)‖L2(H,ν)

≤ 12‖ϕ‖0

∫ t−s

0
dr

(∫
�

|ϕ(Xr)− ϕ(X0)|2dPν

)1/2

‖B(ϕ, ϕ)‖L2(H,ν)

≤ 27/2‖ϕ‖3/2
0 ‖N0ϕ‖1/2

L2(H,ν)
(t − s)3/2‖B(ϕ, ϕ)‖L2(H,ν).

(6.6)

So (6.5) and (6.6) imply∫
�

|ϕ(X0
t )− ϕ(X0

s )|4dPν ≤ 26‖ϕ‖3/2
0 ‖N0ϕ‖1/2

L2(H,ν)

× (‖ϕ‖0‖N0ϕ‖L2(H,ν) + ‖B(ϕ, ϕ)‖L2(H,ν)

)
(t − s)3/2.

(6.7)
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Step 3. Let g be as in the assertion. Let ϕn be as in Corollary 2.4. Then applying
(6.7) with ϕn replacing ϕ and taking the limit as n → ∞, we obtain (6.2) for g.

��
Define a metric on H0 (which is in general not complete) by

d(x, y) :=
∑
n∈N

2−n

c(gn)
inf {|gn(x)− gn(y), 1} , x, y ∈ H0, (6.8)

where the gn are as in (5.6), (5.7) and c(gn) is as in (6.2) with gn replacing g. Then
the following is a straightforward consequence of Theorem 6.3 and Lemma 5.5.

Corollary 6.4. (i) d generates the topology of H0.

(ii) For all t, s > 0 ∫
�

d(X0
t , X

0
s )

4dPν ≤ |t − s|3/2.

7. Construction of a diffusion weakly solving SDE (0.1)

By the proof of Kolmogorov’s continuity criterion Corollary 6.4 implies that Pν–
a.e. path in HR+

0 is uniformly continuous on the dyadics with respect to the metric
d. Below we are going to apply the technique developed in [15] to show that this
is also true Px–a.s., for all x ∈ H0.

Unfortunately, the results in [15] do not apply directly, but a modification of the
arguments leads to the desired conclusions. We shall give a reasonably self–con-
tained presentation below (but giving credit to [15] at respective points).

We consider the same situation as in the previous section and we also adopt the

notation there. In particular, d denotes the metric defined in (6.8), � = H
R+,
0 and

H0 := supp ν.
For k, l ∈ N define (as in [15])

A
(l)
k :=

{
ω ∈ �| ∃ n0 ∀ n ≥ n0, ∀ s, t ∈ Sn ∩ [0, l], |s − t | ≤ 2−n0 :

d(X0
s (ω),X

0
t (ω)) ≤ 2−k

} (7.1)

where Sn := {k2−n| k ∈ N ∪ {0}}, and

?0 :=
⋂
k,l∈N

A
(l)
k . (7.2)

Let Ct : � → �, t > 0, be the canonical shift, i.e. Ct(ω) = ω(· + t), ω ∈ �.

Then it is easy to check that

C−1
t (?0) ⊃ ?0 ∀ t ∈ D, (7.3)

where D := ⋃
n∈N Sn.(cf. [15]), and we know by the proof of Kolmogorov’s con-

tinuity criterion and Corollary 6.4 that

Pν(?0) = 1. (7.4)

The main trick is contained in the following lemma:
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Lemma 7.1. Suppose A ∈ F0, t > 0, such that Pν(C
−1
t (A)) = 1. Then

Px(C
−1
t (A)) = 1, ∀ x ∈ H0. (7.5)

Proof. We have for all x ∈ H0 by the Markov property that

Px(C
−1
t (A)) = Ex

[
Ex(1A ◦Ct | F0

t )
]

= Ex
[
EX0

t
(1A)

]
= pt (E·(1A))(x),

where Ex(·), Ex(·| F0
t ) denotes expectation conditional expectation, with respect

to Px respectively. By the strong Feller property of pt this implies that

x → Px(C
−1
t (A))

is continuous on H0. But since Pν(C
−1
t (A)) = 1, it follows that

Px(C
−1
t (A)) = 1 for ν − a.e. x ∈ H0.

