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Abstract. In this paper we study a class of one-dimensional, degenerate, semilinear back-
ward stochastic partial differential equations (BSPDEs, for short) of parabolic type. By
establishing some new a priori estimates for both linear and semilinear BSPDEs, we show
that the regularity and uniform boundedness of the adapted solution to the semilinear BSPDE
can be determined by those of the coefficients, a special feature that one usually does not
expect from a stochastic differential equation. The proof follows the idea of the so-called
bootstrap method, which enables us to analyze each of the derivatives of the solution under
consideration. Some related results, including some comparison theorems of the adapted
solutions for semilinear BSPDEs, as well as a nonlinear stochastic Feynman-Kac formula,
are also given.

1. Introduction

Let (�,F, P ) be a complete probability space on which is defined a one-dimen-
sional standard Brownian motion W = {W(t) : t ∈ [0, T ]}. Let {Ft }t≥0 be the
natural filtration generated by W , augmented by all the P -null sets in F . We are
interested in the following (one-dimensional) terminal value problem for a semi-
linear stochastic partial differential equation:

{
du = −{Lu + Mq + f (t, x, u)}dt + qdW(t), (t, x) ∈ [0, T ] × R,

u
∣∣
t=T

= g.

(1.1)
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Here and throughout the paper, we denote{
Lu

�= 1
2a(t, x)

2uxx + b(t, x)ux + c(t, x)u

Mq
�=α(t, x)qx + γ (t, x)q,

(1.2)

where a, b, c, α, γ : [0, T ] × R × � → R, g : � → R, and f : [0, T ] × R
2 → R

are real-valued random fields satisfying appropriate measurability and regularity
conditions. As usual, equation (1.1) is understood as the following integral form:

u(t, x) = g(x) +
∫ T

t

{Lu(s, x) + Mq(s, x) + f (s, x, u(s, x))}ds

−
∫ T

t

q(s, x)dW(s), (t, x) ∈ [0, T ] × R, (1.3)

and throughout the paper we will not distinguish (1.1) and (1.3). Our purpose is
to find a pair of random fields (u, q) : [0, T ] × R × � → R

2, called an adapted
solution (more precise notions will be given shortly), such that for each fixed x ∈ R,
{u(·, x, ·), q(·, x, ·)} is a pair of {Ft }t≥0-adapted processes that satisfies (1.3) in a
certain sense, under the following parabolicity condition:

a(t, x)2 − α(t, x)2 ≥ 0, ∀(t, x) ∈ [0, T ] × R, a.s. (1.4)

Equation (1.1) (or equivalently, (1.3)) is called a backward stochastic partial
differential equation (BSPDE, for short). Such kind of equation, especially in the
linear case (i.e., f (t, x, u) ≡ h(t, x)) has been studied by many authors, mainly
within the topics of stochastic control and nonlinear filtering theory (see, for ex-
amples, Bensoussan [1,2], Nagasa–Nisio [12], Pardoux [13], Hu–Peng [6], Peng
[16] and Zhou [17,18]). Such BSPDEs have also proved to be useful in mathemat-
ical finance as it provides a generalized version of the celebrated Black–Scholes
formula in the case where the market parameters (such as interest rate, volatility,
etc.) are allowed to be random (see Ma–Yong [9,10]). However, not until [9] and
its subsequent version [10], all early studies of such BSPDEs required the so-called
super-parabolicity condition, which translated into the present case is that there
exists a constant δ > 0, such that (1.4) is replaced by

a(t, x)2 − α(t, x)2 ≥ δ, ∀(t, x) ∈ [0, T ] × R, a.s. ω ∈ �. (1.5)

We note that the super-parabolicity condition is removed in [9] and [10] for a class of
linear BSPDEs under certain “compatibility” conditions on the coefficients, which
in particular contains the one-dimensional version (1.3) with f (t, x, u) ≡ h(t, x).

A fundamental result of this paper is a uniform boundedness estimate for the
adapted solutions to BSPDEs of form (1.1). Such a result, slightly surprising from
the stochastic differential equation perspective because of the presence of the sto-
chastic integral, represents a special feature of a backward SDE. To our best knowl-
edge, this result is new in the stochastic PDE literature. The well-posedness and
the regularity of the adapted solutions to the semilinear BSPDE then follow from
a combination of some a priori estimates for both linear and semilinear BSPDEs
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and a so-called bootstrap method. We should point out, however, that due to some
essential technicalities in deriving the a priori estimate, in this paper we have to
restrict ourselves to the one-dimensional case although almost all other aspects
of the paper can be extended to the higher-dimensional case without substantial
difficulty. We hope to be able to address the higher-dimensional case in our future
publications. As applications we shall prove some comparison results for adapted
solutions to semilinear BSPDEs; and finally we establish a nonlinear Feynman-Kac
formula which generalizes the (deterministic) one developed by Pardoux and Peng
[15], when degeneracy is possible.

This paper is organized as follows. In Section 2 we introduce all the notations
and give the definitions of the adapted solutions. In Section 3 we prove some impor-
tant a priori estimates, including the uniform boundedness estimate for semilinear
BSPDEs. In Section 4 we study the well-posedness of the semilinear BSPDE (1.3)
under super-parabolicity condition; and in Section 5 we extend the results to the
possible degenerate cases. In Sections 6 we present the comparison theorems and
the nonlinear Feynman-Kac formula.

2. Preliminaries

Throughout this paper we denote by Ck(R) the set of functions that are continu-
ously differentiable up to order k; by Ck

b(R) the set of functions in Ck(R) whose
derivatives up to order k are uniformly bounded; by Ck

0 (R) the set of functions in
Ck(R) with compact supports. We denote ∂k

x (resp. ∂k
u) to be the k-th order partial

derivative with respect to x (resp. to u). When the context is clear we often use the
notations ∂k = ∂k

x , ∂xϕ = ϕx , and ∂2
xϕ = ϕxx for the purpose of easier presenta-

tion. Next, we define some other spaces that will be used in the paper. Let k ≥ 0
be an integer, 1 ≤ p, r ≤ ∞ be any real numbers, X be any Banach space, and
G ⊂ F be any sub-σ -field. We denote

• by Wk,p(R) the usual Sobolev space, k = 0, 1, 2, · · · , 1 ≤ p ≤ ∞, and
Hk(R) = Wk,2(R) (with H 0(R) = L2(R)) which is a Hilbert space with the usual
inner product

(ϕ, ψ)Hk
�=

∫
R

k∑
i=0

(∂iϕ(x))(∂iψ(x))dx, ∀ϕ,ψ ∈ Hk(R);

• by L
p

G(�;X) the set of all X-valued, G-measurable random variable ξ

such that E‖ξ‖p
X < ∞;

• by L
p

F (0, T ;Lr(�;X)) the set of all {Ft }t≥0-predictable X-valued processes

ϕ(t, ω) : [0, T ] × � → X such that ‖ϕ‖L
p

F (0,T ;Lr(�;X))

�=
{ ∫ T

0

[
E‖ϕ(t)‖r

X

]p/r

dt
}1/p

< ∞.

• by CF ([0, T ];Lr(�;X)) the set of all {Ft }t≥0-predictable X-valued process-
es ϕ(t, ω) : [0, T ]× � → X such that

‖ϕ‖CF ([0,T ];Lr(�;X))
�= sup

t∈[0,T ]

[
E‖ϕ(t)‖r

X

]1/r
< ∞.
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If r = p, we shall denote L
p

F (0, T ;Lp(�;X)) by L
p

F (0, T ;X) for simplic-
ity. Also, we often simply denote Ck(R) = Ck , Ck

b(R) = Ck
b , Ck

0 (R) = Ck
0 ,

Wk,m(R) = Wk,m, Hk(R) = Hk, . . . , etc., if there is no danger of confusion. For

any R > 0, with BR
�=[−R,R], we can similarly define Ck(BR), Hk(BR), etc.

Finally, in this paper, we will use C > 0 to represent a generic constant which can
be different at different places.

Now, let us give some assumptions. Let κ ≥ 0 be an integer and 1 ≤ p ≤ ∞.
(Aκ ) The random fields a, b, c, α, γ satisfy the following:

a, α ∈ L∞
F (0, T ;Wκ+1,∞(R)), b, c, γ ∈ L∞

F (0, T ;Wκ,∞(R)). (2.1)

(Fκ ) The random field f satisfies the following:

f ∈ L∞
F (0, T ;Wκ,∞(R2)). (2.2)

(Gκ,p) The random field g satisfies the following:

g ∈ L2
FT

(�;Wκ,∞)
⋂

L
p

FT
(�;Wκ,∞). (2.3)

We should point out that the assumptions above are slightly weaker than the
corresponding ones in [10] or [11]. We will show that these assumptions are al-
ready sufficient for the well-posedness of strong and weak adapted solutions (to
be defined below). However, in order to discuss the classical adapted solutions, the
following stronger assumptions, which are the same as those in [10,11], will have
to be in force.

(Aκ
c ) The random fields a, b, c, α, γ satisfy the following:

a, α ∈ L∞
F (0, T ;Cκ+1

b (R)), b, c, γ ∈ L∞
F (0, T ;Cκ

b (R)). (2.1)′

(Fκ
c ) The random field f satisfies the following:

f ∈ L∞
F (0, T ;Cκ

b (R
2)). (2.2)′

(Gκ,p
c ) The random field g satisfies the following:

g ∈ L2
FT

(�;Cκ
b )

⋂
L

p

FT
(�;Cκ

b ). (2.3)′

At times we need the following useful assumption (Ã1) which is weaker than
(A1) but stronger than (A0).

