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Abstract. We study the continuous time integer valued process Xt , t ≥ 0, which jumps to
each of its two nearest neighbors at the rate of one plus the total time the process has pre-
viously spent at that neighbor. We show that the proportion of the time before t which this
process spends at integers j converges to positive random variablesVj , which sum to one, and
whose joint distribution is explicitly described. We also show limt→∞ max0≤s≤t Xs/ log t =
2.768 . . .

1. Introduction

This paper introduces and studies a continuous time right-continuous integer val-
ued stochastic process which jumps only to nearest neighbors. We call this process,
which was conceived by W. Werner, a vertex-reinforced jump process (VRJP)
and for now designate it by Xt , t ≥ 0. Given {Xs, s ≤ t, Xt = j} and putting
A = 1 + ∫ t0 I (Xs = j − 1) ds and B = 1 + ∫ s0 I (Xs = j + 1) ds, the probability
of a jump to j − 1 (j + 1) at a time in (t, t + h] equals Ah + o(h) (respectively
Bh+ o(h)), where both o(h) depend only on A and B. Thus the time elapsed after
t until the first jump from j has an exponential distribution with rate A + B, and
the probability the jump is to j − 1 is A/(A + B). This determines VRJP in the
sense that the generator determines a Markov process, even though a VRJP is not
a Markov process, and as with Markov processes an initial distribution needs to
be specified to complete its description. It is easy to construct VRJP, started, say,
at 0 from a sequence of i.i.d. exponential random variables of parameter 1. Other
graphs may be considered, but in this paper we will stick to the integers. We note
that the first use of exponential variables in connection with (discrete time) rein-
forced processes was made by Herman Rubin to couple a generalized Pólya urn
with a pure birth process (see Davis [3] and Sellke [8]).
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Of the discrete time reinforced random walks studied in the literature, the two
that seem most fundamental are the bond-reinforced random walk first studied
by Coppersmith and Diaconis in [2], the paper which originated the subject, and
the vertex-reinforced random walk first studied by Pemantle in [6], and later by
Pemantle and Volkov [7] and Volkov [10].

The Coppersmith-Diaconis walk on the integers starts with weight one on all
the “bonds” (i, i + 1), and between times n and n + 1 jumps to one of the two
nearest neighbors with probabilities summing to 1 and proportional to the weights
of the bonds connecting the current state with these neighbors. After a jump from i

to j (j = i−1 or i+1), the weight of bond (i, j) is increased by one. Coppersmith
and Diaconis observed that these walks could be realized as coupled Pólya urns.
This approach proves almost sure recurrence on Z1 (see Davis [3]), which here
and elsewhere in this paper will mean that every integer is almost surely visited at
arbitrarily large times. Later, in a series of intricate papers, a remarkably complete
description of the limiting behavior of this and many related bond-reinforced walks
was provided by Tóth (see [9]). Scaled properly (not

√
n, in the Coppersmith-Diac-

onis case) they converge to various previously unknown processes, some of them
quite wild. Pemantle’s vertex-reinforced random walk on the integers is the ver-
tex-reinforced analog of the walk just described. Each integer initially has weight
one, and this weight is augmented by one each time it is visited. This process
jumps to one of its two nearest neighbors between times n and n + 1, the relative
weights of the neighbors giving the probabilities of the jumps. Not only is this walk
not recurrent, but it was also proved in Pemantle and Volkov [7] that it eventually
gets stuck on a finite set of points, and with a positive probability in exactly five
states! This paragraph only scratches the surface of the subject of discrete time
reinforced walks. See Davis [4], Pemantle and Volkov [7], and Tóth [9] for more,
including references to papers in biology and learning theory which use discrete
time reinforced walks as models, and a discussion of some processes which are
limits of reinforced walks which arose in other areas of probability. Both the walks
described above, and VRJPs, are close in spirit to Pólya urns, although only for
the Coppersmith-Diaconis walk is the connection explicit. Reinforced Brownian
motions have also been studied. See [1] for references.

This paper began as an attempt to decide whether VRJP on the integers is re-
current. It is fairly easy to show that it does not get stuck in a finite number of
states, but to show recurrence is a different matter. In the following two theorems
Xt , t ≥ 0, will stand for VRJP on the integers started at 0. We omit the qualification
a.s. when it clearly must hold.

Theorem 1.1. The limits Vi := limt→∞ 1
t

∫ t
0 I (Xs = i) ds exist for each integer

i, and are positive and sum to 1. There are i.i.d. random variables Ui , 0 < i < ∞
or −∞ < i < 0, each having the density fγ (x) given by

exp

(
− 1

2

(√
x − 1√

x

)2
)

√
2πx3

, x > 0,
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such that if we put Wi equal to
∏i
k=1 Uk if i > 0, equal to

∏−1
k=i Uk if i < 0, and

equal to 1 if i = 0, then Vi = Wi/
∑∞
i=−∞Wi .

Theorem 1.2. Let α = 0.36 . . . . be the number explicitly given in equation (5.46).
Then limt→∞ max0≤s≤t Xs/ log t = α−1 ≈ 2.77.

Of course, symmetry gives the analog of Theorem 1.2 for minimum. Thus
VRRW on the integers started at 0 has range approximately a centered interval, for
all large t . Each of the two theorems just stated immediately implies that VRJPs
are recurrent.

2. Vertex-reinforced jump processes on {0, 1}

In exact analogy to the definition of Xt , t ≥ 0, in the previous section, we can and
do define vertex-reinforced jump processesY on any connected locally-finite graph,
with the initial weight of each vertex v a positive number av , perhaps different from
one, so that the weight of v at time t is here L(t, v) := av + ∫ t0 I (Ys = v) ds. We
still call such a process a vertex-reinforced jump process (VRJP).

