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Abstract. In [23], H.H. Rugh gave a new and simpler method to prove existence of an
invariant measure with nice mixing properties for some weakly coupled analytic maps. He
proved in fact a spectral gap property for a well-defined transfer operator. We modify this
method to construct generalized transfer operators associated to potentials and preserve the
spectral gap for small potentials. This allows us to prove new limit results for these systems:
Central Limit Theorem, Moderate Deviations Principle and a partial Large Deviations result.
These results are available under wide classes of observables and initial measures.

1. Introduction

Coupled map lattices are models of infinite dimensional dynamical systems. They
have been introduced by Kaneko in 1983 as a simple model featuring space-time
chaotic behaviour (see [16] for a review).

The first mathematical study was done by Bunimovitch and Sinai. In [8], they
considered a lattice model with local expanding maps of the circle as a space-time
dynamical system and used a coding to obtain uniqueness of the equilibrium state
and decay of correlations. This point of view has been generalized to Anosov sys-
tems by Pesin and Sinai in [19]. The last developments in this direction are due to
Jiang and Pesin (see [15] and [14]).

Another approach to this problem consists in using transfer operators. The first
attempt in this way was [17] where Keller and Künztle constructed transfer op-
erators on spaces of bounded variation functions. The main progress was done
by Bricmont and Kupiainen in [5] and [6]. They introduced complex analysis and
cluster expansion methods to prove a uniform spectral gap property for finite box re-
strictions of the map. This implies existence of an SRB measure. This was extended
by Baladi et al in [2] where a global transfer operator is constructed.

Using methods of Maes and Van Moffaert [18], Fisher and Rugh found a sim-
pler method, exposed in [12], to prove spectral gap for a transfer operator defined
on a well adapted Banach space. In this paper, we use the last improvement done by
Rugh in [23]. A modification of the construction of the transfer operator allows us
to get more general operators associated to a perturbation. This, together with the
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conservation of the spectral gap property by a perturbation result, gives new limit
results: Central Limit Theorem and Moderate Deviations Principle for the evolution
of orbits under a large class of observables and initial measures, but also a partial
Large Deviations result, which implies in particular exponential convergence to
equilibrium.

We define the model in Section 2 and give the results in Section 3. We then prove
the probabilistic results in Section 4. The method is similar to the proofs of [21] or
[7]. Proof of an intermediate result on the existence of transfer operators and their
spectral properties is given in Sections 5 and 6. The key step is the generalization
of the combinatorial analysis from [23] to construct the transfer operators. This is
presented in Subsection 5.3.

2. Definitions

2.1. Expanding maps

We consider S1 = R/Z as a subset of the complex cylinder C = C/Z. This allows
us to work with functions not only real-analytic on the circle but holomorphic on a
small annulus A[ρ] = {z ∈ C : |Im z| ≤ ρ} for ρ > 0. For such functions, we are
able to use complex analysis and this is the basis of the method introduced in [12]
and [23] to construct transfer operators.

Thus, the single-site functions we will use are real-analytic expanding functions
on the circle in the following sense, denoting ∂A[ρ] = {z ∈ C : |Im z| = ρ} the
boundary of A[ρ]:

Definition 1. For ρ > 0 and λ > 1, we say that f : A[ρ] → C is a real analyt-
ic (ρ, λ)-expanding map if f is continuous in A[ρ], holomorphic in its interior,
f (S1) = S1 and f (∂A[ρ]) ∩ A[λρ] = ∅.
The set of all such functions is denoted E(ρ, λ).

Remark. Functions of E(ρ, λ) are also λ-expanding in the classical sense, i.e. they
verify |f ′| ≥ λ > 1 on the circle (see Appendix A in [23]).

2.2. Configuration space

We take  an index set and define the configuration space of our dynamical system
as the product of circles :

S =
∏
p∈

S1 ⊂ A =
∏
p∈

A[ρ]

 can be quite general and could even be uncountable. But our main interest will
be  = Z

d . For this case, some spatial behaviour can be studied (see [23] or [3]
for such applications).
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2.3. Spaces of coupling and observables

Let F be the set of finite subsets of , containing the empty set. For all � ∈ F ,
we denote S� = ∏

p∈� S1 ⊂ A� = ∏
p∈� A[ρ]. We call E� the set of functions

which are continuous in A� and holomorphic in its interior.
For K ⊂ �, we denote j�,K : EK → E� and j� : E� → C(A) the natural
injections, then define E(A) as the closure of ∪�∈F j�(E�). E(A) is in fact the
space of weakly holomorphic continuous functions on A (seeAppendix B of [23]).

We want to control the spatial expansion of the functions which will play the
role of coupling and observables. For this, we choose a parameter 0 < θ ≤ 1 and
define:

Hθ =
{

φ ∈ E(A) : φ =
∑
�∈F

j�φ� with φ� ∈ E� and
∑
�∈F

θ−|�||φ�| < ∞
}

with, for φ ∈ Hθ :

|φ|θ = inf

{∑
�∈F

θ−|�||φ�| : (φ�)�∈F such that φ� ∈ E� and φ =
∑
�∈F

j�φ�

}

Then (Hθ , | · |θ ) is a θ -penalized inductive limit of the spaces E�. This defines a
Banach algebra. If θ < 1, functions of Hθ depend weakly on big sets �. For θ = 1,
H1 = E(A) and | · |θ = | · |∞. We denote H r

θ the set of real-analytic maps of Hθ .

2.4. Coupled maps

We can now define the class of dynamical systems we want to study:

Definition 2. For ρ > 0, λ > 1, 0 < θ ≤ 1 and 0 ≤ κ < ∞, we take (fp)
p∈

expanding maps from E(ρ, λ), and (gp)
p∈

coupling maps from H r
θ such that

|gp|θ < κ .
We define the associated coupled analytic map as F = (Fp)

p∈
: A → C,

where:
Fp(z) = fp(zp)+ gp(z) ∀p ∈ 

We denote CM[ρ, λ, θ, κ] the space of all such coupled analytic maps.

3. Results

For all observable b ∈ C(S) and all T ≥ 1, we write:

ST b =
T−1∑
t=0

b ◦ F t

In [23], an ergodic theorem for the random variables ST b under Lebesgue measure
and decay of correlations for the limit measure are proved under the assumption
that the coupling is weak enough:
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Theorem 1 (Th. 2.1 of [23]). For all ρ > 0, λ > 1, there exists θ0(ρ, λ) ∈ (0, 1
3 )

such that for θ < θ0 there is κ > 0 for which the following holds for every
F ∈ CM[ρ, λ, θ, κ]:

1. There exists a natural probability measure ν invariant under F , i.e. F ∗ν = ν,
2. For all b ∈ C(S), m-almost every x (with m the Lebesgue measure on the

circle),

lim
T→∞

1

T
ST b =

∫
S

b dν (1)

3. There exists γ > 1 and θ < ϑ < 1 such that for all b ∈ Hθ , a ∈ Hϑ and
T ≥ 1, ∣∣∣∣

∫
S

b ◦ F T · a dν −
∫

S

b dν

∫
S

a dν

∣∣∣∣ ≤ 2|b|θ |a|ϑγ−T (2)

These properties are consequences of a more technical result, the fact that a
transfer operator associated to F exists on a well chosen Banach space and has a
spectral gap below 1, which is the simple maximal eigenvalue. They are really an
infinite dimensional version of classical single site results.

