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Abstract. Let ¢ be an aperiodic cocycles with values in a locally compact abelian second
countable group G defined on an exact Gibbs—Markov map 7 : X — X. We show that
the group extension Ty (x,g) = (T'(x),g + ¢(x)) (x € X; g € G) is exact. Equivalent
conditions for exactness are found.

1. Introduction

Let (X, B, m, T, @) be an exact probability preserving Markov map (as in §4.1 of
[A]) where (X, BB, m) denotes a probability space, T : X — X is a probability pre-
serving transformation and « a generating Markov partition (possibly countable).
We can and do assume that X is a topological Markov shift:

X = {x:(xl,xz,...) calV: m(xnﬂT_lan) >0Vn > 1}

endowed with the Polish topology inherited from the product topology on ol

It follows that T is locally invertible with respect to « in the sense that for
eachn > 1, a € ozg_l the map T" : a — T"a is nonsingular and invertible.
The inverse of this map is denoted v, : T"a — a and given by v, (x1, x2,...) =
(a, x1, x2, ...), where a is identified with an element of {1}, We let v, denote
the Radon-Nikodym derivative of m o v, with respect to m.

The partition « enables the definition of a Holder class of metrics {d, : 0 <
r<1}onX:

Forn > 1, define a, : X — a(’)‘*l by x € a,(x) € agfl.
For x,y € X define ¢ (x, y) :=min{n > 1 : a,(x) # a,(y)} (< 00).
Forr € (0, 1) define d, : X x X — Rbyd,(x,y) :=r'®¥,

It is easily seen that the identity : (X, d,) — (X, dy) is Holder continuous

Vr,s € (0,1).
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Accordingly, we define the Holder constants of a functions : A — M (A C X)
with values in a metric space (M, p) by

p(h(x). h(y))

Dr,A(h) ‘= sup 1Y)

x,yeA

Let Lip,(M) :=={h : X — M : sup,cy Dra(h) < oo}. Incase M = R we
simply write Lip, := Lip, (M) instead. A function & : X — M is called uniformly
Holder continuous on states if 4 € Lip, (M) for some 0 < r < 1.

Recall (see e.g. [A-D1]) that (X, B, m, T, ) has the Gibbs property if 3 C >
vl (x
vZEy; -1
form x m-a.e. (x,y) € T"a x T"a. It is called a Gibbs—Markov map if it has in
addition the property

1,0 <r < lsuchthatVn > 1, a € f~', m(a) > O: < Cr'ey)

inf m(Ta) > 0.
aea
Recall that any topologically mixing probability preserving Markov map with
the Gibbs property is exact (see for example [A-D-U]).
Now let G be a locally compact, Abelian, second countable group, let || - ||
be a Lipschitz norm on G (i.e. y : G — S!is || - ||-Lipschitz for every y € G),
and let ¢ : X — G be measurable. Consider the skew product transformation
Ty : X x G = X x G defined by Ty (x, y) := (Tx, y + ¢ (x)) with respect to the
(invariant) product measure m x mg where mg denotes Haar measure. We define
bp=¢p+¢poT+...+¢poT" andforx € X
. —ky, . dr(yns zn) = 0
Gx = {l eG: Elkn — 00, Yn,Zn € T {X} : {¢kn(yn)_¢kn(2n) _)t}.

We’re interested in the exactness of Ty and prove

Theorem. Let G be a LCA, second countable group, let (X, B, m, T) be an exact
probability preserving Gibbs—Markov map and let ¢ : X — G be uniformly Holder
continuous on states.

The following are equivalent:
28T
e g
iny €G,zeS" and g : X — S' Hélder continuous.

2.) Ty is weakly mixing (cf. §2.7 in [A]).

3.) Ty is exact.

4.) Forsome A € B, m(A) > Oandforallx € A, the smallest closed subgroup
generated by G, is G.

5.) Foreveryx € X, G = G,.

1.) ¢ is aperiodic in the sense that y o ¢ = has no non-trivial solutions

Remarks. 1. In case « is a finite Markov partition and m a Gibbs measure as in
[Bo], Guivarc’h ([G]) has obtained exactness of the group extension with respect
to aperiodic, Holder-continuous, RY_valued cocycles.
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2. Let T be as in the theorem and let ¢ : X — Z? be aperiodic, locally Lip-
schitz and in the domain of attraction of a stable distribution of order 0 < p < 2.
Exactness of Ty follows from section 7 in [A-D1].