(Ã1) Random fields a, b, c, α, γ satisfy the following:
a, α ∈ L∞

F (0, T ;W 2,∞(R)),

b, γ ∈ L∞
F (0, T ;W 1,∞(R)),

c ∈ L∞
F (0, T ;L∞(R)).

(2.4)
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Finally, we introduce the bounds Kκ and K ′ that will be used frequently in the
sequel:

Kκ
�= ‖a‖L∞

F (0,T ;Wκ+1,∞) + ‖α‖L∞
F (0,T ;Wκ+1,∞) + ‖b‖L∞

F (0,T ;Wκ,∞)

+‖γ ‖L∞
F (0,T ;Wκ,∞) + ‖c‖L∞

F (0,T ;Wκ,∞),

K ′ �= ‖a‖L∞
F (0,T ;W 2,∞) + ‖α‖L∞

F (0,T ;W 2,∞) + ‖b‖L∞
F (0,T ;W 1,∞)

+‖γ ‖L∞
F (0,T ;W 1,∞) + ‖c‖L∞

F (0,T ;L∞).

(2.5)

Before giving definitions of solutions to (1.3), let us make the following obser-
vation: If a and α are differentiable, then

a2uxx = (a2ux)x − 2aaxux, αqx = (αq)x − αxq, (2.6)

and hence, BSPDE (1.3) can be written as the following divergence form:

u(t, x) = g(x) +
∫ T

t

{1

2
(a2ux)x + b̃ux + cu + (αq)x + γ̃ q + f (s, x, u)

}
ds

−
∫ T

t

qdW(s), (t, x) ∈ [0, T ] × R, (2.7)

where

b̃ = b − aax; γ̃ = γ − αx. (2.8)

Thus, under (A0), (1.3) and (2.7) are equivalent. Consequently, all the results for
(1.3) can be automatically carried over to (2.7) and vice versa. Therefore, in the
rest of the paper, we will use both (1.3) and (2.7), whichever is convenient, for our
discussion without further explanation.

The following definitions of adapted solutions to the BSPDE (1.3) are inherited
from [10] (see [11] also), with slight modifications. To simplify notations, let us
further introduce some spaces of random fields that will be frequently used in the
sequel. For each integer k ≥ 1 we define

Hk �={(u, q)| u ∈ L2
F (0, T ;Hk), q ∈ L2

F (0, T ;Hk−1)}. (2.9)

We note that if u ∈ L2
F (0, T ;Hk) and it is also continuous in t with respect to the

norm {E‖ · ‖2
Hk }1/2, then u ∈ CF ([0, T ];L2(�;Hk)).

Definition 2.1. A pair of random fields (u, q) : [0, T ] × R × � �→ R
2 is called

(i) a classical adapted solution of (2.7), if{
u ∈ CF (0, T ;L2(�;C2(R))),

q ∈ L2
F (0, T ;C1(R)),

(2.10)

such that

u(t, x) = g(x) +
∫ T

t

{1

2
[a2ux]x + b̃ux + cu + [αq]x + γ̃ q + f (s, x, u)}ds

−
∫ T

t

qdW(s), (t, x) ∈ [0, T ] × R, P-a.s. (2.11)



386 Y. Hu et al.

(ii) a strong adapted solution of (2.7), if
u ∈ ⋂

R>0
CF ([0, T ];L2(�;H 2(BR))),

q ∈ ⋂
R>0

L2
F (0, T ;H 1(BR)),

(2.12)

such that (2.11) holds.
(iii) a weak adapted solution of (2.7) if

u ∈ ⋂
R>0

CF ([0, T ];L2(�;H 1(BR))),

q ∈ ⋂
R>0

L2
F (0, T ;L2(BR)),

(2.13)

such that∫
R

u(t, x)ϕ(x)dx −
∫

R

g(x)ϕ(x)dx

=
∫ T

t

∫
R

{
− 1

2
a2uxϕx + b̃uxϕ + cuϕ − αqϕx + γ̃ qϕ + f (s, x, u)ϕ

}
dxds

−
∫ T

t

∫
R

qϕdxdW(s), ∀ϕ ∈ C∞
0 , t ∈ [0, T ], P-a.s. (2.14)

We should point out that if b̃ and γ̃ in (2.7) are given by (2.8), then Defini-
tion 2.1 defines the weak, strong, and classical adapted solutions for BSPDE (1.3),
respectively.

It is clear from the definition that a classical adapted solution is a strong adapt-
ed solution; and a strong adapted solution is a weak adapted solution. Conversely,
using integration by parts it can be easily shown that if (A0), (F0) and (G0,2) hold,
then a weak adapted solution of (2.7) satisfying (2.12) is a strong adapted solution.
Furthermore, if (A0

c), (F0
c) and (G0,2

c ) hold, and (2.10) is true, then (u, q) is actually
a classical adapted solution (see [10] and [11] for detailed arguments).

The following result is one of the fundamental lemmas in [10], rephrased to
suit the current situation.

Lemma 2.2. (i) Let the parabolicity condition (1.4) hold. Let (Aκ) hold for some
κ ≥ 1. Then there exists a constant C0 > 0, depending only on κ , T , and the bound
Kκ given in (2.5), such that for any u ∈ C∞

0 (R) and q ∈ C∞
0 (R), it holds, for

k = 1, 2, · · · , κ , dP × dt-a.e. on [0, T ] × � that∫
R

{(
a2 − α2)(∂k+1u)2 + 1

2
|∂k(αux + q)|2

}
dx

≤
∫

R

{ − 2(∂ku)∂k(Lu + Mq) +
k∑

i=0

|∂iq|2 + C0

k∑
i=0

|∂iu|2}dx. (2.15)

For k = 0, (2.15) remains true under (Ã1), with the constant C0 depending only
on T and the bound K ′ given in (2.5).

(ii) Let the super-parabolicity condition (1.5) hold for some δ > 0, and let (Aκ)

hold for some κ ≥ 0. Then there exists a constant C > 0, depending only on κ , T ,
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and the bound Kκ given in (2.5), such that for any u ∈ C∞
0 (R) and q ∈ C∞

0 (R),
it holds, for k = 0, 1, · · · , κ , dP × dt-a.e. on [0, T ] × � that

δ‖u‖2
Hk+1 ≤

∫
R

k∑
j=0

{− 2(∂ju)∂j (Lu + Mq)
}
dx + ‖q‖2

Hk + C‖u‖2
Hk . (2.16)

In particular, (2.16) holds for k = 0 under (A0) only.

Proof. We prove the case k = 0 first to get the main idea. Note that in this case,
one has, by using integration by parts,∫

R

{−2u(Lu + Mq)}dx

=
∫

R

{−2u[
1

2
a2uxx + bux + cu + αqx + γ q]}dx

=
∫

R

{a2|ux |2 + 2(aax − b)uux − 2cu2 − 2αqxu − 2γ qu}dx

=
∫

R

{a2|ux |2 + (aax − b)(u2)x − 2cu2 + 2[αux + (αx − γ )u]q}dx

=
∫

R

{a2|ux |2 − [(aax − b)x + 2c]u2 + |αux + (αx − γ )u + q|2

−|αux + (αx − γ )u|2 − q2}dx
≥

∫
R

{a2|ux |2 − [(aax − b)x + 2c]u2 + 1

2
|αux + q|2 − (αx − γ )2u2

−α2|ux |2 − (αx − γ )2u2 − 2α(αx − γ )uux − q2}dx
=

∫
R

{(a2 − α2)|ux |2 − [(aax − b)x + 2c + 2(αx − γ )2]u2 + 1

2
|αux + q|2

−α(αx − γ )(u2)x − q2}dx
=

∫
R

{
(a2 − α2)|ux |2 + 1

2
|αux + q|2 − q2

−{(aax − b)x + 2c + 2(αx − γ )2 + [α(αx − γ )]x}u2
}
dx.

In the above, we have used the inequality |a+b|2 ≥ 1
2 |a|2 −|b|2 (for any a, b ∈ R).

Consequently,∫
R

{(a2 − α2)|ux |2 + 1

2
|αux + q|2

≤
∫

R

{
− 2u(Lu + Mq) + q2

+{(aax − b)x + 2c + 2(αx − γ )2 + [α(αx − γ )]x}u2
}
dx

≤
∫

R

{
− 2u(Lu + Mq) + q2 + Cu2

}
dx.