Consequently (7.5) follows by continuity. ��
Define as in [15]

?′
0 =

⋂
t∈D,t>0

C−1
t (?0). (7.6)

Then ?′
0 consists of all paths locally uniformly continuous on (t,∞) ∩ D for all

t > 0. Set (as in [15])

?1 :=
{
ω ∈ �| lim

s↓0,s∈D
X0
s (ω) exists in H0

}
, (7.7)

and

? := ?′
0 ∩?1. (7.8)

Then it suffices to show that

Px(?) = 1 ∀ x ∈ H0. (7.9)

By Lemma 7.1, (7.3) and (7.4) we already know that Px(?
′
0) = 1. So (7.9) follows

from the following result (whose proof is slightly different from the corresponding
result (i.e. Lemma 2.10) in [15].

Proposition 7.2. Let x ∈ H0. Then

lim
t↓0

X0
t = x Px − a.s.. (7.10)
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Proof. Let k,m ∈ N and let fk be as defined in (5.5). Then (as is well known
and easily follows from the Markov property) (e−mtmRmfk(X0

t ))t≥0 is a positive
supermartingale, so by the martingale convergence theorem Px–a.s.

lim
t↓0

e−mtmRmfk(X0
t ) exists in R,

i.e. using the notation introduced in (5.6), (5.7)

lim
t↓0

gn(X
0
t ) exists in R, ∀ n ∈ N. (7.11)

But since gn, g2
n are bounded and Lipschitz, it follows by Proposition 5.2 that for

all n ∈ N

Ex
[
(gn(X

0
t )− gn(x))

2
]
= ptg

2
n(x)− 2gn(x)ptgn(x)+ g2

n(x)→ 0,

as t → 0, which in turn together with (7.11) implies that Px–a.s.

lim
t↓0

gn(X
0
t ) = gn(x) ∀ n ∈ N.

Since gn, n ∈ N, generate the topology, (7.10) follows. ��
Taking e.g. right limits of (X0

t )t∈D, the above considerations imply that we
obtain a process having continuous sample paths Px–a.s. for all x ∈ H0. But since
our metric is not complete in general, the so constructed process will take values
only in the d–completion of H0 and may be not in H0. To prove that this is, in
fact, not the case we have to employ methods based on the capacity determined
by (Rλ)λ≥0. These have been developed in detail in [23] and in a way, particularly
useful for our case, in [22]. In order to apply the corresponding result in [22] (i.e.
Theorem 1.9 in Chapter II), in addition to Hypotheses 1.1, 1.2 and C−1 ∈ L(H),

we need to assume:

Hypothesis 7.3. A is self–adjoint.

Now we can prove the main result of this section.

Theorem 7.4. (i) There exists a conservative strong Markov process M = (�,F,
(Ft )t≥0, (Xt )t≥0, (Px)x∈H0) with continuous sample paths having transition
semigroup (pt )t≥0 (as defined in Proposition 5.7 (iii)).

(ii) For every x ∈ H0, Px solves the martingale problem for N2 with test function
space

D0 := {
ϕ ∈ D(N2) ∩ Cb(H)| N2ϕ ∈ L∞(H, ν)

}
and initial condition x, i.e.. under Px

ϕ(Xt )−
∫ t

0
N2ϕ(Xs)ds, t ≥ 0, (7.12)

is an (Ft )–martingale with X0 = x for all ϕ ∈ D0.
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Proof. (i). Since C−1 ∈ L(H) and Hypotheses 1.1, 1.2 and 7.3 hold, we can apply
[4, Theorem 1.1] to conclude that

ν = ρ ·NQ
and ρ1/2 ∈ W 1,2(H,NQ), i.e. the closure ofC1

b(H)with respect to the norm ‖·‖1,2
given by

‖ϕ‖2
1,2 :=

∫
H

(
|C1/2Dϕ|2 + ϕ2

)
dNQ, ϕ ∈ C1

b(H).

Then we can write for ϕ ∈ EA(H)
N0ϕ = L0ϕ + 〈β,Dϕ〉

where

L0ϕ = Lϕ + 2

〈
CDρ1/2

ρ1/2 ,Dϕ

〉
and

β := F0 − 2
CDρ1/2

ρ1/2 .

Note that L0 is symmetric on L2(H, ν) and that β has ν–divergence zero, i.e.∫
H

〈β,Dϕ〉dν = 0, ∀ ϕ ∈ EA(H).

So, we can apply [22, Chapter II, Theorem 1.9] to conclude that

Pν(?0 ∩?2) = 1

where ?0 is as in (7.2) and

?2 :=
{
ω ∈ �| lim

s↓t,s∈D
X0
s (ω) exists in � ∀ t ∈ [0,∞)

}
.