3. The assumptions on the cocycle and the dynamics in these results have been
weakened in [A-D2]:

For an exact Markov map T with the Renyi property and a cocycle ¢ : X — R?
which is locally constant (on cylinders in aév for some N > 0), topological mixing
of Ty implies its exactness.

4. Let T be a locally invertible, exact endomorphism with quasicompact
Frobenius-Perron operator whose perturbations have a spectral representation a
la Nagaev ([N]). As shown in theorem 2 of [A-D2], if ¢ : X — R? is ape-
riodic and for each real number A > 1 there is a subsequence nj such that
¢+ ...+ ¢oT™ =o0(A") ae, then Ty is exact.

The proof of the theorem is given in the subsequent sections. The only non-triv-
ial implications are 4.) = 3.) and 1.) = 5.). Our proof follows general concepts,
like [L-R-W] and [F] for the first implication and [S] for the second. In particular
the last section contains a ratio limit theorem of independent interest.

The Frobenius-Perron operators R": L 1(m) — L1(m) of anonsingular trans-
formation (X, B, m, R) are defined by

/ﬁ"f-gdm:/f-goR"dm
X X

where f € Li(m) and g € Ly (m). For a Gibbs—Markov map T these operators
have the form

T f) = Y lma) - v,() - fa)) = Y palx, 2 f(2),
aea(';*l T"(z)=x

where p,(x, z7) = vén (Z)(X)I{T” ()y(x), and for the group extension T
T/ f(x.8) =T "[f (.8 — du(:NI).

Fixsome r € (0, 1). We define the Banach space L of all L.-functions f : X — R
with

Dr,X(f) < Q.

Define the norm || - | by || flI := | f loc + Dr.x (f), then (L, || - ||) is a Banach
space, and || - ||z-bounded sets are || - ||oo -precompact (see e.g. §4.7 in [A]).

We may assume that r is chosen so large that Dy = sup, ¢, Dy,q(¢) < 00. Itis
shown in [A-D1] that Tn:L— L (n > 1) has a spectral representation

T"f(x) = / fdm+0 (p"l fllz)
for some 0 < p < 1 independent of f € L.

Proof of 4.) —> 3.).

We begin with the following easy observation: For W € Lj(m) and " € L{(G) we
obtain
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| [ i@ e n o ds man
X JG

S/x~/(G Z ‘Tg[\P@F](Z’g_¢(Z))‘P1(X,Z)dgm(dx)

T (z)=x

= [ [ #[|[fzweric.e-oen|]amands
GJ/Xx

= [ [z @ricc. e - | dg miax)
XJG

= [ [ |7z & ri. o] ds man = vy o .
X

Therefore C(V ® I') is well defined by

Up(WeID) | CP¥eT) =0. (D

We define the operators M; : L1(G) — L{(G) by M;I'(g) = I'(g +1). Let
W e L1(X) be fixed and let the measures {{t,, x : n > 1} on G be defined by

Mn.x = Z ‘IJ(Z)Pn(x,Z)‘Sd)n(z)'
T"(z)=x

Note that

tnx*T(g) = T (W @ T)(x, g)

hence |[pun,x * Tl ) = T"WI(X) Tl G) and ¢t = llnx * MiTllL, @) is
continuous with modulus of continuity bounded by 7" |W|(x)[I" — M5 |1, (G)-

Remark. Following [L-R-W], p. 287, a family of signed random measures {jt, x :
n > 1,x € X} on G is called completely mixing in L1(m) if for every I' € L1(G)
with integral fG I'(g)dg = 0 we have

ln, - * Tl — 0

in L{(m). We’ll show in Proposition 1 and Lemma 2 below that the random signed
measures {{t, x : n > 1} are completely mixing in Lj(m).