In this section, we study only VRJP on {0, 1} started at 0, with initial weight a
at zero and b at one, and we use Zt , t ≥ 0 to designate these processes. Where it
might be ambiguous which initial weights we are dealing with on {0, 1}, we will use
a, b as a superscript. The initial position is always 0 unless explicitly mentioned.
Especially Pa,b and E a,b refer only to VRJP started at 0. At times we will need to
consider random initial weights, and we will use a similar convention.

We now recall some classical results about discrete parameter martingales. Let
f1, f2, . . . be a martingale with difference sequence d1 = f1, di = fi − fi−1,
i > 1. Doob’s maximal inequalities ( [5] (p. 308)) say

E

(
sup
n≥1

|fn|
)p

≤
(

p

p − 1

)p
sup
n≥1

E |fn|p, p > 1. (2.1)

If E f 2
n < ∞ for each n, then di , i ≥ 1, is an orthogonal series and thus E (fn+k −

fn)
2 = ∑n+k

i=n+1 E d2
i . In addition, the almost sure convergence of L2-bounded

and thus L1-bounded martingales, together with the fact that fn+i , i ≥ 0, is a
martingale for each i, give with (2.1)

E sup
k≥0
(fn+k − f∞)2 = E sup

k≥0
[(fn+k − fn)− lim

k→∞
(fn+k − fn)]

2

≤ E 4 sup
k≥0

|fn+k − fn|2 ≤ 16
∑
k>0

E d2
n+k

= 16 lim
k→∞

E (fn+k − fn)
2, (2.2)

if supn E f 2
n < ∞, where f∞ := limi→∞ fi .

In the proof of the following lemma, and throughout the paper, we adopt the
usual convention thatC,K etc. often stand for positive constants which may change
from line to line.
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Lemma 2.1. Let f1, f2,. . .,fn be a martingale with differences d1, d2, . . . , dn
satisfying

max
1≤j≤n

E
(
d4
j | di, i < j

)
= γ < ∞, (2.3)

and let ε > 0. Then there is a constant K = K(γ, ε) such that

P( max
1≤j≤n

|fi | > εn) <
K

n2
.

Proof. This proof, which is probably known, is a close cousin to the standard proof
of complete convergence of averages of i.i.d. variables with finite fourth moments.
We divide the n4 terms of the expansion for

(∑n
i=1 di

)4 into four groups, accord-
ing to the power to which the di of the greatest i in that term is raised, and then
rearrange the sums of the terms in the groups.

So f 4
n = (∑ di

)4 = (I )+ (II )+ (III )+ (IV ), where

(I ) = 4
n∑
i=1

di


 i−1∑
j=1

dj




3

,

(I I ) = 6
n∑
i=1

d2
i


 i−1∑
j=1

dj




2

,

(I II ) = 4
n∑
i=1

d3
i


 i−1∑
j=1

dj


 ,

(IV ) =
n∑
i=1

d4
i .

Now E di(
∑i−1
j=1 dj )

3 = E [ E (di | dj , j < i)(
∑
dj )

3] = E 0 = 0, so E (I ) =
0. And by (2.3), E (d2

k | di, i < k)) < C(γ ) = C, so E d2
i (
∑i−1
j=1 dj )

2 =
E E (d2

i | dj , j < i)(
∑
dj )

2) < C E (
∑
dj )

2 < C(i − 1) < Cn, and so we
get E (II ) < Cn2.

Since E (|di |3 | dj , j < i) < C(γ ) = C by (2.3) we similarly get E d3
i

∑i−1
j=1dj

≤ C E |∑i−1
j=1 dj | ≤ C[ E (

∑
dj )

2]1/2 = Cn1/2, and so E (III ) < Cn3/2.

Finally, (2.3) implies E d4
i < C, and so E (IV ) < Cn.

Thus E f 4
n < Cn2, which together with the p = 4 case of (2.1) and Markov’s

inequality, gives Lemma 2.1.

We recall that, to keep our notation brief, all VRJPs on {0, 1} considered in this
section are started at 0. We put

ξ(t) = inf{s : L(s, 0) = t},
so that under Pa,b, we have ξ(a) = 0.
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Lemma 2.2. For all t ≥ a, E a,bL(ξ(t), 1) = b
a
t .

A proof of this lemma is given via Laplace transforms in the appendix. We now
sketch a different proof.

Proof of Lemma 2.2. We will show that y(t) := E a,bL(ξ(t), 1) satisfies the differ-
ential equation y′ = y/t . Since y(a)=b, this implies Lemma 2.2. If ) is a positive
number, L(ξ(t +)), 1)− L(ξ(t), 1) is the time spent at 1 while the local time at
0 increases from t to t + ). The probability of a jump from 0 to 1 in this time
interval, given L(ξ(t), 1), is L(ξ(t), 1)) + o()) as ) → 0, and the duration of
the excursion to 1 between the times t and t +) resulting from this jump has an
exponential distribution with rate t

lim
)→0

EL(ξ(t +)), 1)− EL(ξ(t), 1)

)
= EL(ξ(t), 1)

t
,

and our differential equation is satisfied. It takes a little more work to show that
the expectation of the sum of the durations of all the excursions beyond the first is
o()). This argument is omitted.

We putmt = m
a,b
t = La,b(ξ(t),1)

t
, if t ≥ a, where the superscript means that we

are studying L(ξ(t), 1)/t under Pa,b.

Corollary 2.3. The process mt , t ≥ a, is a martingale with respect to its own
filtration.

Proof. This is immediate from Lemma 2.2 and the fact that given Zs , 0 ≤ s ≤
ξ(t), the process Zy+t , y ≥ 0, has the same distribution as VRJP on {0, 1} under
Pt,L(ξ(t),1).

Corollary 2.4. Both the limits limt→∞ma,bt , and limt→∞ La,b(t,1)
La,b(t,0)

almost surely
exist and are equal and positive.