Our method consists in generalizing the construction of this operator to its per-
turbations by potentials and then extending the spectral gap by perturbation theory
(see Theorem 4 and its proof Sections 5 and 6 for more details).

We improve the result of [23] with the following large deviations upper bound,
and an associated partial lower bound (see Theorem 5 for a more precise statement):

Theorem 2. Under the same conditions on the parameters as in Theorem 1, for
all u ∈ H r

θ , there exists a lower semi-continuous, convex and non-negative func-
tion Iu : R → R ∪ {+∞}, with an unique zero at

∫
S

u dν, and there are au <∫
S

u dν < bu such that:

1. For all closed F ⊂ R:

lim sup
T→∞

1

T
log m

(
z :

ST u(z)

T
∈ F

)
≤ − inf

x∈F
Iu(x) (Upper Bound)

2. For all x ∈ (au, bu) and δ > 0:

lim inf
T→∞

1

T
log m

(
z :

ST u(z)

T
∈ B(x, δ)

)
≥ −Iu(x) (Lower Bound)

The upper bound implies in particular that the convergence in (1) is exponential,
which means that for all A ∈ R such that

∫
S

u dν �∈ Ā:

lim sup
T→∞

1

T
log m

{
z :

ST u(z)

T
∈ A

}
< 0 (3)

Moreover, we obtain new probabilistic results for the random variables ST u un-
der Lebesgue measure, namely a Central Limit Theorem and a Moderate Deviations
Principle:
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Theorem 3. Suppose the Hypotheses of Theorem 1 are satisfied. For every u ∈ H r
θ ,

we write mu =
∫

S
u dν. Then the limit

lim
T→∞

∫
S

(
ST u− T mu√

T

)2

dν,

exists and is non negative. We denote it σ 2
u and have the following condition:

σ 2
u = 0 iff ∃ v ∈ L2(ν) such that u = v − v ◦ F in L2(ν) (4)

For u such that σ 2
u > 0, we have:(

ST u− T mu√
T σu

)∗ (
m
) Law−→ N (0, 1) (CLT)

and for all 1
2 < α < 1, A ⊂ R Borel set:

− inf
x∈

◦
A

x2

2σ 2
u

≤ lim inf
T→∞

1

T 2α−1 log m

(
z :

ST u(z)− T mu

T α
∈ A

)

≤ lim sup
T→∞

1

T 2α−1 log m

(
z :

ST u(z)− T mu

T α
∈ A

)
≤ − inf

x∈Ā

x2

2σ 2
u

(MDP)

Remark. All results above are given with Lebesgue measure as initial probability. In
fact, they remain true taking measures in the Banach space on which our operators
act (exactly on the subset of this Banach space which contains probabilities, denot-
ed Mp

ϑ , see Section 4.1). We will prove our results in this more general context.
The same generalization for the ergodic theorem (1) is valid and the proof of [23]
adapts in a simple way.

4. Use of the spectral gap

In this section, we will prove Theorems 2 and 3 given an intermediate result (Theo-
rem 4) on the spectral gap for perturbed operators. We use in these proofs the same
type of methods as in the papers of J. Rousseau-Egele [21] or A. Broise [7].

4.1. Space of densities

For K ⊂ �, let πK,� : E� → EK be the projection defined by:

πK,�φ�(zK) =
∫

S�\K
φ�(z�) m�\K(dz�\K)

If � = , we will note πK = πK,.
Following [23], we define now the Banach space on which our operators work.

We need to take it sufficiently large, and specifically not included in L1(dm).
Indeed, in the uncoupled case (when the couplings gp are zero), we know that the
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natural measure will be the infinite product of the SRB measures hpdm for the
single site functions fp, which will generally not be absolutely continuous with
respect to Lebesgue measure. To get a large enough space, we choose a parameter
0 < θ ≤ 1 and define:

Mθ =
{

φ = (φ�)�∈F : π�,�′φ�′ = φ� ∀� ⊂ �′ and

‖φ‖θ = sup
�∈F

θ |�||φ�| < ∞
}

(Mθ , ‖ · ‖θ ) is a Banach space and a Hθ -module: g =∑�′∈F g�′ element of Hθ

acts on φ = (φ�)�∈F to get g ∗ φ ∈ Mϑ defined by:

(g ∗ φ)� =
∑

�′∈F
π�,�∪�′

(
j�∪�′,�′(g�′) · φ�∪�′

)

and the following bound holds: ‖g ∗ φ‖θ ≤ |g|θ‖φ‖θ .
Mθ contains the uncoupled natural measure ⊗p∈(hpdm), for θ−1 > supp∈

|hp|∞. This measure is represented by φ = (φ� =∏p∈� hp(zp))
�∈F , although

it is not absolutely continuous with respect to Lebesgue measure. More generally,
if we consider the following subset of Mθ :

Mm
θ =

{
φ ∈ Mθ : sup

�∈F

∫
S�

|φ�(z�)| dz� < ∞
}

then every φ ∈ Mm
θ can be seen as a measure on S defined by∫

S

g dφ = φ(g) = lim
�→

∫
S�

g�φ�dm� ∀g ∈ C(S)

and g� ∈ C(S�) such that g� → g

All these measures have finite marginals on S� which are absolutely continuous
with respect to m�, with density φ� ∈ E(A�). We will denote Mp

θ the set of
probability measures in Mm

θ .

4.2. Spectral gap for perturbed transfer operators

We state now the existence and the property of spectral gap for perturbed transfer
operators:

Theorem 4. For F ∈ CM[ρ, �, θ, κ], whose parameters satisfy conditions of
Theorem 1 and with ϑ , γ and ν as in this result, there exists for all T ≥ 1 an
analytic functional:

M(T ) : Hθ −→ L(Mϑ , Mθ ) (5)

u �−→ M(T )
u



Limit theorems for coupled analytic maps 157

satisfying:

• There exists T0 ≥ 1 such that M(T )
u ∈ L(Mϑ) if T ≥ T0

• ‖M(T )
u ‖ ≤ eT |u|θ • ‖M(T )

u −M
(T )
0 ‖ ≤ eT |u|θ − 1 (6)

• M(t)
u ◦M(T )

u = M(t+T )
u for t ≥ 1, T ≥ T0 (7)

• M(T )
u

(Mm
ϑ

) ⊂ Mm
θ (8)

•
∫

S

b ◦ F T exp (ST u) dφ =
∫

S

b d
(
M(T )

u φ
)

∀ b ∈ C(S), φ ∈ Mm
ϑ

(9)

Moreover, for all δ <
1−γ−T0

3 , there exists ρ > 0 such that if |u|θ < ρ, we can
write for k ≥ 1:

M(kT0)
u = λkT0 (u) Qu + Rk

u (10)

with, for Dθ (0, ρ) the ball of radius ρ around 0 in Hθ :

– λ : u ∈ Dθ (0, ρ) �−→ λ(u) ∈ C is analytic and satisfies λT0 (u) ∈ D(1, δ) and
λ(0) = 1,

– Q : u ∈ Dθ (0, ρ) �−→ Qu ∈ L(Mϑ) is analytic and satisfies Q2
u = Qu,

Q0 = νπ∅ and ‖Qu − νπ∅‖ ≤ δ2,
– R : u ∈ Dθ (0, ρ) �−→ Ru ∈ L(Mϑ) is analytic and satisfies Sp(Ru) ⊂

D(0, γ−T0 + δ) and ‖Rk
u‖ ≤ (γ−T0 + 2δ)k .

