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Abstract. We characterize in this paper the class of reciprocal processes associated to a
Brownian diffusion (therefore not necessarily Gaussian) as the set of Probability measures
under which a certain integration by parts formula holds on the path space C([0, 1]; R). This
functional equation can be interpreted as a perturbed duality equation between Malliavin
derivative operator and stochastic integration. An application to periodic Ornstein-Uhlenbeck
process is presented. We also deduce from our integration by parts formula the existence of
Nelson derivatives for general reciprocal processes.

1. Introduction

The present paper deals with reciprocal processes which we characterize by a sim-
ple functional equation, an integration by parts formula, on the space of continuous
paths. Reciprocal processes are Markovian fields with respect to the time parameter
and therefore a generalization of Markov processes. The interest in these processes
was motivated by a Conference of Schrödinger [24] about the most probable dy-
namics for a Brownian particle whose laws at two different times are given. Ac-
tually, Schrödinger was only concerned with Markovian reciprocal processes. His
interpretation in terms of (large) deviations from an expected behavior was further
developed by Föllmer, Cattiaux and Léonard, Gantert. Schrödinger processes were
also analysed by Zambrini and Nagasawa for their possible connections to quantum
mechanics. One year after Schrödinger, Bernstein noticed the importance of non-
Markovian processes with given conditional dynamics, where the conditioning is
made at two fixed times. This was the beginning of the study of general reciprocal
processes.
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91128 Palaiseau Cédex, France. e-mail: roelly@cmapx.polytechnique.fr

M. Thieullen: Laboratoire de Probabilités et Modèles Aléatoires, UMR CNRS 7599,
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Jamison [11] proved that the set of reciprocal processes is partitioned into
classes; each subclass is characterized by a set of functions, called Reciprocal
Characteristics ([4], [13]). The main result we obtain is that, for real-valued pro-
cesses, each class of reciprocal processes with Reciprocal Characteristics (1, F )

coincides with the set of solutions of a functional equation in which the function F

plays a similar role as the Hamilton function associated to a set of Gibbs measures
([21]). This functional equation is indeed an integration by parts formula on the path
space C([0, 1]; R) and it exhibits a perturbed duality relation between the stochastic
integration w.r.t. a reciprocal process and the Malliavin derivative operator along a
class of test functions which is smaller than the usual one on the Wiener space.

Then, to illustrate our approach of reciprocal processes, we consider some
Stochastic Differential Equations with time boundary conditions (initial and final
times). Solutions of such stochastic equations form a wide class of non adapted
(then anticipative) non Markovian processes and we hope that our way to identify
their reciprocal properties will be a help in the analysis of such processes.

The search of a characterization of reciprocal processes as the set of solutions
of some second order equation was proposed by Krener (cf [13]). It was achieved in
the Gaussian case by Krener, Frezza and Levy in [15]. (For the Gaussian stationary
case see also [2].) As far as we know, no such characterization was available in the
non Gaussian case. Our result fills this gap in dimension 1.

Concerning the general non Gaussian case, one of the authors proved in [25]
that reciprocal processes satisfy a stochastic Newton equation which involves Nel-
son derivatives, the reciprocal characteristics as well as a stochastic version of
acceleration. At the end of section 4 of the present paper, we study the relationship
between our result and the result of [25]. The integration by parts formula which we
introduce provides sufficient conditions for a reciprocal process to be differentiable
in Nelson’s sense.

Reciprocal processes are time random fields defined on a compact time interval.
When the time parameter belongs to an interval with infinite length, the problem-
atic is closed to time Gibbs measure, or quasi-invariant measure on the space of
continuous functions, as introduced in the seventies in the context of Euclidean
Quantum Field theory by Courrège and Renouard [5] (see also [23]). Still a lot of
problems in this direction remain open.

The paper is devided into the following sections.

1. Introduction.
2. Notations and framework.
3. Characterization of R(P ), the reciprocal class associated to the Brownian

motion.
4. Characterization of the reciprocal class associated to a Brownian diffusion.
5. Application to the periodic Ornstein-Uhlenbeck process.

2. Notations and framework

Let � = C([0, 1]; R) be the canonical - polish - path space of continuous real-
valued functions on [0, 1], endowed with F , the canonical σ -field. Let (Xt )t∈[0,1]
denote the family of canonical projections from � into R.
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P(�) is the set of probability measures on �. We use equivalently the notation
Q(f ) or EQ(f ) for the integral of the function f under a probability measure Q.
Let P ∈ P(�) denote the Wiener measure on � satisfying P(X0 = 0) = 1.
More generally, for x ∈ R, Px is the shifted Wiener measure satisfying P(X0 =
x) = 1.

We define now the space of smooth cylindrical functionals on � :

S = {�,�(ω) = ϕ(ωt1 , . . . , ωtn) where ϕ is a bounded C∞-function

from Rn in R with bounded derivatives and 0 ≤ t1 ≤ . . . ≤ tn ≤ 1}.
Clearly S ⊂ L2(�;P).
On S we define the derivation operator D in the direction g ∈ L2(0, 1) by

Dg�(ω) =
n∑

i=1

∂ϕ

∂xi
(ωt1 , . . . , ωtn)

∫ ti

0
g(t)dt

=
∫ 1

0
g(t)Dt�(ω)dt

where

Dt�(ω) =
n∑

i=1

∂ϕ

∂xi
(ωt1 , . . . , ωtn)1t≤ti .

It is clear that Dg� is also equal to the Gâteaux-derivative of � in the direction∫ .

0 g(t)dt , which is a typical element of the Cameron-Martin space.
We can now define the space D1,2 as the closure of S for the following norm :

‖�‖2
1,2 = EP (�

2) + EP

( ∫ 1

0
Dt�

2dt
)
.

It is well known (see for example [1]) that the operator D (also called Malliavin
derivation) is the dual operator on D1,2 of the stochastic integration operator δ

defined on � by δ(g)(ω) = ∫ 1
0 g(t)dωt :

∀g ∈ L2(0, 1),∀� ∈ D1,2, EP (Dg�) = EP

(
� δ(g)

)
(1)

The main object we deal with in this paper are the so called reciprocal classes.
We consider a given Markov diffusion P̃ ∈ P(�) such that, for each 0 ≤ s < t ≤ 1,
the map (x, y) �→ P̃ ( ./Xs = x,Xt = y) is continuous on R2. The reciprocal class
associated to P̃ is the subset R(P̃ ) of P(�) defined by :

R(P̃ ) = {Q ∈ P(�),∀0 ≤ s < t ≤ 1,Q( ./Fs ∨ F̂t ) = P̃ ( ./Xs,Xt )} (2)

where the forward (resp. backward) filtration (Ft )t∈[0,1] (resp. (F̂t )t∈[0,1]) is given
by

Ft = σ(Xs, 0 ≤ s ≤ t), (resp. F̂t = σ(Xs, t ≤ s ≤ 1)).

