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Abstract. In this article, we study the asymptotic dynamics of a noisy discrete time neural
network, with random asymmetric couplings and thresholds. More precisely, we focus our
interest on the limit behaviour of the network when its size grows to infinity with bounded
time. In the case of gaussian connection weights, we use the same techniques as Ben Arous
and Guionnet (see [3]) to prove that the image law of the distribution of the neurons’ acti-
vation states by the empirical measure satisfies a temperature free large deviation principle.
Moreover, we prove that if the connection weights satisfy a general condition of domination
by gaussian tails, then the distribution of the activation potential of each neuron converges
weakly towards an explicit gaussian law, the characteristics of which are contained in the
mean-field equations stated by Cessac-Doyon-Quoy-Samuelides (see [4–6]). Furthermore,
under this hypothesis, we obtain a law of large numbers and a propagation of chaos result.
Finally, we show that many classical distributions on the couplings fulfill our general condi-
tion. Thus, this paper provides rigorous mean-field results for a large class of neural networks
which is currently investigated in neural network literature.

1. Introduction

The dynamics of large random neural networks and their relations to particle sys-
tems as spin glasses has been investigated by numerous biologists, physicists and
mathematicians in the recent past. An important scope of this research is to obtain
the convergence of the distribution of the neuron activation potentials to a gaussian
law when the size of the system grows to infinity. The equations describing this
limit law are called the mean-field equations.

Amari can be considered as the initiator of the mean-field theory of random
recurrent neural networks. In [1], he stated a kind of central limit property which
allows to compute the empirical mean of a function of individual neuron state from
the empirical mean and the empirical variance of neuron state. His justification re-
lies on a so-called “Boltzmann property” concerning the asymptotic independance
of the individual activation potentials. Then, he managed to derive a mean-field
equation in a continuous-time framework. Later, Amari et al. [2] focused their
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interest on statistical neurodynamics in discrete time neural networks. Their pa-
per contains some interesting neural models, either with several populations or
including neurons with a refractory period. It presents useful concepts, such as a
propagation of chaos definition, and a precise framework relative to some conver-
gence properties in these networks. Moreover, their work is dedicated to the study
of the asymptotic behaviour of the mean activity level for various well normalized
connection weights. They obtained many convergence results, but unfortunately,
their argument relies heavily on a normalization hypothesis of interaction random-
ness, namely the connection weights are supposed to have variance of order 1

N2 ,
where N is the size of the network. They also noticed the importance of finite time
bounds to derive asymptotic results when the size of the networks goes to infinity.
Furthermore, Geman (see [12] and [13]) proved a law of large numbers and a central
limit theorem, in particular cases, and notably for linear models with asymmetric
couplings, which variance is of order 1

N
and which might be not gaussian. Geman

pointed out that the interesting case is the normalization condition of order 1/N for
variance of the connection weights in a large random neural network but he failed
to obtain the proof of mean-field equations in spite of “simulation evidence” for
the dynamics of such networks.

Further, Sompolinsky et al. [17, 7] used non rigorous statistical physics methods
to obtain the mean-field equations and to study the dynamic properties of continous-
time networks in case of asymmetric interactions. Cessac et al. [6] used the same
approach for discrete time models and numerically showed the general occurence
of chaos by a quasi-periodicity route in large size networks. It is stated in [5] that
this chaotic regime can be described in the thermodynamic limit by the mean-field
equations. The mean field equations are considered in these papers and in others
as a key result but a clear proof is still missing. Our purpose is to give a rigorous
proof for these basic equations. Furthermore, the convergence obtained with the
large deviation techniques is stronger than the previously stated law convergence.
It allows us to use Borel-Cantelli’s lemma to obtain almost sure convergence prop-
erties, and to infer our results about some more general large neural networks, the
couplings of which are not necessarily gaussian.

The first part of our demonstration uses the method developed by Ben Arous and
Guionnet in [3]. In that paper, they showed many results in a continous time spin
glass context. Contrary to most of the physicists, and more recently mathematicians
[15], who focused their interest on the symmetric models, Ben Arous and Guionnet
considered here asymmetric interactions. Their couplings are gaussian and centered.
They proved thatπN , the averaged law of the spin’s empirical measure on path space
of these dynamics satisfies a large deviations principle in the high temperature
regime. The study of the rate function, which admits a unique minimum, and the
tightness obtained by Guionnet [15] allowed them to compute the weak convergence
of the law of every spin towards a measure given by an implicit equation. Thanks
to this measure tightness, they did not have any temperature condition for their
“propagation of chaos result”, which is the mathematically rigorous version for the
vanishing correlations of activations states in densely connected recurrent networks.
They nevertheless keep this temperature condition to get a quenched law of large
numbers for the empirical measure ([3], Theorem 2.8), the proof of which requires
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a Borel-Cantelli’s argument and uses the exponentially fast convergence given by
the large deviations principle.

As in [3], our whole proof is built on the effective presence of a gaussian noise,
which is essential, although it might be very small. Although these equations might
remain true without any noise, our demonstration uses a comparison between the
global law of the neurons and the distribution of the noise, which is therefore nec-
essary. In [14], a large deviation principle is proved with a jump noise which leads
to Glauber-type dynamics. The consideration of jump noise may be interesting for
investigating spiking neuron network dynamics. In this paper we consider analog
neurons and a gaussian noise for synaptic summation. The presence of the sigmoid
function and of not centered connection weights in our model leads to some tech-
nical difficulties, but does not have any influence on the general organization of the
demonstration. Moreover, in our discrete time context, we have finite dimensional
gaussian properties which lead to the exponential tightness of the equivalent of the
family πN . Therefore, we obtain a large deviation principle and a law of large num-
bers without any temperature condition. Furthermore, the unique minimum of the
rate function is given explicitly, so that we can compute the weak convergence of the
law of each activation potential towards a gaussian distribution, the characteristics
of which are the mean-field equations.

Our most important result will be to extend these properties for connection
weights which are not supposed to be gaussian. Then, although we will not get a
large deviations principle, we will deduce from the gaussian case an exponentially
fast convergence, and we will therefore be able to infer some almost sure conver-
gence properties. We will also obtain the propagation of chaos and a complete proof
of the mean-field equations for these networks. Yet, these results will only be ob-
tained under a domination condition by a gaussian tail for the law of the connection
weights. We will show further that (C) is fulfilled if the couplings distribution is a
well normalized scaling law with bounded support, and in particular if it is uniform
or discrete. Moreover, we will prove that this condition remains stable by mixing,
so that it is satisfied if the connection weights are the products of two particular
independent random variables, where the first one satisfies the condition, and the
second one is a Bernoulli random variable.

Therefore, our model and our results apply to large size diluted neural networks,
which are closer to the brain biology than the fully connected ones.

The presentation of the model and the most important results will be given in
section 2.

In section 3, we will suppose that the connection weights are gaussian and prove
the large deviations principle. Moreover, we will deduce that the minima of the rate
function are the fixed points of an operator L. We will then show that L admits a
unique fixed point.

In section 4, the connection weights are not supposed to be gaussian. We will
compare the law of the activation potentials of the neurons with the equivalent distri-
bution in the gaussian case. We will then use the exponential convergence obtained
in section 3 and a Lindeberg’s argument to deduce our convergence properties and
the mean-field equations.
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Lastly, in in the appendix, we will check the equivalence of the domination by
gaussian tails with a more technical condition which is used in section 4 and we
will show that these conditions are fulfilled for a large class of recurrent random
neural network models.

2. The model and the main results

We begin by describing the dynamics of the neural networks model. It is a discrete-
time dynamics which relies on the formal neuron modelization of Mac Culloch
and Pitts. Let N be an integer greater than 1. Integer j between 1 and N labels the
generic neuron of the network. According to the formal neuron model, the state of
a single neuron j at time t is described by its activation potential which is a real
variable (uj )t and its activation state (xj )t which is primarily a binary variable.
The activation potential (uj )t is the algebraic sum of the weighted activation states
of input neurons at previous time t − 1 and of a reference threshold θj .