This gives (2.15) for k = 0, with only (Ã1) needed. The constant C only depends on
the bound of a, ax, axx, α, αx, αxx, bx, γ, γx, c. The corresponding case in (2.16)
can also be proved similarly to the above arguments.
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Next, we look at the general case, with more careful calculations. We shall give
a detailed argument for the case k ≥ 3, since the cases k = 1, 2 can be proved
along the same lines, only easier. First, using integration by parts, and denoting
Ci

k = (
k
i

)
, we have

∫
R

{ − 2(∂ku)∂k(Lu + Mq)
}
dx

=
∫

R

{
− 2(∂ku)∂k(

1

2
a2uxx + bux + cu + αqx + γ q)

}
dx

=
∫

R

{
(∂k+1u)∂k−1(a2uxx + 2αqx) − 2(∂ku)∂k(bux + cu + γ q)

}
dx

=
∫

R

{
(∂k+1u)

k−1∑
i=0

Ci
k−1

[
(∂k−1−i (a2))(∂i+2u) + 2(∂k−1−iα)(∂i+1q)

]
−2(∂ku)

k∑
i=0

Ci
k

[
(∂k−ib)(∂i+1u) + (∂k−ic)(∂iu) + (∂k−iγ )(∂iq)

]}
dx

=
∫

R

{
a2(∂k+1u)2 + (k − 1)(∂(a2))(∂k+1u)(∂ku)

+(∂k+1u)

k−3∑
i=0

Ci
k−1(∂

k−1−i (a2))(∂i+2u)

+2α(∂k+1u)(∂kq) + 2(∂k+1u)

k−2∑
i=0

Ci
k−1(∂

k−1−iα)(∂i+1q)

−2b(∂ku)(∂k+1u)−2(∂ku)

k−1∑
i=0

Ci
k(∂

k−ib)(∂i+1u)−2(∂ku)

k∑
i=0

Ci
k(∂

k−ic)(∂iu)

−2γ (∂ku)(∂kq) − 2(∂ku)

k−1∑
i=0

Ci
k(∂

k−iγ )(∂iq)
}
dx

=
∫

R

{
a2(∂k+1u)2 + 2{α(∂k+1u) − [γ + (k − 1)(∂α)](∂ku)}(∂kq)

+[k − 1

2
(∂(a2)) − b

]
∂[(∂ku)2]

−(∂ku)

k−3∑
i=0

Ci
k−1

[
(∂k−i (a2))(∂i+2u) + (∂k−1−i (a2))(∂i+3u)

]
−2(∂ku)

{ k−2∑
i=0

Ci
k−1(∂

k−iα)(∂i+1q) +
k−3∑
i=0

Ci
k−1(∂

k−1−iα)(∂i+2q)
}

−2(∂ku)
[k−1∑

i=0

Ci
k(∂

k−ib)(∂i+1u)+
k∑

i=0

Ci
k(∂

k−ic)(∂iu)+
k−1∑
i=0

Ci
k(∂

k−iγ)(∂iq)
]}

dx.
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Thus, by “completing squares" and using the inequality |a+b|2 ≥ 1
2 |a|2 −|b|2

as before, we have∫
R

{ − 2(∂ku)∂k(Lu + Mq)
}
dx

=
∫

R

{
a2(∂k+1u)2 + |α(∂k+1u) − [γ + (k − 1)(∂α)](∂ku) + (∂kq)|2

−|α(∂k+1u)|2 − |[γ + (k − 1)(∂α)](∂ku)|2 − |(∂kq)|2

−α[γ + (k − 1)(∂α)]∂[(∂ku)2] − ∂
[k − 1

2
(∂(a2)) − b

]
(∂ku)2

−(∂ku)

k−3∑
i=0

Ci
k−1

[
(∂k−i (a2))(∂i+2u) + (∂k−1−i (a2))(∂i+3u)

]
−2(∂ku)

{ k−2∑
i=0

Ci
k−1(∂

k−iα)(∂i+1q) +
k−3∑
i=0

Ci
k−1(∂

k−1−iα)(∂i+2q)
}

−2(∂ku)
[ k−1∑

i=0

Ci
k(∂

k−ib)(∂i+1u) +
k∑

i=0

Ci
k(∂

k−ic)(∂iu)

+
k−1∑
i=0

Ci
k(∂

k−iγ )(∂iq)
]}

dx

≥
∫

R

{
(a2 − α2)(∂k+1u)2+ 1

2
|∂k(αux + q)|2−

k∑
i=0

|∂iq|2−C0

k∑
i=0

|∂iu|2
}
dx,

which leads further to

∫
R

{
(a2 − α2)(∂k+1u)2 + 1

2
|∂k(αux + q)|2

}
dx

≤
∫

R

{
− 2(∂ku)∂k(Lu + Mq)

}
dx +

k∑
i=0

|∂iq|2 + C0

k∑
i=0

|∂iu|2
}
dx

This gives (2.15) for the case k ≥ 3. The proof of (2.16) can now be carried out
easily. ��

3. Some a priori estimates

In this section we prove some a priori estimates that will be useful in the sequel.
We shall consider both the linear and semilinear cases.

3.1. Linear case

We begin by considering the special case of (1.3) with f (t, x, u) = h(t, x), that is,
(1.3) is a linear BSPDE:
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u(t, x) = g(x) +
∫ T

t

{1

2
a2uxx + bux + cu + αqx + γ q + h}ds −

∫ T

t

qdW(s)

= g(x) +
∫ T

t

{Lu + Mq + h}ds −
∫ T

t

qdW(s). (3.1)

The following lemma is a slight variation and extension of Theorem 3.1 of [10].

Theorem 3.1. Let the parabolicity condition (1.4) hold. Let (Aκ) hold for some
κ ≥ 1. Then for any random fields h and g satisfying

h ∈ L2
F (0, T ;Hκ), g ∈ L2

FT
(�;Hκ), (3.2)

BSPDE (3.1) admits a unique weak adapted solution (u, q) ∈ Hκ . Moreover, (u, q)
satisfies the following estimate:

max
t∈[0,T ]

E‖u(t)‖2
Hk + E

∫ T

0

{ ∫
R

k∑
i=0

(a2 − α2)(∂i+1
x u)2dx

+‖αux + q‖2
Hk + ‖q‖2

Hk−1

}
dt

≤ C
{
E‖g‖2

Hk + E

∫ T

0
‖h(t)‖2

Hkdt
}
, k = 0, 1, · · · , κ. (3.3)

where ‖q‖2
H−1

�= 0. Estimate (3.3) remains true for k = 0 under (Ã1).
Furthermore, if the super-parabolicity condition (1.5) holds for some δ > 0,

then the condition (3.2) can be relaxed to

h ∈ L2
F (0, T ;Hκ−1), g ∈ L2

FT
(�;Hκ), (3.4)

and the weak adapted solution (u, q) ∈ Hκ+1. Moreover, there exists a constant
C > 0 depending only on κ , T , Kκ , and δ such that

max
t∈[0,T ]

E‖u(t)‖2
Hk + E

∫ T

0
{‖u(s)‖2

Hk+1 + ‖q(s)‖2
Hk }ds

≤ CE
{ ∫ T

0
‖h(t)‖2

H(k−1)∨0dt + ‖g‖2
Hk

}
, k = 0, · · · , κ.

(3.5)

Proof. We first assume that (3.2) holds for some κ ≥ 1. In this case, the existence
and uniqueness of the weak adapted solution follows from [10, Theorem 3.1]. We
need only establish the estimate (3.3).

Define the following equivalent inner product for Hκ :

(ϕ, ψ)κ ≡
∫

R

(∂κϕ)(∂κψ)dx, ∀ϕ,ψ ∈ Hκ. (3.6)
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Denote |ϕ|κ = (ϕ, ϕ)
1/2
κ . Next, let {ϕi}i≥1 ⊆ C∞

0 (R) be an orthonormal basis
for Hκ (with respect to the inner product (3.6)). Let 1 ≥ 1 be fixed. Consider the
following linear BSDE (instead of a BSPDE):du1j = −

{ 1∑
i=1

[
(Lϕi, ϕj )κu

1i+(Mϕi, ϕj )κq
1i

]+(h, ϕj )κ

}
dt+q1j dW(t),

u1j (T ) = (g, ϕj )κ , 1 ≤ j ≤ 1.

(3.7)

It is by now standard ([14]) that there exists a unique adapted solution (u1j , q1j ) ∈
CF ([0, T ]; R) × L2

F (0, T ; R), 1 ≤ j ≤ k. Let
u1(t, x, ω) =

1∑
j=1

u1j (t, ω)ϕj (x),

q1(t, x, ω) =
1∑

j=1
q1j (t, ω)ϕj (x),

(t, x, ω) ∈ [0, T ] × R × �.

Then we see that for any fixed (t, ω) ∈ [0, T ]×�, u1(t, ·, ω), q1(t, ·, ω) ∈ C∞
0 (R).

Further, if we denote P 1 : Hκ → span {ϕ1, · · · , ϕ1} �=Hκ
1 to be the orthogonal

projection from Hκ onto Hκ
1 , then obviously we have (P 1)∗ = P 1, and P 1u1 = u1,

1 ≥ 1, since u1 (as well as q1) are Hκ
1 -valued processes. Now let h1 = P 1h and

g1 = P 1g. Then clearly the following holds:{
du1 = { − P 1[Lu1 + Mq1] − h1

}
dt + q1dW(t),

u1
∣∣
t=T

= g1.
(3.8)

Applying the generalized Itô formula (cf. [10,11]) to |u1(t)|2k over [t, T ], for k =
0, 1, · · · , κ , and using (3.8) and Lemma 2.2, we have

E|g1|2k − E|u1(t)|2k
= E

∫ T

t

{
− 2(u1,Lu1 + Mq1 + h1)k + |q1|2k

}
ds

≥ E

∫ T

t

{ ∫
R

(a2 − α2)(∂k+1u1)2dx + |αu1
x + q1|2k

}
ds

−E

∫ T

t

[
C0‖u1‖2

Hk + ‖q1‖2
Hk−1 + |u1|2k + |h1|2k

]
ds.

(3.9)

In the above, if k = 0, ‖q‖2
Hk−1

�= 0. We remark here that for the first equality in
the above we assumed that the stochastic integral appearing in the Itô’s formula is
a true martingale with mean zero. In general one can use the standard localization
arguments, together with the Dominated Convergence Theorem, to obtain the re-
sult; we omit the details here. Moreover, we have used the fact that (P 1)∗ = P 1

and P 1u1 = u1. One can rewrite (3.9) as follows:

E|u1(t)|2k + E

∫ T

t

{ ∫
R

(a2 − α2)(∂k+1u1)2dx + |αu1
x + q1|2k

}
ds

≤ E|g1|2k + E

∫ T

t

[
C0‖u1‖2

Hk + ‖q1‖2
Hk−1 + |u1|2k + |h1|2k

]
ds.

