
Digital Object Identifier (DOI) 10.1007/s004400100188
Probab. Theory Relat. Fields 123, 355–380 (2002)

Giuseppe Da Prato · Arnaud Debussche · Beniamin Goldys

Some properties of invariant measures
of non symmetric dissipative stochastic systems

Received: 29 September 2000 / Revised version: 30 May 2001 /
Published online: 14 June 2002 – c© Springer-Verlag 2002

Abstract. We consider transition semigroups generated by stochastic partial differential
equations with dissipative nonlinear terms. We prove an integration by part formula and
a Logarithmic Sobolev inequality for the invariant measure. No symmetry or reversibility
assumptions are made. Furthemore we prove some compactness results on the transition
semigroup and on the embedding of the Sobolev spaces based on the invariant measure. We
use these results to derive asymptotic properties for a stochastic reaction–diffusion equation.

1. Introduction

The aim of this paper is to study asymptotic properties of a class of stochastic
dissipative systems governed by a stochastic differential equation

dX(t) = (AX(t) + F(X(t)))dt + √
CdW(t), t ≥ 0,

X(0) = x ∈ H,

(1.1)

where A : D(A) ⊂ H → H, is the infinitesimal generator of a linear strongly con-
tinuous semigroup

(
etA
)
t≥0 of contraction type, W is a cylindrical Wiener process

on H , C is a symmetric positive linear operator on H bounded together with its
inverse C−1, and F : D(F) ⊂ H → H is a measurable mapping such that F − κ

is m-dissipative for some real number κ .
Under our assumptions, problem (1.1) has a unique mild solutionX(t, x).Then

the corresponding transition semigroup (Pt )t≥0, is defined on Cb(H), the space of
bounded and continuous functions on H , by
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Ptφ(x) = E[φ(X(t, x))], φ ∈ Cb(H), t ≥ 0, (1.2)

where E means expectation.
We shall also assume that there exists a Borel probability measure ν on H such

that ∫
H

Ptφ(x)ν(dx) =
∫
H

φ(x)ν(dx), φ ∈ Cb(H).

The measure ν is said to be an invariant measure for the transition semigroup
(Pt )t≥0. If the invariant measure exists then (Pt )t≥0 extends to a strongly continu-
ous semigroup of contractions onL2(H, ν). Its generator will be denoted byN2 and
its domain by D(N2). Several conditions ensuring existence of invariant measures
are known, see e.g. [1], [16], [18], [23] and the references therein.

A first new result of the paper is that D(N2) is included in the Sobolev space
W 1,2(H, ν) and that the following identity holds∫

H

φ(x)N2φ(x)ν(dx) = −1

2

∫
H

∣∣∣C1/2Dφ(x)

∣∣∣2 ν(dx), φ ∈ D(N2). (1.3)

This identity is quite natural. In fact, the infinitesimal generator N2 of (Pt )t≥0 is
given formally by

N2φ(x) = 1

2
Tr
(
CD2φ(x)

)
+ 〈Ax + F(x),Dφ(x)〉 , (1.4)

where Tr represents the trace. Now, by a formal computation, we have

N2

(
φ2
)

= 2φN2φ +
∣∣∣C1/2Dφ

∣∣∣2 ,
and, taking into account the invariance of ν, we find

∫
H
N
(
φ2
)
dν = 0, which

yields (1.3).
The difficulty to prove (1.3) is to find a core � for N2 such that φ2 ∈ D(N2)

for any φ ∈ �. We prove that this can be done in a very general setting and derive
(1.3).

The identity (1.3) is the key point to prove that a Logarithmic Sobolev inequal-
ity holds, see section 4. As well known this implies exponential convergence to
equilibrium for (Pt )t≥0 and that N2 has a gap in its spectrum (see [2]).

Note that we have no information in general on the bilinear form

a(φ,ψ) =
∫
H

ψ(x)N2φ(x)ν(dx), φ, ψ ∈ D(N2),

so thatN2 is not necessarily related to any Dirichlet form, see [22]. The mentionned
results were known in this case, see [3] and also [18] ,[20], [21], [32], but they seem
to be new in our general setting.

The second new result of the paper is that, under suitable assumptions, (Pt )t≥0
is compact in Lp(H, ν) for any p > 1 and the embedding of the Sobolev space
W 1,p(H, ν) into Lp(H, ν) is compact for any p ≥ 2. To our knowledge, this is
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the first result of compactness for non trivial non gaussian measures in an infinite
dimensional space.

To prove this result we need two tools. First we assume that a Logarithmic
Sobolev inequality holds. Secondly that the invariant measure ν has a density with
respect to the gaussian measure µ invariant with respect to the linear equation - i.e.
with F = 0 in (1.1) - and that this density has a logarithmic derivative in Lp(H, ν)

with p > 1. We note that this condition on the density of the invariant measure can
be obtained by the results in [5] for instance.

We recall that in the gaussian case, necessary and sufficient conditions for com-
pactness are known (see [9], [12], [26]). Results in the finite dimensional case have
been obtained in [25] for non gaussian measures, and more recently in [7] under
very weak assumptions. Such a compactness result is important since it allows to
study other equations thanks to perturbation arguments. In this way, many prop-
erties on the invariant measures can be obtained. This approach has been used in
many articles to treat perturbations of linear systems thanks to the previously known
compactness result in the gaussian case.

In section 6 we apply the obtained results to a Reaction-Diffusion equation with
a polynomial nonlinearity. We prove that the integration by parts formula (1.3) al-
ways holds. In the case of a general system of gradient type or of a strictly dissipative
system not necessarily gradient, we obtain that a Logarithmic Sobolev inequality
holds, that the transition semigroup is compact and that the above embedding of
Sobolev spaces is compact. In the general case, we prove exponential convergence
to equilibrium thanks a perturbation argument.

We note that the techniques used in this article are general and powerful. They
can be applied to other systems generated by stochastic partial differential equations
and could be used to get other results.

2. Assumptions and notations

We now set some notations, state our main assumptions, and recall some classical
results concerning existence, uniqueness and regularity for problem (1.1).

Let H be a Hilbert space. We denote by | · | its norm and by 〈·, ·〉 its inner
product. Moreover L(H) (with norm ‖ · ‖) represents the Banach algebra of all
linear bounded operators from H into H endowed with its usual norm, and L1(H)

is the subspace of all trace class operators.
If E is a Banach space we denote by Cb(H ;E) the Banach space of all con-

tinuous and bounded mappings from H into E, endowed with the sup norm ‖ · ‖0.

Moreover, for any k ∈ N, Ck
b(H ;E) will represent the Banach space of all map-

pings fromH intoE which are continuous and bounded together with their Fréchet
derivatives of order less or equal to k endowed with their natural norm denoted by
‖ · ‖k . If E = R, we set Cb(H ; R) = Cb(H) and Ck

b(H ; R) = Ck
b(H). Let

f : D(f ) ⊂ H be a function such that D(f ) is another Banach space. If f is
Gateau differentiable at a point x of D(f ), we write Df for its Gateau derivative.