Each element of R(P̃ ) is called a reciprocal process associated to P̃ .
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From the definition (2) of a reciprocal class, it is clear that each reciprocal
process Q is a Markovian field in the sense that, for 0 ≤ s < t ≤ 1, Fs ∨ F̂t and
σ(Xr ; s ≤ r ≤ t) are independent under Q conditionally to σ(Xs,Xt ).

Nevertheless, a reciprocal process is not necessarily a Markov process. Jamison
gave in [11] the following description of the subset RM(P̃ ) whose elements are
the Markovian processes of R(P̃ ) :

RM(P̃ ) = {Q ∈ R(P̃ ), ∃ν0, ν1 σ -finite measures on R,

Q ◦ (X0, X1)
−1(dx, dy) = p̃(0, x, 1, y)ν0(dx)ν1(dy)} (3)

where p̃(s, x, t, y) is the probability transition density of P̃ (which always exists
and is regular in the cases treated in this paper). Due to historical reasons recalled in
the introduction, the elements of RM(P̃ ) are called in the literature “Schrödinger
processes”.

Let us mention the following equivalent definition of R(P̃ ) as the class of
processes having the same bridges as P̃ (see [11]) :

R(P̃ ) = {Q ∈ P(�), ∃m ∈ P(R2),Q =
∫

R2
P̃ ( /X0 = x,X1 = y)m(dx, dy)}.

(4)

Remark that from the above definition (4) any reciprocal process Q in R(P̃ ) is
a mixture of bridges of P̃ .

3. Characterization of R(P ), the reciprocal class associated to the
Brownian motion

3.1. Duality under the Brownian bridge

We recalled in the above equality (1) the duality between Malliavin derivative D

and stochastic integration δ under the Wiener measureP . In fact, (1) remains valid if
P is replaced by any other Wiener measure Px, x ∈ R , and therefore, by linearity
of this equation with respect to the integrator, equality (1) is also true under Pµ, a
µ-mixture of (Px, x ∈ R):

Pµ =
∫

R

Px µ(dx), µ ∈ P(R). (5)

What is more surprising is the fact that the duality betweenD and δ holds also under
any desintegration of the Wiener measure in Brownian bridges, if we restrict the
class of test functions g in (1) to a smaller space than L2(0, 1). So let us introduce
the function space

L2
0(0, 1) = {

g ∈ L2(0, 1),
∫ 1

0
g(r) dr = 0

}
.

It is the orthogonal subspace in L2(0, 1) to the constant functions.
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Let us stress the following remark: for the characterization based on integration
by parts formula developed in the rest of the paper, it is enough to consider the
class of step functions g ∈ L2

0(0, 1). For these functions, δ(g) is intrinsically
and trivially defined; in particular the stochastic integral does not depend on the
reference probability measure on �.

We have

Proposition 3.1. Let (x, y) ∈ R2 and Px,y ∈ P(�) be the law of the Brownian
bridge on [0, 1] from x to y. Then

∀g step function in L2
0(0, 1),∀� ∈ S, P x,y(Dg�) = Px,y

(
� δ(g)

)
. (6)

Proof . The duality formula (6) has been proved by Driver in [8] even for the Brow-
nian bridge on a Riemannian manifold. His proof relies on the absolute continuity
of Px,y with respect to Px on Fτ , with 0 < τ < 1. However for the sake of
completeness, let us sketch an alternative proof of this duality. As noticed at the
beginning of the section 3.1, the duality

Pµ
(
� δ(g)

)
= Pµ(Dg�) (7)

holds for any g step function, � ∈ S and µ ∈ P(R).
Taking �(ω) = φ0(ω0)φ1(ω1)�̃(ω) for φ0, φ1 ∈ C∞(R), and �̃ ∈ S, one

obtains from (7)

Pµ
(
φ0(X0)φ1(X1)P

µ(�̃δ(g)/X0, X1)
)

= Pµ
(
φ0(X0)φ1(X1)P

µ(Dg�̃/X0, X1)
)

+ Pµ
(
φ0(X0)φ

′
1(X1)�̃

) ∫ 1

0
g(r) dr.

So, for g step function in L2
0(0, 1), the last term vanishes and this implies

PX0,X1
(
�̃δ(g)

)
= Pµ

(
�̃δ(g)/X0, X1

)
= PX0,X1

(
Dg�̃

)
for a.s.(X0, X1) under Pµ.

By continuity of the map (x, y) �→ Px,y the duality formula (6) holds for all
(x, y) ∈ R2. ✷

Remark 3.2. To prove the duality equation (6) under P 0,0 we could also use the
correspondence between the Gauss space of the Brownian bridge P 0,0 and the
Wiener space (�, P ), based on the isomorphism α between L2

0(0, 1) and L2(0, 1)
defined by :

∀g ∈ L2
0(0, 1), α(g)(r) = g(r) + 1

1 − r

∫ r

0
g(s) ds.

In fact, following Gosselin and Wurzbacher ([10], Proposition 2.2), if X is a Brow-
nian motion under P , the image process of X under the transformation

( : ω→
(
t→((ω)t = (1 − t)

∫ t

0

dωs

1 − s

)
0≤t<1



102 S. Rœlly, M. Thieullen

is a Brownian bridge with law P 0,0; the stochastic integral δ(g)((X) =∫ 1
0 g(r)d((X)r is well defined for g ∈ L2

0(0, 1) and moreover :

δ(g)((X) = δ(α(g))(X) P − a.s..

So, to deduce (6) from (1) it is enough to remark that, for g ∈ L2
0(0, 1) and � ∈ S,

Dg� ◦ ( = Dα(g)(� ◦ ().

3.2. Characterization of the conditional probabilities

The natural question is now to analyse if the duality under a measure Q between
D and δ tested on all (g,�) ∈ L2

0(0, 1) × S characterizes the bridges of Q. The
positive answer is the object of the following :

Proposition 3.3. Let Q ∈ P(�) such that Q(supt∈[0,1] |Xt |) < +∞. If

∀g step function in L2
0(0, 1),∀� ∈ S, Q(Dg�) = Q

(
� δ(g)

)
(8)

then Q( ./X0, X1) = PX0,X1 Q − a.s..

Proof . First, following the same argument as in Proposition 3.1, it is clear that (8)
also holds under Q( ./X0, X1)Q − a.s.. For simplicity, let us denote by Qx,y ∈
P(�) the law of the bridge of Q on [0, 1] between x and y, (x, y) ∈ R2. Let g̃ a
fixed step function on [0, 1], and for λ ∈ R, define

ψ(λ) = Qx,y
(

exp(iλδ(g̃))
)
. (9)

By recentering g̃, we also introduce the step function

g = g̃ −
∫ 1

0
g̃(r) dr ∈ L2

0(0, 1). (10)

Now, remarking that ψ is differentiable on R, we obtain

ψ ′(λ) = iQx,y
(
δ(g̃) exp(iλδ(g̃))

)
= iQx,y

((
δ(g) + (y − x)

∫ 1

0
g̃(r) dr

)
exp(iλδ(g̃))

)

= ieiλ(y−x)
∫ 1

0 g̃(r) drQx,y
(
δ(g) exp(iλδ(g))

)
+ i(y − x)

∫ 1

0
g̃(r) dr ψ(λ).