Proposition 1. For every I' € L{(G) the random sequence
ln, * Cliz, @)
converges in L1(m) to C(V ® I'). In addition,
CWRD) = IV¥IL,mlTlL @)-

Proof. Since fg(\y Q) (x,g) = T"[W()T(g — n(-)](x) for ¥ € L (X) and
I' € L1(G), it suffices to show the theorem for a subclass of pairs (¥, I') which
generates a dense subspace in L1(X) x L1(G). Here we take the class of all func-
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tions ¥ ® I where W belongs to the space L and I" is an integrable and Lipschitz
continuous function on G.
By definition
Mn+1,x * I'(g) = /(G, I'(g — h)Mn—H,x(dh)

Y W@pai(x, DTG — Gt (2))

Tl (z)=x
= > P )TV RTrE g —0)
T(2)=x

whence as before,

lnt1.x *TlliL, @)
~n
S/G > pl(x,z)‘T¢[\U®F](Z,g—¢(z))‘dg

T(z)=x

= p1<z,x>/G

T (2)=x

7110 @ TGz, )| de

=T [lIln,. *Tllz, @] ().
By induction it is easily seen that for n fixed and k > 1
linstx % Clley@) < T [lin, * Tl )] )
Since the function
x = lpen,x * UllL, @)

is of class L it follows from the spectral representation of T (mentioned above) that
Vn>1,ak —> o0

P [l * Tl @] =/X||un,x*r||Ll<@)m<dx)+0(p">
T wer) | cwar),
whence

lim sup || 2n.x * Tllz, ) < C(¥ @ T). @

n— oo

By (1) and (2), given € > 0, we can choose ng so large that for n > ng

/ [ltnx * Tl — C(¥ @) m(dx) <€
{X:”,un,x*FHLl(G)_C(\IJ®F)>O}

and

/ Vit * Tl @ym(dx) — C(W @ T) = 0.
X
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It follows that

J

:2/
{x:lpn x*TllLy @) —C(YRI)>0}

—/x [tns * Tl @) — C(¥ @ T)] m(dx)

< 2e.

lnx * Tl @) — C(¥ @ T)|m(dx)

[ltnx * Tllzy @) — C(¥ @ T)] m(dx)

The additional claim follows from

C¥T) L, ltnx*TliL,@ < T ¥IOITIL @ = 1¥lLm Tz, )
O

Let (Y, A, u, R) and (Z, C, v, S) be nonsingular transformations of probability
spaces. The factor map w : Y — Z is called relatively exact if for f € Li(u)

E(flr7'C)=0= R"f > 0

in L1(w). By [G], see alternatively [A-D2], R is exact if the factormapmw : ¥ — Z
is relatively exact and the factor S is exact. In the present situation Ty is exact if the
factor map (x, g) — x =: [1(x, g) (X x G — X) is relatively exact. To establish
relative exactness of Ty, it suffices to show

| [ [fz1v @ rie. o] mo@gmidx) - o
X JG

forall W € Li(m) and I" € L{(G) satisfying fG I'dg = 0 (see [G], [A-D2]).
It is left to prove the following

Lemma 2. If [ ['(g)dg = 0, then
C(U®T) =0.

Proof. The proof of this statement follows from a series of claims. For the first
4 claims we assume that I' € L{(G) is Lipschitz continuous and has compact
support. These claims are needed for the proof of the statement of the lemma in
claim 5.

Define the measures v, y = ZTn(Z):x pn(x,2)5; on X.

Claim 1. Let k > 0 be fixed. For any subsequence {n; : | € N} C N there exists a
further subsequence {mj : j > 1} such that for a.e. x € X and for every B € B

1
lim
j=oo vk x(B) Jo

/l; (Hm;.y * My nT) (Vi x(dy)[dg =C(¥ ®T).  (3)
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In order to see this claim, let n; be any subsequence and choose m; so that

Iem;x * TllLy@)s Im;+kx * Tlly @) — C(W @ T) (4)

for x € Q where 2 is a T-invariant set of full measure (cf. Proposition 1). On the
one hand it follows from this that for every B fixed

1
Vk,x (B) Jg

1
=<
Vi x (B)

/ M,y * Mg D vic x(dy)|dg
B

/ lem;,y * CllL, Gy vie,x(dy) = C(¥ @), (5)
B

because the integrand is uniformly bounded and pointwise convergent by (4).
On the other hand, for x € €2,

cCyer) = ]113;0 lm k. * Tl @)

=1lim | | Y pe W@, g — ¢ ()| dg
/meeJe Tk(y)=x

/ Hmj,y * M¢k(y)F(g)Vk,x(dy)'
B

IA

lim
j— JG

+ ‘f Hmj,y *M¢k(y)r(g)vk,x(d)’)‘dg
BC

=C¥el)

by (5), hence for x € Q2

1
lim
Jj—o0 Uk’x(B) G

/ Homj,y * M¢k(y)FUk,x(dY)’ dg=C(¥®n),
B

proving claim 1.