We consider two linear operators A and C on H and we assume that the fol-
lowing holds.
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Hypothesis 2.1. (i) A generates a C0-semigroup
(
etA
)
t≥0 on H and there exists

ω > 0 such that ∥∥∥etA∥∥∥ ≤ e−ωt , t ≥ 0.

(ii) C ∈ L(H) is invertible, C−1 ∈ L(H) and for all T > 0 we have
Tr [QT ] < ∞, where

QT x =
∫ T

0
esACesA

∗
xds, x ∈ H,

and Tr stands for the trace.

We shall denote by W a cylindrical Wiener process on H on a probability space
(&,F,P). By Hypothesis 2.1 it follows that the stochastic convolution

Z(t) =
∫ t

0
e(t−s)A

√
CdW(s),

is a well defined Gaussian process and the law of Z(t) has mean 0 and covariance
operator Qt. Moreover the equationdZ(t) = AZ(t)dt + √

CdW(t),

Z(0) = x ∈ H, t ≥ 0,

has a unique mild solution Z(·, x) that defines the so-called Ornstein–Uhlenbeck
process,

Z(t, x) = etAx +
∫ t

0
e(t−s)A

√
CdW(s), t ≥ 0.

The corresponding transition semigroup,

Rtφ(x) =
∫
H

φ(etAx + y)N (0,Qt ) (dy), φ ∈ Cb(H),

is not strongly continuous on Cb(H) in general, it belongs to the class of π–contin-
uous Markov semigroup, see [27]; roughly speaking it is continuous with respect
to the pointwise bounded convergence. Its infinitesimal generator L can be defined
through its resolvent by

R(λ,L)ϕ(x) =
∫ +∞

0
e−λtRtϕ(x)dt, x ∈ H, λ > 0, ϕ ∈ Cb(H).

We shall denote by D(L) the domain of L. It can be shown, see [16], that (Rt )t≥0
is strong Feller, D(L) ⊂ C1

b(H) and

‖R(λ,L)‖ ≤
√
π/λ, λ > 0. (2.1)
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We also note that (Rt )t≥0 admits a unique invariant measure µ; it is gaussian
with covariance operator Q : µ = N (0,Q), where

Qx =
∫ ∞

0
etACetA

∗
xdt, x ∈ H.

Before giving assumptions on F let us recall the notion of solution for (1.1).
By a mild solution to (1.1) we mean an adapted stochastic process X(·) = X(·, x)
such that X(0) = x ∈ D(F), X(t, x) ∈ D(F) for all t ∈ [0, T ] and

X(t, x) = etAx +
∫ t

0
e(t−s)AF (X(s, x))ds +

∫ t

0
e(t−s)A

√
CdW(s), t ≥ 0.

If x ∈ H then we say that X(·, x) is a generalized solution to (1.1) if it is mean-
square continuous on H and there is a sequence (xn)n∈N in E converging to x in
H and such that

lim
n→∞ sup

0≤t≤T

E |X (t, xn) − X(t, x)|2 = 0.

We assume that the domain D(F) of F is a Banach space and F : D(F) → H

is Gateaux differentiable for any x ∈ D(F). Moreover, given a mild solution of
(1.1), X(t, x), t ∈ [0, T ], we consider the equation

dηh(t)

dt
= Aηh(t) + DF(X(t, x))ηh(t), t ≥ 0,

ηh(0) = h ∈ H.

(2.2)

We define as above a mild or generalized solution of (2.2) and denote it by ηh(·, x).
We now state the assumptions on F : D(F) ⊂ H → H .

Hypothesis 2.2. (i) D(F) is a Banach space and F : D(F) → H is Gateaux
differentiable. There exists κ > 0 such that F − κ is m–dissipative.

(ii) Problems (1.1) and (2.2) have unique generalized solutions. MoreoverDX(t,x).
h = ηh(·, x) for any x ∈ D(F). Finally

Xα(t, x) → X(t, x), ηhα(t, x) → ηh(t, x), a.s. ,

where Xα(t, x) and ηhα are the solutions to (1.1) and (2.2) with F replaced by
the Yosida approximation :

Fα(x) = 1

α
(Jα(x) − x) + κI, x ∈ H,

where Jα(x) is the unique solution of Jα(x) − α(F (Jα(x)) − κJα(x)) = x,

and I is the identity mapping.
(iii) There exists an invariant measure ν for problem (1.1) and ν(D(F)) = 1.
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These assumptions hold for a large class of Reaction-Diffusion systems (see [8]
and section 6).

Thanks to Hypothesis 2.2, we can define the transition semigroup (Pt )t≥0
associated to equation (1.1)

Ptφ(x) = E(φ(X(t, x))), for φ ∈ Cb(H), x ∈ H, and t ≥ 0.

As Rt the semigroup Pt belongs to the class of π–continuous Markov semigroups.
Its infinitesimal generator N will be also defined through its resolvent by

R(λ,N)ϕ(x) =
∫ +∞

0
e−λtPtϕ(x)dt, x ∈ H, λ > 0, ϕ ∈ Cb(H).

We shall denote by D(N) the domain of N . Obviously, the operator N2 is an ex-
tension of N. Moreover it is easy to check that we have

|ηh(t, x)| ≤ e−(ω−κ)t |h|, x ∈ H, t ≥ 0. (2.3)

This easily implies that, for φ ∈ C1
b(H) and t ≥ 0, Ptφ ∈ C1

b(H) and

|DPtφ(x)| ≤ e−(ω−κ)tPt (|Dφ|(x)). (2.4)

Using the above definition of R(λ,N), it is then not difficult to verify that Pt
maps R(λ,N)(C1

b(H)) into itself for any λ > 0 and t ≥ 0. Moreover, R(λ,N)

(C1
b(H)) ⊂ C1

b(H).
It is well known that Pt can be uniquely extended to a contraction semigroup,

that we still denote by Pt , in Lp(H, ν), p ≥ 1. Its infinitesimal generator will be
denoted by Np.

3. The integration by part formula

The aim of this section is to prove rigourously that (1.3) holds.
We will consider the linear span EA(H) of real parts of all exponential func-

tions ei〈h,x〉, x ∈ H, with h ∈ D(A∗). Functions in D(L) can be approximated by
functions in EA(H) in the following sense. Given a 4–sequence (φn)n∈N4 indexed
by n = (n1, n2, n3.n4) ∈ N

4, we say that it converges in a generalized sense to φ

if

lim
n→∞φn(x) := lim

n1→∞ lim
n2→∞ lim

n3→∞ lim
n4→∞φn(x) = φ(x), x ∈ H.