(uj )t =
∑
i

Jji(xi)t−1 + θj

The weights Jji of the sum are called the synaptic weights. In this paper, the set of
variable (Jji, θj ) is fixed along time. They are called the quenched variable. The
activation state of a Mac-Culloch and Pitts formal neuron is just given by thresh-
olding the activation potential. The neuron is said to be active and it “discharges”
when its activation potential is positive:

(xj )t = 1R+ [uj,t ]

We shall use the common averaging approximation of the discharge rate by smooth-
ing the thresholding function and replacing the previous relation by

(xj )t = f ((uj )t )

where f is a sigmoid function, (xj )t may be interpreted as a mean discharge rate
between time t and time t + 1. (For more details on neural networks one may refer
to the excellent engineering textbook [16]). Mathematically speaking, f may be any
continuous increasing bijection of R onto ]0, 1[. For instance, one may choose

f (u) = 1 + tanh(u)

2

Furthermore, we shall consider a discrete-time synaptic Gauss white noise [(Bj )t ]
contributing to the formation of the activation potential. The (Bj )t are random
centered normal i.i.d. variable of standard deviation σ . We suppose that σ > 0.
Our study does not take the case σ = 0 into account. Therefore the evolution
equation from time t − 1 to time t is

(Xj )t = f

(
N∑
i=1

Jji(Xi)t−1 + (Bj )t + θj

)
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The activation potential of the neuron j at time t is denoted by (Uj )t = f−1((Xj )t ).
If µ is a probability law on R

n, we shall note µf or by µ̃ to shorten notation its
image law on ]0, 1[n by the application which maps the vector (uj )j into (f (uj ))j .
Since we are dealing with asymmetric random recurrent neural networks, we con-
sider that for 1 ≤ i, j ≤ N , the weights Jji are i.i.d. random variables. Their

common law is noted νN
J with expectation J

N
and variance J 2

N
. For some technical

resaons we suppose in this paper that J = 0 ⇒ J = 0. If J = J = 0, we will note
J
J

= 0. In a neural network context, it’s important to consider not centered weights
because it allows to anticipate the behavior of large assemblies of excitatory or
inhibitory neurons. For some technical reasons, we suppose in this whole article
that J = 0 ⇒ J̄ = 0. If J = J̄ = 0, we will note J̄

J
= 0. In a neural network

context, it’s important to consider non centered couplings, because it allows one to
anticipate the behavior of large assemblies of excitatory or inhibitory neurons.

Moreover, we suppose that the law νN
J of these couplings satisfies the following

technical condition, which is denoted by (C) in this whole article :

∃a > 0, ∃D0 > 0,∀N ≥ 1,∀J1, independent random variable with law νN
J ,

E
(
exp[aN(J1)

2]
)

≤ D0

Notice here that this condition is satisfied if νN
J is a gaussian distribution, or

more generally when its mass taken outside any compact is dominated by a gaussian
law.

We prove in the appendix that (C) is equivalent to the apparently stronger
condition (C’) :

∃a > 0, ∃D0 > 0,∀N ≥ 1,∀k ≤ N,∀(J1, .., Jk), independent random vari-
ables with law νN

J , ∀(λ1, .., λk) ∈ [0, 1]k,

E

(
exp[

aN

k
(λ1J1 + .. + λkJk)

2]

)
≤ D0

For 1 ≤ j ≤ N , we are considering the θj , which are independent, identi-
cally distributed random variables, with law N (θ̄ , τ 2). These variables represent
thresholds in the activation dynamics of the neural network.

The stochastic specification of the network evolution will be completed by the
definition of the initial law of the neural network activation state [(Xj )0]. We sup-
pose the random variables (Xj )0 are i.i.d. with law µ0. We note (!,A, γ ) the
probability space of interest and we shall study the distribution of the random vari-
ables (Xj )t for 1 ≤ j ≤ N and for O ≤ t ≤ T which represent the activation states
of the neurons between time O and time T and which take their values in [0, 1].

Let P = µ0 ⊗ (N (θ̄ , σ 2IT )f
−1) be the product measure of µ0 by N (θ̄ , σ 2IT )

f−1. Actually, P is the law on (]0, 1[[[ 0,T ]]) obtained by supposing that there is no
interaction between the neurons (Jij=0), and that the thresholds are constant and
equal to their mean θ̄ .

QN is the law of X = ((Xj )t )1≤j≤N,0≤t≤T under γ , and Q̃N the law of
U = ((Ui)t )1≤i≤N,0≤t≤T .
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We consider the empirical measure :

µ̂N : ((]0, 1[[[ 0,T ]])N) −→ M+
1 (]0, 1[ [[ 0,T ]])

µ̂N (x) = 1

N

N∑
i=1

δxi

where M+
1 (]0, 1[ [[ 0,T ]]) represents the metric space made up of all the prob-

abilities on ]0, 1[{0,..,T } endowed with the Vaserstein distance [11].
Our purpose is to study the averaged behaviour of this empirical measure under

QN .
Let πN be the image law of QN by µ̂N . Thus, we have :

∀B ∈ B(M+
1 (]0, 1[ [[ 0,T ]])), πN(B) = QN(µ̂N ∈ B)

We are now able to express the most important results :

Theorem 2.1. We suppose here that the Jij are gaussian. Then, the family πN

satisfies a strong large deviations principle when N grows to infinity. We note H

its rate function.

For µ ∈ M+
1 (]0, 1[ [[ 0,T ]]) and 1 ≤ t, s ≤ T , we consider :

(Kµ)t,s = J 2
∫

xt−1xs−1dµ + τ 2

c
µ
t = J̄

∫
xt−1dµ

Let (Gµ
t )1≤t≤T be a random gaussian vector with covariance matrix Kµ and mean

cµ.
We prove that a non linear function L from M+

1 (]0, 1[ [[ 0,T ]])to itself can be
defined by :

dL(µ)

dP
(x) =

∫
exp[

1

σ 2

T∑
t=1

G
µ
t (f

−1(xt ) − θ̄ ) − 1

2σ 2

T∑
t=1

(G
µ
t )

2]dγ

Then, we have, if the Jij are gaussian :

Theorem 2.2. H admits a unique minimum Q, which is the unique fixed point of
L. Q is given by Q = LT (µ

⊗(T+1)
0 ). Moreover, for 0 ≤ t ≤ T , if Qt is the solution

of the problem on [0, t], and Ft = σ(xs)0≤s≤t , then Qt = Q/Ft

Notice here that LT represents L iterated T times.

From now on, we are not supposing that the Jij are gaussian any more.

Then we have the following important result :
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Theorem 2.3. We suppose that assumption (C) is satisfied by the couplings distri-
bution. Let β > 0. Then :

lim sup
1

N
ln
(
πN(B(Q, β)c)

)
< 0

In particular, πN converges weakly towards δQ.

Note thatQ is the limit law previously obtained in the gaussian case. This proves
that whatever couplings we consider, πN converges weakly towards the same limit.
This is quite easily understandable, as the main argument of the demonstration is
directly related to Lindeberg’s theorem and therefore to central limit ideas.

The proof of this last theorem can be deduced from the large deviations principle
that we obtained with gaussian couplings. This theorem gives an exponentially fast
convergence, which enables us to infer many properties, as in [3].

The first one is a propagation of chaos result, deduced by using the symmetry
properties of QN as in [19, 3].

Theorem 2.4. ∀k ∈ N, for any bounded continuous functions f1,...fk from
(]0, 1[[[ 0,T ]])to R, we have :

lim
N→+∞

∫
[f1(x1)...fk(xk)]dQ

N =
k∏

i=1

∫
fi(x)dQ(x)

Moreover, we deduce the following law of large numbers. In our discrete time
context, there is no large temperature/short time condition for this property :

Theorem 2.5. For any N ∈ N, let (xk,N )1≤k≤N be a family of random variables,
chosen so that the law of (x1,N , ..xN,N) is QN . Let g be a bounded continuous
function on (]0, 1[[[ 0,T ]]). Then for γ -almost all ω,

lim
N→+∞

1

N

N∑
i=1

g(xi,N )(ω) =
∫

gdQ

It is then possible to deduce the mean-field equations for the network dynamics
in the asymptotics of large networks. Let X = (Xt )0≤t≤T , be a process with law
Q. One can deduce from 2.4 that every Xi converges weakly towards X. Let Q̃ be
the image law from Q by f−1. Q is a probability on (]0, 1[[[ 0,T ]]), while Q̃ is a
probability on R

[[ 0,T ]].
Let U = (Ut )0≤t≤T be a process with law Q̃. Each Ui converges weakly

towards U . For 1 ≤ t ≤ T . The mean of Ut in noted µ̄(t), and its variance ν(t).
For 1 ≤ t, s ≤ T , let 4(t, s) be the covariance between Ut and Us . Moreover, for
0 ≤ t ≤ T , m(t) is the mean of Xt , and q(t) its order-two moment. We finally note
dλ(h) = 1/

√
(2π)exp(−h2/2)dh. If µ̄ = (µ̄(t))1≤t≤T , we have :
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Theorem 2.6. 1)
Q = µ0 ⊗ [N (µ̄,4)f ]

2) Moreover :

m(0) =
∫ 1

0
x0dµ0(x0)

q(0) =
∫ 1

0
(x0)

2dµ0(x0)

for 1 ≤ t ≤ T ,
µ̄(t) = θ̄ + J̄m(t − 1)

ν(t) = τ 2 + J 2q(t − 1) + σ 2

m(t) =
∫ +∞

−∞
f (
√
ν(t)h + µ̄(t))dλ(h)

q(t) =
∫ +∞

−∞
f 2(

√
ν(t)h + µ̄(t))dλ(h)

for 2 ≤ t, t ′ ≤ T and t �= t ′ :

4(t, 1) = J 2m(0)m(t − 1) + τ 2

4(t, t ′) = J 2C(t − 1, t ′ − 1) + τ 2

where for 1 ≤ t, t ′ ≤ T − 1,

C(t, t ′) =
∫ ∫

f

(√
ν(t)ν(t ′) − 42(t, t ′)√

ν(t ′)
h + 4(t, t ′)√

ν(t ′)
h′ + µ̄(t)

)

×f (h′√ν(t ′) + µ̄(t ′))dλ(h)dλ(h′)

One must remember that these mean-field equations, which were stated without
noise in [6] and in [5], are used to draw a bifurcation diagram for mean-field long-
time asymptotic regime.