From (8), using the fact that � = exp(iλδ(g)) ∈ S, we deduce that for
Q ◦ (X0, X1)

−1a.a.(x, y),

Qx,y
(
δ(g) exp(iλδ(g))

)
= Qx,y

(
Dg(exp(iλδ(g))

)
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which is equivalent to

Qx,y
(
δ(g) exp(iλδ(g))

)
= iλ

∫ 1

0
g2(r) dr Qx,y

(
exp(iλδ(g))

)

So,

ψ ′(λ) =
(
i(y − x)

∫ 1

0
g̃(r) dr − λ

( ∫ 1

0
g̃2(r) dr − (

∫ 1

0
g̃(r) dr)2

))
ψ(λ).

The unique solution of this differential equation with initial conditionψ(0) = 1
is

ψ(λ) = exp
(

− λ2

2

( ∫ 1

0
g̃2(r) dr − (

∫ 1

0
g̃(r) dr)2

)
+ iλ(y − x)

∫ 1

0
g̃(r) dr

)
.

(11)

Thus, for Q ◦ (X0, X1)
−1 almost all (x, y), equality (11) holds true for all g̃ in

the following countable set of step functions : {∑p

i=0 αi1[si ,si+1[, 0 = s0 < . . . ≤
sp < sp+1 = 1, p ∈ N, si , αi ∈ Q}. This set is dense in L2(0, 1), so equality (11)
holds also true for each g ∈ L2(0, 1) , since its both sides are L2(0, 1)-continuous
functionals of g̃ under the assumption that Q(supt∈[0,1] |Xt |) < +∞.

Next step is to identify the process with the above characteristic functional. Let
us indicate two possibilities :

Either one verifies that the following process

Yt = x(1 − t) + Bt + t (y − B1)

where B is a Brownian motion, is indeed a Brownian bridge with law Px,y and
admits ψ as characteristic functional ( cf. for example Theorem IV.40.3 in [22]).

Or one remarks that ψ is associated to a Gaussian process : by taking λ = 1
and

g̃ =
p∑

i=0

αi1[ti−1,ti [, 0 = t0 < t1 < . . . < tp−1 < tp = 1,

it is clear that Qx,y
(

exp(iδ(g̃))
)

is the exponential of a bilinear form in (αi).

Moreover, taking now g̃ = 1[s,t], we obtain the first two moments of this Gaussian
process :

Qx,y
(

exp(iλδ(1[s,t]))
)

= e− λ2
2 (t−s−(t−s)2)+iλ(y−x)(t−s)

implies

Qx,y(Xt ) = ty + (1 − t)x and Cov(Xs,Xt ) = s(1 − t), s ≤ t.

These moments also characterize the law of the Brownian bridge. ✷
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3.3. The class R(P ) as the set of solutions of a duality equation

It is known that the duality (1) characterizes the set of Wiener measures {Pµ,µ ∈
P(R)} ⊂ P(�) (see [21], Theorem 1.2). By restricting the class of test functions
g to those with vanishing integral on [0; 1], it is clear that the set of Probability
measures under which the duality holds is larger. The following theorem does
explicit this subset of P(�).

Theorem 3.4. Let Q ∈ P(�) such that Q(supt∈[0,1] |Xt |) < +∞.
The following two assertions are equivalent :

i) ∀g step function in L2
0(0, 1),∀� ∈ S, Q(Dg�) = Q

(
� δ(g)

)
ii) Q ∈ R(P ), i.e. Q is a reciprocal process in the same class as the

Brownian motion.

Proof . By Proposition 3.3, i) implies the a.s. equality between the bridges of Q
and those of P . But

Q =
∫

R2
Q( /X0 = x,X1 = y)m(dx, dy)

where m = Q ◦ (X0, X1)
−1.Then using the definition of R(P ) given in (4) we

obtain directly assertion ii).
Reciprocally, if Q ∈ R(P ), the desintegration (4) holds. So Q is a mixture

in (x, y) of bridges Px,y . But, by Proposition 3.1, under each bridge the duality
between D and δ holds. This property remains valid by mixing the underlying
measure. So i) holds. ✷

4. Characterization of the reciprocal class associated to
a Brownian diffusion.

In this section we want to extend the results obtained in the previous section for
other classes of reciprocal processes than R(P ). So we take as reference process no
more a Brownian motion but a Markovian Brownian semi-martingale, also called
Brownian diffusion, and defined as solution of the stochastic differential equation :{

dXt = dBt + b(t, Xt ) dt

X0 = x
(12)

where B is a Brownian motion and the drift b satisfies the following regularity
assumptions :

b ∈ C1,2([0, 1] × R ; R) (13)

∃K > 0, ∀(t, x) ∈ [0, 1] × R, x b(t, x) ≤ K(1 + x2). (14)

Since condition (13) implies that b is locally lipschitz continuous uniformly on
time, both conditions (13) and (14) ensure existence and uniqueness of a strong
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solution to equation (12) (see for example [3] p.234). We denote by P̃ ∈ P(�) the
law of this solution.

We introduce the following supplementary regularity assumption on the prob-
ability transition density associated to P̃ - it will be useful when we compute the
reciprocal characteristics of bridges of P̃ - :

p̃(s, x, t, y) = P̃ (Xt ∈ dy/Xs = x)/dy is strictly positive for any s, t ∈ [0, 1],

x, y ∈ R and belongs, as function of (s, x)(resp.(t, y)), to C1,3(]0, 1] × R ; R)

(resp.C1,3([0, 1[×R ; R)). (15)

Let us now introduce a space-time function F defined on [0, 1]×R and derived
from b by :

F(t, x) = ∂

∂t
b(t, x) + b(t, x)

∂

∂x
b(t, x) + 1

2

∂2

∂x2
b(t, x). (16)

This function together with the diffusion coefficient 1 (due to the fact that
the martingale part of X is a Brownian motion) are the so-called local reciprocal
characteristics associated to P̃ (cf [4] and [13]). The function F , as functional of
the drift, is invariant on the set RM(P̃ ) and moreover the pair (1, F ) characterizes
completely the reciprocal class R(P̃ ) (see Theorem 1 in [4] when b is bounded and
Theorem 4.7 in [26] under less restrictive assumptions).

4.1. An integration by parts formula

Let us now investigate how the duality equation i) in Theorem 3.4 satisfied by every
reciprocal process in the Brownian class R(P ) is perturbated when the reference
process admits a drift b �= 0.