Claim 2. Let k > 0 be fixed. For any subsequence {n; : | € N} C N there exists a
further subsequence {mj : j > 1} such that for a.e. x € X and for every disjoint
sets A,Be BB

1
lim/
j=oJg | vix(A)
1
Vi x(B)

/ Momj,y * Mgy ()T (&) vic,x (dy)
A

/ M,y * Mg (0T (@)vix(dy)|dg =2C(V ®T") (6)
B
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Choose the subsequence and 2 as in (4). It follows that for x € Q2 by (3)

J

1
Vi,x (A)

l
B )LL i * M¢ I d d
U](,)C( )\/; mj.y k(y) Uk,x( y)‘ g
/ /
Uk,x(A) G A iY k(y) x

1
+Vk,x(B) /(G /I;Mmj»y *M¢k(Y)F(g)Uk’x(dy)'dg
—20(¢ I 0

/ Hmj,y * M¢k(y)FVk,x(dY)
A

and, since A N B = @ (and w.l.o.g. assume that vg  (A) < vi x(B)),

1
Wiy * My 0Tk x (dy)
vk,x<A)/«;/A ey ® OO0 T
Vi (A)

vex(B) /g
@ (L
> Wm ;, * M, F(g)Vk, (dy)‘dg
Uk,x<A)<@ aup YO )

_<1_vk*"(A))/ [,u oy * My, ()i (dy)‘dg)
v (B) ) Jo | Jy i T R

—->2C(¥ D). ®)

P,y * Mgy Tvr x (dy) ‘dg

Claim 2 follows from (7) and (8).

Claim 3. Let A, B € ag_l be images of inverse branches va and vg of T*, where
k is still fixed. Let € = d, (A, B) and let T be Lipschitz continuous with compact
support K; then there exist constants Co, C1 > 0 such that for every n > 1

/G |t * Moy waenT (@) = Hnvg ) * My oaen T (8)] dg
< [CiIT I, @) + DrCoDgmg(B(K, CoDye))] e, 9
where Dr denotes the Lipschitz constant of T.

Letx € X, v = vq(x) and w = vp(x). We may assume that d.(A, B) < r so
that A U B is contained in some atom from «. By the Lipschitz property of ¢ and
by the expanding property of 7', we have for any inverse branch v, : AUB — a €
(@)p~" of T" that

n—1
|6 (va (V) = G (Wa(W))| < Dy Y dr(T" (va (), T (va(w)))
=0
< CyDgdr(v, w) < CyDye,
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where C, denotes some constant. Since I" has compact support
IT(g) = T'(g + ¢n(va(v)) — dn(Wa (W) = DrCoDgel gk c;pye) (8)-

Similarly, there exists a constant C} (also depending on the Lipschitz constant of
W) so that (see [A-D1])

1P (v, g (W)W (02 (V) = pu(W, Va(W) W (Va(W))| < C P (v, va(V))dr (v, W).

Therefore

[G | in,va (o) % M waen T (@) = Mhnvg ) * My waenT(8)| dg

).

— Y Pa(w, va (W)W (0 (W)L (g — B (V) — P (va(w))) | dg

<),

xI'(g — ¢ (v) — Pn(va(v)))|dg

o).

X [I'(g = ¢k (v) = ¢ (va(v))) — I'(g — P (v) — P (va(w)))]|dg

D a0, va @)W (e ()T (8 — Gi(v) — G (va (V)))

Z [Pn (v, va (V)W (V4 (V) — pr(w, Va (W))W (Vg (w))]

> pa(w, va (W)W (Vg (w))

< (CLITIL,@) + DrCyDs 1% llooma (B(K, CyDye))) 1" 1 oce,
n

where ), extends over all a € %71 satisfying T"a D A U B. The claim follows
setting C; = 1 V C/sup, > [ T"||oo fori =0, 1.