Remark. The important fact in these estimates is that they imply for such u:

lim
k→∞

‖Rk
u‖

|λkT0 (u) | = 0

so that λ(u) will give the main term in asymptotic estimates.

4.3. Identification of the derivatives of λ(u)

Analyticity in the previous result is understood in the general sense given for ex-
ample in Definition 3.17.2 of [13]: namely a map is analytic when it is expandable
around each point as a convergent series of homogeneous terms with increasing
degree. For λ, an analytic function of u on Dθ (0, ρ), we can write its expansion
around 0:

λ(u) =
∑
n≥0

1

n!
∂nλ(0; u)

where in fact ∂0λ(0; u) = λ(0) = 1 and ∂nλ(0; u) = ∂n

∂zn

∣∣∣
z=0

λ(zu).

The key of our probabilistic study is the identification of the first two derivatives
of λ in real-analytic directions with statistical estimates of the system.
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Proposition 1. For every u ∈ H r
θ , we have the two following identities:

∂1λ(0; u) =
∫

S

u dν = mu

∂2λ(0; u) = lim
T→∞

∫
S

(
ST u− T mu√

T

)2

dν = σ 2
u ≥ 0

(11)

Remark. The identifications of ∂1λ(0; u) and ∂2λ(0; u) with the mean and the
asymptotic variance of u under the equilibrium state ν are natural results in view
of classical thermodynamic formalism results (see [22]): log λ(u), in the domain
where it is defined, really plays the role of a topological pressure.

Proof. (a) Identification of ∂1λ(0; u). We will decompose each T ≥ 1 as T =
kT0 + T̃ , with 0 ≤ T̃ < T0, and write:∫

S

exp

(
1

T
ST u

)
dν =

∫
S

exp

(
SkT0

( u

T

)
+ 1

T
S

T̃

(
u ◦ F kT0

))
dν

We have then a uniform estimate for the term with T̃ :

exp

(
−T0

T
|u|∞

)
≤ exp

(
1

T
S

T̃

(
u ◦ F kT0

))
≤ exp

(
T0

T
|u|∞

)
(12)

For the remaining term, if T >
|u|θ
ρ

, we apply the identity (9) and the spectral

decomposition (10) to M
(kT0)
u
T

to get:

∫
S

exp
(
SkT0

( u

T

))
dν = π∅

(
M

(kT0)
u
T

(ν)
)

= λkT0
( u

T

)
π∅
(
Q u

T
(ν)
)
+ π∅

(
Rk

u
T

(ν)
)

(13)

We can now evaluate the limit as T tends to infinity of each term in this expression:

λkT0
( u

T

)
=
(

1 + 1

T
∂1λ(0; u)+ o

(
1

T

))kT0

−→ exp
(
∂1λ(0; u)

)

because the derivatives ∂nλ(0; u) are n-homogeneous and kT0
T

→ 1. It will be the
main term in our estimation.

We control the two others:∣∣∣π∅ (Q u
T

(ν)
)
− 1

∣∣∣ ≤ ∥∥∥Q u
T
−Q0

∥∥∥ ‖ν‖ϑ −→ 0

by continuity of Qu, and:

∣∣∣π∅ (Rk
u
T

(ν)
)∣∣∣ ≤ ∥∥∥R u

T

∥∥∥k‖ν‖ϑ ≤
(
γ−T0 + 2δ

)k‖ν‖ϑ −→ 0
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We get, using estimate (12) and inserting previous limits in (13):

lim
T→∞

∫
S

exp

(
1

T
ST u

)
dν = lim

T→∞
π∅
(
M

(kT0)
u
T

(ν)
)
= exp

(
∂1λ(0; u)

)
(14)

On the other hand, (2) implies that ν is mixing, hence ergodic, which gives the
limit, because u is bounded:

lim
T→∞

∫
S

exp

(
1

T
ST u

)
dν = exp

(∫
S

u dν

)
(15)

And we can identify both RHS in (14) and (15) to get:

∂1λ(0; u) =
∫

S

u dν

(b) Identification of ∂2λ(0; u). It is enough to show that for u ∈ H r
θ such that

∂1λ(0; u) = ∫
S

u dν = 0, we have:

lim
T→∞

∫
S

(
ST u√

T

)2

dν = ∂2λ(0; u)

And for this, u being bounded, we know that we can write:∫
S

(
ST u√

T

)2

dν = ∂2

∂t2

∣∣∣∣
t=0

∫
S

exp

(
t√
T

ST u

)
dν = ∂2

∂t2

∣∣∣∣
t=0

π∅
(

M
(T )
tu√
T

(ν)

)
(16)

For T >
( |t ||u|θ

ρ

)2
, we write again T = kT0 + T̃ with 0 ≤ T̃ < T0 and use the

composition rule (7) and the spectral decomposition (10) to get:

π∅
(

M
(T )
tu√
T

(ν)

)
= λkT0

(
tu√
T

)
π∅

(
M

(
T̃
)

tu√
T

◦Q tu√
T

(ν)

)
+ π∅

(
M

(
T̃
)

tu√
T

◦ Rk
tu√
T

(ν)

)

We compute then the second derivative of this expression:

∂2

∂t2

∣∣∣∣
t=0

(
λkT0

(
tu√
T

)
π∅

(
M

(
T̃
)

tu√
T

◦Q tu√
T

(ν)

))
= (vw)′′(0)

= v′′(0)w(0)+ 2v′(0)w′(0)

+ v(0)w′′(0)

with v(t) = λkT0

(
tu√
T

)
, so that v(0) = 1, v′(0) = 0, and v′′(0) = kT0

T
∂2λ(0; u),

and w(t) = π∅

(
M

(
T̃
)

tu√
T

◦Q tu√
T

(ν)

)
, so that w(0) = 1, and

w′′(0) = 1

T
π∅
(

M

(
T̃
)

0 ◦ ∂2Q(0; u)+ 2∂1M(T̃ )(0; u) ◦ ∂1Q(0; u)

+∂2M(T̃ )(0; u) ◦Q0

)
(ν)

which goes to zero when T goes to infinity.
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In the same way

∂2

∂t2

∣∣∣∣
t=0

(
π∅

(
M

(
T̃
)

tu√
T

◦ Rk
tu√
T

(ν)

))
= 1

T
π∅
(

M

(
T̃
)

0 ◦ ∂2Rk(0; u)

+ 2∂1M(T̃ )(0; u) ◦ ∂1Rk(0; u)

+ ∂2M(T̃ )(0; u) ◦ Rk
0

)
(ν)

which goes to zero when T goes to infinity since limk→∞ Rk = 0.
Combining all these results, we get

lim
T→∞

∂2

∂t2

∣∣∣∣
t=0

π∅
(

M
(T )
tu√
T

(ν)

)
= lim

T→∞
kT0

T
∂2λ(0; u) = ∂2λ(0; u)

This, together with equation (16) implies the desired equality:

∂2λ(0; u) = lim
T→∞

∫
S

(
ST u√

T

)2

dν = σ 2
u ≥ 0

and gives also the existence of the limit.  !