It is proved in [13, Proposition 2.7] that for any φ ∈ D(L) there exists a 4–sequence
(φn)n∈N4 in EA(H) such that

lim
n→∞φn(x) = φ(x), lim

n→∞Dφn(x) = Dφ(x), x ∈ H, lim
n→∞Lφn(x) = Lφ(x)

(3.1)

and

sup
N∈N4,x∈H

{
|φn(x)| + |Dφn(x)| + |Lφn(x)|

1 + |x|2
}
< +∞. (3.2)
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We start with the case whenF is bounded onH. In this case, taking into account
(2.1), we see that D(N) = D(L) ⊂ C1

b(H) and we have

Nφ = Lφ + 〈F,Dφ〉 , φ ∈ D(L).

Lemma 3.1. Assume that F is bounded. Let f ∈ Cb(H), and φ = R(1, N)f.

Then φ2 ∈ D(N), and the following identities hold,

N
(
φ2
)

= 2φNφ +
∣∣∣C1/2Dφ

∣∣∣2 , (3.3)

and

φ2 = R(2, N)

(
2φf −

∣∣∣C1/2Dφ

∣∣∣2) . (3.4)

Proof. Let (φn)n∈N4 ⊂ EA(H) be a 4–sequence such that (3.1) and (3.2) hold, and
set fn = φn − Nφn. Then we have

fnφn = φ2
n − Nφnφn. (3.5)

Since obviously

N(φ2
n) = 2φnNφn + |C1/2Dφn|2, (3.6)

we have, by (3.5),

2φ2
n − N(φ2

n) = 2fnφn − |C1/2Dφn|2. (3.7)

Now, letting n tend to infinity in (3.6) and (3.7) gives (3.3) and (3.4) respectively.
✷

We now consider the case of an unbounded F . Note first that the approximat-
ing mappings Fα, α > 0, introduced in Hypothesis 2.2 are Lipschitz continuous
on H . Therefore, we can choose a sequence

(
Fn,α

)
n∈N

in C1
b(H ;H) pointwise

convergent to Fα on E and such that

‖Fn,α‖1 ≤ ‖Fα‖1, n ∈ N, α > 0.

Let us consider the problemdX(t) = (
AX(t) + Fn,α(X(t)

)
dt + √

CdW(t),

X(0) = x ∈ H, t ≥ 0,
(3.8)

whose solution is denoted by Xn,α(t, x). We set

P
n,α
t φ(x) = E

(
φ(Xn,α(t, x))

)
, n ∈ N, α > 0, φ ∈ Cb(H), (3.9)

and denote by Nn,α the infinitesimal generator of
(
P
n,α
t

)
t≥0 .
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Lemma 3.2. Assume that Hypothesis 2.1 and 2.2 hold and moreover that φ ∈
R(1, N)(C1

b(H)). Then φ2 ∈ D(N), and

N
(
φ2
)

= 2φNφ +
∣∣∣C1/2Dφ

∣∣∣2 . (3.10)

Proof. Let φ = R(1, N)f with f ∈ C1
b(H), and set φn,α = R(1, Nn,α)f. Then by

Lemma 3.1

φ2
n,α = R(2, Nα)

(
2φn,αf −

∣∣∣C1/2Dφn,α

∣∣∣2) . (3.11)

On the other hand it is not difficult to prove that for t ≥ 0, x ∈ D(F)

Xn,α(t, x) → X(t, x), DXn,α(t, x) → DX(t, x),

P–a.s.
Consequently

P
n,α
t f (x) → Ptf (x).

Also, since DP
n,α
t f (x) = E

((
DXn,α(t, x)

)∗
Df (Xn,α(t, x))

)
, noting that (2.3)

holds also for the approximating differential and uniformly with respect to α, we
have

DP
n,α
t f (x) → DPtf (x).

It follows, using the definition of the resolvent,

φn,α(x) = R(1, Nα)f (x) → R(1, N)f (x),

Dφn,α(x) = DR(1, Nα)f (x) → DR(1, N)f (x).

Therefore, letting n → ∞ and α → 0 in (3.11), we find

φ2(x) = R(2, N)(2φf −
∣∣∣C1/2Dφ

∣∣∣2)(x), x ∈ D(F).

Since, by Hypothesis 2.2, ν(D(F)) = 1 we find that

2φ2 − Nφ2 = 2φf −
∣∣∣C1/2Dφ

∣∣∣2 = 2φ(φ − Nφ) −
∣∣∣C1/2Dφ

∣∣∣2
and the conclusion follows. ✷

Proposition 3.3. Assume that Hypotheses 2.1 and 2.2 hold. Then for any φ ∈
R(1, N)(C1

b(H)) we have∫
H

φ(x)Nφ(x)ν(dx) = −1

2

∫
H

∣∣∣C1/2Dφ(x)

∣∣∣2 ν(dx). (3.12)
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Proof. Let φ ∈ R(1, N)(C1
b(H)). Then, since the measure ν is invariant for Pt , by

Lemma 3.2

0 =
∫
H

N
(
φ2
)
(x)ν(dx) =

∫
H

(
2φ(x)Nφ(x) +

∣∣∣C1/2Dφ(x)

∣∣∣2) ν(dx),
and we obtain (3.12). ✷

From (3.12) it follows a useful identity for u(t) = Ptφ.

Proposition 3.4. Assume that Hypotheses 2.1 and 2.2 hold. Then for any φ ∈
R(1, N)(C1

b(H)) we have∫
H

|Ptφ|2dν +
∫ t

0

∫
H

|C1/2DPsφ|2dsdν =
∫
H

|φ|2dν. (3.13)

Proof. For any φ ∈ D(N) we have

d

dt
Ptφ = NPtφ, t ≥ 0. (3.14)

Multiplying both sides of (3.14) by Ptφ, integrating in H with respect to ν, and
taking into account (3.12), we find

d

dt

∫
H

|Ptφ(x)|2ν(dx) =
∫
H

∣∣∣C1/2DPtφ(x)

∣∣∣2 ν(dx).
Now the conclusion follows, integrating in t . ✷

We are going now to prove (3.12) for any φ ∈ D(N2). For this we need to intro-
duce the Sobolev space W 1,2(H, ν), and first to prove closability of the derivative
in L2(H, ν).

Proposition 3.5. Assume that Hypotheses 2.1, 2.2 hold. Then D is closable in
L2(H, ν).

Proof. Let (φn)n∈N ⊂ R(1, N)C1
b(H) be such that

lim
n→∞φn = 0 and lim

n→∞Dφn = ψ in L2(H, ν).