Proposition 4.1. Let Q ∈ P(�) a reciprocal process in the class R(P̃ ). Suppose
moreover that

Q( sup
t∈[0,1]

|Xt |2) < +∞ and Q
( ∫ 1

0
|F(t,Xt )|2dt

)
< +∞. (17)

Then the following integration by parts formula is satisfied under Q :

∀g step function in L2
0(0, 1),∀� ∈ S,Q(Dg�)

= Q
(
� δ(g)

)
+ Q

(
�

∫ 1

0
g(r)

∫ 1

r

F (t, Xt ) dtdr
)
. (18)

As anounced below, the perturbation term - the second term of the r.h.s. - is
given by F . In the course of the proof we will need the following

Lemma 4.2. Let Pβ ∈ P(C([0, τ ]; R)) be the law of a Brownian diffusion with
initial value x and drift β, for some 0 < τ ≤ 1. We assume the following :

β ∈ C1,2([0, τ ] × R ; R) and β(τ,Xτ ) ∈ L2(Pβ)

Fβ(t, Xt ) ∈ L2(dt ⊗ dPβ) where Fβ = ∂

∂t
β + β

∂

∂x
β + 1

2

∂2

∂x2
β.
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Then, for g ∈ L2(0, τ ) and � any Fτ -measurable function in S,

Pβ(Dg�) = Pβ

(
� δ(g)

)
+ Pβ

(
�

∫ τ

0
g(r)

∫ τ

r

Fβ(t, Xt ) dtdr
)

−
∫ τ

0
g(r)dr Pβ

(
�β(τ,Xτ )

)
. (19)

Proof of Lemma 4.2. Let us denote by Mβ the density of Pβ with respect to Px ,

Mβ = exp
( ∫ τ

0
β(t,Xt )dXt − 1

2

∫ τ

0
β2(t, Xt )dt

)
.

We denote by Mn,β the r.v. defined by Mn,β = exp
(
χn(logMβ)

)
where χn is a

smooth bounded function with bounded derivative on R satisfying{
χn1[−n−1,n+1]c = −(n + 1)1]−∞,−n−1[ + (n + 1)1]n+1,+∞[
χn1[−n,n] = Id.1[−n,n].

Such a cut-off for Mβ appears in [7]. Remark that 0 ≤ Mn,β ≤ Mβ + 1.
LetPn

β ∈ P(C([0, τ ]; R)) be the positive measure with Radon-Nikodym deriva-

tive Mn,β with respect to the Wiener measure Px . By definition of Pn
β ,

Pn
β (Dg�) = Px

(
Mn,βDg�

)
= Px

(
Dg(�Mn,β)

)
− Px

(
�DgM

n,β
)

which implies, by integration by parts formula under the Wiener measure, that

Px
(
Mn,βDg�

)
= Px

(
�Mn,βδ(g)

)
− Px

(
�DgM

n,β
)
.

By dominated convergence, the l.h.s. of the above identity converges to

Px
(
MβDg�

)
= Pβ

(
Dg�

)
. The same argument applies to Px

(
�Mn,βδ(g)

)
which therefore converges to Px

(
�Mβδ(g)

)
= Pβ

(
�δ(g)

)
. By definition,

DgM
n,β = Mn,βχ ′

n(logMβ)Dg(logMβ).

Moreover,

Dg(logMβ) =
∫ τ

0
g(r)

(
β(r,Xr) +

∫ τ

r

∂

∂x
β(t, Xt )dXt

−
∫ τ

r

β(t, Xt )
∂

∂x
β(t, Xt )dt

)
dr

which, by Ito’s formula, is equal to

β(τ,Xτ )

∫ τ

0
g(r)dr −

∫ 1

0
g(r)

∫ τ

r

Fβ(p,Xp) dpdr.



Reciprocal processes via an integration by parts formula on the path space 107

The last term for which we have to study the convergence is therefore

Px
(
�Mn,βχ ′

n(logMβ)
(
β(τ,Xτ )

∫ τ

0
g(r)dr −

∫ 1

0
g(r)

∫ τ

r

Fβ(p,Xp) dpdr
))

.

We conclude since

|Mn,βχ ′
n(logMβ)| ≤ Mn,β1[−(n+1),n+1](logMβ)

≤ Mβ1[−(n+1),n+1](logMβ)

and, by assumption, the r.v.

Mβ
(
β(τ,Xτ )

∫ τ

0
g(r)dr −

∫ 1

0
g(r)

∫ τ

r

Fβ(p,Xp) dpdr
)
.

is in L1(P x) since the r.v. into parenthesis is in L2(Pβ). ✷

Proof of Proposition 4.1. Let us denote by µ the law of (X0, X1) under Q. It is
sufficient to prove identity (18) under Qx,y for µ-a.a. (x, y), since it will remain
true by reintegration under µ.

Obviously, assumption (17) remains true under Qx,y for µ-a.a. (x, y). In the
sequel of the present proof, we fix such an (x, y). Moreover, sinceQ ∈ R(P̃ ), Qx,y

coincides with P̃ x,y and is therefore the law of a Brownian diffusion on each
[0, τ ], τ < 1 whose drift β satisfies

β(t, z) = b(t, z) + ∂

∂z
log p̃(t, z, 1, y)

where p̃ is the transition probability density of P̃ . Let us first notice that, when∫ τ

0 g(r)dr = 0, it is easy to verify that in the proof of Lemma 4.2 the assumption
β(τ,Xτ ) ∈ L1(Pβ) is no more required. The remaining assumptions of Lemma 4.2
on β and Fβ ≡ F are direct consequences of assumptions (15) and (17). Therefore,
for all � ∈ S,Fτ -measurable and all step functions g ∈ L2

0(0, τ ), one has

Qx,y(Dg�) = Qx,y
(
� δ(g)

)
+ Qx,y

(
�

∫ τ

0
g(r)

∫ τ

r

F (t, Xt ) dtdr
)
. (20)

Let us now fix � ∈ S,F1-measurable, and g a step function in L2
0(0, 1). These

are the testing objects which we need in order to prove (18). Since � ∈ S, there ex-
ists a function ϕ and a real number τ < 1 such that �(X) = ϕ(x,Xt1 , · · · , Xτ , y),

Qx,y -a.s.. We also fix n large enough so that τ < 1 − 1
n

and g is constant on
[1 − 2

n
; 1[. Let us set

gn = g1[0,1− 2
n

[ + n(

∫ 1

1− 2
n

g(r)dr)1[1− 2
n
,1− 1

n
].

By construction gn ∈ L2
0(0, 1 − 1

n
) since g ∈ L2

0(0, 1). From Lemma 4.2, we
deduce the identity

Qx,y(Dgn�) = Qx,y
(
� δ(gn)

)
+ Qx,y

(
�

∫ 1− 1
n

0
gn(r)

∫ 1− 1
n

r

F (t, Xt ) dtdr
)
.
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It remains to verify that each term converges when n tends to infinity towards
the corresponding term in (18) written under Qx,y . We have the following
inequalities:

– |Qx,y(Dgn� − Dg�)| ≤ ‖D�‖∞‖gn − g‖1 = 2C
n
‖D�‖∞

where C is the constant value of g on [1 − 2
n
, 1[.