D denotes the dyadics as in the previous section. Repeating the arguments there
with ?0 ∩?2 replacing ?0 we see that

Px(? ∩?2) = 1, ∀ x ∈ H0,

where ? is as defined in (7.8). Now we define for ω ∈ ? ∩?2

Xt(ω) := lim
s↓t,s∈D

X0
s (ω)

to obtain continuous sample paths Px–a.s. for all x ∈ H0. It is standard to check
that this gives the desired Markov process, (see [15] for details). Also the strong
Markov property is obvious, since we have continuous sample paths and a (strong)
Feller transition semigroup.
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(ii). First note that for f ∈ Bb(H), f ≥ 0, x ∈ H0,

Ex

[∫ t

0
f (Xs)ds

]
≤ etEx

[∫ ∞

0
e−sf (Xs)ds

]
= etR1f (x).

In particular, this is always finite. If, in addition, f = 0 ν–a.e., then by Corollary
5.4 also R1f (x) = 0 for all x ∈ H0. Hence the integral in (7.12) is well defined
independent of the ν–version taken for N2ϕ, ϕ ∈ D0. Furthermore, we know that
for ϕ ∈ D0,

Ptϕ − ϕ =
∫ t

0
PrN2ϕdr in L2(H, ν).

Hence, since prϕ, pr(N2ϕ) are ν–versions of Prϕ, Pr(N2ϕ) respectively, which
are continuous on H0, it follows that

ptϕ(x)− ϕ(x) =
∫ t

0
pr(N2ϕ)(x)dr ∀ x ∈ H0

(by dominated convergence). The rest of the proof of (ii) is then standard by the
Markov property (cf. also the proof of Proposition 8.2 below). ��
Remark 7.5. (i). Both assumptions C−1 ∈ L(H) and Hypothesis 7.3 were made to
avoid technical complications and can be relaxed. E.g. in Hypothesis 7.3 it is enough
to assume thatA is sectorial, and C−1 ∈ L(H) can be dropped if (N0, EA(H)) sat-
isfies the weak sector condition on L2(H, ν), which in turn is the case if it is
symmetric.

(ii). [22, Chapter II, Proposition 1.9] implies directly the continuity of sample
paths Pν a.s.. Using this the above arguments can be shortened, since we can avoid
to use Corollary 6.4. We presented the proof above based on the results in Section
6, which are certainly of their own interest, because it is more transparent. In par-
ticular, no further assumptions are necessary to get continuity of sample paths on
dyadics. If, however, we assume that A is sectorial and C−1 ∈ L(H) and if we use
[22, Chapter II, Proposition 1.9] instead of Corollary 6.4, then in Hypothesis 1.2–(i)
the assumption

∫
H
|x|12ν(dx) <∞ can be weakened again to

∫
H
|x|4ν(dx) <∞.

8. Uniqueness

Consider the situation of the previous section. We shall prove uniqueness in an
even larger class of diffusions. First we need to introduce a “ν–version” of our
martingale problem. We restrict to the class of diffusion processes which are Feller,
i.e. their transition semigroups map Cb(H) into Cb(H).

Definition 8.1. A Feller diffusion process M′ = (�′,F ′, (F ′
t )t≥0, (X

′
t )t≥0,

(P′
x)x∈H0) onH0 with transition semigroup (p′

t )t≥0 is said to satisfy the L2(H, ν)–
martingale problem for (N0, EA(H)), if

(i) For some M ′, ε′ ∈ (0,∞)∫
H0

(p′
t f )

2dν ≤ M ′
∫
H0

f 2dν, ∀ f ∈ Cb(H), t ∈ (0, ε′).
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(ii) For all ϕ ∈ EA(H)

ϕ(X′
t )−

∫ t

0
N0ϕ(X

′
s)ds, t ≥ 0,

is an (F ′
t )t≥0–martingale under P′

ν := ∫
H0

P′
xν(dx).