3. The large deviations principle for gaussian couplings

We are supposing in this whole section that the connection weights are gaussian.
Some results in this section are supported by proofs which are similar to the ones
obtained by Ben Arous and Guionnet. We will often omit them. One might find the
whole detailed proof in [8].

Definitions. We note:

IT is the identity matrix of size T × T

Aµ = Kµ(σ 2IT + Kµ)−1

V (x) = (f−1(xt ) − θ̄ )1≤t≤T

;1(µ) = − 1
2 ln[det (IT + 1

σ 2 K
µ)]
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;2(µ) = 1

2σ 2

∫
(]0,1[[[ 0,T ]])

(
t (V (x) − cµ)Aµ(V (x) − cµ) + 2 tV (x)cµ

)
dµ(x)

− 1

2σ 2
||cµ||2

with

||cµ||2 =
T∑

t=1

(c
µ
t )

2

; = ;1 + ;2

We will note dT , the Vaserstein distance on (]0, 1[[[ 0,T ]]). It is a distance which
is compatible with the weak topology (see [11], theorem 2).

We have :

dT (µ, ν) = inf
ξ∈Eµ,ν

√∫
sup

0≤t≤T

|xt − yt |2dξ(x, y)

where the infimum is taken on the set Eµ,ν of the laws ξ on (]0, 1[[[ 0,T ]]) ×
(]0, 1[[[ 0,T ]]) with marginals µ and ν.

For 1 ≤ t ≤ T , dt is the Vaserstein distance on M+
1 (]0, 1[ [[ 0,t ]]). To simplify

the notations, we will still denote by dt (µ, ν) the Vaserstein distance between the
two marginals on (]0, 1[ [[ 0,t ]]) of two given measures µ and ν in M+

1 (]0, 1[ [[ 0,T ]]).

3.1. Important preliminaries

We have the following first property :

Proposition 3.1. We obtain :
(a) ;2 is well defined from M+

1 (]0, 1[ [[ 0,T ]])into R ∪ {+∞}. Moreover, ∀µ ∈
M+

1 (]0, 1[ [[ 0,T ]]),

;2(µ) ≥ −T J̄ 2
(

1

2σ 2
+ 1

2J 2

)
(b) ∀µ ∈ M+

1 (]0, 1[ [[ 0,T ]]),

;1(µ) = ln{
∫

exp[− 1

2σ 2

T∑
t=1

(G
µ
t − c

µ
t )

2]dγ }

(c) ;1is a bounded Lipschitz function.
(d) We have the following expression :

;(µ) =
∫

ln{
∫

exp[
1

σ 2

T∑
t=1

G
µ
t (f

−1(xt ) − θ̄ ) − 1

2σ 2

T∑
t=1

(G
µ
t )

2]dγ } dµ(x)
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The first step is to check (a).
We consider

h(x) =t (V (x) − cµ)Aµ(V (x) − cµ) + 2 tV (x)cµ

We study h(x) :
Let’s diagonalize Kµ and Aµ in the same orthonormal basis. Let D and 4 be

diagonal matrices, and O be orthogonal, so that :

Kµ = O−1 D O

Aµ = O−1 4 O

with

4tt = Dtt

σ 2 + Dtt

We set W(x) = O.V (x) and we get:

h(x) =
T∑

t=1

(
4ttWt (x)

2 + 2(1 − 4tt )Wt (x)(Ocµ)t + 4tt (Ocµ)2
t

)
Therefore

h(x) =
∑

4tt �=0

4tt

([
Wt(x) + (Ocµ)t (1 − 4tt )

4tt

]2

− (Ocµ)2
t (1 − 24tt )

42
t t

)

+ 2
∑

4tt=0

Wt(x)(Ocµ)t

Remark that

Dtt = (OKµ tO)tt ≥ J 2
∫ (

T∑
s=1

Otsxs−1

)2

dµ

Cauchy-Schwartz inequality gives

(Ocµ)2
t ≤ J̄ 2

J 2
Dtt

Then, if 4tt = 0, we obtain Dtt = 0 and therefore (Ocµ)t = 0
Moreover, if 4tt �= 0,

(Ocµ)2
t

4tt

≤ J̄ 2σ 2

J 2(1 − 4tt )

We can thus infer the following inequality :

h(x) ≥ −
(
T J̄ 2σ 2

J 2

)
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This achieves the proof of property (a). Notice that the hypothesis (J = 0 ⇒
J̄ = 0) was necessary to obtain this property.

The following gaussian lemma is useful in this whole paper, and is of great help
to prove the other assertions of 3.1 :

Lemma 3.2. Let X be a gaussian vector taking its values into R
T , with mean c and

covariance K. Let a ∈ R
T , and b ∈ R. We suppose that all the eigenvalues α of K

satisfy αb > −1. We note

A = K(IT + bK)−1

Then :

E[exp( taX − b

2
||X||2)]

= 1√
det (IT + bK)

.exp

(
t ac − b

2
||c||2 + 1

2
t (a − bc)A(a − bc)

)

Thus, from this lemma, we can deduce assertions (b) and (d) of 3.1 through
straightforward computations.

The demonstration of (c) is nearly the same as in lemma 3.3 of [3]. �

One consequence of this proposition is that ; is well defined, taking its values
into R ∪ {+∞}. We are now able to define the function H , which will be the rate
function of the large deviations principle :

For any µ in M+
1 (]0, 1[ [[ 0,T ]]), we note :

H(µ) = I (µ, P ) − ;(µ)

where I (µ, P ) represents the relative entropy with respect to P, i.e :

I (µ, P ) =
∫

ln(
dµ

dP
)
dµ

dP
dP ifµ � P

Otherwise, I (µ, P ) = +∞.

We have the three following properties, the demonstrations of which are similar
to the ones obtained in [3] (see lemma 3.3 and theorem 3.1) :

Proposition 3.3. (a) ∀µ ∈ M+
1 (]0, 1[ [[ 0,T ]]), ;(µ) ≤ I (µ, P ), i.e H ≥ 0.

(b) There exists real constants e > 1 and f > 0, such that

∀µ ∈ M+
1 (]0, 1[ [[ 0,T ]]), ;(µ) ≤ (I (µ, P ) + f )

e

(c) H is lower semi-continuous.

The next lemma represents the center of the proof.
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Lemma 3.4.
dQN

dP⊗N
= exp

(
N;(µ̂N(x))

)
Demonstration. Remember that we denote by P̃ N (J, θ) the conditional law of
the ((Ui)t )1≤i≤N,0≤t≤T for fixed (Jij , θj )1≤i,j≤N . The image law of P by f−1 is
denoted by P̃ .

Note that:

Q̃N =
∫

RN2+N

P̃ N(J, θ)dν(J, θ)

where ν is the gaussian distribution of (Jij , θj )1≤i,j≤N .

For any u ∈ (R[[ 0,T ]])N , we are interested in

dP̃ N(J, θ)

dP̃⊗N
(u)

For 1 ≤ t ≤ T and 1 ≤ j ≤ N , we consider :

(Yj )t = (Bj )t + θ̄

To simplify the notations, we will denote the vector ((u1)0, ..., (uN)0) by (u)0.
For any fixed (J,B, (u)0) we consider C(J,B,(u)0), defined from R

NT to R
NT

by :
C(J,B,(u)0)((u1)1, ...(uN)T ) = ((y1)1, ...(yN)T )

so that

(yj )t = (uj )t −
N∑
i=1

Jjif ((ui)t−1) − θj − θ̄

Let g be a continuous bounded function.
We note :

S = E (g((U1)0, ..., (UN)T )/(J,B))

We have :

S = E
(
g
(
(U1)0, ..., (UN)0, C

−1
(J,B,(U)0)

((Y1)1, ...(YN)T )
)
/(J,B)

)
As ((Yj )t )1≤j≤N,1≤t≤T and (U)0 are independent from (J,B), we obtain :

S =
∫

g
(
(u)0, C

−1
(J,B,(u)0)

((y1)1, .., (yN)T )
) N∏

i=1

T∏
t=1

exp − 1

2σ 2
((yi)t − θ̄ )2

×d(y1)1..d(yN)T dµ
⊗N
0

(σ
√

2π)NT

Using the change of variables
((y1)1, ...(yN)T ) → ((u1)1, ..(uN)T ) = C−1

J,B,(u)0
((y1)1, .., ((yN)T ),
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we get:

A = 1

(σ
√

2π)NT

∫
RN

dµ⊗N
0 ((u)0)

(∫
RNT

g((u1)0, .., (uN)T )exp

× (−1

2
E((u1)1, .., (uN)T ))du

1
1..du

N
T

)
with

E((u1)1, ..(uN)T ) = 1

σ 2

T∑
t=1

N∑
j=1

(
(uj )t −

N∑
i=1

Jjif ((ui)t−1) − θj − θ̄

)2

For any fixed u and j, we now consider :

(Gj )t (f (u)) =
N∑
i=1

Jjif ((ui)t−1) + θj

Therefore, we have :

dP̃ N(J,B)

dP̃⊗N
(u) = h(u)

where

h(u) = h((u1)0, ..(uN)T ) = exp
1

σ 2

 T∑
t=1

N∑
j=1

(
((uj )t − θ̄ )(Gj )t − 1

2
((Gj )t )

2
)

It follows that :

dQ̃N

dP̃⊗N
(u) = E (h(J,B, u)) =

∫
h(J,B, u)dν(J,B)

For any fixed j andu, one should notice that the distributions of the two gaussian
vectors Gj(u) and Gµ̂N(f (u)) are the same (their means and covariances are equal).