–
∣∣Qx,y

(
�(δ(gn − g))

)∣∣ ≤ ‖�‖∞Qx,y
(
|X1 − X1− 2

n
|
)

which converges to 0 by a.s. continuity of paths and dominated convergence
theorem thanks to assumption (17).

–
∣∣Qx,y

(
�(

∫ 1− 1
n

0 gn(r)
∫ 1− 1

n
r

F (t, Xt )dtdr − ∫ 1
0 g(r)

∫ 1
r
F (t, Xt )dtdr)

)∣∣
which vanishes thanks to assumption (17). ✷

4.2. Characterization of the reciprocal class R(P̃ )

We are now interested by the converse statement of Proposition 4.1. More precisely,
our main result is to show that the integration by parts formula (18) characterizes
the regular elements of R(P̃ ). More precisely, recall that in the previous section,
we introduced the regularity assumptions (13) and (15) in order to define the recip-
rocal characteristic F . In the same way, in order to prove a converse statement to
Proposition 4.1, we have to consider probabilities on � which a priori satisfy the
following set of regularity conditions which will be denoted by (A) in the sequel:

- (A1) ∀t < u, y, z there exists a density function q(t, z, u, ., 1, y) such that

Q(Xu ∈ dw/ Xt = z,X1 = y) = q(t, z, u,w, 1, y)dw

- (A2) ∀x, y, u,w, q(0, x, u,w, 1, y) is strictly positive
- (A3) ∀u,w, y, (t, z) �→ q(t, z, u,w, 1, y) belongs to C1,2([0, 1[×R ; R)

and for all (t, z) there exists a neighborhood V of (t, z) and a functionφV (u,w, 1, y)
such that

sup
(s,ξ)∈V

|∂tq(s, ξ, u,w, 1, y)| + |∂zq(s, ξ, u,w, 1, y)| + |∂zzq(s, ξ, u,w, 1, y)|

≤ φV (u,w, 1, y)

and
∫ 1

0

∫
R
φV (u,w, 1, y)|F(u,w)|dudw < +∞.

Theorem 4.3. Let Q ∈ P(�) satisfying (A) and such that

Q( sup
t∈[0,1]

|Xt |2) < +∞ and Q
( ∫ 1

0
|F(t,Xt )|2dt

)
< +∞. (21)

If the following integration by parts formula is satisfied under Q :

∀g step function in L2
0(0, 1),∀� ∈ S,

Q(Dg�) = Q
(
� δ(g)

)
+ Q

(
�

∫ 1

0
g(r)

∫ 1

r

F (t, Xt ) dtdr
)

(22)

then Q is a reciprocal process in the class R(P̃ ).
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Proof . The proof of this theorem divides in three steps.
Step 1 : We first prove that (Xt , t ∈ [0, 1]) is a Q-quasi-martingale on [0, 1].
This amounts to verify that

supQ
( n−1∑

i=0

∣∣Q(Xti+1 − Xti /Fti )
∣∣) < +∞

where the supremum is taken over all the finite partitions 0 = t0 < t1 < . . . <

tn = 1 of [0, 1]. Let us fix such a partition, and take

gi = 1[ti ,ti+1] + ti+1 − ti

1 − ti
1[ti ,1].

The integration by parts formula (22), applied to gi and any �Fti -measurable,
implies that, for 0 ≤ i ≤ n − 1,

Q
(
Xti+1 − Xti /Fti

)
= (ti+1 − ti )Q

(X1 − Xti

1 − ti
/Fti

)

−Q
( ∫ ti+1

ti

∫ 1

r

F (t, Xt ) dtdr/Fti

)

+ ti+1 − ti

1 − ti
Q

( ∫ 1

ti

∫ 1

r

F (t, Xt ) dtdr/Fti

)
.

We thus have the following inequality

Q
( n−1∑

i=0

∣∣Q(Xti+1 − Xti /Fti )
∣∣)

≤
n−1∑
i=0

(ti+1 − ti )
Q(|X1 − Xti |)

1 − ti
+ 2Q

( ∫ 1

0
|F(t,Xt )| dt

)
.

To prove the boundedness of the r.h.s. on all partitions it is sufficient to control it
for partitions which mesh goes to zero. But then, we identify the sum in the r.h.s.
as a Riemann sum associated to the integral

∫ 1
0

Q(|X1−Xs |)
1−s

ds. The convergence of
this integral is a direct consequence of the following

Lemma 4.4. Let Q ∈ P(�) satisfying the assumptions

sup
t∈[0,1]

Q(|Xt |2) < +∞ and Q
(
(

∫ 1

0
|F(t,Xt )|dt)2

)
< +∞. (23)

If the integration by parts formula (22) is satisfied under Q for all � ∈ S, then it
holds also for the unbounded functional defined by �(X) = Xt − Xs, 0 ≤ s <

t ≤ 1.
Moreover, there exists a positive constant C such that

∀s ∈ [0, 1], Q
(
(X1 − Xs)

2
)

≤ C(1 − s).
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Proof of Lemma 4.4. Let χn be the cut-off function defined in the proof of Lemma
4.2. The integration by parts formula (22) holds true for any step function g ∈
L2

0(0, 1) and �n(X) = χn(Xt − Xs). Due to the assumptions (23), the dominated
convergence theorem applies to each term and then, (22) holds also for �(X) =
Xt − Xs .

For proving the second assertion, let us set g = 1
1−s

1[s,1] − 1 and �(X) =
X1 −Xs for s ∈ [0, 1]. Taking t = 1 in the first assertion, one deduces the identity:

s =
Q

(
(X1 − Xs)

2
)

1 − s
− Q

(
(X1 − Xs)(X1 − X0)

)

+Q
(
(X1 − Xs)(

1

1 − s

∫ 1

s

∫ 1

r

F (t, Xt )dtdr −
∫ 1

0

∫ 1

r

F (t, Xt )dtdr)
)
.

We thus conclude that

Q
(
(X1 − Xs)

2
)

1 − s

≤ 1 + 4 sup
t∈[0,1]

Q(|Xt |2) + 4
(

sup
t∈[0,1]

Q(|Xt |2)
) 1

2
(
Q

( ∫ 1

0
|F(t,Xt )|dt

)2) 1
2

which is finite by assumption (23). ✷

Remarking that assumptions (23) are weaker than assumptions (21), this com-
pletes the proof of step 1. By Rao’s theorem (cf. [6] Chapitre VII), since (Xt , t ∈
[0, 1]) is a continuousQ-quasi-martingale, it is then a continuousQ-semi-martingale.

Step 2 : We now identify the local characteristics of the continuous Q-semi-
martingale (Xt , t ∈ [0, 1]).

- Let us denote by A the bounded variation part of X.
We first prove that for any t ∈ [0, 1], the (random) measure Q(dA/Ft ) on

[t, 1] is absolutely continuous with respect to Lebesgue measure, with density
βt (.) satisfying

βt (r) = Q
(Ar − At

r − t
/Ft

)
+ 1

r − t

∫ r

t

∫ r

s

Q
(
F(p,Xp)/Ft

)
dpds.