Below as usual we denote the expectation, conditional expectation of P′
x by E′

x(·),
E′
x(·| F0

t ) respectively.
One should note that for any M′ as in the Definition 8.1 (as is easy to see)

(p′
t )t≥0 gives rise to a C0–semigroup (P ′

t )t≥0 on L2(H, ν) and for its infinitesimal
generatorN ′

2 we have for sufficiently big λ > 0 that (λ−N ′
2)(D(N

′
2)) = L2(H, ν)

and

R(λ,N ′
2) = (λ−N ′

2)
−1 =

∫ ∞

0
e−λtP ′

t dt. (8.1)

(see e.g. A. Pazy [20], Chapter I, Theorem 5.3 and its proof).
For E′

ν(·) := ∫
H0

E′
x(·)ν(dx) and f ∈ L1(H, ν) it follows that

E′
ν

[
|
∫ t

0
f (X′

s)ds|
]
≤
∫
H0

∫ t

0
P ′
s |f |dsdν

≤ et
∫
H0

R(λ,N ′
2)|f |dν

≤ et‖R(λ,N ′
2)|f |‖L2(H,ν) <∞.

Hence, in particular, the expression in Definition 8.1–(ii) is well defined (i.e. inde-
pendent of the ν–class taken for N0ϕ) and in L1(�′,P′

ν).

Proposition 8.2. The diffusion M from Theorem 7.4 solves the L2(H, ν)–martin-
gale problem for (N0, EA(H))
Proof. 8.1–(i) is obvious. To show 8.1–(ii) let ϕ ∈ EA(H). (Note that 8.1–(ii) does
not follow directly from Theorem 7.4–(ii), since N0ϕ is not bounded in general.)
Then for t > s and any Fs–measurable, bounded function Fs : � → R by the
Markov property

Eν

[
Fs

(
ϕ(Xt )− ϕ(Xs)−

∫ t

s

N0ϕ(Xr)dr

)]

=
∫
H0

ν(dx)Ex [FsEx (ϕ(Xt )− ϕ(Xs)|Fs)]

−
∫
H0

ν(dx)Ex

[
Fs

∫ t

s

Ex (N0ϕ(Xr)|Fs) dr

]

=
∫
H0

ν(dx)Ex
[
FsEXs (ϕ(Xt−s)− ϕ(Xs))

]
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−
∫
H0

ν(dx)Ex

[
Fs

∫ t

s

EXs (N0ϕ(Xr−s)) dr
]

= Eν

[
Fs

(
pt−sϕ(Xs)− ϕ(Xs)−

∫ t−s

0
pr(N0ϕ)(Xs)dr

)]
.

But since ν is invariant for (pt ),

Eν

[∣∣∣∣pt−sϕ(Xs)− ϕ(Xs)−
∫ t−s

0
pr(N0ϕ)(Xs)dr

∣∣∣∣]

=
∫
H0

∣∣∣∣Pt−sϕ − ϕ −
∫ t−s

0
PrN0ϕdr

∣∣∣∣ = 0. ��

Theorem 8.3. Let M′ = (�′,F ′, (F ′
t )t≥0, (X

′
t )t≥0, (P

′
x)x∈H0) be a Feller diffu-

sion process on H0 satisfying the L2(H, ν)–martingale problem for (N0, EA(H)).
Then M′ has the same finite dimensional distributions as M from Theorem 7.4.

Proof. Let (p′
t )t≥0 be the transition semigroup of M′ and t > 0.We have to show

that

p′
t = pt .

To this end, let ϕ ∈ EA(H), g ∈ L2(H, ν). Then∫
H0

g

(
P ′
t ϕ − ϕ −

∫ t

0
P ′
sN0ϕds

)
dν

= Eν

[
g(X′

0)

(
ϕ(X′

t )− ϕ(X′
0)−

∫ t

0
N0ϕ(Xs)ds

)]
= 0.

Hence

P ′
t ϕ − ϕ =

∫ t

0
P ′
sN0ϕds,

so ϕ ∈ D(N ′
2) and N0ϕ = N ′

2ϕ. But EA(H) is a core for N2 (cf. Theorem 2.3),
consequently,

D(N2) ⊂ D(N ′
2) and N2 = N ′

2 on D(N2),

hence for all λ > 0

(λ−N ′
2)(D(N

′
2)) ⊃ (λ−N2)(D(N2)) = L2(H, ν).

So,

(λ−N ′
2)(D(N

′
2)) = (λ−N ′

2)(D(N2))

and taking λ > 0 large enough it follows by (8.1) that

D(N ′
2) = D(N2),
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consequently N ′
2 = N2. Therefore,

P ′
t = Pt ,

hence for all f ∈ Cb(H)

p′
t f (x) = ptf (x) for ν − a.e. x ∈ H.