4.4. Condition for positivity of σ 2
u

It is straightforward that u = v − v ◦ F implies σ 2
u = 0 because in this case

ST u = v − v ◦ F T .
For the necessary condition in (4), we have to introduce the adjoint of the compo-
sition by F , P : L2(ν) → L2(ν) defined by

∫
S

ϕ ◦ F · ψ dν =
∫

S

ϕ · (P ψ) dν ∀ϕ, ψ ∈ L2(ν)

and we note that if u ∈ C(S) and g ∈ Hθ , then

∫
S

u · P T g dν =
∫

S

u d
(
M

(T )
0 (g < ν)

)
=
(∫

S

u dν

)
·
(∫

S

g dν

)

+
∫

S

u d
(
RT

0 (g < ν)
)

We can then use the spectral gap property of M0 (see Theorem 8) to get, when
mu = 0 and T ≥ T0:

∣∣∣∣
∫

S

u · P T g dν

∣∣∣∣ ≤ |u|θ γ−T |g|θ‖ν‖ϑ (17)
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This estimate allows to give another expression for σ 2
u . We write:

1

T

∫
S

(ST u)2 dν =
∫

S

u2 dν + 2
T−1∑
k=1

(
1 − k

T

)∫
S

u · P ku dν

= −
∫

S

u2 dν + 2
T−1∑
k=0

(
1 − k

T

)∫
S

u · P ku dν

and (17) implies the existence of

σ 2
u = lim

T→∞
1

T

∫
S

(ST u)2 dν = −
∫

S

u2 dν + 2
∑
k≥0

∫
S

u · P ku dν

If σ 2
u = 0, then

∫
S

(ST u)2 dν = −2T
∑

k≥T

∫
S

u · P ku dν − 2
∑T−1

k=0 k
∫

S
u ·

P ku dν, hence ST u is bounded in L2(ν) by estimate (17): ‖ST u‖L2(ν) ≤ C for all
T ≥ 0.

Again with estimate (17), for g ∈ Hθ :

l(g) = lim
T→∞

∫
S

ST u · g dν =
∑
k≥0

∫
S

u · P kg dν

defines a L2(ν)-bounded linear functional on Hθ , because |l(g)| ≤ C‖g‖L2(ν).
This functional extends then to L2(ν) by density of Hθ , and there is Su ∈ L2(ν)

such that:

l(g) = lim
T→∞

∫
S

ST u · g dν =
∫

S

Su · g dν

In the same way, limT→∞
∫

S
u ◦ F T · g dν = 0 for every g ∈ L2(ν).

We get then for every g ∈ L2(ν):∫
S

u · g dν =
∫

S

ST u · g dν −
∫

S

ST u ◦ F · g dν +
∫

S

u ◦ F T · g dν

=
∫

S

ST u · g dν −
∫

S

ST u · Pg dν +
∫

S

u ◦ F T · g dν

−→
∫

S

Su · g dν −
∫

S

Su · Pg dν =
∫

S

(Su − Su ◦ F ) · g dν

as T goes to infinity. This proves the desired identity u = Su − Su ◦ F in L2(ν).

4.5. Proof of the Central Limit Theorem

To show that ST u−T mu√
T σu

converges in law under any initial probability φ ∈ Mp
ϑ

to the standard normal law, it is enough to show the convergence of its Laplace
transform. We treat only the centered case and note that this result is valid even if
σ 2

u = 0.
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Proposition 2. For all u ∈ H r
θ such that mu = 0 and for all φ ∈ Mp

ϑ , we have:

lim
T→∞

∫
S

exp

(
t√
T

ST u

)
dφ = exp

(
t2

2
σ 2

u

)
∀t ∈ R (18)

If σ 2
u > 0, this implies the central limit theorem (CLT) by Lévy’s Theorem

(see for example Theorem 2.5.1 in [4]). The case σ 2
u = 0 corresponds to a faster

convergence to the limit.

Proof. We proceed as in the proof of the first part of Proposition 1, but replace 1
T

by t√
T

. We can then use the decomposition (10) as soon as T >
(

t |u|θ
ρ

)2
.

As we take mu = ∂1λ(0; u) = 0, the main term in λkT0

(
tu√
T

)
will be the

second derivative:

λkT0

(
tu√
T

)
=
(

1 + t2

2T
∂2λ(0; u)+ o

(
1

T

))kT0

−→ exp

(
t2

2
∂2λ(0; u)

)
when T →∞  !

4.6. Proof of the Moderate Deviations Principle

A Moderate Deviations Principle with parameter 1
2 < α < 1 is in fact a Large

Deviations result for the law of the random variables ST u
T α . For these the exponen-

tial scale of probabilities is known to be of the order of T 2α−1. This will then be
the speed of the Large Deviations result (see Theorem 3.7.1 in [9]).

It is hence sufficient to evaluate the appropriate log-Laplace transform:

�α(β) = lim
T→∞

1

T 2α−1 log
∫

S

exp

(
βT 2α−1 ST u

T α

)
dφ

= lim
T→∞

1

T 2α−1 log
∫

S

exp

(
β

ST u

T 1−α

)
dφ

Proposition 3. For all fixed 1
2 < α < 1, for all φ ∈ Mp

ϑ and all u ∈ H r
θ such that

mu = 0, we have:

�α(β) = β2

2
σ 2

u (19)

The analyticity of �α(β) allows to apply Gärtner-Ellis Theorem (see Theorem
II.6.1 in [11]). The latter says that ST u

T α satisfies a Large Deviations Principle with
speed T 2α−1 and rate function given by the Legendre transform of �α:

Iα(x) = �∗
α(x) = sup

β∈R

(βx −�α(β)) = x2

2σ 2
u

,

which is independent of α, if σ 2
u > 0. This result is exactly the property (MDP) of

Theorem 3.

If σ 2
u = 0, then Iα(0) = 0 and Iα(x) = +∞ for all x �= 0, which corresponds to a

trivial case.
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Proof. We can proceed as for the central limit theorem because T 1−α → ∞ as
T → ∞ so that, for T great enough, we are again in the domain where Theo-

rem 4 can be applied. The main difference is that
∫

S
exp

(
β ST u

T 1−α

)
dφ diverges

exponentially fast so that we need the factor 1
T 2α−1 to rescale it.