(3.10)
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Now, we first take k = 0. Then (3.10) becomes

E|u1(t)|20 + E

∫ T

t

{ ∫
R

(a2 − α2)(u1
x)

2dx + |αu1
x + q1|20

}
ds

≤ E|g1|20 + E

∫ T

t

[
(C0 + 1)|u1|20 + |h1|20

]
ds.

(3.11)

By Gronwall’s inequality, one has

max
t∈[0,T ]

E|u1(t)|20 + E

∫ T

0

{ ∫
R

(a2 − α2)(u1
x)

2dx + |αu1
x + q1|20

}
ds

≤ C
{
E|g1|20 + E

∫ T

0
|h1|20ds

}
,

(3.12)

with the constant C depending on C0. Next, we take k = 1. Then (3.10) implies
that (noting (3.12))

E|u1(t)|21 + E

∫ T

t

{ ∫
R

(a2 − α2)(∂2u1)2dx + |αu1
x + q1|21

}
ds

≤ E|g1|21 + E

∫ T

t

[
C0(|u1|20 + |u1|21) + |q1|20 + |u1|21 + |h1|21

]
ds

≤ E|g1|21+E

∫ T

t

[
C0|u1|20+(C0 + 1)|u1|21+2|αu1

x+q1|20+2|αu1
x |20 + |h1|21

]
ds

≤ E|g1|21 + E

∫ T

t

[
(C0 + 1 + 2‖α‖2

∞)|u1|21 + |h1|21
]
ds

+C
{
E|g1|20 + E

∫ T

t

|h1|20ds
}
. (3.13)

By Gronwall’s inequality again, we obtain

max
t∈[0,T ]

E|u1(t)|21 + E

∫ T

0

{ ∫
R

(a2 − α2)(∂2u1)2dx + |αu1
x + q1|21

}
ds

≤ C
{
E‖g1‖2

1 + E

∫ T

0
‖h1‖2

1ds
}
. (3.14)

Moreover, combining (3.12) and (3.14), we have

E

∫ T

0
|q1|20ds ≤ E

∫ T

0

[
2|αu1

x |20 + 2|αu1
x + q1|20

]
ds

≤ C
{
E‖g1‖2

1 + E

∫ T

0
‖h1‖2

1ds
}
. (3.15)

Then, combining (3.12), (3.14) and (3.15), we obtain

max
t∈[0,T ]

E‖u1(t)‖2
H 1 + E

∫ T

0

{ ∫
R

1∑
i=0

(a2 − α2)(∂2u1)2dx

+‖αu1
x + q1‖2

H 1 + ‖q1‖2
H 0

}
ds

≤ C
{
E‖g1‖2

H 1 + E

∫ T

0
‖h1‖2

H 1ds
}
. (3.16)
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Following the same argument, we are able to prove the following:

max
t∈[0,T ]

E‖u1(t)‖2
Hk + E

∫ T

0

{ ∫
R

k∑
i=0

(a2 − α2)(∂i+1u1)2dx

+‖αu1
x + q1‖2

Hk + ‖q1‖2
Hk−1

}
ds

≤ C
{
E‖g1‖2

Hk + E

∫ T

0
‖h1‖2

Hkds
}
, (3.17)

for k = 0, 1, · · · , κ . Letting 1 → ∞, we obtain (3.3).
Recall that C > 0 is a generic constant depending only on κ , T and K , which

can vary from line to line. Also, we note that by Lemma 2.2, when we prove (3.3)
for k = 0 only (Ã1) is needed.

Now we assume that the super-parabolicity condition (1.5) holds. Note that

2
∫ T

t

∫
R

(∂ku1)(∂kh1)dxdt ≤ ε

∫ T

t

|u1|2k+1dt + 1

ε

∫ T

t

|h1|2k−1dt.

Thus, (3.9) and (3.10) can be refined as follows:

E|u1(t)|2k + E

∫ T

t

{
δ|u1|2k+1 + |αu1

x + q1|2k
}
ds

≤ E|g1|2k + E

∫ T

t

[
C0‖u1‖2

Hk + ‖q1‖2
Hk−1 + ε|u1|2k+1 + 1

ε
|h1|2k−1

]
ds.

Thus, by choosing ε > 0 small enough, we have

E|u1(t)|2k + E

∫ T

t

{ δ

2
|u1|2k+1 + |αu1

x + q1|2k
}
ds

≤ E|g1|2k + E

∫ T

t

[
C0‖u1‖2

Hk + ‖q1‖2
Hk−1 + 1

ε
|h1|2k−1

]
ds.

Next, using the same argument in (3.11)–(3.17) (starting from k = 0, then k =
1, 2, · · · , etc.), we are able to prove (3.5) for the case where (3.2) holds. In the
case where only (3.4) holds, we can use a usual approximation argument since
L2

F (0, T ;Hκ) is dense in L2
F (0, T ;Hκ−1).

Finally, from estimate (3.5), we see that under super-parabolicity condition
(1.5) and (3.4), the weak adapted solution (u, q) must be in Hκ+1, again by an
approximation argument. The proof is now complete. ��

3.2. Semi-linear case

We now turn to the semilinear BSPDE (2.7). We shall make use of some further
assumptions.

(Â)The random fieldsα andγ are independent ofx, that is,α, γ ∈ L∞
F (0, T ; R).
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(̂F) There exists a constant L > 0 and a random field F ∈ L2
F (0, T ;L2(R))

such that

|f (t, x, u)| ≤ |F(t, x)| + L|u|, ∀(t, x, u) ∈ [0, T ] × R × R, P-a.s.
(3.18)

Note that (̂F) is weaker than (F1) when f is independent of u. The following
estimate is fundamental for studying semi-linear BSPDEs.

Theorem 3.2. Let the parabolicity condition (1.4) hold. Let (Ã1), (Â), (̂F) and
(G1,p) hold for some p ≥ 2. Let (u, q) be a strong adapted solution to the semi-
linear BSPDE (2.7). Then, for each m = 1, 2, · · · , [p

2 ], it holds that

sup
0≤t≤T

E‖u(t)‖2m
L2m + E

∫
R0

|u(s, x)|2m−2[α(s)ux(s, x) + q(s, x)]2dxds

≤ C
{
E‖g‖2m

L2m + E

∫ T

0
‖F(s)‖2m

L2mds
}
. (3.19)

where Rt = (t, T ) × R, for t ∈ [0, T ), and C = eBm for some B > 0 depending
only on T , K ′ and L.

Moreover, if (G1,∞) holds, and the random field F in (̂F) is uniformly bounded,
(in particular if (F1) holds), then one has

|u(t, x)| ≤ C, a.e. (t, x) ∈ R0, a.s. (3.20)

Proof. For any m = 1, 2, · · · , [p
2 ], we apply Itô’s formula to u2m to get∫

R

g(x)2mdx −
∫

R

u(t, x)2mdx

=
∫

Rt

{
2mu2m−1[ − 1

2
(a2ux)x − b̃ux − cu − αqx − γ q − f

]
+m(2m − 1)u2m−2q2

}
dxds+

∫
Rt

2mu2m−1qdxdW(s), (3.21)

where b̃ is defined by (2.8). (Note that γ̃ = γ by (Â).) Using integration by parts
we see that the first integral on the right hand side of (3.21) can be written as∫
Rt

{
− mu2m−1(a2ux)x − 2mu2m−1αqx − 2mu2m−1[̃bux + γ q]

−2mcu2m − 2mu2m−1f + m(2m − 1)u2m−2q2
}
dxds

=
∫

Rt

{
m(2m − 1)u2m−2(aux)

2 + 2m(2m − 1)u2m−2(αux)q − 2mcu2m

−2mu2m−1[̃bux + γ q] + m(2m − 1)u2m−2q2 − 2mu2m−1f
}
dxds

=
∫

Rt

{
m(2m − 1)u2m−2(a2 − α2)(ux)

2 + m(2m − 1)u2m−2(αux + q)2

−2mu2m−1[̃bux + γ q
] − 2mcu2m − 2mu2m−1f

}
dxds. (3.22)
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In the above, we have used the assumption that α is independent of x as well. Now
note that

−
∫

Rt

2mu2m−1(̃bux + γ q)dxds

= −
∫

Rt

2mu2m−1[(̃b − γα)ux + γ (αux + q)
]
dxds

= −
∫

Rt

[
(̃b − γα)(u2m)x + 2mu2m−1γ (αux + q)

]
dxds

=
∫

Rt

[
(̃b − γα)xu

2m − 2mu2m−1γ (αux + q)
]
dxds, (3.23)

and that

2|u||γ ||αux + q| ≤ (2m − 1)

2
(αux + q)2 + 2

2m − 1
u2γ 2. (3.24)

Further, making use of the assumption (̂F) and Young’s inequality one has

|u|2m−1|f | ≤ |u|2m−1(|F | + L|u|) ≤ (2m − 1)

2m
u2m + 1

2m
|F |2m + L|u|2m.