By assumption, for every φn and t > 0

DPtφn(x) = E
[
X∗
x(t, x)Dφn (X(t, x))

]
(3.15)

and by (3.13)∫ t

0

∫
H

|C1/2DPsφn|2dsdν =
∫
H

|φn|2dν −
∫
H

|Ptφn|2dν → 0, as n → ∞.
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Moreover∫ t

0

∫
H

|C1/2DPsφn|2dsdν

=
∫ t

0

∫
H

∣∣∣E [(C−1/2Xx(s, x)C
1/2
)∗

C1/2Dφn (X(s, x))
]∣∣∣2 ν(dx)ds,

and by (2.3)

∣∣∣∣
(∣∣∣∣∫ t

0

∫
H

E

[(
C−1/2Xx(s, x)C

1/2
)∗

C1/2Dφn (X(s, x))
]∣∣∣∣2 ν(dx) ds

)1/2

−
(∫ t

0

∫
H

∣∣∣E [(C−1/2Xx(s, x)C
1/2
)∗

C1/2ψ (X(s, x))
]∣∣∣2 ν(dx) ds)1/2 ∣∣∣∣

≤
(∫ t

0

∫
H

e−2(ω−κ)s
E

[∣∣∣C1/2Dφn(X(s, x))−C1/2ψ (X(s, x)))

∣∣∣2]ν(dx) ds)1/2

=
(∫ t

0

∫
H

e−2(ω−κ)s
∣∣∣C1/2Dφn (x) − ψ (x)

∣∣∣2 ν(dx) ds)1/2

(3.16)

by the invariance of ν. By assumption, this goes to zero and we find that∫
H

∣∣∣E [(C−1/2Xx(t, x)C
1/2)∗C1/2ψ(X(t, x))

]∣∣∣2 ν(dx) = 0,

for a.e. t.
Let h ∈ H, then∫

H

∣∣∣E〈C1/2ψ(X(t, x)), C−1/2Xx(t, x)C
1/2h〉

∣∣∣2
=
∫
H

∣∣∣E〈(C−1/2Xx(t, x)C
1/2)∗C1/2ψ(X(t, x)), h〉

∣∣∣2 ν(dx) = 0,

for a.e. t, and∫
H

∣∣∣E〈C1/2ψ(X(t, x)), h〉
∣∣∣ ν(dx)

≤
∫
H

∣∣∣E〈C1/2ψ(X(t, x)), C−1/2Xx(t, x)C
1/2h − h〉

∣∣∣ ν(dx)
for a.e. t. By Cauchy-Schwarz inequality, (2.3), continuity of Xx(t, x) with re-
spect to t and dominated convergence we deduce that the right hand side goes to
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zero. However, the left hand side is equal to
∫
H

|Pt(〈C1/2ψ, h〉)|ν(dx) and since
〈C1/2ψ, h〉 ∈ L2(H, ν) and Pt is strongly continuous on L1(H, ν) we have

Pt(〈C1/2ψ, h〉) → |〈C1/2ψ, h〉| as t → 0, in L1(H, ν).

This implies∫
H

|Pt(〈C1/2ψ, h〉)|ν(dx) →
∫
H

|〈C1/2ψ, h〉|ν(dx) as t → 0,

and ∫
H

|〈C1/2ψ, h〉|ν(dx) = 0.

Thus for any h ∈ H

〈C1/2ψ, h〉 = 0, ν − a.s.

and, since H is separable and C1/2 invertible, the conclusion follows. ✷

We now define the spaces W 1,p(H, ν) for p ≥ 1 as the completion of C1
b(H)

with respect to the norm(∫
H

|φ|pdν +
∫
H

|Dφ|pdν
)1/p

.

By Proposition 3.5, D is closable for p ≥ 2 so that

W 1,p(H, ν) ⊂ Lp(H, ν), p ≥ 2.

For φ ∈ W 1,p(H, ν), p ≥ 2, we write Dφ for its generalized derivative.
We are now in a position to prove the main result of this section.

Theorem 3.6. Assume that Hypotheses 2.1 and 2.2 hold. ThenD(N2)⊂W 1,2(H,ν).

Moreover for all φ ∈ D(N2) we have∫
H

φ(x)N2φ(x)ν(dx) = −1

2

∫
H

∣∣∣C1/2Dφ(x)

∣∣∣2 ν(dx). (3.17)

Proof. Clearly R(1, N)(C1
b(H)) is a core for D(N2), since C1

b(H) is dense in
L2(H, ν). Thus for any φ ∈ D(N2) there exists a sequence (φn)n∈N ⊂ R(1, N)

(C1
b(H)) such that

φn → φ, N2φn → N2φ, in L2(H, ν).

By Proposition 3.3 we have∫
H

φn(x)Nφn(x)ν(dx) = −1

2

∫
H

∣∣∣C1/2Dφn(x)

∣∣∣2 ν(dx).
This implies that (φn)n∈N is Cauchy in W 1,2(H, ν) and the conclusion follows. ✷
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4. Logarithmic Sobolev inequality and spectral gap

We say that a Poincaré inequality holds if there exists a constant λ > 0 such that∫
H

∣∣φ(x) − φ
∣∣2 ν(dx) ≤ λ

∫
H

∣∣∣C1/2Dφ(x)

∣∣∣2 ν(dx), φ ∈ D(N2), (4.1)

where φ = ∫
H
φ(x)ν(dx).

We show now that in this case there is a gap in the spectrum of N2 and that
the convergence of Pt to the equilibrium is exponential. We shall use the notation
‖φ‖2

ν = ∫
H
φ2dν.

We have in fact the well known result.

Proposition 4.1. Assume, besides Hypothesis 2.1, 2.2 that (4.1) holds for some
λ > 0. Then we have

σ(N2)\{0} ⊂
{
z ∈ C : Re(z) < −1

λ

}
.

Moreover∫
H

∣∣Ptφ(x) − φ
∣∣2 ν(dx) ≤ e−t/λ

∫
H

|φ(x)|2ν(dx), φ ∈ D(N2). (4.2)

Proof. The proof is an easy consequence of (3.17), see [2, Proposition 2.3]. We give
here the simple proof for the reader’s convenience. Let L2

0(H, ν) be the closed sub-
space of L2(H, ν) of all functions f such that f = 0. Since L2

0(H, ν) is invariant
for (Pt )t≥0 it is enough to show that

〈N2φ, φ〉ν ≤ −1

λ
‖φ‖2

ν, φ ∈ L2
0(H, ν) ∩ D(N2). (4.3)

If φ ∈ L2
0(H, ν) we have in fact, taking into account (3.17) and (4.1),

〈N2φ, φ〉ν = −1

2

∫
H

|C1/2Dφ(x)|2ν(dx) ≤ −1

λ
‖φ‖2

ν . ✷

A sufficient condition in order that a Poincaré inequality holds is that Np

satisfies the Logarithmic Sobolev Inequality, that is if∫
H

|φ(x)|p log |φ(x)| pν(dx) ≤ c(p)
〈−N2φ, φp

〉+ ‖φ‖pp,ν log ‖φ‖pp,ν (4.4)

for φ ∈ D(Np) and p > 1, where φp = sgnφ|φ|p−1 and c(p) < ∞. If p = 2 then
in view of Theorem 3.6 inequality (4.4) takes the form∫

H

|φ(x)|2 log |φ(x)| 2ν(dx) ≤ c(2)

2

∥∥∥C1/2Dφ

∥∥∥2

ν
+ ‖φ‖2

ν log ‖φ‖2
ν . (4.5)
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By the result of [29] inequality (4.5) implies the Poincaré inequality with the con-
stant c(2)

4 .
Also, similar arguments as in section 3 imply that for p ≥ 2, (4.4) takes the

form∫
H

|φ(x)|p log |φ(x)| pν(dx)

≤ p − 1

2
c(p)

∫
H

|φ(x)|p−2|C1/2Dφ(x)|2ν(dx) + ‖φ‖pp,ν log ‖φ‖pp,ν . (4.6)

Moreover, since (Pt )t≥0 is strongly continuous on W 1,p(H, ν) (1), for arbitrary
φ ∈ W 1,p(H, ν) we have a sequence in D(Np) converging to φ in W 1,p(H, ν).
This easily imply that (4.6) holds for φ ∈ W 1,p(H, ν).