For T = kT0 + T̃ with T >
( |β||u|θ

ρ

) 1
1−α

, we denote uT = βu

T 1−α . Then:

exp

(
− βT0

T 1−α
|u|∞

)
≤ exp

(
β

S
T̃

u ◦ F kT0

T 1−α

)
≤ exp

(
βT0

T 1−α
|u|∞

)

and:∫
S

exp

(
β

SkT0u

T 1−α

)
dφ = π∅

(
M(kT0)

uT
φ
)
= λkT0 (uT ) π∅

(
QuT

φ
)+ π∅

(
Rk

uT
φ
)

with:

1

T 2α−1 log
(
λkT0 (uT )

)
= kT0

T
T 2−2α log

(
1 + β2

2T 2−2α
∂2λ(0; u)+ o

(
1

T 2−2α

))

−→ β2

2
∂2λ(0; u) = β2

2
σ 2

u as T →∞

And we have for the remaining term:

1

T 2α−1 log

(
π∅
(
QuT

φ
)+ π∅

(
Rk

uT
φ
)

λkT0 (uT )

)

which tends to zero when T goes to infinity since

π∅
(
QuT

φ
) −→ 1 and

∣∣∣∣∣π∅
(
Rk

uT
φ
)

λkT0 (uT )

∣∣∣∣∣ ≤
(

γ−T0 + 2δ

1 − δ

)k

· ‖φ‖ϑ −→ 0

We get in conclusion that

�α(β) = lim
T→∞

1

T 2α−1 log
∫

S

exp

(
β

T 1−αST u

)
dφ = β2

2
σ 2

u  !

4.7. Proof of the Large Deviations result

We cannot prove a complete Large Deviations Principle because the existence of
the spectral gap for M

(T0)
u in Theorem 4 is valid only for small u and the scaling

taken to compute the log-Laplace transform is not the same as for Moderate Devia-
tions (it corresponds to the case α = 1). What we can obtain is for every u ∈ H r

θ an
upper bound and a partial lower bound controlled by a rate function with an unique
minimum.
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For u ∈ H r
θ and φ ∈ Mp

ϑ such that ‖φ‖ϑ < δ−2 (this is a technical assumption
which is not very important: it is satisfied by Lebesgue measure, and we can modify
δ in Theorem 4 such that it is satisfied by any fixed φ), we write:

�u(β) = lim sup
T→∞

1

T
log
∫

S

exp(βST u) dφ

the limsup of log-Laplace transforms of ST u.

Proposition 4. For |β| <
ρ
|u|θ , the map

β �−→ �u(β) = lim
T→∞

1

T
log
∫

S

exp(βST u) dφ = log(λ(βu)) (20)

is analytic.

Proof. We proceed exactly as in the proof of Proposition 3, with |β| <
ρ
|u|θ such

that:
π∅
(
M

(kT0)
βu

)
= λkT0 (βu) π∅

(
Qβu(φ)

)+ π∅
(
Rk

βu(φ)
)

with
1

T
log λkT0 (βu) −→ log λ (βu) when T →∞

and

1

T
log


π∅

(
Qβu(φ)

)+ π∅
(
Rk

βu(φ)
)

λkT0 (βu)




tends to zero when T goes to infinity, since

|π∅(Qβuφ)−1| < δ2‖φ‖ϑ and

∣∣∣∣∣∣
π∅
(
Rk

βu(φ)
)

λkT0 (βu)

∣∣∣∣∣∣ −→ 0  !

This local differentiability implies the following partial large deviations result:

Theorem 5. For all u ∈ H r
θ and φ ∈ Mp

ϑ such that ‖φ‖ϑ ≤ δ−2, we define:

Iu(x) = sup
β∈R

(βx −�u(β))

Then:

1. Iu is convex and lower semi-continuous, Iu(x) = +∞ if |x| > |u|∞, Iu(x) ≥ 0
and:

Iu(x) = 0 if and only if x = mu (21)

2. For all closed F ⊂ R:

lim sup
T→∞

1

T
log φ

(
z :

ST u(z)

T
∈ F

)
≤ − inf

x∈F
Iu(x) (Upper Bound)
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3. For all x ∈ �′
u

(
− ρ
|u|θ ,

ρ
|u|θ
)

and δ > 0:

lim inf
T→∞

1

T
log φ

(
z :

ST u(z)

T
∈ B(x, δ)

)
≥ −Iu(x) (Lower Bound)

Proof. 1) is a classical result of Large Deviations theory (see for example Lemma
2.2.5 in [9]). Equivalence (21) is a direct consequence of Theorem II.6.3 in [11]:
mu is the differential of �u at point 0, hence the unique minimizer of Iu.

Both bounds of Large Deviations are obtained by applying the Theorem of
Gärtner-Ellis (see Theorem 2.3.6 and Lemma 2.3.9 in [9]).  !

5. Perturbed transfer operators

We prove in this section the part of Theorem 4 on the existence of perturbed trans-
fer operators. We modify for this the method introduced in [23]. This allows us to
construct a wide class of operators (in fact more than those of Theorem 4) as stated
in Theorem 7.

5.1. Finite box operators

The construction of the transfer operators is well understood by looking at restric-
tions of the coupled map to finite boxes: we fix some boundary condition ξ ∈ S

and define for all � ∈ F :

F� : A� → C�

z� �→ F (z� ∨ ξ�C )|�
where z� ∨ ξ�C denotes the point w ∈ S such that wi = zi for all i ∈ � and
wi = ξi for all i ∈ �C .
This function F� is expanding as soon as κ < (λ − 1)ρ and we can define the
associated transfer operator L� : E� → E� as follows:∫

S�

ϕ ◦ F� · ψ dm� =
∫

S�

ϕ · L�(ψ) dm� ∀ϕ, ψ ∈ E� (22)

This is a classical tool to study asymptotic properties of such dynamical systems
(see [1] for an extended study of this domain).

In the same way, for u ∈ E�, we can define a perturbed operator by:∫
S�

ϕ ◦ F� · eu · ψ dm� =
∫

S�

ϕ ·M�,u(ψ) dm� ∀ϕ, ψ ∈ E�

Or, equivalently:

M�,u(ψ) = L�

(
eu · ψ) (23)
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The interest of M�,u comes from the formula:

∫
S�

exp

(
T−1∑
t=0

u ◦ F t
�

)
· ψ dm� =

∫
S�

MT
�,u(ψ) dm�

which identifies the Laplace transform of
∑

u ◦ F t
� with some spectral character-

istic of M�,u. We thus need an infinite dimensional equivalent of these operators,
as described in Theorem 4.

The method to construct them is based on the following perturbative expansion,
derived from Theorem 3.2 and Lemma 3.4 of [23]:

Theorem 6. If κ < (λ− 1)ρ, L� has the integral representation:

L�(ψ)(ω�) = ±
∫

B�

∏
p∈�

(
k(ωp, fp(zp))+

∑
V∈F

βp,V (ωp, zV∩� ∨ ξV∩�C )

)

× ψ(z�) µ�(dz�) (24)

where:

– B� = ∏
p∈� ∂A[ρ] and µ� is the unique holomorphic differential form on∏

p∈� C which extends m�.
– k is the periodic Cauchy kernel:

k(ω, z) = 1

2i
cot(z − ω) = 1

2πi

∑
n∈Z

1

z − ω + n

– β(p, V ) are weakly holomorphic functions on Dp,V = Ap×Bp×
∏

q∈V \{p} Aq

(i.e. continuous in all variables and holomorphic in wp ∈ Int(Ap) and zV \{p} ∈
Int(AV \{p}), see appendix B of [23]) such that:

∑
V∈F

θ−|V ||βp,V | ≤ Cβ = e2πκ

e2π(λ−1)ρ − e2πκ
− 1

e2π(λ−1)ρ − 1

and ∫
Sp

βp,V (ωp, zV∪{p}) dωp = 0 ∀zp ∈ Bp, zV \{p} ∈ AV \{p}

5.2. Existence of the operators

We can write a similar integral representation for LT
� and expand it by interchange

of products and sums. As in Section 4 of [23], we associate to each term in the
corresponding infinite expansion (each configuration) a configurational operator.
To define a general operator, we have to control the sum of these configurational
operators, hence the norm of each of them. We do this, following [23], with an
estimation by trees, where the spectral gap result for the single site map and the
weak coupling are extensively used. The main difference in our case is that we
expand also the perturbation terms. This disturbs the analysis but we overcome this
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difficulty: we associate several trees to each configuration and control their weights
by the choice of perturbation terms from the space Hθ (see Subsection 5.3 for the
detailed construction).
This allows to construct the general operators described in the following result:

Theorem 7. Suppose the hypotheses of Theorem 1 are verified, then there is θ <

ϑ < 1 such that for all T ≥ 1 we have a multilinear functional:

L(T ) : H T
θ −→ L(Mϑ , Mθ )

(U0, . . . , UT−1) �−→ L
(T )
[U0,... ,UT−1]

with the following properties:

• There exists T0 ≥ 1 such that L
(T )
[U0,... ,UT−1] ∈ L(Mϑ) ∀ T ≥ T0

•
∥∥∥L

(T )
[U0,... ,UT−1]

∥∥∥ ≤ T−1∏
t=0

|Ut |θ (25)

• L
(t+T )
[V0,... ,Vt−1,U0,... ,UT−1] = L

(t)
[V0,... ,Vt−1] ◦ L

(T )
[U0,... ,UT−1] if T ≥ T0 (26)

• L(T )(Mm
ϑ ) ⊂ Mm

θ (27)

•
∫

S

b ◦ F T ·
T−1∏
t=0

Ut ◦ F t dφ =
∫

S

b d
(
L

(T )
[U0,... ,UT−1]φ

)
∀ b ∈ C(S), φ ∈ Mm

ϑ (28)

Operators of Theorem 4 are a particular case of the general operators constructed
in Theorem 7. For u ∈ Hθ , we take

M(T )
u = L

(T )
[eu,... ,eu]

We can already obtain some properties of these operators:

Proof of Theorem 4 (first part). Since it is the composition of the analytic function
u �→ eu and of the multilinear map L(T ), M

(T )
u is analytic.

We can write explicitly the series expansion of M
(T )
u around a point u:

M
(T )
u+h =

∑
n≥0

1

n!
∂nM(T )(u;h),

where

∂nM(T )(u;h) =
∑

n0,... ,nT−1≥0∑T−1
t=0 nt=n

n!

n0! · · · nT−1!
LT

[hn0 eu,... ,hnT−1 eu],

which is an element of L(Mϑ , Mθ ) (or L(Mϑ) if T ≥ T0), is homogeneous of
degree n and satisfies the bound
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∥∥∥∂nM(T )(u;h)

∥∥∥ ≤ (T |h|θ )neT |u|θ

hence we control the difference between two operators by:

∥∥∥M
(T )
u+h −M(T )

u

∥∥∥ ≤ (eT |h|θ − 1
)

eT |u|θ

Estimate (6) is the particular case of this inequality around u = 0. Formulas (7),
(8) and (9) are easily deduced from (26), (27) and (28).  !

5.3. Proof of Theorem 7

This Subsection contains a sketch of the construction of the transfer operator done
in [23] and presents also the main modifications which have to be done to extend
it to perturbed operators, and obtain the results stated in Theorem 7.

5.3.1. Single site operators

For fp ∈ E(ρ, λ) an expanding map on Ap, the associated transfer operator Lfp :
Ep −→ Ep can be written (this is a particular case of identity (24)):

Lfp φ(ωp) =
∫

Bp

k(ωp, fp(zp))φ(zp) µp(dzp)

It satisfies lp ◦ Lfp = lp with lp(φ) = ∫
Sp

φ(zp) dzp and enjoys a spectral gap
property with the following estimates, uniformly in fp ∈ E(ρ, λ):

∥∥∥LT
fp

∥∥∥ ≤ ch and

∥∥∥∥LT
fp

∣∣∣
Ker lp

∥∥∥∥ ≤ crηT (29)

where ch ≥ 1, cr > 0 and η < 1. A proof of these results can be found in Appendix
A of [23].

5.3.2. Configurations

We define what a branching, the main element to define the configurations, is:

Definition 3. A branching pair (S, V ) is composed by a subset S ∈ F and a
function V : S → F . We denote V [S] = S ∪ (∪p∈SV (p)

)
.
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Given K ∈ F , (S, V ) a branching pair such that S ⊂ K , U ∈ Hθ and W ∈ F ,
we define H = K ∪ V [S] ∪W and the operator LK,(S,V ),(U,W) : EH → EK by:

LK,(S,V ),(U,W)(ϕH )(ωK) = ±
∫

SH\K
mH\K(dzH\K)

∫
BK

∏
p∈S

βp,V (p)(ωp, zV (p)∪p)

×
∏

p∈K\S
k(ωp, fp(zp))UW (zW )ϕH (zH ) µK(dzK)

We then have some compatibility properties for these operators:

Lemma 1. We have:

πK\{p},KLK,(S,V ),(U,W)=




0 if p ∈ S

LK\{p},(S,V ),(U,W) if p∈(V [S] ∪W)\S

LK\{p},(S,V ),(U,W) ◦ πH\{p},H if p∈K\(V [S] ∪W)

(30)

and the sum∑
W∈F

LK,(S,V ),(U,W) ◦ πH (φ) = LK,(S,V ),(1,∅) ◦ πK∪V [S](U < φ)

is independent of the decomposition U =∑W∈F UW of U ∈ Hθ .

Proof. For the first part, we proceed as for Lemma 4.2 in [23]. For the second part,
we commute sum and integral, obtaining

∑
W∈F

LK,(S,V ),(U,W)◦πH (φ) = LK,(S,V ),(1,∅)◦
(∑

W∈F
πK∪V [S],K∪V [S]∪W (UW φH )

)

and use then the projectivity of φ and the definition of the module product on Mθ .
 !

Given T ≥ 1, U0, . . . , UT−1 ∈ Hθ , we want to construct for any K ∈ F an
operator L

(T )
K,[U0,... ,UT−1] : Mϑ → EK and control its norm.

We introduce configurations and associated configurational operators:

Definition 4. A configuration on K ∈ F at time T ≥ 1 is the choice of :

– WT−1, . . . W0 ∈ F , for the expansion of the perturbative terms U ,
– (ST−1, VT−1), . . . , (S0, V0), branching pairs for the expansion of the βp,V ,
– I ∈ F an initial state,

such that if K is expanded by KT = K and Kt = Kt+1∪Vt [St ]∪Wt for 0 ≤ t < T ,
the following conditions are satisfied:

St ⊂ Kt+1 for 0 ≤ t < T and I ⊂ K0

We denote C[K, T ] the set of all these configurations.
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To each configuration C ∈ C[K, T ], we associate a configurational operator:

LK,[U0,... ,UT−1][C] = L(T−1) ◦ · · · ◦ L(0) ◦Q
K0
I ◦ πK0 : Mϑ → EK

where

L(t) = LKt+1,(St ,Vt ),(Ut ,Wt ) and Q
K0
I =

∏
p∈I

(1 − lp)
∏

p∈K0\I
lp

The following equivalent of Proposition 4.3 in [23] remains valid and will be useful
to construct the global operator on the projective Banach space Mϑ :

Proposition 5. If α ⊂ K ∈ F , then:

πα,KLK,[U0,... ,UT−1][C] =
{

Lα,[U0,... ,UT−1][C] if C ∈ C[α, T ]

0 otherwise
(31)

Remark. The initial set I , introduced in [23] to prove the spectral gap, is not nec-
essary here. We keep it however to verify that in the case where Ut = 1 for all
0 ≤ t < T , we really get the operator constructed in this paper.