(3.25)

Hence, the right hand side of (3.22) is no less than∫
Rt

{m(2m − 1)

2
u2m−2(αux + q)2 − |F |2m

+
(
(̃b − γα)x − 2cm − 2|γ |2m

(2m − 1)
− (2m − 1) − 2Lm

)
u2m

}
dxds. (3.26)

Combining (3.22)–(3.26), we derive from (3.21) that∫
R

g(x)2mdx −
∫

R

u(t, x)2mdx

≥
∫

Rt

{m(2m − 1)

2
u2m−2(αux + q)2 − |F |2m − Cmu2m

}
dxds

+
∫

Rt

2mu2m−1qdxdW(s), (3.27)

where C > 0 is some generic constant depending only on the constants K ′ in (2.5)
and L in (̂F). Taking expectation and applying the Gronwall inequality to (3.27)
we obtain

E

∫
R

u(x, t)2mdx + m(2m − 1)

2
E

∫
Rt

u(x, s)2m−2[αux + q]2(s, x)dxds

≤ eCmT
{
E

∫
R

g(x)2mdx+
∫

R0

|F(s, x)|2mdxds
}
, ∀1≤m≤M, t ∈ [0, T ],

(3.28)

which gives (3.19).
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Now, in the case (G1,∞) holds, we drop the second term on the left side of
(3.28), take 2m-th root on both sides and send m → ∞ to get

|u(x, t)| ≤ e
CT
2 (‖g‖∞ + ‖F‖∞), ∀t ∈ [0, T ], a.e. x ∈ R, a.s. (3.29)

This completes the proof. ��
We emphasize here that Theorem 3.2 holds only under the parabolicity condition

(1.4), instead of the super-parabolicity condition (1.5).

4. Well-posedness: Super-parabolic Case

In this section we shall prove the well-posedness of the semi-linear BSPDE (1.3)
(or (2.7)) under super-parabolicity condition (1.5). We note that even for this simple
case, the well-posedness of the semi-linear BSPDE has not been fully explored so
far. Therefore we shall give a detailed study here.

Let us first consider the existence and uniqueness of the weak solution.

Theorem 4.1. Let the super-parabolicity condition (1.5) hold, and let (Ã1), (F1),
and (G1,2) hold. Then, the semi-linear BSPDE (1.3) admits a unique weak adapted
solution.

Proof. Let us first apply the Picard approximation to prove the existence.
We define

(u0, q0) = (0, 0) ∈ H1, (4.1)

and let (un, qn) ∈ H1 be given. Since f (·, ·, un(·, ·)) ∈ L2
F (0, T ;H 0), and we

have assumed the super-parabolicity condition (1.5), applying Theorem 3.1 with
κ = 1, we see that the (linear) BSPDEdun+1 = −{ 1

2a
2un+1

xx + bun+1
x + cun+1 + αqn+1

x + γ qn+1 + f (t, x, un)}dt
+qn+1dW(t),

un+1(T , x) = g(x)

(4.2)

admits a unique weak adapted solution (un+1, qn+1) ∈ H2 ⊆ H1. We shall prove
that (un, qn)n≥0 is a Cauchy sequence in H1.

Applying Theorem 3.1 ( (3.3) with k = 0 to be more precise) to un+1 − un, we
get:

E‖un+1(t) − un(t)‖2
H 0 ≤ CE

∫ T

t

‖f (s, ·, un(s, ·)) − f (s, ·, un−1(s, ·))‖2
H 0ds

≤ CK2
∫ T

t

E‖un(s, ·) − un−1(s, ·)‖2
H 0ds, (4.3)

where the last inequality is due to assumption (F1).



Semi-linear degenerate BSPDEs 397

By a simple iteration we derive from (4.3) that

E‖un+1(t) − un(t)‖2
H 0 ≤ (CK2)n

n!
(T − t)nE‖u1(t) − u0(t)‖2

H 0 , (4.4)

which implies that {un}n≥0 is a Cauchy sequence in L2
F (0, T ;H 0).

Now we apply Theorem 3.1 again ( (3.5) with k = 0 to be more precise) to get:

E

∫ T

0
{‖un(s) − um(s)‖2

H 1 + ‖qn(s) − qm(s)‖2
H 0}ds ≤ CK2

E

∫ T

0
‖un−1(s) − um−1(s)‖2

H 0ds, (4.5)

which implies that (un, qn)n≥0 is also a Cauchy sequence in H1 and we denote its
limit by (u, q) ∈ H1. It is easy to check that (u, q) is a weak adapted solution to
(1.3).

The uniqueness follows easily from Theorem 3.1, and we omit it. ��
A direct consequence of the a priori estimates in Theorems 3.1 and 3.2, given

the existence of the weak adapted solution, is the following result which is simple
but a slightly surprising.

Corollary 4.2. Suppose that the assumptions of Theorem 4.1 are all in force. Then
the weak adapted solution (u, q) of the semi-linear BSPDE (1.3) is indeed a strong
adapted solution. Moreover, if (Â) and (G1,∞) also hold, then u is uniformly
bounded.

Proof. Let (u, q) ∈ H1 be the weak adapted solution of (1.3). The super-parab-
olicity and Theorem 3.1 then tell us that this weak solution must belong to H2,
thanks to the estimate (3.5). Then, as in [10] one shows that (u, q) is indeed a
strong adapted solution of the linear BSPDE (3.1) with h(t, x) = f (t, x, u(t, x)),
which amounts to saying that (u, q) is a strong adapted solution of the semi-linear
BSPDE (1.3).

Finally, we apply Theorem 3.2 to conclude that when (Â) and (G1,∞) hold, the
component u of the strong adapted solution (u, q) is actually uniformly bounded.

��
One of the interesting perspective in Corollary 4.2 is that, under the super-parab-

olicity condition, the regularity of the component u of the solution (u, q) is raised
automatically by one. On the other hand, by assuming (Â), we derive the uniform
boundedness of u. This enables us to use the following “boot-strap” method to
obtain the further regularity of the adapted solution of (1.3) (or (2.7)).

Theorem 4.3. Let the super-parabolicity condition (1.5) hold, and let (Aκ
c ), (Â),

(Fκ
c ), and (Gκ,∞

c ) hold for κ ≥ 3. Then, the semi-linear BSPDE (1.3) admits a
classical adapted solution (u, q) ∈ Hκ+1. Furthermore, there exists a constant
C > 0, such that

|∂k
xu(t, x)| ≤ C, ∀(t, x) ∈ [0, T ] × R, a.s. , 0 ≤ k ≤ κ − 1. (4.6)
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Proof. By Corollary 4.2, we may let (u, q) ∈ H2 be the strong adapted solution
of the BSPDE (1.3) such that u is bounded. We define, for each µ ∈ (0, 1], the
difference quotient

Uµ(t, x)
�= u(t, x + µ) − u(t, x)

µ
, Qµ(t, x)

�= q(t, x + µ) − q(t, x)

µ
. (4.7)

Clearly, (Uµ,Qµ) ∈ H2 is the adapted strong solution of the following linear
BSPDE:

Uµ(t, x) = gµ(x) +
∫ T

t

{LUµ(s, x) + MQµ(s, x)

+ 1

µ
[f (s, x + h, u(s, x + µ)) − f (s, x, u(s, x))]

+1

2
(a2)µ(s, x)uxx(s, x + µ) + bµ(s, x)ux(s, x + µ)

+cµ(s, x)u(s, x + µ)}ds −
∫ T

t

Qµ(s, x)dW(s), (4.8)

where 

gµ(x) = g(x + µ) − g(x)

µ
,

(a2)µ(s, x) = a(s, x + µ)2 − a(s, x)2

µ
,

bµ(s, x) = b(s, x + µ) − b(s, x)

µ
,

cµ(s, x) = c(s, x + µ) − c(s, x)

µ
.

(4.9)

Denote
F

µ
u (t, x)

�=
∫ 1

0
fu(t, x + µ, u(t, x) + θ(u(s, x + µ) − u(s, x)))dθ;

F
µ
x (t, x)

�=
∫ 1

0
fx(t, x + θµ, u(t, x))dθ.

(4.10)

Then we have

1

µ
[f (t, x + µ, u(t, x + µ)) − f (t, x, u(t, x))]

= 1

µ
[f (t, x + µ, u(t, x + µ)) − f (t, x + µ, u(t, x))]

+ 1

µ
[f (t, x + µ, u(t, x)) − f (t, x, u(t, x))]

= Fµ
u (t, x)Uµ(t, x) + Fµ

x (t, x). (4.11)
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Thus, (4.8) becomes

Uµ(t, x) = gµ(x) +
∫ T

t

{LUµ(s, x) + MQµ(s, x) + Fµ
u (s, x)Uµ(s, x)

+Fµ
x (s, x)]

+1

2
(a2)µ(s, x)uxx(s, x + µ) + bµ(s, x)ux(s, x + µ) (4.12)

+cµ(s, x)u(s, x + µ)}ds −
∫ T

t

Qµ(s, x)dW(s).