Theorem 4.2. Assume, besides Hypotheses 2.1 and 2.2, thatω−κ > 0. Then (4.4)
holds with

c(p) = ω − κ

‖C‖ ‖C−1‖
p2

p − 1
.

Proof. In the proof we follow the method from [17] presented in the proof of
Theorem 6.2.42.

We start with the case p = 2.
Step 1. Let φ ∈ D(N) and let φ ≥ δ > 0. Then∫

H

Nφ logφ dν = −1

2

∫
H

1

φ
|C1/2Dφ|2dν. (4.7)

Let us first assume that φ ∈ C2
b (H), D2φ ∈ Cb(H ; L1(H)) and A∗Dφ ∈

Cb(H ;H) then we have

Nφ logφ = −N(logφ)φ + N(φ logφ) − 〈C1/2Dφ,C1/2D(logφ)〉. (4.8)

Moreover, since

C1/2D logφ = 1

φ
C1/2Dφ

and

(C1/2D)2 logφ = 1

φ
(C1/2D)2φ − 1

φ2C
1/2Dφ ⊗ C1/2Dφ,

we have

N logφ = 1

φ
Nφ − 1

2φ2

∣∣∣C1/2Dφ

∣∣∣2 .
1 This is proved in the next section.
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Substituting in (4.8) we find

Nφ logφ = N(φ logφ) − Nφ − 1

2φ
|C1/2Dφ|2.

Now (4.7) follows integrating over H and taking into account the invariance of
ν. The general case is then obtained by approximating φ by smoother functions
satisfying the above assumptions.

Step 2 (Conclusion). Let φ ∈ R(1, N)(C1
b(H)) and set u(t) = Pt(φ

2) log[Pt(φ2)],
where |φ| ≥ δ > 0. Then by Lemma 3.2 we have φ2 ∈ D(N) and so u is differen-
tiable with respect to t in L2(H, ν) and it results

u′(t) = NPt(φ
2) log[Pt(φ

2)] + NPt(φ
2).

It follows

u(t) − u(0) = Pt(φ
2) log[Pt(φ

2)] − φ2 log(φ2)

=
∫ t

0
NPs(φ

2) log[Ps(φ
2)]ds +

∫ t

0
NPs(φ

2)ds.

Integrating with respect to ν, and taking into account (4.7), we find∫
H

Pt (φ
2) log[Pt(φ

2)]dν −
∫
H

φ2 log(φ2)dν

=
∫ t

0
ds

∫
H

NPs(φ
2) log[Ps(φ

2)]dν

= −1

2

∫ t

0
ds

∫
H

1

Ps(φ2)
|C1/2DPs(φ

2)|2dν.

(4.9)

Now, recalling (2.4) and using the Hölder estimate, we find

|DPs(φ
2)|2 ≤ e−2(ω−κ)s

[
Ps

(
|D(φ2)|

)]2

= 4e−2(ω−κ)s [Ps (|φ||Dφ| )]2

≤ 4e−2(ω−κ)s
[
Ps

(
φ2
)]

Ps

(
|Dφ|2

)
.

Therefore, since C and C−1 are bounded,

1

Ps(φ2)
|C1/2DPs(φ

2)|2 ≤ 4‖C‖ ‖C−1‖e−2(ω−κ)sPs

(
|C1/2Dφ|2

)
. (4.10)



Invariant measures of non symmetric dissipative stochastic systems 369

Substituting (4.10) into (4.9) gives∫
H

Pt (φ
2) log[Pt(φ

2)]dν −
∫
H

φ2 log(φ2)dν

≥ −4‖C‖ ‖C−1‖
∫ t

0
e−2(ω−κ)sds

∫
H

|C1/2Dφ|2dν

= −2‖C‖ ‖C−1‖
ω − κ

(1 − e−2(ω−κ)t )

∫
H

|C1/2Dφ|2dν. (4.11)

Since we have assumed that ω − κ > 0, we know that Ptφ2 → (φ2) strongly (see
[16]). Therefore, letting t → ∞, we find

(φ2) log
[
(φ2)

]
−
∫
H

φ2 log(φ2)dν ≥ −2‖C‖ ‖C−1‖
ω − κ

∫
H

|C1/2Dφ|2dν,

which proves (4.5) for p = 2 and |φ| ≥ δ > 0 such that φ ∈ D(N) ∩ C1
b(H).

Approximating any φ ∈ D(N2) with functions φn such that φn ∈ D(N) ∩ C1
b(H)

and |φn| ≥ δ > 0, we prove (4.5) for any φ ∈ D(N2).
The case of general p can be treated similarly, taking u(t) = Ptφ

p log(Ptφp).
It can also be obtained from the case p = 2 using the result of [20]. ✷

The assumption ω − κ > 0 in Theorem 4.2 is rather restrictive. To relax this
assumption in the application considered below, we will use the following well
known result.

Theorem 4.3. Let ν1, ν2 be two probability measures on H such that ν1 satis-
fies (4.4) and ν2(dx) = r(x)ν1(dx) with m ≤ r(x) ≤ M , m, M being positive
constants. Then ν2 satisfies also (4.4) with c(p) replaced by Mc(p)

m
.

Proof. We use the same argument as in [17]. It is sufficient to consider a smooth φ.
We rewrite (4.4) as∫
H

|φ(x)|p log
|φ(x)|p
‖φ‖pp,ν1

ν1(dx) ≤ p − 1

2
c(p)

∫
H

|φ(x)|p−2|C1/2Dφ(x)|2ν1(dx)

and write∫
H

|φ(x)|p log
|φ(x)|p
‖φ‖pp,ν2

ν2(dx)

= inf
t>0

(∫
H

(|φ(x)|p log |φ(x)|p − |φ(x)|p log t − |φ(x)|p + t)ν2(dx)

)

≤ M inf
t>0

(∫
H

(|φ(x)|p log |φ(x)|p − |φ(x)|p log t − |φ(x)|p + t)ν1(dx)

)
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= M

∫
H

|φ(x)|p log
|φ(x)|p
‖φ‖pp,ν1

ν1(dx)

≤ M
p − 1

2
c(p)

∫
H

|φ(x)|p−2|C1/2Dφ(x)|2ν1(dx)

≤ M

m

p − 1

2
c(p)

∫
H

|φ(x)|p−2|C1/2Dφ(x)|2ν2(dx) ✷

Remark 4.4. As shown in [20], a Logarithmic Sobolev Inequality implies that
the transition semigroup (Pt )t≥0 is hypercontractive.