To this aim, let us take u > t and, as test function, a step function g with support
in [t, u]. We first show that

Q
( ∫ u

t

g(r)dAr/Ft

)
=

∫ u

t

g(r)βt (r)dr.
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Equation (22) applied to � = �t,Ft -measurable and to g̃ = g − 1
u−t

(
∫ u

t
g(r)dr)

1[t,u] yields

Q
( ∫ u

t

g(r)dAr/Ft

)
= 1

u − t

( ∫ u

t

g(r)dr
)
Q

(
Au − At/Ft

)

−
∫ u

t

g(r)

∫ u

r

Q
(
F(p,Xp)/Ft

)
dpdr

+ 1

u − t

( ∫ u

t

g(r)dr
) ∫ u

t

∫ u

s

Q
(
F(p,Xp)/Ft

)
dpds.

(24)

Assumption (21) implies that Q(
∫ 1

0 |dAs |) < +∞); so we can apply Fubini’s
theorem to the l.h.s. of the above equality. Taking u = 1 in (24), we obtain that
Q(dA/Ft ) is absolutely continuous with respect to Lebesgue measure on [t, 1],
and its density is given by

βt (r) = Q(
A1 − At

1 − t
/Ft ) −

∫ 1

r

Q(F (p,Xp)/Ft )dp

+ 1

1 − t

∫ 1

t

∫ 1

s

Q(F (p,Xp)/Ft )dpds. (25)

From this expression we obtain the continuity and even the a.s. derivability of the
function βt from [t,1[ to L1(Q). Moreover, for all u > r , using the expression given
in (24), we also have

βt (r) = Q(
Au − At

u − t
/Ft ) −

∫ u

r

Q(F (p,Xp)/Ft )dp

+ 1

u − t

∫ u

t

∫ u

s

Q(F (p,Xp)/Ft )dpds (26)

For r fixed, letting u tend to r , one obtains from (26) the desired form for βt :

βt (r) = Q(
Ar − At

r − t
/Ft ) + 1

r − t

∫ r

t

∫ r

s

Q(F (p,Xp)/Ft )dpds, t < r < 1.

From the expression of Q(A/Ft ), we now want to deduce the value of A. First
we prove the following equality as processes in L1(dr × Q):

βt (.) = Q(β.(.)/Ft ). (27)

Since s �→ βr(s) is continuous from [r,1[ toL1(Q), thenβr(r) = lims↘r Q(As−Ar

s−r
/

Fr ), and we have

Q(βr(r)/Ft ) = Q
(

lim
s↘r

Q(
As − Ar

s − r
/Fr )/Ft

)

= lim
s↘r

Q
(As − Ar

s − r
/Ft

)
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But

Q
(As − Ar

s − r
/Ft

)
= Q

(As − At

s − r
− Ar − At

s − r
/Ft

)
= s − t

s − r

(
βt (s) − 1

s − t

∫ s

t

∫ s

u

Q(F (p,Xp)/Ft )dpdu
)

− r − t

s − r

(
βt (r) − 1

r − t

∫ r

t

∫ r

u

Q(F (p,Xp)/Ft )dpdu
)

= βt (s) + (r − t)
βt (s) − βt (r)

s − r

− 1

s − r

∫ s

r

∫ s

u

Q(F (p,Xp)/Ft )dpdu

− 1

s − r

∫ r

t

∫ s

r

Q(F (p,Xp)/Ft )dpdu.

When s tends to r the first term of the r.h.s tends to βt (r) ; the third term of the r.h.s.
tends to 0 ; the limits of the second term and the forth are opposite since, from (25),
for almost all r, βt is differentiable and β ′

t (r) = Q(F(r,Xr)/Ft ). This completes
the proof of (27).

Now we conclude observing that the process

(
Au − At −

∫ u

t

βr(r)dr
)
u∈[t,1]

is both a bounded variation process and a continuous Q-martingale due to (27). It is
then equal to the constant 0, which means that dAr is indeed absolutely continuous
with respect to Lebesgue measure dr and its density is equal to βr(r).

So the semi-martingale decomposition of (Xt , t ∈ [0, 1]) under Q is the fol-
lowing:

dXt = dMt + β(t,X)dt

where M is a Q-martingale and β(r,X) =: βr(r)(X) is given for r < 1 by

β(r,X) = Q(
X1 − Xr

1 − r
/Fr ) −

∫ 1

r

Q(F (p,Xp)/Fr )dp

+ 1

1 − r

∫ 1

r

∫ 1

s

Q(F (p,Xp)/Fr )dpds. (28)

– Let us show that the martingale M is in fact a Brownian motion. The assump-
tion (21) and formula (28) imply that supt∈[0,τ ] |Mt | ∈ L2(�) , ∀τ ∈ [0; 1[. So,
following Meyer’s terminology, M belongs to the class (D) on [0; τ ] and, in order
to verify that M is a Brownian motion, it is enough to show that

lim
h↘0

∫ τ

0
Q

( (Xt+h − Xt)
2

h
/Ft

)
dt = τ

in L1(Q) ( cf. [16], Theorems T 28 and T 29 p.156).
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With the same arguments as in the proof of Lemma 4.4 we can verify that (22)
holds also for �(X) = �t(X)(Xt+h − Xt), where t ∈ [0, 1[, h > 0, and �t is
Ft -measurable, and for g = 1[t,t+h]

h
− 1[t,1]

1−t
; we obtain

Q
( (Xt+h − Xt)

2

h
/Ft

)
= 1 − h

1 − t
+ Q

(
(Xt+h − Xt)

X1 − Xt

1 − t
/Ft

)

−Q
(
(Xt+h − Xt)

1

h

∫ t+h

t

∫ 1

r

F (s,Xs)dsdr/Ft

)

+Q
(
(Xt+h − Xt)

1

1 − t

∫ 1

t

∫ 1

r

F (s,Xs)dsdr/Ft

)
.

The r.h.s. converges in L1(Q) to 1 when h tends to 0 uniformly in t ∈ [0, τ ] thanks
to assumptions (21) and Lemma 4.4, so Q is a Brownian semi-martingale.

Step 3: In the last step, we show that the coordinate process under Q is recip-
rocal, and we identify its reciprocal class.