Also, we formally differentiate (1.3) with respect to x, and denote (formally)
ux = U , qx = Q. Then (U,Q) should satisfy the following (linear) BSPDE:

U(t, x) = gx(x) +
∫ T

t

{LU(s, x) + MQ(s, x) + fu(s, x, u)U(s, x)

+fx(s, x, u(s, x)) + a(s, x)ax(s, x)uxx(s, x)

+bx(s, x)ux(s, x) + cx(s, x)u(s, x)]}ds
−

∫ T

t

Q(s, x)dW(s). (4.13)

For the given strong adapted solution (u, q) ∈ H2 of (1.3), we know that

h̃
�= aaxuxx + bxux + cxu + fx(· , · , u) ∈ L2

F (0, T ;H 0). (4.14)

Since we have assumed the super-parabolicity condition (1.5), by second part
of Theorem 3.1 we see that the linear BSPDE (4.13) admits a (unique) adapt-

ed strong solution (U,Q) ∈ H2. Denote �µU(t, x)
�=Uµ(t, x) − U(t, x) and

�µQ(t, x)
�=Qµ(t, x) − Q(t, x), then (�µU,�µQ) ∈ H2 is the strong adapted

solution of the following linear BSPDE:

�µU(t, x) = [gµ(x) − gx(x)] +
∫ T

t

{
L�µU(s, x) + M�µQ(s, x)

+Fµ
u (s, x)�µU(s, x) + [Fµ

u (s, x) − fu(s, x, u(s, x))]U(s, x)

+(Fµ
x (s, x) − fx(s, x, u(s, x)))

+[
1

2
(a2)µ(s, x) − a(s, x)ax(s, x)]uxx(s, x + µ)

+a(s, x)ax(s, x)[uxx(s, x + µ) − uxx(s, x)]

+[bµ(s, x) − bx(s, x)]ux(s, x + µ)

+ bx(s, x)[ux(s, x + µ) − ux(s, x)]

+[cµ(s, x) − cx(s, x)]u(s, x + µ)

+ cx(s, x)[u(s, x + µ) − u(s, x)]
}
ds

−
∫ T

t

�Qµ(s, x)dW(s). (4.15)
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Note that (Ã1) holds for equation (4.15), applying Theorem 3.1 (with k = 0) we
have

max
t∈[0,T ]

E‖�Uµ(t)‖2
H 0 + E

∫ T

0
{‖�Uµ(s)‖2

H 1 + ‖�Qµ(s)‖2
H 0}dt

≤ CE
{
‖gµ − gx‖2

H 0 +
∫ T

0

[
‖[Fµ

u (s, ·) − fu(s, ·, u(s, ·))]U(s)‖2
H 0

+‖(Fµ
x (s, ·)−fx(s, ·, u(s, ·)))‖2

H 0 +‖[
1

2
(a2)µ−aax]uxx(s, · + µ)‖2

H 0

+‖aax[uxx(s, · + µ) − uxx(s, ·)]‖2
H 0 + ‖[bµ − bx]ux(s, · + µ)‖2

H 0

+‖bx[ux(s, · + µ) − ux(s, ·)]‖2
H 0 + ‖[cµ − cx]u(s, · + µ)‖2

H 0

+‖cx[u(s, · + µ) − u(s, ·)]‖2
H 0

]
ds

}
. (4.16)

By our assumption, we can easily prove that the right side above tends to 0 as
µ → 0. Thus limµ→0(�

µU,�µQ) = 0 in H1, which implies U = ux and
Q = qx . Consequently, since (U,Q) ∈ H2, we see that (u, q) ∈ H3.

On the other hand, we can rewrite (4.13) as follows:

U(t, x) = gx(x) +
∫ T

t

{LU(s, x) + MQ(s, x) + a(s, x)ax(s, x)Ux(s, x)

+[bx(s, x) + fu(s, x, u(s, x))]U(s, x)

+cx(s, x)u(s, x) + fx(s, x, u)}ds −
∫ T

t

Q(s, x)dW(s). (4.17)

Then, by Theorem 3.2, we see that U = ux is bounded.
The higher regularity can also be obtained by repeating the above procedure.

But since it is almost identical to the first part, we only point out the differenc-
es. Note that formally differentiating (4.13) and denoting (Û , Q̂) to be the weak
adapted solution of the resulting BSPDE, we have:

Û (t, x) = gxx(x) +
∫ T

t

{
LÛ (s, x) + MQ̂(s, x) + 2a(s, x)ax(s, x)Ûx(s, x)

+[a(s, x)axx(s, x)+ax(s, x)
2+2bx(s, x)+fu(s, x, u(s, x))]Û (s, x)

+{
fuu(s, x, u(s, x))ux(s, x)

2

+[bxx(s, x) + 2cx(s, x) + 2fxu(s, x, u(s, x))]ux(s, x)

+cxx(s, x)u(s, x)+fxx(s, x, u(s, x))
}
ds−

∫ T

t

Q̂(s, x)dW(s). (4.18)

Now, thanks to the assumption (Fκ
c ) and the uniform boundedness of ux , we

know from Theorems 3.1 and 3.2 that (4.18) has a unique strong adapted solu-
tion (Û , Q̂) ∈ H2, and that Û is continuous and uniformly bounded. Repeating the
same argument as in the first part we can then show that Û = uxx and Q̂ = qxx .
In other words, we now have (u, q) ∈ H4 and uxx is bounded. Continuing this
procedure we obtain that (u, q) ∈ Hκ+1 and that (4.6) holds true.



Semi-linear degenerate BSPDEs 401

Finally, by the equation (4.18) (which is the equation for (uxx, qxx)) and the
Sobolev Embedding Theorem, we see that u ∈ CF ([0, T ];C2(BR)), and q ∈
L2

F (0, T ;C1(BR)), for any R > 0. Hence, (u, q) is actually a classical adapted
solution of (1.3). ��

We remark here that the last conclusion of Theorem 4.3 takes the advantage
that our problem is one-dimensional (hence the Sobolev embedding applies). In
the higher dimensional case the situation will be more complicated, but the “boot-
strap” method that we have applied should still be useful. Also, we note that the
super-parabolicity condition (1.5) plays an important role here so that we only need
condition (Aκ ) (instead of (Aκ+1) for the coefficients of the differential operator to
obtain (u, q) ∈ Hκ+1 (see Theorem 3.1 for a similar situation).

5. The parabolic case

In this section we consider the possible degenerate case, that is, we assume only
the parabolicity condition (1.4) instead of the super-parabolicity condition (1.5).
The idea here is that some of the previous a priori estimates, especially the uniform
boundedness results in Theorems 3.2 and 4.3, were proved without using the super-
parabolicity condition. Therefore we can reach our goal by the standard approach
of “vanishing viscosity”. We proceed as follows.

Define, for each ε > 0, Lε to be the perturbed differential operator:

(Lεϕ)(t, x)
�= 1

2

[
a(t, x)2 + ε

]
ϕxx(t, x) + b(t, x)ϕx(t, x)

+c(t, x)ϕ(t, x), ∀ϕ ∈ C2. (5.1)

Now assume that (A1), (F1) and (G1,∞) hold. Then from Corollary 4.2 we know
that the semi-linear BSPDE

u(t, x) = g(x) +
∫ T

t

{Lεu(s, x) + Mq(s, x) + f (s, x, u)}ds −
∫ T

t

qdW(s)

(5.2)

admits a unique strong adapted solution, denoted by (uε, qε). We shall prove that,
under some slightly stronger conditions, the family {(uε, qε)} has a limit point in
H1 as ε → 0, which will turn out to be the weak adapted solution to (1.3).

We have the following result.

Theorem 5.1. Let the parabolicity condition (1.4) hold; and assume (A2
c), (F2

c),
(G2,∞

c ) and (Â). Then, the semi-linear BSPDE (1.3) admits a unique strong adapted
solution (u, q) ∈ H2, with u and ux being bounded.

If in addition (A3
c), (F

3
c) and (G3,∞

c ) hold, then this strong solution becomes a
classical adapted solution, with u, ux and uxx all being bounded.

Proof. We first assume that (A3
c), (F3

c), (G3,∞
c ) and (Â) hold. For each ε > 0,

by Theorem 4.3, we let (uε, qε) be the unique classical adapted solution of the
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perturbed BSPDE (5.1)ε. Let {εn} be such that εn ↓ 0, as n → ∞, and denote
(un, qn) = (uεn, qεn). Applying Theorem 4.3, we see that un, un

x and un
xx are uni-

formly bounded, uniformly in n ≥ 1. Next, applying Theorem 3.1 (with k = 3
there), we have

E‖un(t)‖2
H 3 + E

∫ T

t

{
‖un(s)‖2

H 3 + ‖qn‖2
H 2

}
ds

≤ C
{
E

∫ T

t

‖f (s, ·, un)‖2
H 3ds + E‖g‖2

H 3

}
≤ C

{
E

∫ T

t

[1 + ‖un(s)‖2
H 3 ]ds + E‖g‖2

H 3

}
. (5.3)

Thus, by Gronwall’s inequality we obtain

E‖un(t)‖2
H 3 + E

∫ T

t

{
‖un(s)‖2

H 3 + ‖qn(s)‖2
H 2

}
ds ≤ C

{
1 + E‖g‖2

H 3

}
.