5. Compact embedding of Sobolev spaces based on ν

Our aim in this section is to derive a sufficient condition for the compactness of Pt
in Lp(H, ν), p > 1, and of the embedding

W 1,p(H, ν) ⊂ Lp(H, ν), p ≥ 2.

Our result is the following.

Theorem 5.1. Assume that Hypotheses 2.1, 2.2 hold and

(i) ν satisfies a defective logarithmic Sobolev inequality:
For any ϕ ∈ W 1,p(H, ν)∫

H

|ϕ(x)|p log |ϕ(x)|pν(dx)

≤ c(p)

∫
H

|ϕ(x)|p−2|C1/2Dϕ(x)|2dν + ‖ϕ‖pp log ‖ϕ‖pp + λ‖ϕ‖pp,

with p ≥ 2, λ ≥ 0 and c(p) > 0.
(ii) ν has a density with respect toµ,ν(dx)= ρ(x)µ(dx),and log ρ∈W 1,1+δ(H,ν),

with δ ≥ 1 and δ > 1
p−1 .

Then the transition semigroup (Pt )t≥0 is compact in Lp(H, ν) for any p > 1 and
the embedding

W 1,p(H, ν) ⊂ Lp(H, ν),

is compact for any p ≥ 2.

Proof. For r > 0 we define

Br =
{
x ∈ H : ρ(x) <

1

r

}
,

and we denotes by Bc
r the complementary set of Br. Clearly Br ⊂ Br̃ if r ≥ r̃ and

ν(Br) =
∫
Br

ρ(x)µ(dx) ≤ 1

r
,

so that ν
(⋃

r>0 B
c
r

) = 1.
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Let (ϕn)n∈N be a sequence in W 1,p(H, ν) such that

|ϕn|W 1,p(H,ν) ≤ 1,

and θ a smooth positive function with compact support such that

θ(s)


= 1, if s ≤ 1

= 0, if s ≥ 2,

≤ 1, otherwise.

We set for r > 1

θr(x) = θ

(
−2 log ρ(x)

log r

)
,

and ϕrn(x) = θr(x)ϕn(x). Then

ϕrn(x) = 0 if x ∈ Br,

ϕrn(x) = ϕn(x) if x ∈ Bc√
r
.

Let ε = δ(p−1)−1
1+δ+p

, we are going to show that the sequence (ϕrn)n∈N is bounded in

W 1,1+ε(H,µ). (The definition of W 1,p(H,µ) for any p ≥ 1 is classical.) We have
in fact ∫

H

|ϕrn(x)|1+εµ(dx) =
∫
Bc
r

|ϕrn(x)|1+εµ(dx)

≤ r

∫
Bc
r

|ϕn(x)|1+εν(dx)

≤ r

(∫
H

|ϕn(x)|pν(dx)
) 1+ε

p

≤ r.

Moreover it can be easily shown that ϕrn ∈ W 1,1+ε(H,µ) and that the following
formula holds

Dϕrn(x) = − 2

log r
θ ′
(−2 log ρ(x)

log r

)
D log ρ(x)ϕn(x) + θr(x)Dϕn(x),

so that ∫
H

∣∣Dϕrn(x)
∣∣1+ε

µ(dx)

≤ cε

[
21+ε

(log r)1+ε
‖θ‖1+ε

1

∫
Bc
r

|ϕn(x)|1+ε|D log ρ|1+εµ(dx)

+
∫
Bc
r

|Dϕn(x)|1+εµ(dx)

]
.
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We majorize the two terms in the right side as follows

21+ε

(log r)1+ε
‖θ‖1+ε

1

∫
Bc
r

|ϕn(x)|1+ε|D log ρ|1+εµ(dx)

≤ 21+ε

(log r)1+ε
‖θ‖1+ε

1 r

∫
Bc
r

|ϕn(x)|1+ε|D log ρ|1+εν(dx)

≤ 21+ε

(log r)1+ε
‖θ‖1+ε

1 r

(∫
H

|ϕn(x)|pν(dx)
) 1+ε

p

×
(∫

H

|D log ρ(x)|1+δν(dx)

) 1+ε
1+δ

and ∫
Bc
r

|Dϕn(x)|1+εµ(dx) ≤ r

∫
Bc
r

|Dϕn(x)|1+εν(dx)

≤ r

(∫
H

|Dϕn(x)|pν(dx)
) 1+ε

p

.

This proves that for any r > 0, the sequence (ϕrn)n∈N is bounded in W 1,1+ε(H,µ).

Since the embedding of W 1,1+ε(H,µ) in L1+ε(H,µ) is compact, see [9], it has a
convergent subsequence in L1+ε(H,µ). Thus we can extract a subsequence which
converges µ almost surely, and by (ii) ν almost surely on Bc√

r
.

Using a diagonal extraction, we are able to construct a subsequence (ϕnk )k∈N

which converges ν–almost surely on any Bc
r , and thus on H.

We now use (i) to obtain that (|ϕnk |p)k∈N is uniformly integrable and deduce
that (ϕnk )k∈N converges in Lp(H, ν). The result is thus proved for p = p.

Let ϕ ∈ C1
b(H), then we have (see [4], [19])

〈DPtϕ(x), h〉 = 1

t
E

(
ϕ(X(t, x)

∫ t

0
〈C−1/2ηh(s, x), dW(s)〉

)
,

and, by Hölder’s inequality

|〈DPtϕ(x), h〉| ≤ 1

t
E

(
ϕp(X(t, x))

) 1
p

E

((∫ t

0
〈C−1/2ηh(s, x), dW(s)〉

)q) 1
q

,

where 1
p

+ 1
q

= 1. We now use the Burkholder inequality to derive

|〈DPtϕ(x), h〉| ≤ 1

t

(
Pt |ϕ|p(x)

) 1
p

E

((∫ t

0
|C−1/2ηh(s, x)|2ds

)q/2
) 1

q

.
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Finally the boundedness of C−1/2 and (2.3) give

|〈DPtϕ(x), h〉| ≤ 1

t

(
Pt |ϕ|p(x)

) 1
p ‖C−1/2‖

(
1

ω − k

(
1 − e−2(ω−k)t

))1/2

|h|.

Therefore for t > 0

|DPtϕ(x)| ≤ g(t)
(
Pt |ϕ|p(x)

) 1
p
,

for some function g(t). By integration we deduce

|DPtϕ|Lp(H,ν) ≤ g(t)|ϕ|Lp(H,ν),

thanks to the invariance of ν. By approximation this is true for any ϕ ∈ Lp(H, ν).

Since Pt is a contraction semigroup on Lp(H, ν), we deduce

|Ptϕ|W 1,p(H,ν) ≤ (g(t) + 1)|ϕ|Lp(H,ν),

which clearly implies that Pt is compact on Lp(H, ν).

Moreover Pt is bounded in L1(H, ν) and on L∞(H, ν) and, by interpolation,
we prove that Pt is compact on Lp(H, ν) for any p ∈ (1,∞).