Using the independence of the (Gj )
′s, we deduce :

dQ̃N

dP̃⊗N
(u) =

N∏
j=1

E

[
exp

1

σ 2

(
T∑

t=1

G
µ̂N(f (u))
t ((uj )t − θ̄ ) − 1

2
(G

µ̂N (f (u))
t )2

)]

Therefore :
dQ̃N

dP̃⊗N
(u) = exp

(
N;(µ̂N(f (u)))

)
Finally, we get

dQN

dP⊗N
= exp

(
N;(µ̂N(x))

)
. �
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3.2. Proof of the large-deviations principle

We now need to prove that ; is lower semi-continuous. Thanks to 3.1, we already
know that ;1 is continuous, so that we only have to show that ;2 is lower semi-
continuous which is given by the application of [3].

More precisely, for any M > 0, we consider

;M
2 (µ) = 1

2σ 2

∫
1(||V (x)||≤M)

(
t (V (x) − cµ)Aµ(V (x) − cµ) + 2 tV (x)cµ

−||cµ||2 + d
)
dµ(x) − d

where

d = T J̄ 2
(

1

2σ 2
+ 1

2J 2

)
so that the function defined under the integral is always positive (see proposition
3.1(a)).

First, for any µ ∈ M+
1 (]0, 1[ [[ 0,T ]]), we have

|(Kµ)ts − (Kν)ts | ≤ 2J 2dT−1(µ, ν)

This implies that µ → Kµ and therefore µ → Aµ are Lipschitz functions.
Moreover, µ → cµ is Lipschitz too.

We now deduce that ;M
2 is continuous :

Let µ ∈ M+
1 (]0, 1[ [[ 0,T ]]) be a given probability and µn ∈ M+

1 (]0, 1[ [[ 0,T ]])

be supposed to converge weakly towards µ.
We consider :

φ(µ, x) = 1

2σ 2
1(||V (x)||≤M)

(
t (V (x) − cµ)Aµ(V (x) − cµ) + 2 tV (x)cµ

−||cµ||2 + d
)

Thus, we have :

|;M
2 (µ) − ;M

2 (µn)| ≤ |
∫

φ(µ, x)dµ −
∫

φ(µ, x)dµn|

+|
∫

φ(µ, x)dµn −
∫

φ(µn, x)dµn|

The weak convergence of µn towards µ implies that the first term converges to
0 when n grows to infinity. As µ → Aµ and µ → cµ are lipschitz, we can compute
that there exists a real constant F , which does not depend on x and n, such that :

|φ(µ, x) − φ(µn, x)| ≤ FdT (µn, µ)

We are now able to conclude that ;M
2 is continuous.

Therefore, as for any µ ∈ M+
1 (]0, 1[ [[ 0,T ]]), ;M

2 (µ) grows to ;2(µ) when M
grows to infinity, we obtain that ;2 is lower semi-continuous. �

Hence :
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Lemma 3.5. ;is lower semi-continuous

It is from this property that we are going to infer the first part of the large
deviations principle :

Proposition 3.6. If O is an open set in M+
1 (]0, 1[ [[ 0,T ]]), then :

− inf
O

H ≤ lim inf
1

N
lnπN(O)

Proof. Let RN be the image law of P⊗N by µ̂N . Sanov’s theorem allows one to
assert that the familyRN satisfies a large deviation principle with good rate function
µ → I (µ, P ). Because of lemma 3.4, we have :

πN(O) =
∫
O

exp (N;(µ)) dRN(µ)

As ; is lower semi-continuous, we are able to conclude the demonstration by
using a Varadhan’s argument (see [10], thm 2.1.7). �

Remark that the large deviations principle we are proving is derived from the
one satisfied by the noise, the importance of which is thus underlined.

We now use the explicit expression of ; to obtain the exponential tightness
without any temperature condition. We first give a gaussian lemma which will be
very useful :

Lemma 3.7. Let X be a gaussian vector, with covariance K and mean c, taking its
values in R

T . Let otherwise a ∈ R
T , and b ∈ R

+. The eigenvalues of the matrix
K are denoted by (λ1, ..λT ) We consider λ = sup |λi |.Then :

E

(
exp(taX − b

2
||X||2)

)
≤ exp( tac − b

2
||c||2)exp

(
λ||a − bc||2
2(1 + λb)

)
Therefore, we are able to deduce that :

Lemma 3.8.

∃α > 1, sup
N

(∫
exp(αN;(µ̂N))dP⊗N

) 1
N

< ∞

For 1 ≤ j ≤ N , we note :

bj (x) =
∫

exp
1

σ 2

T∑
t=1

(
G

µ̂N(x)
t Vt (xj ) − 1

2
(G

µ̂N (x)
t )2

)
dγ

The largest eigenvalue of matrix Kµ̂N(x) is smaller than T (J 2 + τ 2).
We consider α > 1, such that

β = αT (J 2 + τ 2)

σ 2 + T (J 2 + τ 2)
< 1



56 O. Moynot, M. Samuelides

As a direct consequence of lemma 3.7, we get:

bj (x) ≤ exp

[
1

2ασ 2

T∑
t=1

(
β(Vt (xj ) − c

µ̂N (x)
t )2 + 2αVt (xj )c

µ̂N (x)
t − α(c

µ̂N (x)
t )2

)]

As |cµ̂N (x)
t | ≤ |J̄ |, we deduce :

(bj (x))
α ≤ exp

1

2σ 2

T∑
t=1

(
β(Vt (xj ))

2 + 2(α − β)|J̄ Vt (xj )|
)

Therefore, we can find a real constant C such that :∫
exp(αN;(µ̂N(x)))dP⊗N(x) ≤

N∏
j=1

T∏
t=1

∫
exp

1

2σ 2

(
(β−1)((uj )t )

2+C|(uj )t |
)

×d(uj )t

σ
√

2π

This achieves the proof. �

We obtain :

Proposition 3.9. The family πN is exponentially tight.

We use the same ideas as in [3] (see page 471). We recall them here. Let α > 1
be the real constant obtained in the previous lemma.

We consider δ = 1− 1
α

. Hölder’s inequality gives : ∀B ∈ B(M+
1 (]0, 1[ [[ 0,T ]])),

πN(B) ≤ RN(B)δ.exp(
CN

α
)

We know by Sanovs’ exponential tightness property that, for any L > 0, there
is a compact set KL such that :

lim sup
n→+∞

1

N
ln(RN(Kc

L)) ≤ −L

Therefore, for any L > 0, we just have to take KL+C/α
δ

to obtain the tightness.
�

Proposition 3.10. For any compact set K of M+
1 (]0, 1[ [[ 0,T ]]):

lim sup
1

N
ln(πN(K)) ≤ −infH

See Lemma 3.8 of [3] to get the ideas of the proof, or [8] to obtain all the details.
Gathering 3.8, 3.9 and 3.10, and remarking that H is a good rate function because

of 3.3 (b), we can achieve the proof of Theorem 2.1. �



Asymmetric random recurrent neural networks 57

3.3. The minima of the rate function

We recall here that for any µ ∈ M+
1 (]0, 1[ [[ 0,T ]]), L(µ) is the probability defined

on M+
1 (]0, 1[ [[ 0,T ]]) by :

dL(µ)

dP
(x) =

∫
exp[

1

σ 2

T∑
t=1

G
µ
t (f

−1(xt ) − θ̄ ) − 1

2σ 2

T∑
t=1

(G
µ
t )

2]dγ

Note that L is well defined because Fubini’s theorem and first integration with
respect to P imply :

∫
dL(µ)

dP
(x)dP (x) =

∫
exp

(
1

2σ 2

T∑
t=1

(G
µ
t )

2

)
.exp

(
−1

2σ 2

T∑
t=1

(G
µ
t )

2

)
dγ = 1

Then:

Proposition 3.11.
H(Q) = 0 ⇐⇒ L(Q) = Q

As in theorem 5.1 of [3], the proof is based on the study of a variational equation
around a given minimum of the function H .

We thus have to characterize the fixed points of L :

Proposition 3.12. L admits a unique fixed point given explicitly by Q =
LT (µ

⊗(T+1)
0 ).

In our discrete time context, the proof is much simpler than in [3].