Proof. Note that the right continuity of the paths of Zt , t ≥ 0, gives that if L(t, 0)
= s, then

L(ξ(s), 1)

s
≤ L(t, 1)

L(t, 0)
≤ lim

r↓s
L(ξ(r), 1)

s
= lim

r↓s
L(ξ(r), 1)

r
. (2.4)

Thus, since limt→∞mt exists a.s.,

lim
t→∞

La,b(t, 1)

La,b(t, 0)
exists a.s. (2.5)

To complete the proof we will show that the latter limit is strictly positive by show-
ing that

lim
t→∞

La,b(t, 0)

La,b(t, 1)
exists a.s. (2.6)

This is done by noting that if τ is the time of the first jump to 1, then, conditioned
on {Zt , 0 ≤ t ≤ τ }, the distribution of 1 − Zt+τ , t ≥ 0, (i.e. we just relabel 0 as
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1 and 1 as 0), has the distribution of Zt , t ≥ 0, under Pb,a+τ , so that (2.6) follows
from (2.5).

Our treatment of the following lemma parallels that of Lemma 2.2; it is proved
in the appendix, and a different proof is sketched in this section.

Lemma 2.5. For all r ≥ a

E a,bL(ξ(r), 1)2 = −b
a

+ ab2 + b

a3
r2.

Proof. We haveL(ξ(r+dr), 1) = L(ξ(r), 1)+νη, where ν is Bernoulli (L(ξ(r), 1)
dr) and η is exponential (r), and ν and η are independent given L(ξ(r), 1). Thus,
noting ν2 = ν, we have

EL(ξ(r + dr), 1)2 = EL(ξ(r), 1)2 + 2 E {L(ξ(r), 1)E (ν |L(ξ(r), 1))} E η

+ E η2 E E (ν2 |L(ξ(r), 1))

= EL(ξ(r), 1)2 + 2

r
EL(ξ(r), 1)2dr + 2

r2
EL(ξ(r), 1)dr

= EL(ξ(r), 1)2 + 2

r
EL(ξ(r), 1)2dr + 2b

ar
dr,

using Lemma 2.2 in the last line.
Thus EL(ξ(r), 1)2 satisfies y′ = 2

r
y + 2b

ar
, and y(a) = b2, and Lemma 2.5

follows.

Lemma 2.5 immediately gives the L2 norm of the martingale ma,bt , t ≥ a, is
finite, since

E a,b(mr)
2 = ab2 + b

a3
− b

ar2
, r ≥ a. (2.7)

The continuous version of (2.2) with mr playing the role of fn, along with (2.7)
give, putting m∞ := limt→∞mt ,

E a,b sup
s≥a
(ms −m∞)2 ≤ 16 sup

s≥a
E (ms −ma)

2 = 16 sup
s≥a
(Em2

s −m2
a) ≤ 16

b

a3
,

which, together with (2.4), gives

E a,b sup
t≥0

(
L(t, 1)

L(t, 0)
−m∞

)2

≤ 16
b

a3
. (2.8)

Also, we have,

Lemma 2.6. E a,b supy≥0

∣∣∣log L(y,1)
L(y,0)

∣∣∣4 < C(a, b).
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Proof. Since (log x)4 < x2, x > 1, (2.4) together with (2.7) and the continuous
version of (2.1) in the case p = 2 give, if r+ = max(r, 0),

E a,b sup
y≥0

[(
log

L(y, 1)

L(y, 0)

)+]4

≤ 4
ab2 + b

a3
. (2.9)

Let τ be the time of the first jump of Zt to 1. Then, given τ , the process L(y+τ,0)
L(y+τ,1) ,

y ≥ 0, has the same distribution as L(y,1)
L(y,0) , y ≥ 0, under Pb+τ,a , and from this and

(2.9) it is easy to conclude that

E a,b sup
y≥0

[(
log

L(y, 0)

L(y, 1)

)+]4

< C(a, b), (2.10)

since the interval 0 ≤ y ≤ τ is easily handled. Together (2.9) and (2.10) give
Lemma 2.6.

We use the superscript 1,1+exp 1 to indicate we are starting VRJP on {0, 1} with
a random initial weight of 1 plus an exponential (1) random variable at one, and
1 at zero, so that the VRJP behaves like VRJP on {0, 1} with initial weights 1 at
both zero and one, started at one, after the first jump to zero. It is easy to conclude
from Lemma 2.6 and the concavity of log x that logmt , t ≥ 0, is a supermartingale
under E 1,1+exp 1, satisfying

sup
t≥0

E 1,1+exp 1| logmt |4 < ∞. (2.11)

Furthermore, we will calculate in the appendix the number α ≈ 0.36, defined by

α = E 1,1+exp 1 logm∞. (2.12)

Now E 1,1+exp 1 logmt is non-increasing as t increases, and (2.11) implies this
convergence is dominated, so that

E 1,1+exp 1 logmt ↓ α as t → ∞. (2.13)

3. VRJP on the nonnegative integers

In this section, Yt , t ≥ 0, exclusively stands for VRJP on {0, 1, 2, . . .} started at 0,
with initial weights all 1, and we use LY (t, k) to denote 1 + ∫ t0 I (Ys = k) ds, often
omitting the superscript. We let Tn = inf{t : Yt = n}. We will need the following,
which is immediate from the construction of VRJP.