By continuity it follows that

p′
t f (x) = ptf (x) for all x ∈ H0 = supp ν,

hence p′
t = pt , by a monotone class argument. ��

9. Application

9.1. Gradient systems

Let us first consider a general situation and then concrete examples. We adopt the
notation from the previous sections.

Hypothesis 9.1. (i) A is a self–adjoint linear operator onH such that there exists
ω > 0 such that

〈Ax, x〉 ≤ −ω|x|2, ∀ x ∈ H,

and A−1 is of trace class.
(ii) C := I. (Hence for Q from Hypothesis 1.1, we have Q = − 1

2 A
−1.)

(iii) Let U : H → (−∞,+∞] be convex, lower semicontinuous, such that {U <

+∞} is open and µ({U < +∞}) > 0, where µ := NQ, and such that

ρ := Z−1e−2U(x) ∈ L1(H,µ)

with Z := ∫
H
e−2U(x)µ(dx), so that ν(dx) := ρ(x)µ(dx) is a probability

measure on (H,B(H)).
(iv) Let ∂U denote the subdifferential of U, i.e. D(∂U) := {U < +∞} and for

x ∈ D(∂U)

∂U(x) := {y ∈ H | U(x + h)− U(x) ≥ 〈y, h〉 ∀ h ∈ H } .

Then F := ∂U is maximal dissipative, so F0 can be defined as in §1. Assume∫
H

(|x|12 + |F0(x)|2 + |x|4|F0(x)|2)ν(dx) < +∞.

Note that Hypothesis 9.1 implies that ν(D(∂U)) = 1. So Hypotheses 1.1, 1.2 and
7.3 and C−1 ∈ L(H) hold except for 1.2–(ii). But we have the following result.
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Proposition 9.2. Suppose ρ1/2 ∈ W 1,2(H,µ) such that

2
Dρ1/2

ρ1/2 = F0.

Then, if as before,

N0ϕ := 1

2
Tr [D2ϕ] + 〈·, A∗Dϕ〉 + 〈F0,Dϕ〉, ϕ ∈ EA(H),

we have ∫
H

N0ϕdν = 0 ∀ ϕ ∈ EA(H).

So, Hypothesis 1.2–(ii) also holds, so all results in Sections 1–8 apply.

Proof. Let ϕ,ψ ∈ EA(H). Then, e.g. by [21, Proposition 2.1] and the proof of
Theorem 3.5, in particular formula (3.17) in [5]∫

H

ψN0ϕdν =
∫
H

ϕN0ψdν.

Choosing ψ = 1, the result follows. ��
Example 9.3. Take H = R, −A = C = I, and

U(x) :=
{− log x, x > 0,
+∞, x ≤ 0.

Then

ρ(x) =
{
x2, x > 0,
0, x ≤ 0.

and

F0(x) = 2

x
, x ∈ D(F) = (0,+∞).

So, Hypothesis 9.1 and the assumptions in Proposition 9.2 are satisfied. Hence by
Theorem 7.4 there exists a strong Feller diffusion process on supp ν = [0,+∞)

solving the martingale problem corresponding to
dX(t) =

(
−X(t)+ 2

X(t)

)
dt + dW(t),

X(0) = x,

which is unique in the sense of Theorem 8.2.

Example 9.4. Let H be a separable Hilbert space, and take A as in Hypothesis
9.1–(i), C = I. Let B1(0) denote the open unit ball in H. Set
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U(x) :=
{− log(1 − |x|2), if x ∈ B1(0),
+∞, otherwise.

Then

ρ(x) =
{
(1 − |x|2)2, if x ∈ B1(0),
0, otherwise,

and

F0(x) = 2x

1 − |x|2 , x ∈ D(∂U) = B1(0).

So, Hypothesis 9.1 and the assumptions in Proposition 9.2 are satisfied. Hence
by Theorem 7.4 there exists a strong Feller diffusion process on supp ν = B1(0)
solving the martingale problem corresponding to

dX(t) =
(
−X(t)+ 2X(t)

1 − |X(t)|2
)
dt + dW(t),

X(0) = x,

which is unique in the sense of Theorem 8.2. We note that both in this and in the pre-
vious example the relation of the martingale problem to the stochastic differential
equation is somewhat informal since supp ν = H0 �= H.

9.2. Applications to Reaction–Diffusion equations

LetD be an open bounded subset of Rd with regular boundary ∂D. SetH = L2(D)

and let A be the linear operator in H defined as
Ax = Iξx, x ∈ D(A),

D(A) = H 2(D) ∩H 1
0 (D).