It is essential to remark that the mean and covariance of G
µ
t only depend

on the restriction of µ to Ft−1. Therefore, let µ and ν be two probabilities in
M+

1 (]0, 1[ [[ 0,T ]]). Then, for 0 ≤ t ≤ T − 1 :

µ/Ft
= ν/Ft

⇒ L(µ)/Ft+1 = L(ν)/Ft+1

It follows that if we consider the sequence of probability measures defined on
M+

1 (]0, 1[ [[ 0,T ]]) by V0 = µ
⊗(T+1)
0 , and Vt+1 = L(Vt ), we are able to infer a step

to step convergence of Vt towards its limit Q. More precisely, we observe that

(V0)/F0 = L(V0)/F0 = µ0

We deduce that ∀t ≥ T , Vt = VT = Q, and that ∀t ≤ T , (VT )/Ft
= (Vt )/Ft

.

This gives the existence of a fixed point for L. The uniqueness of this fixed
point is based on the following argument : if µ and ν are two fixed points of L, we
have

L(µ)/F0 = L(ν)/F0 = µ0

Therefore, LT+1(µ) = LT+1(ν), and then µ = ν.

If we note Lt the operator associated to the same problem on [0, t], with t ≤ T ,
we have Lt(µ/Ft

) = L(µ)/Ft
∀µ ∈ M+

1 (]0, 1[ [[ 0,T ]]). The proof of theorem 2.2
is thus achieved. �
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4. Convergence properties for general couplings

In this whole section, we will consider more general connection weights satisfying
the condition (C) of domination by a gaussian tail. It must be remembered that
QN is the global law of the activation potentials of the neurons. We note QN

0 the
distribution associated to the gaussian couplings.

Our purpose is to compare the respective densities of QN and QN
0 relatively to

P⊗N . We prove that these two densities are close enough for deducing the result
of theorem 2.3 from the large deviation principle obtained for gaussian connection
weights.

More precisely, let ν(J,B) be the distribution of the couplings and the thresh-
olds.

The calculations made in the proof of lemma 3.4 give that :

dQN

dP⊗N
=

N∏
j=1

aj (x)

with

aj (x) = exp

(
1

2σ 2

T∑
t=1

Vt (xj )
2

)∫
exp

(
−1

2σ 2

T∑
t=1

[(Gj )t (x) − Vt (xj )]
2

)
dν(J,B)

where

(Gj )t (x) =
N∑
i=1

Jji(xi)t−1 + θj

If the couplings are gaussian, one can use lemma 3.2 to calculate this expression.
Thus, we have :

dQN
0

dP⊗N
=

N∏
j=1

bj (x)

bj (x) = 1√
det (I + Kµ̂N (x)

σ 2 )

exp

(
1

2σ 2
φ(x)

)
with

φ(x) =t (V (xj ) − cµ̂N (x))(Aµ̂N (x) − IT )(V (xj ) − cµ̂N (x)) + tV (xj )V (xj )

Remark that aj and bj depend on N , but we will neglect it in the notations in
order to be simpler.

This section is divided in two subsections. The first one is dedicated to prove
theorem 4.1, which consists in proving conclusion of theorem 2.3 if four hypothesis
are checked. In the second part, we show that if the couplings fulfill assumption (C)
of section 2, then the four conditions of the theorem are satisfied. Thus, theorem
2.3 is completely proved.
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4.1. An exponential convergence result

In subsection 4.2, we will check that theorem 4.1 applies to probabilities QN and
QN

0 defined above. As this theorem remains true under more general hypothesis,
we prove it here for a larger class of probabilities. We voluntarily choose to keep
the same notations for QN and QN

0 to simplify the reader’s understanding.
Thus, in this subsection, let QN satisfy :

dQN

dP⊗N
=

N∏
j=1

aj (x)

where P is the law defined in section 2, and where the notations omit the
dependance of aj on N . Moreover, let QN

0 be another family of probabilities on
((]0, 1[[[ 0,T ]])N), the image of which by the empirical measure satisfies a large
deviation principle when N grows to infinity. We suppose that the associated rate
function H is good and admits a unique minimum Q such that H(Q) = 0. We have

dQN
0

dP⊗N
=

N∏
j=1

bj (x)

πN is the image law of QN by the empirical measure.
We suppose that (aj ) and (bj ) satisfy the four following assumptions :

(H1) ∃A,B > 0,∀N ≥ 1,∀j ∈ {1, .., N},∀x ∈ ((]0, 1[[[ 0,T ]])N),

aj (x) ≥ A.exp(−B

T∑
t=1

|Vt (xj )|)

with
Vt (xj ) = f−1((xj )t ) − θ̄

(H2) ∃λ < 1, ∃C > 0,∀N ≥ 1,∀j ∈ {1, .., N},∀x ∈ ((]0, 1[[[ 0,T ]])N),

aj (x) ≤ Cexp

(
1

2σ 2

T∑
t=1

[λ(Vt (xj ))
2 + C|Vt (xj )|]

)

(H3) ∀η > 0, ∃α > 0,∀N ≥ 1,∀k ≤ N , if k
N

≤ α then
∀s, injection from {1, .., k} into {1, .., N},∀j �∈ {s(1), .., s(k)}, ∃ãj (x), which

only depends on (xi)i �=s(1),..,s(k),∀x ∈ ((]0, 1[[[ 0,T ]])N) :

sup

(
aj (x)

ãj (x)
,
ãj (x)

aj (x)

)
≤ (1 + η)exp

η

2σ 2

(
T∑

t=1

(Vt (xj ))
2

)
(H4) ∃D > 0,∀η > 0,∀β > 0, ∃N0,∀N ≥ N0,∀j ∈ {1, .., N},∀x ∈

((]0, 1[[[ 0,T ]])N)

aj (x)

bj (x)
≤(1+η)exp(

η

2σ 2

(
T∑

t=1

(Vt (xj ))
2

)
+βexp

(
1

2σ 2

T∑
t=1

[(Vt (xj))
2+D|Vt (xj)|]

)
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The first and second assumptions are useful to control the aj ’s. The third hy-
pothesis means that aj does not much depend on a small set of xi’s, such that i �= j .
The fourth condition means that the quotient between aj and bj is close to one, it is
a contiguity relation between probability measures QN and QN

0 . From these four
hypothesis, we can’t deduce that πN and πN

0 are exponentially equivalent (what
would imply that πN

0 satisfies a large deviations principle, see [9]). But we are able
to derive the following weaker property :

Theorem 4.1. We suppose that the four conditions (H1), (H2), (H3) and (H4) given
above are satisfied. Then : ∀δ > 0, ∃b > 0, ∃N0,∀N ≥ N0,

πN(B(Q, δ)c) ≤ exp(−bN)

Proof. We have

πN(B(Q, δ)c) =
∫

1µ̂N (x)∈(B(Q,δ)c)

dQN

dQN
0

dQN
0

Let’s fix q ∈ R, such that 1 < q < 3
2 and λ+ 2(q − 1) < 1, where λ is defined

in assumption (H2).
Hölder’s inequality gives, for 1

p
+ 1

q
= 1 :

πN(B(Q, δ)c) ≤
[∫

(
dQN

dQN
0

)qdQN
0

] 1
q

.[QN
0 (µ̂N (x) ∈ (B(Q, δ)c)]

1
p

As the rate function H of the large deviation principle is good, we know that
∃b′ > 0, ∃N1,∀N ≥ N1,

QN
0 (µ̂N (x) ∈ (B(Q, δ)c) ≤ exp(−Nb′)

Thus, for N ≥ N1,

πN(B(Q, δ)c) ≤ exp(−Nb′

p
).

[∫
(
dQN

dQN
0

)q−1dQN

] 1
q

(1)

Our purpose is now to control ZN , defined by

ZN =
∫

(
dQN

dQN
0

)q−1dQN

Let η > 0, β > 0. Because of (H4), we know that for N large enough,

ZN ≤
∫ N∏

j=1

(
(1 + η)exp[

η

2σ 2

T∑
t=1

Vt (xj )
2] + βexp(

1

2σ 2

T∑
t=1

[(Vt (xj ))
2

+D|Vt (xj )|]
)q−1

dQN
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Therefore, we have, by using Cauchy-Schwarz inequality and that 2(q−1) < 1,
which implies that for any positive reals y and z, (y+z)2(q−1) ≤ y2(q−1)+z2(q−1):

ZN ≤ (1 + η)N(q−1).(WN)
1
2 .(YN)

1
2 (2)

where

WN =
∫ N∏

j=1

exp[
(q − 1)η

σ 2

T∑
t=1

Vt (xj )
2]dQN (3)

YN =
∫ N∏

j=1

(
1 + β2(q−1)exp(

q − 1

σ 2

T∑
t=1

[(Vt (xj ))
2 + D|Vt (xj )|])

)
dQN (4)

The rest of the proof consists in controlling WN and YN . To control WN , we
split the integral in two parts and get :

WN ≤ exp

(
N

σ 2

√
η(q − 1)

)
+ EN (5)

EN =
∫ N∏

j=1

exp[
(q − 1)η

σ 2

T∑
t=1

Vt (xj )
2]1∑N

j=1
∑T

t=1(Vt (xj )
2)> N√

η
dQN

Let ξ < 1, and η0 > 0, such that λ + 2(q − 1)η0 ≤ ξ .
We then use the second hypothesis (H2) of the theorem to deduce :
∀η ≤ η0,

EN ≤ CN

∫ N∏
j=1

exp

(
1

2σ 2

T∑
t=1

[(ξ − 1)(uj )
2
t + C|(uj )t |]

)
1∑N

j=1
∑T

t=1(uj )
2
t >

N√
η

d(u1)1..d(uN)T

(σ
√

2π)NT

Thus, ∃C1, real constant, such that :

EN ≤ CNT
1 .exp(

(ξ − 1)N

4σ 2√η
)

Therefore, coming back to equation (5), we have, for η small enough :

WN ≤ exp
(
2N

√
η(q − 1)

)+ CNT
1 .exp(

(ξ − 1)N

4σ 2√η
) (6)

We now study YN . For any k ≤ N , let I k
N be the set of injective applications

from {1, .., k} into {1, .., N}.
We develop the product of equation (4)

YN = 1 +
N∑

k=1

β2k(q−1)

k!