Restriction principle. VRJP observed only at the times when it stays on some
subset of consecutive integers A, behaves the same way as VRJP restricted to the
set A. Moreover, it is independent of either the path VRJP to the right of A or the
path of VRJP to the left of A.
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More precisely, let Wt , t ≥ 0, be a VRJP (initial weights are 1) on any set of
consecutive integers, and letA be a subset of consecutive integers of those integers.
Let T = inf{t ≥ 0 : Wt ∈ A} be a stopping time, and k = WT ∈ A be the “port
of entry”. Put δA(a) = sup{t :

∫ t
0 I (Ws ∈ A) ds = a}. Then (Ha, a ≥ 1) :=

(Wδ(a), a ≥ 1) is a VRJP on A started at k. If B represents the states to the left or
to the right of A, then WδB(a), a ≥ 0, is independent of WδA(a), a ≥ 0.

Lemma 3.1. If n > 0, P(Tn < ∞) = 1.

Proof. Since
∑∞
i=0[L(t, i) − 1] = t , if P(Tn < ∞) < 1 there must be a j ,

0 ≤ j < n, such that P(L(∞, j) = ∞, L(∞, j + 1) < ∞) > 0. Now we use the
restriction principle on {j, j + 1}, together with Corollary 2.4, with j relabeled as
zero and j + 1 relabeled as one, to get a contradiction.

Next we observe the following

Lemma 3.2. Let 1 ≤ j < n. Then given L(Tn, i), i ≥ j + 1, the distribution of
L(Tn, j)/L(Tn, j + 1) is the distribution of m1,1+exp 1

L(Tn,j+1).

Proof. Note thatL(Tj+1, j)has the distribution 1+exp 1, while of courseL(Tj+1,j+
1) ≡ 1. The rest of the argument follows from the restriction principle applied
to {j, j + 1}, together with the observation that what happens on excursions of
Yt to the right of j + 1 is not influenced by what happens to Yt while it is on
{0, 1, 2, . . . , j + 1}.

The following proposition establishes the recurrence of VRJP on non-negative
integers.

Proposition 3.3. For all j ≥ 0, L(∞, j) = ∞ a.s.

Proof. Suppose that P(L(∞, j) < ∞) > 0 for some j . Then E 1/L(∞, j) > 0.
By restriction principle applied to {j, j + 1, . . .}, and Lemma 3.1, this expectation
must be the same for all j ≥ 0.

We claim that E (m1,1+exp 1
t )−1 < 1 for all t > 0. We know that (see the

appendix)

φa,b(λ) = E exp(−λma,bt ) = eb(a−
√
λ2/t2+2λ+a2).

Since
∫∞

0 exp(−λma,bt )dλ = 1
m
a,b
t

, we have

E
1

m
1,1+exp 1
t

=
∫ ∞

0
φ1,1+exp 1(λ)dλ

=
∫ ∞

0
dλ

∫ ∞

0
exp(−u)du exp((u+ 1)(1 −

√
λ2/t2 + 2λ+ 1))

<

∫ ∞

0
dλ

∫ ∞

0
du exp(1 − (u+ 1)(

√
2λ+ 1))

=
∫ ∞

0

exp(1 − √
2λ+ 1)√

2λ+ 1
dλ = 1.
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On the other hand, if P(L(∞, j) < ∞) > 0,

E
(

1

L(∞, j − 1)
− 1

L(∞, j)

)

= E
[

E
(

1

L(∞, j − 1)
− 1

L(∞, j)
|L(∞, j)

)]
< 0,

since by restriction principle, after relabeling j − 1 as one and j as zero,

E
(

1

L(∞, j − 1)
− 1

L(∞, j)
|L(∞, j)

)
= 1

t
E 1,1+exp 1

(
t

L(ξ(t), 1)
− 1

)

= 1

t

(
E

1

m
1,1+exp 1
t

− 1

)
< 0,

where t := L(∞, j), yielding a contradiction.

Now letRti = L(t,i)
L(t,i+1) andRni := R

Tn
i . The notational ambiguity will not cause

trouble. For i ≥ 0 put Zi = limt→∞Rti . Recall that α is defined in (2.12) and
calculated in (5.46). Put both Rt−1 and Z−1 equal to 1.

Lemma 3.4. The following hold.
i) Zi , i ≥ 0, are i.i.d., E logZi = α, and the density of Z−1

i is the function fγ (x)
given in the statement of Theorem 1.1.
ii)
∑∞
k=0
∏k−1
i=−1 Z

−1
i < ∞ a.s.

iii) E (logRnj |L(Tn, i), j + 1 ≤ i ≤ n) > α, 0 ≤ j < n.

Proof. The independence of Zi’s follows from the restriction principle applied to
each pair (i, i + 1). Hence, the first two statements of i), and iii) follow from Lem-
ma 3.2, the definition of α, and, in the case of iii), (2.13). For the last statement of
i) see formula (5.45) in the appendix. And ii) follows almost immediately from i)
and the SLLN, which enables the bounding of the terms of the sum by a geometric
series.

Next we state the main result of this section, the almost sure convergence, in
l1, of the empirical occupational time distribution, Put

pk =
∏k−1
i=−1 Z

−1
i∑∞

k=0
∏k−1
i=−1 Z

−1
i

.

Theorem 3.5. The following holds.

lim
t→∞

∞∑
k=0

∣∣∣∣L(t, k)− 1

t
− pk

∣∣∣∣ = 0 a.s.
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Before proving Theorem 3.5 we sketch for motivation a short proof of a weaker
result. We have

L(t, k) = L(t, 0)
k−1∏
j=−1

(Rtj )
−1 =: 8tk, k ≥ 0.

Putting 9k =∏k−1
i=−1 Z

−1
i , the definition of Zi gives

lim
t→∞

8tk

8tk+1
= 9k

9k+1
a.s., k ≥ 0.

Now if n is fixed and atk , 0 ≤ k ≤ n, t ≥ 0, and bk , 0 ≤ k ≤ n are positive numbers
such that

lim
t→∞

atk

atk+1
= bk

bk+1
,

then

lim
t→∞

atk∑n
i=0 a

t
i

= bk∑n
i=0 bi

, 0 ≤ k ≤ n,

which shows

lim
t→∞

L(t, k)∑n
i=0 L(t, i)

= 9k∑n
i=0 9i

.