Let us now take p ≥ 2. In a similar way as in section 3, we can prove that for
any ϕ ∈ D(Np)

|Ptϕ|pLp(H,ν) + p(p − 1)

2

∫ t

0

∫
H

|Psϕ|p−2|C1/2DPsϕ|2dνds = |ϕ|pLp(H,ν).

Let now assume only that ϕ ∈ W 1,p(H, ν). It is not difficult to see that (Pt )t≥0 is
strongly continuous on W 1,p(H, ν) thus there exists a sequence (ϕn)n∈N in D(Np)

which converges to ϕ in W 1,p(H, ν). Then for any n ∈ N :

|Ptϕn|pLp(H,ν) + p(p − 1)

2

∫ t

0

∫
H

|Psϕn|p−2|C1/2DPsϕn|2dνds = |ϕn|pLp(H,ν).

Moreover Ptϕn → Ptϕ in Lp(H, ν) so that |Ptϕn|Lp(H,ν) → |Ptϕ|Lp(H,ν).

It is easily checked that for any s∫
H

|Psϕn|p−2|C1/2DPsϕn|2dν →
∫
H

|Psϕ|p−2|C1/2DPsϕ|2dν.

Since ∫
H

|Psϕn|p−2|C1/2DPsϕn|2dν ≤ K1|ϕn|pW 1,p(H,ν)
,

with K1 ≥ 0, we deduce from the dominated convergence theorem that∫ t

0

∫
H

|Psϕn|p−2|C1/2DPsϕn|2dνds →
∫ t

0

∫
H

|Psϕ|p−2|C1/2DPsϕ|2dνds.

Then the above identity holds for any ϕ ∈ W 1,p(H, ν).
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Let (ϕn)n∈N be a bounded sequence in W 1,p(H, ν). Since Pt is compact, for
any t there exists a subsequence of (Ptϕn)n∈N which converges in Lp(H, ν). By
diagonal extraction, we construct a subsequence (ϕnh)h∈N such that (P1/lϕnh)h∈N

converges for any l ∈ N. Let us write

|ϕnh − ϕn
h̃
|pLp(H,ν)

= |P1/l(ϕnh − ϕn
h̃
)|pLp(H,ν)

+p(p − 1)

2

∫ 1/l

0

∫
H

|Ps(ϕnh − ϕn
h̃
)|p−2|C1/2D(ϕnh − ϕn

h̃
)|2dνds

≤ |P1/l(ϕnh − ϕn
h̃
)|pLp(H,ν) + K1

l
sup
n∈N

|ϕn|pW 1,p(H,ν)
.

This proves that (ϕnk ) is a Cauchy sequence in Lp(H, ν) and is thus convergent. ✷

6. Application to equations of reaction-diffusion type

6.1. Preliminaries

In this section we consider a specific example of an equation of Reaction-Diffusion
type: dX(t) = (AX(t) + F(X(t))dt + √

CdW(t),

X(0) = x ∈ H, t ≥ 0.
(6.1)

We set H = L2(0, 1) with inner product denoted by 〈·, ·〉. Then we consider the
realization A of an elliptic operator with Dirichlet boundary conditions:Ax = ∂2

∂ζ 2 (ax) + b
∂

∂ζ
x + cx, x ∈ D(A),

D(A) = H 2(0, 1) ∩ H 1
0 (0, 1)

where a ∈ C1([0, 1]) and, b, c are given continuous function on (0, 1) such that
there exist λ0 > 0, λ1 ∈ R, λ2 ∈ R satisfying

λ0 ≤ a(ζ ), b(ζ ) ≤ λ1, λ2 ≤ c(ζ ), ζ ∈ (0, 1)

and we assume2

ω = (λ0π − λ1)π + λ2 > 0. (6.2)

2 This assumption is not optimal. For instance if b is constant we can assume instead
λ0π

2 + λ2 > 0.
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It is not difficult to check, see [16], that the stochastic convolution

Z(t) =
∫ t

0
e(t−s)A

√
CdW(s),

is well defined and has continuous paths on [0, 1] × [0,∞). Moreover, the cor-
responding Ornstein–Uhlenbeck transition semigroup is strong Feller. Finally for
any m ∈ N there exists Cm > 0 such that

E

(
sup
t≥0

|Z(t)|2m
L2m(0,1)

)
≤ Cm. (6.3)

We consider a nonlinear term F given by a polynomial of odd degree with
strictly negative dominant coefficient :

F(x) =
2m−1∑
k=0

akx
k, x ∈ R,

with

a2m−1 < 0.

It is elementary to check that there exists κ ∈ R such that

(F (x) − F(y))(x − y) ≤ κ|x − y|2, x, y ∈ R.

Moreover, for any r ∈ N there exist positive numbers c1,r , c2,r such that

F(x + z)x2r−1 ≤ a2m−1

2
x2m+2r−2 + c1,r |z|2m−2 + c2,r , x, z ∈ R. (6.4)

Finally W is a cylindrical Wiener process on H = L2(0, 1) and C is a bounded
linear operator with bounded inverse on H .

Under these assumptions, (6.1) has a unique solution and Hypothesis 2.1, 2.2 are
satisfied. Moreover, the invariant measure ν is unique. This last statement is proved
by the strong Feller property and the irreducibilty of the transition semigroup.

We give however the proof of the existence of an invariant measure ν since it
also gives as a byproduct, an estimate for

∫
H

|F(x)|2ν(dx) needed later. For this
we need a lemma.

Lemma 6.1. Let X(·, x) be the solution to equation (6.1). Then for any r ∈ N and
for any x ∈ L2r (0, 1), there exists an increasing positive function gx such that

|X(t, x)|2r
L2r (0,1) ≤ gx(|Z(t)|L2r (0,1)), t ≥ 0. (6.5)
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Proof. Setting Y (t) = X(t, x) − Z(t) problem (6.1) reduces to
Y ′ = AY + F(Y + Z),

Y (0) = x.

Multiplying both sides by Y 2r−1 and integrating on (0, 1) we obtain

1

2r

d

dt
|Y (t)|2r

L2r (0,1) + (2r − 1)
∫ 1

0
a

(
∂

∂ζ
Y

)(
∂

∂ζ
Y

)
Y 2r−2dζ

+
∫ 1

0
b

(
∂

∂ζ
Y

)
Y 2r−1dζ +

∫ 1

0
cY 2rdζ +

∫ 1

0
F(Y + Z)Y 2r−1dζ = 0.

Now the conclusion follows taking into account (6.4), (6.2) and using standard
arguments. ✷

Proposition 6.2. There exists an invariant measure ν for (6.1) and we have∫
H

|F(x)|2ν(dx) < ∞. (6.6)

Proof. Let x ∈ L4m(0, 1), and let ε < 1
4 . Then we have

(−A)εX(t, x) = (−A)εetAx +
∫ t

0
(−A)εe(t−s)AF (X(s, x))ds + (−A)εZ(t).