∑
s∈I kN

Os,k



62 O. Moynot, M. Samuelides

Os,k =
∫ k∏

j=1

exp

(
q − 1

σ 2

T∑
t=1

[(Vt (xs(j)))
2 + D|Vt (xs(j))|]

)
dQN

Our purpose is now to control Os,k for fixed s and k by Ck
2 , where C2 is a real

constant.
Let now α > 0 be defined as in the third hypothesis (H3) of the theorem. We

choose α smaller than η. Then :
-if k

N
> α.

The second condition of the theorem and the property λ + 2(q − 1) < 1 allow
us to write that there is a constant C3 such that Os,N ≤ CN

3 , and therefore we have:

Os,k ≤ Os,N ≤ (C
1
α

3 )k (7)

-if k
N

≤ α

Os,k =
∫ k∏

j=1

exp

(
q − 1

σ 2

T∑
t=1

[(Vt (xs(j)))
2 + D|Vt (xs(j))|]

)
N∏

j=1

aj (x)dP
⊗N(x)

For any j �∈ {s(1), .., s(k)}, let ãj be defined as in the third hypothesis.
For any j ∈ {s(1), .., s(k)}, we use the second condition (H2) to bound aj .
We are thus obtaining that the integral is bounded by the product of two terms,

and therefore get :
Os,k ≤ (1 + η)N .FN .GN (8)

FN = Ck

∫ k∏
j=1

exp
1

2σ 2

(
T∑

t=1

[(λ + 2(q − 1))(Vt (xs(j)))
2 + (2D(q − 1) + C)

|Vt (xs(j))|]
)
dP⊗N(x)

GN =
∫ ∏

j �∈{s(1),..,s(k)}
ãj (x)exp

η

2σ 2

T∑
t=1

(Vt (xj ))
2dP⊗N(x)

As (λ + 2(q − 1)) < 1, it is clear that there is a constant C4, such that

FN ≤ Ck
4

We use (H3) to replace ãj by aj , and then (H1) to introduce the missing (aj )’s
and to recover dQN :

We thus have:

GN ≤ (1 + η)N

Ak

∫  N∏
j=1

exp(
η

σ 2

T∑
t=1

(Vt (xj ))
2)

 .

×
 k∏

j=1

exp(B

T∑
t=1

|(Vt (xs(j)))|)
 dQN
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Therefore:

GN ≤ (1 + η)N

Ak
(IN + JN)

IN =
∫

exp[
η

σ 2

N∑
j=1

T∑
t=1

Vt (xj )
2+B

k∑
j=1

T∑
t=1

|Vt (xs(j))|]1∑N
j=1

∑T
t=1(Vt (xj)

2)≤ N√
η
dQN

JN =
∫

exp[
η

σ 2

N∑
j=1

T∑
t=1

Vt (xj )
2+B

k∑
j=1

T∑
t=1

|Vt (xs(j))|]1∑N
j=1

∑T
t=1(Vt (xj)

2)> N√
η
dQN

As α ≤ η and

k∑
j=1

T∑
t=1

|Vt (xs(j))| ≤
 N∑

j=1

T∑
t=1

Vt (xj )
2


1
2

.
√
kT

we obtain

IN ≤ expN [
√
η

σ 2
+ B

√
T η

1
4 ]

Moreover, one can bound JN the same way as EN . Therefore, coming back to
equation (8), we obtain that there is a constant C5 such that for η small enough and
for N large enough :

Os,k ≤ (
C4

A
)k.(1 + η)2N.

(
expN [

√
η

σ 2
+ B

√
T η

1
4 ] + CN

5 exp(
(ξ − 1)N

4σ 2√η
)

)
Let

Cα = max(C
1
α

3 ,
C4

A
)

We can thus deduce that

YN ≤(1+β2(q−1)Cα)
N .(1+η)2N.

(
expN [

√
η

σ 2
+B

√
T η

1
4 ]+CN

5 exp(
(ξ − 1)N

4σ 2√η
)

)
Thanks to equation (2) and (6), it’s now possible to bound ZN . We choose η

and then β small enough to get, for N large enough :

ZN ≤ exp

(
b′Nq

2p

)

Let b = b′
2p . We deduce from (1) that

πN(B(Q, δ)c) ≤ exp(−bN) �
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4.2. The four conditions of Theorem 4.1

This subsection is dedicated to check the four assumptions of the theorem 4.1 if
the couplings satisfy (C). As a matter of fact we will replace condition (C) by the
equivalent condition (C’). The equivalence of (C) and (C’) is shown in the appendix.
We choose a in (C’) such that :∫

exp(aθ2
j )dν < +∞ (9)

Note that

aj (x)=exp

(
1

2σ 2

T∑
t=1

Vt (xj )
2

)∫
exp

(
−1

2σ 2

T∑
t=1

[(Gj )t (x) − Vt (xj )]
2

)
dν(J,B)

Then hypothesis (H1) is a direct consequence of Jensen’s inequality.
We are now going to check (H2) :
We study

rj (x) =
∫

exp

(
−1

2σ 2

T∑
t=1

[(Gj )t (x) − Vt (xj )]
2

)
dν(J,B)

Remark that if h1, .., hT are integrable real valued functions such that ∀t ≤
T , 0 ≤ ht ≤ 1, and if ν is a probability measure, Cauchy-Schwartz inequality
gives : ∫ T∏

t=1

htdν ≤
T∏

t=1

(∫
(ht )

T dν

) 1
2T

Thus:

rj (x) ≤
T∏

t=1

[∫
exp

(−T

2σ 2
[(Gj )t (x) − Vt (xj )]

2
)
dν

] 1
2T

First, we suppose that Vt (xj ) ≥ 0.
Then:

[Vt (xj ) − (Gj )t (x)]
2 ≥ (Vt (xj ))

2

4
12(Gj )t<Vt (xj )

Therefore,∫
exp

(−T

2σ 2
[(Gj )t (x) − Vt (xj )]

2
)
dν ≤ exp(

−T

8σ 2
Vt (xj )

2) + ν[exp(
a

2
(Gj )t )

2

≥ exp(
aVt (xj )

2

8
)]

We obtain the same result if Vt (xj ) ≤ 0.
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Moreover, we easily get

((Gj )t )
2 ≤ 2[

N∑
i=1

Jji(xi)t−1]2 + 2θ2
j

so that we are able to obtain from (C) and (9) a constant D1 such that∫
exp

(−T

2σ 2
[(Gj )t (x) − Vt (xj )]

2
)
dν≤exp(

−T

8σ 2
Vt (xj )

2)+D1exp(−a

8
Vt (xj )

2)

therefore, we can bound rj (x) and achieve the proof. �

We are now going to focus our interest on the checking of the third condition
(H3) :

Let s ∈ I k
N and j �∈ {s(1), ..s(k)}.

Let us split (Gj )t (x) into two parts, and set :

(G1
j )t (x) =

∑
i �∈{s(1),..s(k)}

Jji(xi)t−1 + θj

(G2
j )t (x) =

∑
i∈{s(1),..s(k)}

Jji(xi)t−1 = (Gj )t (x) − (G1
j )t (x)

Let

ãj (x) =
∫

exp

(
1

σ 2

T∑
t=1

(G1
j )tVt (xj ) − 1

2σ 2

T∑
t=1

[(G1
j )t ]

2

)
dν(J,B)

We use Hölder to get :

ãj (x) ≤ (Kj )
1
p .(Lj )

1
q (10)

where 1
p

+ 1
q

.

Kj =
∫

exp

(
p

σ 2

T∑
t=1

(Gj )tVt (xj ) − p

2σ 2

T∑
t=1

[(Gj )t ]
2

)
dν(J,B)

Lj =
∫

exp

(
−q

σ 2

T∑
t=1

(G2
j )tVt (xj ) + q

2σ 2

T∑
t=1

[2(Gj )t (G
2
j )t − (G2

j )
2
t ]

)
dν(J,B)

Thus, we have

Kj ≤exp

(
p

2σ 2

T∑
t=1

Vt (xj )
2

)
.