For C ∈ C[K, T ] a given configuration, with (St , Vt ) the branching pairs, Wt

the perturbative expansions and K = KT ⊂ KT−1 ⊂ · · · ⊂ K0 the expansion
of K , we call the points (q, t) ∈ ∪T

t=0Kt × {t} points of the configuration and
classify them, calling (q, t):

– an inner point if q ∈ Wt ,
– a vertex point if q ∈ Vt [St ] \Wt ,
– an apex point if t ≥ 1 and q ∈ St−1 \ (Vt [St ] ∪Wt),
– a free point otherwise.

A chain is a maximal sequence of points of the configuration γ = (q, t)t1≤t≤t2

such that q �∈ St2−1 and (q, t)t1<t<t2 are free points. t1 is called the starting time
of the chain and |γ | = t2 − t1 its length. Such a chain is called:

– an apex chain if (q, t1) is an apex point,
– an initial chain if t1 = 0, (q, 0) is a free point and q ∈ I ,
– an end chain otherwise.

This analysis allows to separate the contributions of chains in LK,[U0,... ,UT−1][C].
If ch(t) denotes all the chains starting at time t , we obtain by interchange of the
terms in the integral:

LK,[U0,... ,UT−1][C] = L̃(T−1) ◦ Ũ (T−1) ◦ L̃(T−2) ◦ · · ·
Ũ (1) ◦ L̃(0) ◦ Ũ (0) ◦ jK0,I ◦

∏
p∈I

(1 − lp) ◦ πI

where Ũ (t) : EKt → EKt is defined by Ũ (t)(φ) = (jKt ,Wt Ut,Wt )φ and L̃(t) :
EKt → EKt+1 by:

L̃(t) =

 ∏

γ∈ ch(t)

Lγ


πKt+1,Kt

∏
p∈St

MKt ,βp,Vt (p)
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with Lγ = (Lfp )|γ | and:

MKt ,βp,Vt (p)
φ(ωp, zKt\{p}) = ±

∫
Bp

βp,Vt (p)(ωp, zVt (p)∪{p})φ(zKt ) µp(dzp)

Using this last expression, we can bound the norm of each LK,[U0,... ,UT−1][C]
by the product of the estimation for each term in its expression, using the following
estimates:

‖QK0
I ◦ πK0‖ ≤

(
1 + 1

ϑ

)|I |
(32)

since Q
K0
I ◦ πK0 =

∑
J⊂I (−1)|J |jK0,J πJ and ‖πJ ‖ ≤ ϑ−|J |.

‖M�,βp,V
‖ ≤ 2|βp,V | and ‖Ũ (t)‖ ≤ |Ut,Wt | (33)

‖Lγ ‖ ≤ ch or ‖Lγ ‖ ≤ crη|γ | if γ is an initial or apex chain
(34)

This last fundamental estimate comes from the spectral gap result for the single site
operator Lfp (see estimates (29)).

5.3.3. Tree structures

We will now associate to each configuration a tree structure in an injective way.
This will allow us to bound the norms of configurational operators by some more
computable estimates. The set of trees is exactly the same as in [23], but we will
keep more of them to describe a configuration.

Definition 5. For T ≥ 0 and p ∈ , the collection of trees Y[p, T ] is defined
recursively on T :

– Y[p, 0] contains two elements: an initial leaf and an end leaf
– for t ≥ 1, Y[p, t] is constituted of the following trees:

– an end leaf
– an initial chain of length t followed by an initial leaf
– an apex chain of length 0 ≤ k < t followed by a branching over a set V ; at

each q ∈ V ∪ {p}, we attach a tree yt−k−1
q ∈ Y[q, t − k − 1]

We associate now to each C ∈ C[K, T ] a collection of trees, in fact one yp,T ∈
Y[p, T ] for each (p, T )p∈K and one yp,t ∈ Y[p, t] for each (p, t) inner point, i.e.
such that 0 ≤ t < T and p ∈ Wt . We do this recursively on t , giving us a total
ordering of  to go through the points associated to a given time (see Figure 1 for
an illustration of this construction):
For t = 0, we associate to each p ∈ K0 a tree yp,0 which is an initial leaf if p ∈ I

and an end leaf otherwise.
Then, for 1 ≤ t ≤ T :

– we go through the p ∈ St−1 ⊂ Kt and we take y(p, t) a branching over the set
Vt−1(p), and we attach at each q ∈ Vt−1(p) ∪ {p}:
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Fig. 1. An example of configuration (left) with its associated tree structure (right).
Each circle represents the basis of a branching pair, each rectangle represents the perturbative
term Ut . To each of these inner points and to the bottom points are associated independent
trees.

– y(q, t − 1) if q �∈ Wt−1 and y(q, t − 1) has not yet been attached to another
tree

– an end leaf otherwise
– for p ∈ Kt ∩[(Vt−1[St−1]∪Wt−1)\St−1], we forget the tree y(p, t−1) (already

attached to another tree or kept until the end) and take for y(p, t) an end leaf
– for p ∈ Kt \ (Vt−1[St−1] ∪Wt−1):

– y(p, t) is an end leaf if y(p, t − 1) was already one (we forget the length of
end chains because it is useless in the estimates)

– otherwise, y(p, t) is a chain of length 1 attached to y(p, t − 1)

It should be noted that all y(p, t) for (p, t) inner points are never attached to other
ones: we keep them in our description of the configuration in term of trees. In fact,
the terms Ut,Wt , for Ut chosen in Hθ , will exactly compensate the weights of these
trees (see Proposition 8).
We define the weight of a tree as the product of the bounds of its components, and
for those, we take the bounds (33) for the branchings and (34) for the chains. We
estimate the other terms by:

‖ end leaf ‖ = ch and ‖ initial leaf ‖ = 1 + 1

ϑ

Proposition 6. The map which to every C ∈ C[K, T ] associates the family of trees
(y(p, t) where t = T and p ∈ K , or (p, t) is an inner point) is injective and we
have the bound:

∥∥LK,[U0,... ,UT−1][C]
∥∥Mϑ→EK

≤
∏
p∈K

‖y(p, T )‖
T−1∏
t=0


|Ut,Wt |

∏
p∈Wt

‖y(p, t)‖


(35)

Our trees are exactly the same as in [23]. We can then use its bounds for the
weights of trees under the condition (TR) of [23]. We don’t write this condition
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here, but just notice that for ρ and λ given, there exists θ0(ρ, λ) ∈ (0, 1/3) such
that for all θ < θ0 we can find γ < η−1 (η is the gap of the single site operator)
and κ such that any F ∈ CM[ρ, λ, θ, κ] satisfies (TR) with this γ . We write below
the results of Lemmas 4.20 and 4.21 of [23], which give these bounds:

Proposition 7. The size of a tree is the sum of the length of its chains added to the
number of its branchings. Define:

uT
p (s) =

∑
y∈Y[p,T ]

‖y‖ssize (y)

If condition (TR) is satisfied with γ ∈ (1, η−1), then there exists ϑ ∈ (θ, 1) and
T0 ≥ 1 such that:

uT
p (γ ) ≤ θ−1 (36)

uT
p (γ ) ≤ ϑ−1 if T ≥ T0

5.3.4. Global estimates

We deduce from Propositions 6 and 7 above that:

Proposition 8.