(9.1)

It is well known that A is self–adjoint. Moreover there exist an orthonormal basis
{ek} in H and a nondecreasing sequence of positive numbers {αk} such that

Aek = −αkek, k ∈ Nd .

Finally αk ↑ ∞ and αk behaves as |k|2 at infinity, see e.g. [1, Theorem 14.6].
Therefore Hypothesis 1.1–(i) is fulfilled with ω = infk∈N αk.

Set now C := (−A)−δ with δ ≥ 0, and Q = ∫∞
0 Ce2tAdt = 1

2 (−A)−1−δ.
Since

Tr Q &
∑
k∈Nd

1

|k|2(1+δ) ,

Hypothesis 1.1–(ii) is fulfilled provided 2(1 + δ) > d, i.e.

δ >
d

2
− 1, (9.2)

that we shall assume from now on.
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Let us now consider a continuous decreasing function

f : R → R, ρ → f (ρ).

We shall denote by fα its Yosida approximations.
We shall assume that

Hypothesis 9.5. There exist m,N ∈ N, a, b > 0 such that

|fα(ρ)| ≤ a(1 + |ρ|m), ∀ ρ ∈ R, α > 0,

and

|fα(ρ)− f (ρ)| ≤ bα(1 + |ρ|N), ∀ ρ ∈ R, α > 0.

Finally for α ≥ 0, we set Fα(x) := fα ◦ x, x ∈ H, and

F(x) = f ◦ x, ∀ x ∈ D(F) = {x ∈ H | f ◦ x ∈ H } .

Obviously F0(x) = F(x).

Let us give an example. Define the non locally Lipschitz function

f (ρ) :=
{√−ρ, if ρ < 0,
−√−ρ, if ρ ≥ 0.

Then an easy calculation shows that Hypothesis 9.5 holds.
We are going to show that, under Hypothesis 9.5, F fulfills Hypothesis 1.2. For

this it is enough to show, by Remark 3.4, that for any m ∈ N there exists cm > 0
such that ∫

H

[∫
D

|x(ξ)|2mdξ
]
να(dx) =

∫
H

|x|2m
L2m(D)

να(dx) ≤ cm, (9.3)

where να is the invariant measure of the operator Nα defined by (3.1). This is a
consequence of the following lemma, which is a generalization of Lemma 3.1 and
Corollary 3.2.

Note that in comparison with Remark 3.4 we only have that for h ∈ D(A∗) =
D(A)

x →
∫
D

h(ξ)f ◦ x(ξ)dξ

is continuous on L2m(D) rather than on H = L2(D) where m is as in Hypothesis
9.5. But because of (9.3) this is enough to get (3.13).

Lemma 9.6. For any m ∈ N there exists cm > 0 such that (9.3) holds.
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Proof. We shall denote by Xα the solution of (3.2) and by WA the stochastic con-
volution defined by (3.3). Then we proceed in several steps.

Step 1. There exists c1,m > 0 such that

E|Fα(WA(t))|2mL2m(D)
≤ c1,mt

m, t ≥ 0. (9.4)

The proof of Step 1 is straightforward.

Step 2. There is c2,m > 0 such that

E|Xα(t, x)|2m ≤ c2,mt
m(1 + e−mωt |x|2m). (9.5)

Setting Y (t, ξ) = Xα(t, x)(ξ)−WA(t, ξ), Y (t, ξ) is the solution to
Y ′(t, ξ) = IξY(t, ξ)+ fα(Y (t, ξ)+WA(t, ξ))

Y (0) = x.

(9.6)

Multiplying the first equation by Y (t, ξ)2m−2Y (t, ξ), and taking into account the
dissipativity of Fα , we obtain, for a suitable constant c3,m

1

2m

d

dt
Y (t, ξ)2m = Y (t, ξ)2m−1IξY(t, ξ)

+(fα(Y (t, ξ)+WA(t, ξ))− fα(WA(t, ξ)))Y (t, ξ)
2m−1

+fα(WA(t, ξ))Y (t, ξ)
2m−1

≤ Y (t, ξ)2m−1IξY(t, ξ)+ fα(WA(t, ξ))Y (t, ξ)
2m−1.

(9.7)

Now notice that∫
D

Y(t, ξ)2m−1IξY(t, ξ)dξ = −(2m− 1)
∫
D

|∇ξ Y (t, ξ)|2Y (t, ξ)2m−2dξ.