The last equality together with Proposition 3.3 implies that if 0 ≤ k ≤ n

lim
t→∞

L(t, k)− 1∑n
i=0(L(t, i)− 1)

= 9k∑n
i=0 9i

,

a junior version of Theorem 3.5, since
∑∞
i=0(L(t, i)− 1) = t .

The following lemma is a more precise version of the simple fact about
sequences just used.

Lemma 3.6. Let ai and bi , 0 ≤ i ≤ n, be positive numbers, and let ε > 0. Put
A =∑n

i=0 ai and B =∑n
i=0 bi . Then

n∑
i=0

|ai − bi |
ai

< ε implies
n∑
i=0

∣∣∣∣aiA − bi

B

∣∣∣∣ < 2ε

1 − ε
.

Proof. The hypotheses imply |A− B| < εA, and so

n∑
i=0

∣∣∣∣aiA − bi

B

∣∣∣∣ =
n∑
i=0

∣∣∣∣ai(B − A)+ (ai − bi)A

AB

∣∣∣∣ ≤ |B − A|
B

+
∑ |bi − ai |

B

<
ε

1 − ε
+ ε

1 − ε
.
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Now since L(Tn, n) = 1, we have, recalling RTnn−i is shortened to Rnn−i , that

logL(Tn, n − k) = ∑k
i=0 logRnn−i . Put )ni = E (logRnn−i |Rnn−j , 0 ≤ j < i),

1 ≤ i ≤ n, and Dn
i = logRnn−i −)ni . (Sometimes we drop the superscript.) Then

Lemma 3.4 iii) implies

)ni ≥ α a.s., 1 ≤ i ≤ n. (3.14)

and of course Dn
i , 1 ≤ i ≤ n, is a martingale difference sequence. Furthermore,

Lemma 3.2 and (2.11) imply E (| logRnn−i |4 |Rnn−j , 1 ≤ j < i) < C, 1 ≤ i ≤ n,
which in turn implies

E (D4
i |Rnn−j , 1 ≤ j < i) < C, 1 ≤ i ≤ n,

where the C is absolute, especially it does not depend on i or n.
Thus for any ε > 0, according to Lemma 2.1,

P(|
n∑
i=1

Di | > εn) <
C(ε)

n2
, (3.15)

which with (3.14) implies P(
∑n
i=1Di +)i < (α − ε)n) < C(ε)/n2, or equiva-

lently,

P(logL(Tn, 0) < (α − ε)n) <
C(ε)

n2
. (3.16)

This inequality, Borel-Cantelli, and the fact that L(Tn, 0)− 1 < Tn, imply

P(lim inf
n→∞ log Tn/n ≥ α) = 1, (3.17)

or equivalently

lim sup
t→∞

max0≤s≤t Xs
log t

≤ α−1 a.s. (3.18)

In the following, if a < b are not necessarily integers, we use
∑b
i=a ri to des-

ignate the sum of those ri for all i satisfying a ≤ i ≤ b. We let θ be a fixed number
between 0 and 1 satisfying θ log 2 < 1

4 , which guarantees

2(n+1)θ

en/4
< 2βn where β := eθ log 2− 1

4 < 1. (3.19)

The proof of Theorem 3.5 will be completed by establishing the following two
limits. We have

sup
t≥Tn

n(1−θ)∑
i=0

∣∣∣∣∣∣
L(t, i)− 1∑n(1−θ)

j=0 (L(t, j)− 1)
− pi

∣∣∣∣∣∣→ 0 as n → ∞ (3.20)
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and

n+1∑
i=n(1−θ)

L(Tn+1, i)

en/4
→ 0 as n → ∞. (3.21)

To see that (3.20) and (3.21) imply Theorem 3.5, observe that to prove Theo-
rem 3.5, it suffices to prove

sup
Tn≤t≤Tn+1

n+1∑
k=0

∣∣∣∣∣ L(t, k)− 1∑n+1
j=0(L(t, j)− 1)

− pk

∣∣∣∣∣→ 0 as n → ∞

since L(Tn+1, k) = 1 if k > n + 1, and
∑∞
k=0 pk = 1. Now (3.20) obviously

implies

sup
Tn≤t≤Tn+1

n(1−θ)∑
k=0

∣∣∣∣∣∣
L(t, k)− 1∑n(1−θ)

j=0 (L(t, j)− 1)
− pk

∣∣∣∣∣∣→ 0 as n → ∞.

Furthermore, if n ≥ 1,

sup
Tn≤t≤Tn+1

n+1∑
k=n(1−θ)

∣∣∣∣∣ L(t, k)− 1∑n+1
j=0(L(t, j)− 1)

− pk

∣∣∣∣∣
≤ sup
Tn≤t≤Tn+1

n+1∑
k=n(1−θ)

∣∣∣∣∣ L(t, k)− 1∑n+1
j=0(L(t, j)− 1)

∣∣∣∣∣+
n+1∑

k=n(1−θ)
pk

≤
∑n+1
k=n(1−θ) L(Tn+1, k)

Tn
+

∞∑
k=n(1−θ)

pk.

The second sum here clearly approaches 0 as n → ∞, and since Tn ≥ en/4 for
large enough n, by (3.17) and (5.46), (3.21) gives that the first does also.

We first prove (3.21), then (3.20). Using Lemma 3.2 and Corollary 2.3 we have,
for 0 ≤ j ≤ n,

EL(Tn, j) = E E (L(Tn, j) |L(Tn, j + 1))

= ELn(Tn, j + 1)E
(

L(Tn, j)

L(Tn, j + 1)
|L(Tn, j + 1)

)
= EL(Tn, j + 1)E 1,1+exp 1mL(Tn,j+1)

= EL(Tn, j + 1)E 1,1+exp 1m1 = 2 EL(Tn, j + 1).