∑
C∈C[K,T ]

∥∥LK,[U0,... ,UT−1][C]
∥∥Mϑ→EK

≤ θ−|K|
T−1∏
t=0

|Ut |θ (37)

≤ ϑ−|K|
T−1∏
t=0

|Ut |θ if T ≥ T0

Proof. Because of the injectivity of the description by trees, we have:∑
C∈C[K,T ]

∥∥LK,[U0,... ,UT−1][C]
∥∥Mϑ→EK

≤
∑

C∈C[K,T ]

∏
p∈K

‖y(p, T )‖
T−1∏
t=0


|Ut,Wt |

∏
p∈Wt

‖y(p, t)‖



≤
∑

W0,... ,WT−1

∏
p∈K

uT
p (1)

T−1∏
t=0

|Ut,Wt |
∏

p∈Wt

ut
p(1)

≤
∏
p∈K

uT
p (1)

T−1∏
t=0


∑

W∈F
|Ut,W |

∏
p∈W

ut
p(1)




and we can conclude with estimates (36).  !
These bounds, together with the first part of Proposition 5 (which assures com-

patibility of the operators constructed for different subsets K) make it possible to
define:
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L
(T )
[U0,... ,UT−1] =


 ∑

C∈C[K,T ]

LK,[U0,... ,UT−1][C]




K∈F
as an operator from Mϑ to Mθ , or to Mϑ when T ≥ T0, satisfying the announced
bound (25).
We see also that this operator is independent of the decompositions Ut =

∑
W∈F

Ut,W writing, with L̂(t) = LKT+1,(St ,Vt ),(1,∅) and Kt the corresponding expansion:


 ∑

C∈C[K,T ]

LK,[U0,... ,UT−1][C]


 (φ)

=
∑

(ST−1,VT1 )

L̂(T−1)




UT−1 <


 ∑

(ST−2,VT2 )

L̂(T−2) · · · L̂(0)
[
(U0 < φ)K0

]



KT−1



(38)

For this, we use inductively the second part of Proposition 5 and the fact that any
intermediate operator defines a projective family.

The multilinearity in the perturbation terms U0, . . . , UT−1 is clear from this
last expression. We also can remark that L

(T )
[1,... ,1] = L(T ) is exactly the Perron

Frobenius operator of [23], because in this case, all configurational operators with
a Wt �= ∅ are null.
All other properties of these operators are straightforward adaptations of equivalent
results in [23].

6. Preservation of the spectral gap property

The central result in [23] is a spectral gap property for M
(T )
0 = L

(T )
[1,... ,1]. It is a

direct consequence of his Lemma 4.25 and can be stated as:

Theorem 8. Under the same assumptions on the parameters as in Theorem 7, M(T )
0

can be written for all T ≥ T0:

M
(T )
0 (φ) =

(∫
S

φ dm

)
ν + RT (φ)

with ν ∈ Mϑ , M
(T )
0 (ν) = ν and ‖RT (φ)‖ ≤ γ−T (so that Sp (RT ) ⊂ D(0, γ−T )).

We cannot generalize this result to all our perturbed operators, but only extend
it to small u as stated in the second part of Theorem 4. The proof uses an adaptation
to our case of the Theorem of Kato-Rellich (see Theorem XII.8 in [20] or Theorem
VII.6.9 of [10] for a more general result). We recall below the main steps of its
proof and specify some estimates:
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Proof of Theorem 4 (second part). For M ∈ L(Mϑ), let Res(M) = C \ Sp(M)

denote the resolvent set, and for λ ∈ Res(M)

R(λ, M) = (λId −M)−1

the associated resolvent function.
We denote Mu = M

(T0)
u ∈ L(Mϑ). Then, by Lemmas VII.6.3 and VII.6.4 of

[10], we get that for any fixed δ <
1−γ−T0

3 , there exists ε > 0 such that‖Mu−M0‖ <

ε implies:

1. {λ : d (λ, Sp(M0)) ≥ δ} ⊂ Res(Mu)

2. ‖R (λ, Mu)− R (λ, M0)‖ < δ ∀λ s.t. d (λ, Sp(M0)) ≥ δ

3. u → R(λ, Mu) is analytic ∀λ s.t. d (λ, Sp(M0)) > δ

The last statement is a straightforward generalization of the proof of LemmaVII.6.4:
the set of analytic functions in our sense is stable by the same operations as for
classical analytical functions.

Then Sp(Mu) ⊂ D(1, δ) ∪D
(
0, γ−T0 + δ

)
and if we denote

Qu = − 1

2πi

∫
|λ−1|=δ

R(λ, Mu) dλ = − 1

2πi

∫
|λ−1|=2δ

R(λ, Mu) dλ

the projection associated to the spectrum of Mu included in D(1, δ), we get that
Qu is an analytic function of u and

‖Qu −Q0‖ ≤ δ

∫ 1

0
‖R(1 + δei2πθ , Mu)− R(1 + δei2πθ , L(T0))‖dθ ≤ δ2 < 1

(39)

This, with Lemma VII.6.7 of [10] and the fact that Sp(L(T0)) ∩ D(1, δ) = {1}
where 1 is a simple eigenvalue, implies that Sp(Mu)∩D(1, δ) = {λT0 (u)}, where

λT0 (u) = Mu ◦Qu(1)

Qu(1)

is a simple eigenvalue and an analytic function of u.
Now, setting

Ru = Mu − λT0 (u) Qu = Mu ◦
(
− 1

2πi

∫
{|λ|=γ−T0+δ}

R(λ, Mu) dλ

)
,

which is the projection on the rest of the spectrum, we get:

M(kT0)
u = λkT0 (u) Qu + Rk

u, with Sp(Ru) ⊂ D
(

0, γ−T0 + δ
)
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and

‖Ru − R0‖ ≤ ‖Mu‖
∥∥∥∥− 1

2πi

∫
(R(λ, Mu)− R(λ, M0)) dλ

∥∥∥∥
+ ‖Mu − L(T0)‖

∥∥∥∥− 1

2πi

∫
R(λ, M0) dλ

∥∥∥∥
≤ (1 + ε)

(
γ−T0 + δ

)
δ + ε

≤ 2δ taking ε smaller if necessary

so that ‖Rk
u‖ ≤

(
γ−T0 + 2δ

)k
for every k ≥ 1, u ∈ Dθ (0, ρ).  !
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