By Lemma 6.1 it follows that there exists a positive constant C such that

E
[|(−A)εX(t, x)

∣∣2] ≤ C, t ≥ 0.

This implies tightness of the sequence (L(X(t, x))) of the laws of X(t, x), and by
the Krylov–Bogoliubov theorem the existence of an invariant measure ν.

It remains to prove (6.6). Note first that by (6.5) there exists C1(x) > 0 such
that

E[|F(X(t, x)|2] ≤ C1(x), t ≥ 0.

Let now x be fixed and let tn → ∞ be such that (L(X(tn, x)))n∈N is weakly
convergent to ν.

Then we have

E|F(X(tn, x)|2] =
∫
H

|F(y)|2L(X(tn, x))(dy) →
∫
H

|F(y)|2ν(dy),

and the conclusion follows. ✷
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6.2. The strictly dissipative case

All the results of section 3 hold without any further assumptions. To apply the other
results, we need stonger assumptions. In this section, we assume

ω − κ > 0 (6.7)

then Theorem 4.2 applies and ν satisfies a Logarithmic Sobolev inequality.
We also assume that the Ornstein-Uhlenbeck semigroup (Rt )t≥0 is symmetric.

Since W 1,2(H,µ) is compactly embedded in L2(H,µ), then Proposition 6.2 and
the result in [5] imply that the invariant measure ν has a density ρ with respect to
µ such that log ρ ∈ W 1,2(H, ν).

We can therefore deduce from Theorem 5.1 that (Pt )t≥0 is compact inLp(H, ν)

for any p > 1 and W 1,p(H, ν) ⊂ Lp(H, ν) for p ≥ 2 with compact embedding.

6.3. The general case

We now treat the general case - i.e. without assuming (6.7) - by pertubation. We
however still assume that the Ornstein-Uhlenbeck semigroup is symmetric.

It is not difficult to see that there exists r1 ≥ 0 such that

F ′(x) ≤ 0, if |x| ≥ r1.

Using elementary arguments, we then construct two C1 functions F1 and F2 such
that

F1(x) = F(x), |x| ≥ r2,

F ′
1(x) ≤ 0, x ∈ R,

F = F1 + F2

where r2 ≥ 0. The function F2 is compactly supported, it is also possible to
construct it in such a way that ∫ r2

−r2

F2(x)dx = 0

so that it has a globally bounded antiderivative U2.
The stochastic equation where F is replaced by F1 satisfies all the assumptions

of section 6.2. Let us denote by (P 1
t )t≥0 the corresponding transition semigroup

with generator N1 and invariant measure ν1.
Then, we can define

Nφ = N1φ + 〈F2,Dφ〉
for φ ∈ D(N1). Since F2 is bounded and (P 1

t )t≥0 is compact, we can apply the
same arguments as in [9], [15] and prove that N generates a C0 semigroup (Pt )t≥0
in L2(H, ν1). This semigroup is the transition semigroup associated to (6.1). It has
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a unique invariant measure ν with a density r ∈ Lp(H, ν1), for any p > 1, with
respect to ν1. Furthermore (Pt )t≥0 is also compact in Lp(H, ν1), for any p > 1.

Finally, applying the result in [11], we prove that there exist α > 0 and M ≥ 1
such that ∥∥∥∥Ptφ −

∫
H

φ(x)ν(dx)

∥∥∥∥
p,ν1

≤ Me−αt ‖φ‖p,ν1
.

Remark 6.3. Note that we could generalize our results in many directions. Indeed,
the compactness of (P 1

t )t≥0 is a very powerful tool. For instance, as in [9], we could
consider a perturbation which is only Borel and bounded.

6.4. The gradient case

In this section, we show that in the case of a system of gradient type we can con-
siderably strengthen the above result.

We assume that C = Id and that A is self-adjoint. Then (6.1) is a of gradient
type and it is well known that in this case the invariant measure ν has a density ρ

with respect to the gaussian measure µ which is given by

ρ(x) = Ke− 1
2U(x)

where U is an antiderivative of F and K is a constant.
We use again the decomposition introduced in section 6.3 and set U1 = U −U2

so that
ρ(x) = r(x)ρ1(x)

where ρ1 is the density of ν1 with respect to µ and r(x) = K̃e− 1
2U2(x). We clearly

have
K̃e− 1

2 ‖U2‖∞ ≤ r(x) ≤ K̃e
1
2 ‖U2‖∞

where ‖U2‖∞ = supx∈H |U2(x)|.
We are in position to apply Theorem 4.3 and we obtain that ν satisfies the

Logarithmic Sobolev Inequality (4.4) for any p > 1.
We argue as in section 6.2 and obtain exactly the same results as in the strictly

dissipative case.

Remark 6.4. Again, as in section 6.3, we could consider perturbations by Borel
and bounded functions.
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5. Bogachev, V.I., Da Prato, G., Röckner, M.: Regularity of invariant measures for a class
of perturbed Ornstein-Uhlenbeck operators, NoDEA 3, 261–268 (1996)
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7. Bogachev, V.I., Röckner, M., Zhang, T.S.: Existence and uniqueness of invariant mea-
sures: an approach via sectorial forms, Appl. Math. Optim. 41, 87–109 (2000)

8. Cerrai, S.: Differentiability of Markov semigroups for stochastic Reaction–Diffusion
equation and applications to control, Stochastic Processes and their applications, 83,
15–37 (1999)

9. Chojnowska-Michalik, A., Goldys, B.: Existence, uniqueness and invariant measures
for stochastic semilinear equations on Hilbert spaces, Probab. Theory Rel. Fields 102,
331–356 (1995)

10. Chojnowska-Michalik, A., Goldys, B.: Ornstein-Uhlenbeck generators with spectral
gap property. Submitted (1998)

11. Clément, Ph., Heijmans, H.J.A.M., Angenent, S., Van Dujin, C.J., De Pagter, B.:
One-Parameter Semigroups (1987)

12. Da Prato, G., Malliavin, P., Nualart, D.: Compact families of Wiener functionals, C.R.
Acad. Sci. Paris, Série I, t. 315, 1287–1291 (1992)

13. Da Prato, G., Tubaro, L.: Some results about dissipativity of Kolmogorov operators,
Czechoslovak Mathematical Journal 51, 685–699 (2001)

14. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Encyclopedia of
Mathematics and its Applications, Cambridge University Press (1992)

15. Da Prato, G., Zabczyk, J.: Regular densities of invariant measures for nonlinear stochas-
tic equations, J. Funct. Anal. 130, 427–449 (1995)

16. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. London
Mathematical Society Lecture Notes, n. 229, Cambridge University Press (1996)

17. Deuschel, J.D., Stroock, D.: Large Deviations, Academic Press (1984)
18. Eberle, A.: Uniqueness and non–uniqueness of singular diffusion operators, Lecture

Notes in Mathematics 1718, Berlin, Springer-Verlag (1999)
19. Elworthy, K.D.: Stochastic flows on Riemannian manifolds, in Diffusion processes and
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