Since Q is the mixture of its bridges under Q ◦ (X0, X1)
−1, it is sufficient to

prove that for Q ◦ (X0, X1)
−1-almost all (x, y) the bridge Qx,y belongs to the

reciprocal class R(P̃ ).
Following the same argument as in the proof of Proposition 3.3, for Q ◦

(X0, X1)
−1-almost all (x, y), the integration by parts formula (22) holds true

under Qx,y . Let us fix such an (x, y) ∈ R2 and s ∈]0, 1]. We now show that
Qx,y is a Markovian semi-martingale. More precisely, we prove that the law of
(Xr, r ∈ [s, 1]) is the same under Qx,y( ./Fs) and Qx,y( ./Xs). Let us denote for
simplicity Qx,y( ./Fs) by Q

x,y

Fs
and Qx,y( ./Xs) by Q

x,y
Xs

. These two probabilities
satisfy also equation (22) for test functions g with support in [s, 1]. By the same
arguments as in Steps 1 and 2, we deduce that (Xr, r ∈ [s, 1]) is a Brownian semi-
martingale under both probabilities whose drifts at time r < 1, computed as in
(28), are respectively given by Q

x,y

Fs
(U(r,X)/Fr ) and Q

x,y
Xs

(U(r,X)/Fr ), where

U(r,X) = y − Xr

1 − r
−

∫ 1

r

F (u,Xu)du + 1

1 − r

∫ 1

r

∫ 1

s

F (u,Xu)duds. (29)

But, for r ≥ s,

Q
x,y

Fs
( ./Fr ) = Q

x,y
Xs

( ./Fr ) = Qx,y(./Fr ).

Then both drifts coincide a.s. which implies that Qx,y is Markovian. In particular
its drift process is the following function βx,y on time and space:

βx,y(r, z) = y − z

1 − r
−

∫ 1

r

Qx,y(F (u,Xu)/Xr = z) du

+ 1

1 − r

∫ 1

r

∫ 1

s

Qx,y(F (u,Xu)/Xr = z) duds. (30)
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By the same arguments as above, Qy =: Q(./X1 = y) is a Markovian semi-
martingale. Therefore,

Qx,y(F (u,Xu)/Xr = z) = Qy(F(u,Xu)/X0 = x,Xr = z)

= Qy(F(u,Xu)/Xr = z)

=
∫

R

F(u,w)q(r, z, u,w, 1, y)dw.

Thanks to hypotheses (A),(r, z) �→ βx,y(r, z) belongs to C1,2([0, 1[×R ; R)

and the reciprocal characteristics associated to Qx,y are (1, F x,y), where Fx,y is
derived from βx,y as was F from b in (16). Let us now prove that Fx,y = F for
all x, y ∈ R. From (30) and assumptions (21), the process βx,y(r,Xr) admits a
forward derivative defined by

lim
h→0

Qx,y
(βx,y(r + h,Xr+h) − βx,y(r,Xr)

h
/Fr

)
.

Moreover this derivative is equal to F(r,Xr). Indeed,

lim
h→0

Qx,y
(βx,y(r + h,Xr+h) − βx,y(r,Xr)

h
/Fr

)
= lim

h→0
Qx,y

(Qx,y(U(r + h,X)/Fr+h) − Qx,y(U(r,X)/Fr )

h
/Fr

)
= lim

h→0
Qx,y

(U(r + h,X) − U(r,X)

h
/Fr

)
= y

(1 − r)2
− Xr

(1 − r)2
− lim

h→0
Qx,y

(Xr+h − Xr

h(1 − r)
+ 1

h

∫ r

r+h

F (p,Xp)dp/Fr

)

+Qx,y
(

− 1

1 − r

∫ 1

r

F (p,Xp)dp + 1

(1 − r)2

∫ 1

r

∫ 1

s

F (p,Xp)dpds/Fr

)
= F(r,Xr)

since all the terms of the r.h.s. vanish except − limh→0 Q
x,y( 1

h

∫ r

r+h
F (p,Xp)dp/

Fr )which tends to the desired expression. SinceQ(|βx,y(r,Xr)|) < +∞ andQ(
∫ 1

0|Fx,y(r,Xr)|dr) < +∞, the martingale part of the semi-martingale βx,y(r,Xr)

is a true martingale. This property enables us to identify the forward derivative of
βx,y(r,Xr) with the finite variation part of βx,y(r,Xr) computed by using Ito’s
formula, that is

F(r,Xr) = Fx,y(r,Xr).

The strict positivity of q(0, x, r, z, 1, y) assumed in (A) implies F = Fx,y . This
completes the proof of Theorem 4.3. ✷

Remark 4.5. Let us make some comments about the results of section 4.

– If Q ∈ P(�) belongs to the class R(P̃ ) and satisfies the assumptions of Propo-
sition 4.1, we can see that, as in step 2 of the proof of Theorem 4.3,

Q

(
Xt+h − Xt

h
/Ft

)
= 1

h

∫ t+h

t

βt (r)dr
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where βt is given by (25). Thanks to a result of Föllmer (cf [9], Proposition
2.5), we conclude that for almost every t ∈ [0, 1[, the forward Nelson derivative
defined asd+Xt := L1(�)−limh→0

1
h
E(Xt+h−Xt/Ft ) exists and is equal toβt .

By symmetry we also obtain the existence of d−Xt := L1(�)−limh→0
1
h
E(Xt−

Xt−h/F̂t ).
– Our integration by parts formula enables us to recover a particular case of Theo-

rem 8.1 in [25]: if Q ∈ P(�) is a reciprocal process in the class R(P̃ ), satisfies
the assumptions of Proposition 4.1 and is also such that for all t ∈]0, 1[, the
first and second order derivatives d+Xt, d−Xt, d+d+Xt, d−d−Xt exist then, for
allmost all t ∈]0, 1[,

Q(d+d+Xt/Xt ) = Q(d−d−Xt/Xt ) = F(t,Xt ). (31)

This implies that Q
(

1
2 (d+d+Xt +d−d−Xt)/Xt

)
= F(t,Xt ). The term 1

2 (d+d+
Xt + d−d−Xt) can be interpreted as an acceleration in Stochastic mechanics.
This is why such an equation may be called Newton equation (cf. [27]).

– Krener in [14] has also proved two results of second order nature concerning re-
ciprocal processes. In the first he establishes what he calls “second order Feller
postulates”, which provide a moment estimate of infinitesimal second order in-
crements of the formQ((Xt+h+Xt−h−2Xt)

k/Xt−h,Xt+h). The estimates only
depend on the reciprocal characteristics. In his second result he gives a meaning
to a second order s.d.e. whose coefficients are the reciprocal characteristics. For
details and rigourous statements, we refer the reader to [14].

– As corollary of Steps 1 and 2 of the above proof, we obtain the fact that any
reciprocal process with reciprocal characteristics (1, F ) satisfying assumptions
(21) is a semi-martingale.

5. Application to the periodic Ornstein–Uhlenbeck process

Let us denote by P the law of the real-valued stationary Ornstein-Uhlenbeck pro-
cess, which, for λ > 0 fixed, is the solution of the stochastic differential equation:{

dXt = dBt − λXt dt

X0 ∼ N (0; 1
λ
).

(32)

This is a particular case of the Brownian diffusion P̃ defined in the last section,
taking b independent of time and linear with respect to space. This process is
Markovian, Gaussian, and admits as reciprocal characteristics the function

F(t, x) = λ2 x.

In the present section we are interested in the solution of the following s.d.e.
with periodic boundary conditions:{

dXt = dBt − λXt dt

X0 = X1.
(33)
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This process is called periodic Ornstein-Uhlenbeck process, and we denote its law
by P

per
.