Together with EL(Tn, n) = 1 this gives EL(Tn, k) = 2n−k , 0 ≤ k ≤ n.
Thus

∞∑
n=1

n+1∑
k=n(1−θ)

EL(Tn+1, k)

en/4
< ∞,

using (3.19), and (3.21) follows.
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Next we prove (3.20). We observe

sup
t≥Tn

n(1−θ)∑
i=0

∣∣∣∣∣∣
L(t, i)− 1∑n(1−θ)

j=0 (L(t, j)− 1)
− L(t, i)∑n(1−θ)

j=0 L(t, j)

∣∣∣∣∣∣
≤ sup
t≥Tn

n(1 − θ)+ 2∑n(1−θ)
j=0 (L(t, j)− 1)

, (3.22)

which follows immediately by putting the difference of the quotients on the LHS
of (3.22) over a common denominator. Since

∑n(1−θ)
j=0 L(t, j) − 1 ≥ T�n(1−θ)�, if

t ≥ Tn, where �·� is the greatest integer function, (3.17) shows that that suprema to
the right of the inequality in (3.22) approaches 0 as n → ∞, and thus the suprema
to the left does. This implies that the following assertion is equivalent to (3.20).

sup
t≥Tn

n(1−θ)∑
i=0

∣∣∣∣∣∣
L(t, i)∑n(1−θ)

j=0 L(t, j)
− pi

∣∣∣∣∣∣→ 0 as n → ∞. (3.23)

To prove (3.23), we rewrite it as

sup
t≥Tn

n(1−θ)∑
k=0

∣∣∣∣∣∣
∏k−1
i=−1(R

t
i )

−1∑n(1−θ)
j=0

∏j−1
i=−1(R

t
i )

−1
−

∏k−1
i=−1 Z

−1
i∑n(1−θ)

j=0

∏j−1
i=−1 Z

−1
i

∣∣∣∣∣∣→ 0

as n → ∞, and we note that using Lemma 3.6, to prove (3.23) it suffices to prove

sup
t≥Tn

n(1−θ)∑
k=0

∣∣∣∣∣
∏k−1
i=−1(R

t
i )

−1 −∏k−1
i=−1 Z

−1
i∏k−1

i=−1 Z
−1
i

∣∣∣∣∣→ 0 as n → ∞

which reduces to

sup
t≥Tn

n(1−θ)∑
k=0

∣∣∣∣∣∣1 −
k−1∏
i=−1

(
1 + Zi − Rti

Rti

)∣∣∣∣∣∣→ 0 as n → ∞. (3.24)

Now |1 −∏m
i=0(1 + ai)| < exp(

∑m
i=0 |ai |) − 1 ≤ 2=|ai | if =|ai | < 0.1, and so

(3.24) follows from

n · sup
t≥Tn

n(1−θ)∑
k=0

∣∣∣∣Zi − Rti

Rti

∣∣∣∣→ 0 as n → ∞, (3.25)

The initial n in (3.25) is an upper bound (if n is large) for the number of summands
k in (3.24), k = 0, 1, . . . , n(1 − θ). Now exactly as we proved (3.16), we have

P

(
θn−1∑
i=1

Di +)i < 0.2 θnα

)
<
C

n2
(3.26)
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Also, Lemma 2.1 and (3.14), or even the weaker version of (3.14) with α re-
placed by zero, imply

P( inf
θn≤k≤n

k∑
i=θn

Di +)i < −0.1θ(1 − θ)nα) <
C

n2
. (3.27)

Together (3.26) and (3.27) give

P( inf
θn−1≤k≤n

k∑
i=0

Di +)i < 0.1θnα) <
C

n2
,

or, equivalently,

P(L(Tn, i) ≥ e0.1θnα, 0 ≤ i ≤ n(1 − θ)+ 1) > 1 − C

n2
. (3.28)

Let Gi = Gni = {L(Tn, i) > e0.1θnα}. Then (3.28) may be restated as

P


n(1−θ)+1⋃

i=0

Gci


 <

C

n2
, (3.29)

where the superscript c denotes complement.
Now conditioned on L(Tn, i) and L(Tn, i + 1), the distribution of Yt , t ≥ Tn,

restricted to {i, i + 1} has the distribution of the two state walk of Section 2, Zt ,
t ≥ 0, under PL(Tn,i+1),L(Tn,i) if we relabel i+ 1 as 0 and i as 1. Thus (2.8) implies

E supt≥Tn(Zi − Rti )
2I (Gi+1)

= E E
(
supt≥Tn(Zi − Rti )

2 |L(Tn, i + 1), L(Tn, i)
)
I (Gi+1)

≤ E 16L(Tn, i)
L(Tn, i + 1)3

I (Gi+1) ≤ 16 (e−0.1θnα)2 ERni = 32 e−0.2θnα,

(3.30)

using Corollary 2.3 and the fact that Rni has the distribution of mL(Tn,i+1) under
P1,1+exp 1, so ERni = E 1,1+exp 1m0 = 2.