(9.8)

Then, integrating (9.7) with respect to ξ, and taking into account (9.8), yields

1

2m

d

dt

∫
D

Y(t, ξ)2mdξ + (2m− 1)
∫
D

|∇ξ Y (t, ξ)|2Y (t, ξ)2m−2dξ

≤
∫
D

fα(WA(t, ξ))Y (t, ξ)
2m−1dξ.

(9.9)

But, recalling the Poincaré inequality, there is c4,m > 0 such that

(2m− 1)
∫
D

|∇ξ |2Y 2m−2dξ = 2m− 1

m2

∫
D

|∇ξ Y (t, ξ)|2dξ

≥ c4,m

∫
D

Y(t, ξ)2mdξ.

(9.10)



Singular dissipative stochastic equations in Hilbert spaces 301

Moreover there exists c5,m > 0 such that∫
D

fα(WA(t, ξ))Y (t, ξ)
2m−1dξ

≤ 1

2
c4,m

∫
D

Y(t, ξ)2mdξ + c5,m

∫
D

fα(Y (t, ξ))
2mdξ.

(9.11)

Substituting (9.10) and (9.11) into (9.9) yields

d

dt

∫
D

Y(t, ξ)2mdξ ≤ −mc4,m

∫
D

Y(t, ξ)2mdξ

+ 2mc5,m

∫
D

fα(Y (t, ξ))
2mdξ.

(9.12)

By a classical comparison result we find∫
D

Y(t, ξ)2mdξ ≤ e−mc4,mt

∫
D

x(ξ)2mdξ

+ 2mc5,m

∫ t

0
e−mc4,m(t−s)

∫
D

fα(Y (s, ξ))
2mdξds,

(9.13)

and Step 2 follows from Step 1.

Step 3. Conclusion.

Arguing as in the proof of Corollary 3.2 we obtain (9.3). ��
Remark 9.7. One can study the stochastic differential equation

dX = (IξX + F(X))dt +
√
CdW(t), X(0) = x,

and the corresponding transition semigroup, see [14, Theorem 11.4.1] and [7,
Proposition 6.2.2]. But in this way, in contrast to the “double approximation ”
performed in our paper, one cannot prove that the corresponding generator N2 is
the closure of N0 with respect to L2(H, ν). But, under the assumptions of [7] in
[11] it was proved that N2 is the closure of N0, defined on a different core.

Remark 9.8. The semigroup Pt is strong Feller provided δ ≤ 1. Since by (9.2)
d/2 − 1 < δ, this is possible for d ≤ 3. In this case all results in Sections 5–8,
apart from Theorem 7.4, apply.

Remark 9.9. We would like to emphasize that, as pointed out in the previous re-
mark, for the very particular examples studied in this section our general results are
more suitable to prove the strong Feller property of the transition semigroup rather
than existence and uniqueness of solutions to the underlying stochastic equation.
The latter could be proved by more direct techniques (under even weaker assump-
tions). We would like to thank one of the referees for pointing this out to us.
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Birkhäuser, Vol. 52, 73–88, 2002

[10] Da Prato, G. Transition semigroups corresponding to Lipschitz dissipative systems,
Preprint SNS 2001

[11] Da Prato, G., Debussche, A., Goldys, B.: Invariant measures of non symmetric dissi-
pative stochastic systems, Probab. Theory Relat. Fields, to appear

[12] Da Prato, G., Tubaro, L.: Some results about dissipativity of Kolmogorov operators,
Czechoslovak Mathematical Journal, 51, 126, 685–699 (2001)

[13] Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Cambridge
University Press, 1992

[14] Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. London Math-
ematical Society Lecture Notes, n.229, Cambridge University Press, 1996

[15] Dohmann, J.: Feller type properties and path regularity of Markov processes, Diploma
Thesis, Bielefeld, 2001

[16] Eberle, A.: Uniqueness and non–uniqueness of singular diffusion operators, Lecture
Notes in Mathematics 1718, Berlin, Springer–Verlag, 1999

[17] Fukushima, M.: Dirichlet forms and symmetric Markov processes, North Holland,
Amsterdam, 1980

[18] Getoor, R.: Markov processes: ray processes and right processes, Lecture Notes in
Mathematics 440, Springer, Berlin, 1975



Singular dissipative stochastic equations in Hilbert spaces 303
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