This type of processes has been already studied by several authors with var-
ious motivations. First, Kwakernaak [12] studied the moments of such Gaussian
processes and related filtering problems. Then, the fact that the solution of (33) is
a reciprocal process has been proved from the analysis of the covariance kernel in
[2]. Nevertheless, we propose here an alternative proof of the reciprocal property
of the periodic Ornstein-Uhlenbeck process based on the integration by parts for-
mula (22). Our method enables us to prove that the periodic Ornstein-Uhlenbeck
process is reciprocal, and simultaneously, to identify its reciprocal class. In this
sense, it makes complete, in this very particular case, the result of Ocone and Par-
doux [19], who study the Markov field property of solutions of general linear s.d.e.
with boundary conditions, but without any identification of their reciprocal classes.
We conjecture that our method, which essentially relies on Girsanov theorem, will
extend to more general s.d.e. with boundary conditions than (33) (see [18] for a
description of such a general class).

The method of variation of constants yields the following form for the unique
solution of (33):

Xt = e−λtX0 +
∫ t

0
e−λ(t−s)dBs

=
∫ t

0

e−λ(t−s)

1 − e−λ
dBs +

∫ 1

t

e−λ(1+t−s)

1 − e−λ
dBs

= A(B)t (34)

where A is the map on � defined by:

A(ω)t =
∫ t

0

e−λ(t−s)

1 − e−λ
dωs +

∫ 1

t

e−λ(1+t−s)

1 − e−λ
dωs.

It is then straighforward to verify that X is also the well known hyperbolic
cosine process, i.e. a zero mean Gaussian process with covariance function given
by

Cov(Xs,Xt ) =
cosh

(
λ(|t − s| − 1

2 )
)

2λ sinh( λ2 )
=: R(t, s)

which implies, in particular, that X is stationary.
From the explicit expression ofR it is easy to verify that it solves in a weak sense

the second order partial differential equation − ∂2R

∂t2 (t, s) + λ2R(t, s) = δ(t − s).
Carmichael, Masse and Theodorescu characterize in [2] the covariance of stationary
gaussian reciprocal processes as solutions of such partial differential equations and
in [15], a generalisation to the non stationary case is proved.

Theorem 5.1. The law P
per

of the solution of (33) is a reciprocal process associ-
ated to the stationary Ornstein-Uhlenbeck process, that is in the reciprocal class
R(P ).
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Proof . To prove the theorem we now show that P
per

satisfies the integration by
parts formula (22) with F(t, x) = λ2x. Let g ∈ L2

0(0, 1) and � ∈ S. By definition,

P
per

(Dg�) = P
per

(
lim
ε→0

1

ε
(�(X + ε

∫ .

0
g(s)ds) − �(X))

)

= lim
ε→0

1

ε
P

per
(
�(X + ε

∫ .

0
g(s)ds) − �(X)

)

= lim
ε→0

1

ε

(
P

per

ε (�) − P
per

(�)
)

where P
per

ε is the image of P
per

under the shift on � by the deterministic path
ε
∫ .

0 g(s)ds. It is also the law of the solution of the periodic s.d.e.

{
dXt = dBε

t − λXt dt

X0 = X1
(35)

where Bε
t = Bt + ε

∫ t

0 g̃(s)ds and g̃(s) = g(s) + λ
∫ s

0 g(r)dr. By the method of
variation of constants we deduce that the solution of (35) is equal to A(Bε) in the
same way as the solution of (33) was equal to A(B). We thus have

P
per

(Dg�) = lim
ε→0

1

ε
P

(
(E(εg̃) − 1)� ◦ A

)

where P is the Wiener measure and E(εg̃) denotes the Girsanov density:

E(εg̃) = exp
( ∫ 1

0
εg̃(s)dBs − ε2

2

∫ 1

0
g̃2(s)ds

)
.

Therefore

P
per

(Dg�) = P
( ∫ 1

0
g̃(s)dBs � ◦ A

)
.

We can now go back to an expectation under P
per

for the right-hand side using
again the fact that A(B) = X solves P

per
-a.s. equation (33). This yields

P
per

(Dg�) = P
per

(
�(X)

( ∫ 1

0
g̃(s)dXs +

∫ 1

0
g̃(s)λXsds

))
.

It remains to substitute for g̃(s) into its expression g(s) + λ
∫ s

0 g(r)dr and to

show that
∫ 1

0

∫ s

0 g(r)dr dXs + ∫ 1
0 g(s)Xs ds vanishes. Fubini’s theorem applies to

the double integral since P
per ∫ 1

0 |Xs |ds < ∞. We thus obtain that

∫ 1

0

∫ s

0
g(r)dr dXs +

∫ 1

0
g(s)Xs ds = X1

∫ 1

0
g(r)dr = 0.

This completes the proof. ✷
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The law P
per

of the periodic Ornstein-Uhlenbeck process being in R(P ) it
admits the following decomposition P

per = ∫
P

x,y
µ(dx, dy) where µ is the law

of (X0, X1) under P
per

. Here µ is supported by the diagonal. Thus

P
per =

∫
P

x,x
m(dx)

where m is the law of X0 under P
per

, equal to N (0; 1
2λ coth( λ2 )). In this simple

case, it is possible to explicit the semi-martingale decomposition of the bridgeP
x,x

,
since it solves the following s.d.e.

{
dXt = dBt − λXt dt + λ

sinh(λ(1−t))
(x − e−λ(1−t)Xt )dt

X0 = x.
(36)

Indeed the additional term in the drift of P
x,x

with respect to the drift of P is
equal to ∂

∂z
logp(t,Xt , 1, x) where p(t, z, 1, .) is the density of the Gaussian law

P(X1 ∈ ./Xt = z). To compute this density it is sufficient to compute E(X1/Xt =
z) and E(X2

1/Xt = z), which come directly from the equality:

X1 = e−λ(1−t)Xt +
∫ 1

t

e−λ(1−s)dBs.

This completes the description of the desintegration of P
per

into bridges.
Let us also mention the work of Recoules who proved in [20] that P

per
is the

law of the process solution of

{
dXt = dBt − λ

(
X0

sinh(λ(1−t))
− Xt

tanh(λ(1−t))

)
dt

X0 ∼ N (0; 1
2λ coth( λ2 )).

(37)

Let us notice that equation (37) is a randomized version, for X0 no longer deter-
ministic, of equation (36), which exactly reflects at the level of the semi-martingale
property the above desintegration

P
per =

∫
P

x,xN (0; 1

2λ
coth(

λ

2
))(dx).

Under P
per

, F0 is not degenerated and the drift of X at time t in (37) is a function
of (X0, Xt ). So P

per
is not Markovian while clearly P

x,x
is Markovian.

From the point of view of entropy, Recoules remarked also that P
per

is, among
Gaussian stationary periodic processes, the unique one which minimizes the Kull-
back information with respect to the Brownian bridge with initial law N (0; 1

λ2 ).
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