∫
exp

(
−p

2σ 2

T∑
t=1

[(Gj )t (x) − Vt (xj )]
2

)
dν(J,B)

We can deduce that

Kj ≤ exp

(
p − 1

2σ 2

T∑
t=1

Vt (xj )
2

)
.aj (x)
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If we apply (H1) :

K
1
p

j ≤ aj (x).
1

A
1
q

exp

(
1

2qσ 2

T∑
t=1

[Vt (xj )]
2 + B

q

T∑
t=1

|Vt (xj )|
)

Moreover, let ε > 0. For any a, b > 0, ab ≤ a2

2ε + εb2

2 . Therefore:

Lj ≤ exp

(
qε

2σ 2

T∑
t=1

Vt (xj )
2

)
Mj

where :

Mj =
∫ (

exp
qε

2σ 2

T∑
t=1

[(Gj )t ]
2

)
.

(
exp

q

σ 2ε

T∑
t=1

[(G2
j )t ]

2

)
dν

Thus, from Cauchy-Schwartz, we deduce :

Mj =
(∫

exp
qε

σ 2

T∑
t=1

[(Gj )t ]
2dν

) 1
2

.

(∫
exp

2q

σ 2ε

T∑
t=1

[(G2
j )t ]

2dν

) 1
2

We choose

q = aσ 2

4T
.

√
N

k

ε = aσ 2

4qT

where a is the real number defined in condition (C).
Remark that if h1, .., hT are integrable real valued functions such that ∀t ≤

T , ht ≥ 1, and if ν is a probability measure, Cauchy-Schwartz inequality gives :

∫ T∏
t=1

htdν ≤
T∏

t=1

(∫
(ht )

2T dν

) 1
T

Hence :

Mj ≤
T∏

t=1

[(∫
exp(

a

2
(Gj )

2
t )dν

)
.

(∫
exp[

aN

k
(G2

j )
2
t ]dν

)] 1
2T

Then condition (C) implies that there is a constant D2 such that

Lj ≤ exp

(
a

4T

T∑
t=1

Vt (xj )
2

)
D2
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Therefore, on can deduce from equation (10) that for any η > 0, if k
N

is small
enough (so that q is large enough), :

ãj (x) ≤ aj (x).(1 + η).exp(η

T∑
t=1

(Vt (xj ))
2)

The same method can be used to bound
aj (x)

ãj (x)
. �

We study the fourth hypothesis (H4) :
Let (J̃ij )1≤i,j≤N be gaussian, independent random variables, with mean J̄

N
,

and variance J 2

N
. These variables are also supposed to be independent from the θj ’s

and the Jij ’s. The distribution of θj is denoted by νθ , and the jointed law of the
couplings (Jij , J̃ij ) is ν

(J,J̃ )
.

For any 1 ≤ t ≤ T , we consider :

(G̃j )t =
N∑
i=1

J̃j i (xi)t−1 + θj

Then, ∣∣∣∣aj (x)bj (x)
− 1

∣∣∣∣ ≤ Nj(x).Oj (x) (11)

where

Nj(x) =
√
det (I + Kµ̂N(x)

σ 2
).exp(

1

2σ 2
φ(x))

φ(x) =t (V (xj ) − cµ̂N (x))(Aµ̂N (x) − IT )(V (xj ) − cµ̂N (x)) + tV (xj )V (xj )

Oj (x) =
∣∣∣∣∣
∫ [

exp

(
−1

2σ 2

T∑
t=1

[(Gj )t − Vt (xj )]
2

)

−exp

(
−1

2σ 2

T∑
t=1

[(G̃j )t − Vt (xj )]
2

)]
dν

(J,J̃ )
dνθ

∣∣∣∣∣
Recall here that the eigenvalues of Aµ̂N(x) are positive and bounded by 1.

Moreover, we have : - ∀1 ≤ t ≤ T , |cµ̂N (x)
t | ≤ |J̄ |,

- ∀1 ≤ t, s ≤ T , |Kµ̂N(x)
t,s | ≤ J 2 + τ 2.

It follows that we can find two real constants C1 and C2 such that :

Nj(x) ≤ C1exp

(
1

2σ 2

T∑
t=1

[Vt (xj )
2 + C2|Vt (xj )|]

)

We shall now prove that Oj(x) is uniformly small in x for N large enough.

We first get the following lemma. Its proof is close to the demonstration of
Lindeberg’s theorem (see [18]).
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Lemma 4.2. Let N be fixed, and let Y1, .., YN be N independent, centered, R
T -

valued random variables on a given probability space (!,A, ν). We consider:

(Mi)ts = E((Yi)t (Yi)s)

Let Ỹ1, .., ỸN be independent, centered, R
T-valued gaussian random variables. We

suppose that the covariance of Ỹi is Mi and that the Ỹi’s are independent from the
Yi’s. ∀i ∈ {1, .., N}, let SN = Y1 + .. + YN , and S̃N = Ỹ1 + .. + ỸN .

Let E ∈ C3(RT,R), whose derivatives of first, second and third order are
uniformly bounded by a constant C3.

If W is a R
T-valued vector, let ||W || = ∑T

t=1 |Wt |.
Then, if

O =
∣∣∣∣∫ E((SN)1, .., (SN)T ) dν −

∫
E
(
(S̃N )1, .., (S̃N )T

)
dν

∣∣∣∣
we have :
∀ε > 0,

O ≤ C3

(
[
ε

6

N∑
i=1

∫
||Yi ||2dν] +

N∑
i=1

[
∫

||Ỹi ||3dν +
∫

(||Yi ||21||Yi ||>ε)dν]

)

Proof. ∀i ∈ {1, .., N}, let

(Ui) =
i−1∑
k=1

Yk +
N∑

k=i+1

Ỹk

where the first sum is taken to be 0 if i = 1 and the second sum is 0 if i = N .

We then have easily

O ≤
N∑
i=1

Oi

with

Oi =
∣∣∣∣∫ E(Ui + Yi)dν −

∫
E(Ui + Ỹi )dν

∣∣∣∣
We consider

Ri(ξ) = E(Ui + ξ) − E(Ui) −
T∑

t=1

ξt
∂E

∂xt
(Ui) − 1

2

T∑
t=1

T∑
s=1

ξt ξs
∂2E

∂xt∂xs
(Ui)

Therefore (because Yi and Ỹi are centered, independent of Ui and have the same
covariance matrix),

Oi =
∣∣∣∣∫ Ri(Yi)dν −

∫
Ri(Ỹi)dν

∣∣∣∣
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so that

Oi ≤ |
∫

Ri(Yi)dν| + |
∫

Ri(Ỹi)dν|
Thanks to Taylor’s theorem, we obtain :

|Ri(ξ)| ≤ C3inf (||ξ ||2, ||ξ ||3
6

)

therefore

O ≤ C3

(
1

6

N∑
i=1

E(||Yi ||31||Yi ||≤ε) +
N∑
i=1

[
1

6
E(||Ỹi ||3) + E(||Yi ||21||Yi ||>ε)]

)
We thus deduce the result of the lemma. �

Let

at = θj + J̄

N

N∑
i=1

(xi)t−1 − Vt (xj )

Let’s define

E(y1, .., yT ) =
T∏

t=1

φ(yt + at )

where

φ(z) = exp(
−z2

2σ 2
)

Notice that the derivatives of first, second and third order of function E are
uniformly bounded by a real constant.

Let’s define

(Yi)t = (Jji − J̄

N
)(xi)t−1

(Ỹi)t = (J̃j i − J̄

N
)(xi)t−1

We focus our interest on Oj and first integrate with respect to ν
(J,J̃ )

.
Then let ε > 0. Lemma 4.2 gives that there is a constant C3 such that:

Oj(x) ≤ C3

(
[
ε

6

N∑
i=1

∫
(||Yi ||2)dν(J,J̃ )

] +
N∑
i=1

[
∫

(||Ỹi ||3)dν(J,J̃ )

+
∫

(||Yi ||21||Yi ||>ε)dν(J,J̃ )
]

)
We have : ∫

(||Yi ||2)dν(J,J̃ )
≤ J 2T 2

N∫
(||Ỹi ||3)dν(J,J̃ )

≤
∫

(|y|3exp − (
y2

2
)

dy√
2π

.
J 3T 3

N
3
2
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Moreover,

ri(ε) =
∫

(||Yi ||21||Yi ||>ε)dν(J,J̃ )
≤ 2T 2

N
[
J̄ 2

N
+
∫

(N ||Jji ||21||Yi ||>ε)dν(J,J̃ )
]

If a is the real defined in condition (C), let Ca = supx≥0 x2exp(−ax).
Hence, from Cauchy-Schwartz, we get:

ri(ε) ≤ 2T 2

N
[
J̄ 2

N
+
(

JT

ε
√
N

)
.Ca

(∫
exp(aNJ 2

ji)dνJ,J̃

) 1
2

]

Therefore, using (C) and summing over i, we can conclude that for any β > 0,
for N large enough, for any x ∈ ((]0, 1[[[ 0,T ]])N), we have :

Oj(x) ≤ β

We finally come back to equation (11) to conclude. �

This achieves the proof of Theorem 2.3.