(5.4)

Define (un,m, qn,m) = (un−um, qn−qm). Then (un,m, qn,m) is the strong adapted
solution to the following (linear) BSPDE:

un,m(t, x) =
∫ T

t

{
Lun,m(s, x) + Mqn,m(s, x) + (εnu

n
xx(s, x) − εmum

xx(s, x))

+(f (s, x, un) − f (s, x, um)
}
ds −

∫ T

t

qn,m(s, x)dW(s)

=
∫ T

t

{
Lεnun,m(s, x) + Mqn,m(s, x) + (εn − εm)um

xx(s, x))

+(f (s, x, un) − f (s, x, um)
}
ds −

∫ T

t

qn,m(s, x)dW(s). (5.5)

Now by (3.3), we see that the following estimate holds true:

E‖un,m(t)‖2
H 1 + E

∫ T

t

‖qn,m(s)‖2
H 0ds

≤ CE

∫ T

t

{‖(εn − εm)um
xx‖2

H 1 + ‖f (s, ·, un) − f (s, ·, um)‖2
H 1}ds

≤ E

∫ T

t

{C|εn − εm|2‖um‖2
H 3 + K2‖un,m‖2

H 1}ds. (5.6)

Therefore, by Gronwall’s inequality again we have

E‖un,m(t)‖2
H 1 + E

∫ T

t

‖qn,m‖2
H 0ds ≤ C|εn − εm|2E

∫ T

t

‖um‖2
H 3ds, (5.7)

with slightly modified constant C > 0. Consequently, we obtain that (un, qn) is
Cauchy in H1. Let (u, q) be the limit of {(un, qn)}, it is then obviously a weak
solution of (1.3).
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On the other hand, (5.4) yields the weak convergence of some subsequence
of (un, qn) to (u, q) in H3. Hence, by the uniqueness of the limit, it is necessary
that (u, q) ∈ H3. This implies that (u, q) must be at least a strong solution of
(1.3). Also, we must have the boundedness of u, ux and uxx . Now, using the equa-
tion (4.18) for uxx , together with the Sobolev Embedding Theorem, we see that
u ∈ CF ([0, T ];C2(BR)) and q ∈ L2

F (0, T ;C1(BR)) for any R > 0. In other
words, (u, q) is actually a classical adapted solution to (1.3).

Next, we assume that (A2
c), (F

2
c), (G

2,∞
c ) and (Â) hold. We approximate all the

coefficients by functions which are smooth in x. To be more precise, we let ψ ∈
C∞

0 (R) be a nonnegative function, supported on [−1, 1] such that
∫
R

ψ(x)dx = 1.
Define

an(t, x, ω) = n

∫
R

a(t, x − y, ω)ψ(ny)dy, (t, x, ω) ∈ [0, T ] × R × �.

(5.8)

Then an ∈ L∞
F (0, T ;C∞) and since a ∈ L∞

F (0, T ;C3
b), we have

lim
n→∞ ‖an(t, ·, ω) − a(t, ·, ω)‖L∞

F (0,T ;C3
b )

= 0. (5.9)

Similarly, we can construct bn, cn, f n, and gn which are smooth in x such that
bn → b, in L∞

F (0, T ;C2
b ),

cn → c, in L∞
F (0, T ;C2

b ),

f n → f, in L∞
F (0, T ;C2

b (R
2)),

gn → g, in L∞
FT

(�;C2
b ).

(5.10)

(We should point out here that there is no need to approximate α and γ , thanks to
(Â).) Denote Ln to be the corresponding differential operator, and (un, qn) be the
classical adapted solution of the corresponding BSPDE:

un(t, x) = gn(x) +
∫ T

t

{
Lnun(s, x) + Mqn(s, x) + f n(s, x, un)}ds

−
∫ T

t

qn(s, x)dW(s). (5.11)

Furthermore, the same proof as that of Theorem 4.3 shows that un and un
x are

bounded uniformly in n ≥ 1 (note that the higher derivatives are not necessarily
uniformly bounded since we only have (5.9)–(5.10)). Next, similar to (5.3)–(5.4),
we have

E‖un(t)‖2
H 2 + E

∫ T

t

{
‖un(s)‖2

H 2 + ‖qn(s)‖2
H 1

}
ds ≤ C

{
1 + E‖g‖2

H 2

}
.

(5.12)
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Now, we set (un,m, qn,m) = (un − um, qn − qm). Then (un,m, qn,m) is a strong
adapted solution to the following (linear) BSPDE:

un,m(t, x) = gn(x) − gm(x) +
∫ T

t

{
Lnun,m(s, x) + Mqn,m(s, x)

+(Ln − Lm)um(s, x) + (f n(s, x, un) − f m(s, x, um)
}
ds

−
∫ T

t

qn,m(s, x)dW(s). (5.13)

Applying Theorem 3.1, we have

E‖un,m(t)‖H 0 + E

∫ T

t

‖un,m(s)‖2
H 0ds

≤ CE
{ ∫ T

t

[
‖(Ln − Lm)um‖2

H 0 + ‖f n(s, x, un) − f m(s, x, um)‖2
H 0

]
ds

+‖gn − gm‖2
H0

}
≤ CE

{ ∫ T

t

[
‖un,m(s)‖2

H 0 + ‖(Ln − Lm)um‖2
H 0

+‖f n(s, x, um) − f m(s, x, um)‖2
H 0

]
ds + ‖gn − gm‖2

H0

}
. (5.14)

By Gronwall’s inequality, we obtain

E‖un,m(t)‖H 0 + E

∫ T

t

‖un,m(s)‖2
H 0ds

≤ CE
{ ∫ T

t

[
‖(Ln − Lm)um‖2

H 0 + ‖f n(s, x, um) − f m(s, x, um)‖2
H 0

]
ds

+‖gn − gm‖2
H0

}
. (5.15)

Let us now estimate each term on the right hand side of (5.15). It is clear by (5.10)
that the third term goes to 0 as n,m → ∞. Next, using the boundedness and con-
vergence of f n, and the Dominated Convergence Theorem, we see that the second
term on the right side of (5.15) tends to 0 as well. Finally, from (5.9)–(5.10) and
(5.12), we have

E

∫ T

t

‖(Ln − Lm)um‖2
H 0ds

≤ CE

∫ T

t

[
‖(an−am)um

xx‖2
H 0 +‖(bn−bm)um

x ‖2
H 0 +‖(cn−cm)um‖2

H 0

]
ds

≤ C
(
‖an − am‖2

L∞
F (0,T ;C0

b )
+ ‖bn − bm‖2

L∞
F (0,T ;C0

b )

+‖cn − cm‖L∞
F (0,T ;C0

b )

)
E

∫ T

0
‖um(s)‖2

H 2ds → 0. (5.16)
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Hence, we obtain that un is Cauchy in L2
F (0, T ;H 0), and denote u to be the limit

of un in L2
F (0, T ;H 0).

Next, from (5.12) we see that, along some subsequence {ni}, one has

{
uni → u, weakly in L2

F (0, T ;H 2),

qni → q, weakly in L2
F (0, T ;H 1).

(5.17)

Clearly,u has to be the same asu obtained above. Furthermore, by Mazur’s Theorem
(cf. e.g., [5]) we can find numbers λij ≥ 0,

∑
j≥0 λij = 1, such that


ũi �= ∑

j≥0
λiju

ni+j → u, strongly in L2
F (0, T ;H 2),

q̃i �= ∑
j≥0

λij q
ni+j → q, strongly in L2

F (0, T ;H 1).
(5.18)

Now, for any ζ ∈ C∞([0, T ]×R; R) such that ζ(s, ·) ∈ C∞
0 (R) for each s ∈ [0, T ],

and ζ(t, x) = 0 for any x ∈ R, applying Itô’s formula to un(s, x)ζ(s, x), and using
the BSPDE for un, we obtain that

−
∫

R

un(T , x)ζ(T , x)dx

=
∫ T

t

∫
R

{
− unζs − 1

2
(an)2un

xζx + b̃nun
xζ − αqnζx + γ̃ qnζ

+f n(s, x, un)ζ
}
dxds −

∫ T

t

∫
R

qnζdxdW(s). (5.19)

Making convex combination of (5.19), we have

−
∫

R

ũi (T , x)ζ(T , x)dx

=
∫ T

t

∫
R

{
− ũiζs − 1

2
a2ũi

xζx + b̃ũi
xζ − αq̃iζx + γ̃ q̃iζ

+
∑
j≥0

λijf
ni+j (s, x, u)ζ

+1

2

∑
j≥0

λij [(ani+j )2 − a2]u
ni+j
x ζx +

∑
j≥0

λij [̃bni+j − b̃]u
ni+j
x ζ

+
∑
j≥0

λij [f ni+j (s, x, uni+j ) − f ni+j (s, x, u)]ζ
}
dxds −

∫ T

t

∫
R

q̃iζ dxdW(s).

(5.20)
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Passing to the limit in the above yields∫ T

t

∫
R

uζsdxds −
∫

R

u(T , x)ζ(T , x)dx

=
∫ T

t

∫
R

{
− 1

2
a2uxζx + b̃uxζ − αqζx + γ̃ qζ + f (s, x, u)ζ

}
dxds

−
∫ T

t

∫
R

qζdxdW(s). (5.21)

Finally, for any ϕ ∈ C∞
0 , t ∈ [0, T ) and ε > 0 with t + ε ≤ T , we take

ζ(s, x) =


ϕ(x), s ∈ [t + ε, T ],
s−t
ε

ϕ(x), s ∈ (t, t + ε),

0, s ∈ [0, t].
(5.22)

Then (5.21) becomes

1

ε

∫ t+ε

t

∫
R

u(s, x)ϕ(x)dxds −
∫

R

u(T , x)ϕ(x)dx

=
∫ T

t+ε

∫
R

{
− 1

2
a2uxϕx + b̃uxϕ − αqϕx + γ̃ qϕ + f (s, x, u)ϕ

}
dxds

−
∫ T

t+ε

∫
R

qϕdxdW(s)

+
∫ t+ε

t

∫
R

s − t

ε

{
− 1

2
a2uxϕx+b̃un

xϕ − αqϕx+γ̃ qϕ+f (s, x, u)ϕ
}
dxds

−
∫ t+ε

t

∫
R

s − t

ε
qϕdxdW(s). (5.23)

Now, sending ε → 0, we obtain that∫
R

u(t, x)ϕ(x)dxds −
∫

R

u(T , x)ϕ(x)dx

=
∫ T

t

∫
R

{
− 1

2
a2uxϕx + b̃uxϕ − αqϕx + γ̃ qϕ + f (s, x, u)ϕ

}
dxds

−
∫ T

t

∫
R

qϕdxdW(s), dP × dt-a.e. (5.24)

After a possible modification on a set of dP ×dt-measure 0, and noting that u = u,
we see that (2.14) holds and, hence, (u, q) is a weak solution of (1.3).