Thus,

E sup
t≥Tn

∣∣∣∣Zi − Rti

Rti

∣∣∣∣ I (Gi+1) ≤
[

E sup
t≥Tn

(Zi − Rti )
2I (Gi+1)

] 1
2

×
[

E sup
t≥0

1

(Rti )
2

] 1
2

≤ Ce−0.1θnα, (3.31)

using (3.30). That E supt≥Tn(R
t
i )

−2 is finite follows from the restriction principle
and the fact that supt≥0(R

t
i )

−1 has the same distribution as sups≥1ms under P 1,1,
using the continuous version of Lemma 2.1 and the sentence which includes (2.7).
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Finally, to complete the proof of (3.25) and thus (3.20), we have, for large enough
n,

{n sup
t≥Tn

n(1−θ)∑
i=0

∣∣∣∣Zi − Rti

Rti

∣∣∣∣ ≥ n−1} ⊂

n(1−θ)⋃

i=0

Gci




⋃ n(1−θ)⋃
i=0

{ sup
t≥Tn

∣∣∣∣Zi − Rti

Rti

∣∣∣∣ I (Gi+1) > n−3} (3.32)

And

P


n(1−θ)⋃

i=0

{
sup
t≥Tn

∣∣∣∣Zi − Rti

Rti

∣∣∣∣ I (Gi+1) > n−3

}


≤
n(1−θ)∑
i=0

P

(
sup
t≥Tn

∣∣∣∣Zi − Rti

Rti

∣∣∣∣ I (Gi+1) > n−3

)

≤
n(1−θ)∑
i=0

n3 E sup
t≥Tn

∣∣∣∣Zi − Rti

Rti

∣∣∣∣ I (Gi+1) ≤ Cn4e−0.1θnα <
C

n2
,

using (3.31). And this inequality, together with (3.29) and (3.32) and Borel-Cantelli,
establish (3.25).

The next theorem is a one-sided version of Theorem 1.2.

Theorem 3.7. The following holds.

lim
t→∞

max0≤s≤t Xs
log t

= α−1 a.s. (3.33)

Proof. We will show that given ε > 0, there is a constant C(ε) such that

P
(
Tn > en(α+ε)

)
<
C(ε)

n2
n ≥ 1. (3.34)

This inequality together with Borel-Cantelli shows lim supn→∞ log Tn/n ≤ α,
which implies

lim inf
t→∞

max0≤s≤t Xs
log t

≥ α−1,

and which, with (3.18), gives (3.33).
We know E 1,1+exp 1 logmt decreases to α. Let K = E 1,1+exp 1 logm1. Let

γ > 0, and let the integer N satisfy

E 1,1+exp 1 logme0.1θN < (1 + γ )α. (3.35)

Here and below we use the notation of the proof of Theorem 3.5.
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Now (3.35) for n ≥ N implies )iI (Gi+1) < (1 + γ )α, 0 ≤ i ≤ n, which,
with )i ≤ K and

n∑
i=1

)i =
n(1−θ)∑
i=1

)i +
n∑

i=n(1−θ)+1

)i. ≤
n(1−θ)∑
i=1

)i +Kθn.

gives that

n∑
i=1

)iI


n(1−θ)+1⋂

i=1

Gi


 ≤ [(1 − θ)n+ 1](1 + γ )α +Kθn (3.36)

=: nf (θ, γ ),

where f (θ, γ ) = Kθ + (1 − θ)(1 + γ )α +9(1/n).
Lemma 2.1 gives

P

(
sup

1≤k≤n

k∑
i=1

Di > γn

)
<
C(γ )

n2
,

and so

P


 sup

1≤k≤n

k∑
i=1

Di +)i > nf (θ, γ )+ nγ ,

n(1−θ)+1⋂
i=1

Gi


 <

C(γ )

n2

when n ≥ N . Together with (3.29), this gives that if n ≥ N ,

P

(
k∑
i=1

Di +)i < nf (θ, γ )+ nγ, 1 ≤ k ≤ n

)
> 1 − C

n2
,

so that

P(logL(Tn, i) < nf (θ, γ )+ nγ, 0 ≤ i ≤ n) > 1 − C

n2
.

Since
∑n−1
i=0 (L(Tn, i)− 1) = Tn, we get

P
(
Tn < C1ne

n[f (θ,γ )+γ ]
)
> 1 − C

n2
, n ≥ N.

Now if we choose θ and γ so small that f (θ, γ )+ γ < α+ ε, this implies (3.34).
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4. VRJP on the integers

We begin this section by describing the random variables Vi of Theorem 1.1. Then
we prove Theorem 1.1 and use it and Theorem 3.7 to prove Theorem 1.2. Let
X = Xt , t ≥ 0, be a VRJP on the integers started at 0. Let X+

s , s ≥ 0, be X
restricted to the nonnegative integers, and let X−

s , s ≥ 0, be X restricted to the
non-positive integers. Then both X+ and (−X−) are VRJP’s on the nonnegative
integers. Let Z+

i , i > 0 be the variables defined for X+ exactly as the variables Zi
were defined for Yt , t ≥ 0, in Section 3, and let Z−

i be the analogous variables for
X−. Then by Theorem 3.5 {Z+

i , 1 ≤ i < ∞, Z−
i , 1 ≤ i < ∞} are i.i.d. random

variables, each having the density function given in the statement of Theorem 1.1,
as shown in the appendix.

Put

Wk =


∏k
i=1(Z

+
i )

−1, k > 0,
1, k = 0,∏k
i=1(Z

−
i )

−1, k < 0,

and put W = ∑∞
i=−∞Wi , and Vk = Wi/W . We now prove Theorem 1.1, with Vi

as just constructed.
Let δ(t) = ∫ t

0 I (Xs = 0) ds, η(t) = ∫ t
0 I (Xs > 0) ds, and µ(t) = ∫ t

0 I (Xs <

0) ds. Then

δ(t)+ η(t)+ µ(t) = t, (4.37)

and using the restriction principle we get both

lim
t→∞

∫ t
0 I (Xs = j) ds

η(t)+ δ(t)
= Wj∑∞

i=0 Wi

, j ≥ 0, (4.38)

and

lim
t→∞

∫ t
0 I (Xs = j) ds

µ(t)+ δ(t)
= Wj∑∞

i=0 W−i
, j ≤ 0. (4.39)

Let δ̄(t), η̄(t), and µ̄(t) stand for δ(t)/t , η(t)/t , and µ(t)/t respectively. Then
(4.37) and the versions of (4.38) and (4.39) for j = 0 give the following three
equations:

δ̄(t)+ η̄(t)+ µ̄(t) = 1,

limt→∞ δ̄(t)

δ̄(t)+ η̄(t)
= W0∞∑

i=0

Wi

,

limt→∞ δ̄(t)

δ̄(t)+ µ̄(t)
= W0∞∑

i=0

W−i

.