Finally, we are able to study the limit probability Q and to prove the mean-field
equations (theorem 2.6 ) which characterize this limit distribution.

We proved in proposition 3.12 that Q is the unique fixed point of L. We denote
by Q′ the restriction of Q to σ(x1, .., xT ). We then have Q = µ0 ⊗Q′. We consider
Q̃′, the image of Q′ by f .

We note V (u) = (u1 − θ̄ , ..., uT − θ̄ ). Then, from the expression of L (see
section 3), we deduce :

dQ̃′

du
= (

1√
2π

)T
1√

det (σ 2IT + KQ)
expχ(u)

with

χ(u) = 1

2σ 2

(
t (V (u) − cQ)(AQ − IT )(V (u) − cQ)

)
One can deduce from this expression that (Ut )1≤t≤T is a discrete time gaussian

process, with mean cQ + θ̄ and covariance matrix defined by

R = σ 2(AQ − I )−1

By diagonalizing KQ in an orthonormal basis, we can deduce, after some cal-
culations, that :

R = KQ + σ 2IT

This gives the mean-field equations. �
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5. Appendix: about the condition (C) of domination by gaussian tails

This appendix will be devoted to the consequences of condition (C). First we will
show that the technical condition (C’) is the consequence of condition (C). Since
condition (C’) obviously implies condition (C), this proves the equivalence of condi-
tion (C) and condition (C’). Then we show that condition (C) is stable by barycentric
combination. Eventually, we show it is checked by “natural” models with appro-
priate scaling. We prove here the equivalence between the two conditions (C) and
(C’).

We first give a sufficient condition on the couplings to satisfy (C’) :

Lemma 5.1. Let J1 be a random variable with law νN
J . We suppose that :

∃C1 > 0,∀N ≥ 1,∀l ≥ 2,

E

(
|J1 − J̄

N
|l
)

≤
(

C1√
N

)l

.
l!

(E( l
2 ))!

Then the technical condition (C’) on the couplings is fulfilled.

This means that if the moments of the connection weights decrease with N as
fast as in the gaussian case, then condition (C’) occurs.

Recall here (C’) :
∃a > 0, ∃D0 > 0,∀N ≥ 1,∀k ≤ N,∀(J1, .., Jk), independent random vari-

ables with law νN
J , ∀(λ1, .., λk) ∈ [0, 1]k,

E

(
exp[

aN

k
(λ1J1 + .. + λkJk)

2]

)
≤ D0

Let N ≥ 1, k ≤ N . Let J1, .., Jk be independent random variables with law

νN
J . Their common mean is J̄

N
and their common variance J 2

N
.

Remark that (C) is satisfied if J = 0. When J �= 0, we define, for 1 ≤ i ≤ k :

Wi =
√
N

J

(
Ji − J̄

N

)
so that E(Wi) = 0, E(W 2

i ) = 1.

The condition (D) in proposition 2.7 gives a constantD2, which does not depend
on k and N , such that, for any l > 2, for 1 ≤ i ≤ k :

E(|Wl
i |) ≤ Dl

2.
l!

(E( l
2 ))!

(12)

Let (λ1, .., λk) ∈ [0, 1]k .
It is sufficient to find a > 0 such that

S = E
(
exp[

a

k
(λ1W1 + .. + λkWk)

2]
)
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is uniformly bounded with regard to k and N .
Let Bk,p = {i = (i1, ..ik) ∈ (N − {1})k, i1 + .. + ik = 2p}.

As the first order moments of the Wi’s are zero, we can deduce that :

S =
+∞∑
p=0

(2p)!ap

kpp!

∑
i∈Bk,p

λ
i1
1 ..λ

ik
k

(i1)!..(ik)!
E(W

i1
1 )..E(W

ik
k )

Thus (12) gives

S ≤
+∞∑
p=0

D
2p
2 .ap(2p)!

kpp!

∑
i∈Bk,p

(
1

E( i12 )!..E(
ik
2 )!

)

Let
Br = {i = (i1, ..ik) ∈ Bk,p, i1, .., ir odd, ir+1, .., ik even }
Then

S ≤
+∞∑
p=0

D
2p
2 .ap(2p)!

kpp!

inf( 2p
3 ,k)∑

r=0

Cr
kSr

where

Sr =
∑
i∈Br

1

E( i12 )!..E(
ik
2 )!

Notice that r is necessarily even, and consider the following change of index :
for 1 ≤ p ≤ r

2 , let jp = ip−3
2 .

For r
2 < p ≤ r , let jp = ip−1

2 .

For r + 1 ≤ p ≤ k, let jp = ip
2 .

Therefore :

Sr ≤
∑

j1+..+jk=p−r

1

(j1)!..(jk)!

Sr ≤ kp−r

(p − r)!

As

Cr
k ≤ kr

r!
we deduce

S ≤
+∞∑
p=0

(2p)!D2p
2 .(2a)p

(p!)2
= 1√

1 − 2D2
2a

We are thus able to choose a small enough and to complete the proof of the
lemma. �

We are now going to prove that (C) implies the hypothesis of the lemma.
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If (C) is satisfied, it is possible to find a constant D1 such that : ∀N ≥ 1,

E

(
exp[

a

2
N(J1 − J̄

N
)2]

)
≤ D1

We obtain :
∀N ≥ 1,∀k ≥ 1,

E

(
akNk

2kk!
(J1 − J̄

N
)2k
)

≤ D1

Therefore :

E

(
(J1 − J̄

N
)2k
)

≤ D1.2k.(2k)!

(aN)k.k!

As

E

(
(J1 − J̄

N
)2k+1

)
≤
√
E

(
J1 − J̄

N
)2k

)
.

√
E

(
J1 − J̄

N
)2(k+1)

)
we deduce that conditions of lemma 5.1 are satisfied, and therefore that (C)

implies (C’). �

Furthermore, we also have the following mixing stability property :

Proposition 5.2. We suppose that condition (C) is fulfilled by couplings with re-
spective laws ρ1 and ρ2. Let β > 0 and consider couplings with law ρ = βρ1 +
(1 − β)ρ2. These connection weights satisfy (C’), and therefore (C).

Proof. Let N ≥ 1, k ≤ N . Let J1, .., Jk be independent random variables with law
ρ.

Then

E

(
exp[

aN

k
(λ1J1 + .. + λkJk)

2]

)
=

k∑
r=0

Cr
kβ

r(1 − β)k−rZr

Zr =
∫

exp

(
aN

k
[λ1y1 + .. + λryr + λr+1zr+1 + .. + λkzk]2

) r∏
i=1

dρ1(yi)

k∏
i=r+1

dρ2(zi)

We suppose that (C) is satisfied by ρ1 and ρ2 with the same real number a0.
Then let a = a0

2 , and remark that :

Zr ≤
∫

exp

(
aN

r
[

r∑
i=1

λiyi]
2

)
r∏

i=1

dρ1(yi).

∫
exp

 aN

k − r
[

k∑
i=r+1

λizi]
2

 k∏
i=r+1

dρ2(zi)

we are therefore able to conclude. �
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We are finishing this section by giving some concrete examples, among others,
of couplings law that fulfill (C). The parameters are chosen so that the mean of the

connection weights is J̄
N

and their variance J 2

N
.

1) The law νN
J is a uniform distribution on [ J̄

N
− J

√
3√

N
, J̄
N

+ J
√

3√
N

].

2) The distribution νN
J is a 1

2 (δa + δb), where a = J̄
N

− J√
N

, and b = J̄
N

+ J√
N

3) The couplings are the product of a gaussian random variable N ( J̄
pN

, J 2

pN
+

J̄ 2(p−1)
N2p2 ) and of a Bernoulli with parameter p ∈ [0, 1].

This gives the mean-field equations for some diluted networks.

6. Conclusion and perspectives

Our work gives a rigorous basis to previous results obtained by statistical physicists
about dynamics of large size recurrent neural networks. In the case of gaussian cou-
plings, we proved a large deviations principle and deduced a law of large numbers,
a propagation of chaos property and the mean-field equations which describe the
limit behavior of the neurons.

An adapted generalization of Lindeberg’s theorem allowed us to extend these
results for some more general connection weights distribution, and in particular for
discrete or uniform couplings and for diluted networks. It seems that this method-
ology can be used in a spin glass context, although it should be more technical.
Remark, moreover, that obtaining our mean-field properties for non gaussian cou-
plings is important in a Neural Network context : although our models are still far
from biological realism, they try to reproduce certain features of the brain, which
is a sparsely connected neural network. A next step would be to establish a proof
for the dynamics of large size networks composed of spiking neurons.

As underlined in [3, 20], mathematicians have now obtained few results about
symmetric or asymmetric neural networks and spin glasses. We are far from proving
all the physicists assertions completely rigorously. As a matter of fact, our study
is only completed for bounded time. The determination of the dynamics of large
networks without any temporal limit is an open problem.
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[8] Daucé, E., Moynot, O., Pinaud, O., Samuelides, M.: Etude de la dynamique de réseaux
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