Moreover, due to the convergence (5.17), we see that (u, q) ∈ H2. Therefore,
(u, q) is actually a strong solution of (1.3). ��

It is not clear to us at this point that if there exists a weak adapted solution
under, say, parabolicity condition (1.4), (A1

c), (F
1
c), (G

1,2
c ) and (Â). It seems to us

that this should be related to some kind of viscosity solution to BSPDEs. We hope
to explore that in our future publications.
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Remark 5.2. We note that there are some essential difficulties here mainly due to
the stochastic feature of the equation. For example, in deterministic PDE theory,
if {un} are solutions to some perturbed parabolic equations, with

∫ T

0 ‖un(t)‖2
H 1dt

being uniformly bounded, then one should be able to obtain some kind of strong
convergence of un, at least along a subsequence. In other words, the H 1-norm (in
the spatial variable x), together with the equation, should give some kind of strong
compactness of the sequence {un}, in both variables (t, x). However, this is no
longer clear for SPDEs, with only the estimate on E

∫ T

0 ‖un(t)‖2
H 1dt . Because no

conclusion can be drawn in general on the “strong compactness” on the variable ω!
The application of the Mazur theorem in the proof of Theorem 5.1 is to overcome
this difficulty.

6. Some related results

In this section we present some direct consequences of the main results derived in
the previous sections. The proof of these results are either identical or very similar
to those seen in the linear case (cf. [9,10] or [11]), we shall thus give only sketches.

A. Comparison Theorems

We first look at the comparison theorem for adapted strong solutions to semilinear
BSPDEs studied in §4 and §5. We begin with the superparabolic case. To make the
notations more specific, in what follows we shall denote BSPDE(f, g) to be the
BSPDE

u(t, x) = g(x) +
∫ T

t

{Lu(s, x) + Mq(s, x) + f (s, x, u(s, x))}ds

−
∫ T

t

q(s, x)dW(s), (t, x) ∈ [0, T ] × R. (6.1)

We have the following comparison theorem:

Theorem 6.1. Suppose that the super-parabolicity condition (1.5) and assump-
tions (Ã1) and (Â) are all in force. Let (f, g) and (f̄ , ḡ) satisfy (F1) and (G1,2),
and let (u, q) and (ū, q̄) be the adapted strong solution to BSPDE(f, g) and
BSPDE(f̄ , ḡ), respectively. Suppose further that g(x) ≥ ḡ(x) and f (t, x, u) ≥
f̄ (t, x, u), for all (t, x, u) ∈ [0, T ]×R

n×R, a.s., then u(t, x) ≥ ū(t, x),∀(t, x) ∈
[0, T ] × R

n, a.s.

Proof. The proof follows the same idea of [10, Theorem 7.1], with slight modifi-
cation. Define a function ϕ : R → [0,+∞) as follows:

ϕ(r) =


r2, r < −1,
(6r3 + 8r4 + 3r5)2, −1 ≤ r ≤ 0,
0, r > 0.
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One can check directly that ϕ is C2 and ϕ(0) = ϕ′(0) = ϕ′′(0) = 0, ϕ(−1) =
1, ϕ′(−1) = −2, and ϕ′′(−1) = 2. Next, for any ε > 0, we let ϕε(r) = ε2ϕ( r

ε
).

One shows that
lim
ε→0

ϕε(r) = [r−]2, lim
ε→0

ϕ′
ε(r) = −2r−, uniformly;

|ϕ′′
ε (r)| ≤ C,∀ε > 0, r ∈ R, lim

ε→0
ϕ′′
ε (r) =

{
2, r < 0,
0, r > 0.

(6.2)

Set û = u − ū, ĝ = g − ḡ, q̂ = q − q̄. Then

E

∫
R

ϕε(ĝ(x))dx − E

∫
R

ϕε(û(t, x))dx

= E

∫
Rt

{1

2
ϕ′′
ε (û)[a

2û2
x + 2αq̂ûx + q̂2]

−ϕ′
ε(û)[b̃ûx + cû + γ q̂ + (f (s, x, u) − f̄ (s, x, ū))]

}
dxds

= E

∫
Rt

{1

2
ϕ′′
ε (û)[(a

2 − α2)û2
x + (αûx + q̂ − γ û)2]

+1

2
ϕ′′
ε (û)[−γ 2û2 + 2αûxγ û + 2γ̃ ûq̂]

−b̃Dϕε(û) − ϕ′
ε(û)[cû + γ q̂ + f (s, x, u) − f̄ (s, x, ū)]

}
dxds

≥ E

∫
Rt

{
− 1

2
ϕ′′
ε (û)γ

2û2 + αγD(

∫ û

0
ϕ′′
ε (r)rdr)

+[ϕ′′
ε (û)û−ϕ′

ε(û)](γ q̂)+b̃xϕε(û)−ϕ′
ε(û)(cû+f (s, x, u)−f̄ (s, x, ū))

}
dxds.

(6.3)

Note that 
∫ u

0
ϕ′′
ε (r)rdr = ϕ′

ε(u)u − ϕε(u),

lim
ε→0

[ϕ′′
ε (u)u − ϕ′

ε(u)] = 2u1{u≤0} + 2u− = 0,

letting ε → 0 in (6.3) and recalling (6.2) we obtain:

−E

∫
R

[û−(t, x)]2dx

≥ E

∫
Rt

{
− 1{û≤0}γ 2û2 + b̃x |û−|2 + 2û−(cû + f (s, x, u) − f̄ (s, x, ū))

}
dxds.

Finally, observe that the comparison between f and f̄ tells us that

û−[f (s, x, u) − f̄ (s, x, ū)] ≥ û−[f̄ (s, x, u) − f̄ (s, x, ū)] ≥ −C|û−|2.
Therefore, one has

−E

∫
R

[û−(t, x)]2dx ≥ −CE

∫
Rt

|û−(x, s)|2dxds.
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Consequently, the Gronwall inequality leads to that û− = 0 as desired. This proves
the theorem. ��

The comparison theorem in the parabolic case can be treated in the similar way
and thus, we only state the result here.

Theorem 6.2. Suppose that the parabolicity condition (1.4) and assumptions (Ã2
c),

(Â) are all in force. Let (f, g) and (f̄ , ḡ) satisfy (F2
c) and (G2,∞

c ), and let (u, q)

and (ū, q̄) are the strong adapted solutions to BSPDE(f, g) and BSPDE(f̄ , ḡ),
respectively. Suppose that g(x) ≥ ḡ(x), f (t, x, u) ≥ f̄ (t, x, u),∀(t, x, u), a.s.,
then it holds that

u(t, x) ≥ ū(t, x), ∀(t, x) ∈ [0, T ] × R
n, a.s.

B. A nonlinear, stochastic Feynman-Kac formula

The well-posedness of the semilinear BSPDE leads immediately to the following
nonlinear, stochastic Feynman-Kac formula, extending the linear version presented
in [9]. We note here that the deterministic version of such a nonlinear Feynman-Kac
formula can be found in [15], and its application, among others, in homogenization
of nonlinear PDEs can be found in [6].

In light of the nonlinear Feynman-Kac formula established by Pardoux-Peng
[15], we consider the following (decoupled) forward-backward SDE (FBSDE, for
short):

Xs = x +
∫ s

t

b(r,Xr)dr +
∫ s

t

σ (r,Xr)dWr ;

Ys = E
{
g(XT ) +

∫ T

s

f (r,Xr, Yr)dr

∣∣∣Fs

} s ∈ [t, T ]. (6.4)

The FBSDE (6.4) has proved to be useful in mathematical finance, either as a re-
cursive utility model or as a term structure of interests model (see [3], [4] or [11]).
Note that in (6.4) all the coefficients are allowed to be random, thus if we denote the

solution to (6.4) by (Xt,x, Y t,x), then v(t, x)
�=Y

t,x
t is an Ft -measurable random

variable, for each fixed (t, x). (Unlike the deterministic coefficients case, v is not
necessarily a deterministic function!). Following the idea of “Four Step Scheme”
(cf. [8] or [11]) we assume that the BSPDE{

du(t, x) = {− 1
2σ

2(t, x)uxx − b(t, x)ux − σ(t, x)qx − f (t, x, u)}dt + qdWt

u(T , x) = g(x)

(6.5)

has a classical solution (u, q). Then by applying the Itô-Ventzell formula to
u(s,X

t,x
s ) from t toT and then comparing to (6.4) one shows thatY t,x

s = u(s,X
t,x
s ),

for all s ∈ [t, T ], P -a.s. We thus have the following non-linear Feynman-Kac for-
mula, which, to our best knowledge, is new.
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Theorem 6.3. Let the parabolicity condition (1.4) hold, and assume (A3
c), (F

3
c),

(G3,∞
c ) and (Ã). Then the BSPDE (6.5) admits a unique adapted classical solution.

Furthermore, the following relation hold:{
Y

t,x
s = u(s,X

t,x
s ),

Z
t,x
s = σ(s,X

t,x
s )ux(s,X

t,x
s ) + q(s,X

t,x
s ), ∀s ∈ [t, T ],

where (Xt,x, Y t,x, Zt,x) is the adapted solution to the FBSDE (6.4).
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