(4.40)



298 B. Davis, S. Volkov

Thus
limt→∞δ̄(t) = W0/W,

limt→∞η̄(t) =
∞∑
i=1

Wi/W,

limt→∞µ̄(t) =
∞∑
i=1

W−i/W.

(4.41)

The equations (4.38), (4.39), and (4.41) imply Theorem 1.1.

Proof of Theorem 1.2. From (3.33) and the restriction principle we have

lim
t→∞

max0≤s≤t Xs
log[δ(t)+ η(t)]

= α−1 a.s. (4.42)

Equations (4.41) together with (4.42) prove Theorem 1.2.

5. Appendix

To describe the distribution of L(ξ(t), 1), defined in Section 2 immediately before
Lemma 2.2, we will calculate its Laplace transform φa,b(λ, t) = E a,be−λL(ξ(t),1),
λ ≥ 0. Further we will omit the superscript a,b unless it makes our arguments
ambiguous.

Denote w(t) := L(ξ(t), 1) and observe that

w(t + dt) = w(t)+ νη

where ν is a Bernoulli (w(t)dt) random variable and η is an exponential (t) random
variable, which, given w and t , are independent of each other. Hence

φ(λ, t + dt) = E (e−λw−λην) = E
[
e−λw E (e−λην |w)] (5.43)

The inner conditional expectation is easy to compute:

E (e−λην |w) = (1 − w dt)× 1 + w dt × E (e−λη)

= (1 − w dt)+ w dt × t

λ+ t
= 1 − w dt

λ

λ+ t

Plugging this into (5.43) yields

φ(λ, t + dt)− φ(λ, t) = − λ

λ+ t
E (we−λw) dt,

whence, since E (w(t)e−λw(t) | t) = −∂φ(λ, t)/∂λ,

∂φ

∂t
= λ

λ+ t
· ∂φ
∂λ
.

The natural boundary conditions are

φ(λ, a) = e−λb,
φ(0, ·) = 1.
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Solving this (see Section 5.1) we obtain

φa,b(λ, t) = e
b
(
a−

√
λ2+2λt+a2

)
. (5.44)

Though we are not able to invert Laplace transform (5.44) for every t , it still gives
us Lemmas 2.2 and 2.5

E a,bw(t) = b

a
· t,

E a,b [w(t)]2 = b(t2 − a2 + t2ab)

a3

by differentiating φa,b(λ, t) once and twice at λ = 0.
Next, we want to calculate explicitly the distribution ofγ := m

1,1∞ = limt→∞ w(t)
t

which exists by Corollary 2.4. By interchanging the integration and the limit we
obtain

E 1,1e−λγ = lim
t→∞φ

1,1(λ/t, t) = e1−√
1+2λ.

Using Laplace transform, we can, for example, compute moments of γ :

E γ = 1, E γ 2 = 2, E γ 3 = 7, E γ 4 = 37, E γ 5 = 266, . . . .

The inversion of E 1,1e−λγ requires an integration on a complex plane. We omit
these calculations, presenting only the result. The density of the distribution of
γ = m

1,1∞ for x > 0 is

fγ (x) = 1

2π

∫ +∞

−∞
e1−√−2iλ+1e−iλx dλ = e1− 1

2 (x+x−1)

√
2πx3

(5.45)

(one can quite easily verify that its Laplace transform coincides with e1−√
1+2λ).

This density is also the density ofm1,1+exp 1
∞ , and is the density fγ of Theorem 1.1.

Moreover, we can present the formula for c.d.f. of γ :

Fγ (x) = 1 −F

(
1√
x

− √
x

)
+ e2

[
1 −F

(
1√
x

+ √
x

)]
, x > 0

where F(·) is a c.d.f. of a normal zero-one distribution.
To calculate α in (2.12) observe that m1,1+exp 1

∞ has the same distribution as
1/m1,1∞ = 1/γ . Consequently,

α =
∫ ∞

0
log(x)f1/γ dx =

∫ ∞

0
log x · exp(1 − x

2 − 1
2x )√

2πx
dx = 0.3613 . . . (5.46)
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5.1. Solution of the equation (−x)φ′
x + (x + y)φ′

y = 0

This equation is a linear PDE to which we can apply a standard technique. We will
look for a solution in the area where x ≥ 0 and y ≥ 1 with a boundary condition

φ(x, a) = e−bx

Let v(x, y) = (−y, x + y) be a column vector, then the equation is equivalent
to

v · ∇φ = 0,

where · denotes a scalar product and ∇φ is a gradient of φ. Thus, φ(x, y) must be
constant along the solutions of the equation ż = v, where z = (x, y). Solving the
system {

ẋ = −x
ẏ = x + y

we obtain x(t) = C1e
−t , y(t) = C2e

t − 1
2C1e

−t . Hence, 2C1C2 = x(x+ 2y), and
any solution φ(x, y) to the PDE must be a function of one argument x(x + 2y).

If this curve (x(t), y(t)) intersects the horizontal line y = a at point x̃ ≥ 0, then
x(x+2y) = x̃(x̃+2a) and x̃ = −a+

√
x(x + 2y)+ a2 (we took a positive sign at

the square root since x̃ must be non-negative). On the other hand, φ(x̃, a) = e−x̃b,
therefore

φ(x, y) = φ(x̃, a) = e
b
(
a−

√
x(x+2y)+a2

)
.
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