Claim 4. There exists a set Q2 of measure I and a constant C > 0 with the following

property:
Ifx € Q k> 1andv, w e T %({x}), then

2C(¥ ®T) — C(¥ ® (I + Mgy (v)—gy(w))T)| < Cdr (v, w).

By claims 1-3 there exists a subsequence {m; : j > 1} C N and a subset 2
so that (6) and (9) hold forany x € Q,k > l and v, w € T_k({x}), A = ar(v),
B = ay(w). Therefore



Group extensions of Gibbs—Markov maps 37

J

1

Vi, x (A)
1

Vk,x(B)

= /G |Mmj,v * Mey )" (8) + tm jw * My, )T (9)| dg

/ M j,y * Mg (T (8)ve,x (dy)
A

/ Momj,y * Mg 0 I (&) vie,x (dy)| dg
B

= /(G |Mm_,',v * My nI'(g) — Kmj,w * M¢k(v)r(g)| dg
+/G | tmjow * M) T (8) + om0 * M) (8)| dg
= /G |t % (I + My )—ge )T ()| dg + Cdy (v, w),

where C = C1||I'||, @) + DrCoDy | ¥ |lcoma (B(K, CoDy)). The lower bound is
shown similarly, proving claim 4.

Claim 5. Let V € L, then for allT € L{(G),
CWW®T—-MT)) =0.

First observe that by Proposition 1 the set of ¢+ € G satisfying the claim is a
group.

Hence it suffices to prove the claim for ¢ in a generating set Go. Moreover, it
suffices to prove the claim for I" Lipschitz continuous with compact support, since
' > C(¥ ®TI)is L{(G)-norm continuous.

Fix such a I". By assumption, and by claim 4 there is a measurable set A € B
of positive measure and a constant C > 0 satisfying:

For x € A there is a subset Gy C G generating a dense subgroup of G such that
forall v, w € T_k(x)

2C(U QT) — C(¥ ® (I + Mg ()—gy, ()| < Cdr (v, w), (10)
and

Vie Gk, =1, v, wy € T R (x)
such that ¢, (v,) — o, (Wp) — t & dr(vy, wy) — 0. (11

Since t — C(¥ ® M,T") is continuous, it follows from properties (10) and (11)
that

20 QDN =C¥YU+M)HI') (e Gy). (12)

It follows that (12) holds for all Lipschitz continuous I with compact support.
Because of continuity, this equation holds for any I' € L{(G). Hence, replacing I
by (I — M,)T" and repeating this argument for each (I + M) — M)HT, k > 0,
we obtain
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C¥®U—-M)D) =27 C(W & U+ M) —M,)I)

for every k > 0 and ¢t € Gg. From this we deduce C(¥ ® I') = 0 as in [F].
The lemma follows now from the well known fact (see [L], [?]) that

U(I —M)Li(G) ={f € Li(G): /f(g)dg =0}
teG

Proof of 1.) — 5.)

Ratio limit theorem for symmetric cocycles. Suppose that ¢ : X — G is Holder
continuous, aperiodic and symmetric in the sense that there exists a probability pre-
serving invertible transformation S : X — X suchthat ST = TSandpoS = —¢,
then there exists u,, > 0 such that

T/ (h® f)(x, y)
_ %
Up
forallhe L, feC.(G), xeX, yeG.
Proof. Firstlet (asin[A-DI1]) P, : L — L (y € @) be defined by

/ h® fdm x mg
XxG

Ph:=T(yog¢-h).

As shown in [A-D1], y + P, is continuous (@ — Hom (L, L)), and 3 ¢ >
0, 0 <60 < 1 and continuous functions

A1 Bg(0,€) > Bc(0,1), N: Bg(0,¢) > Hom(L, L) and g : Bz(0,¢) — L,

such that

MO =1, ) =1, /Xg(y)dm 1,
[A(y)| < 1 with equality iff y = 0,
Pyh=ih = Al < [M(y)| (v € Bg(0,¢)),
Pyh=r(y)h <= heR-g(y) (yeBg0,e),
Plh=A(y)"N(y)h g(y) + 0©") (v € Bz(0,¢€)

and (as is easily shown)
g(=y) =8(), AM(=y) =r().

Since TS = ST and ¢ o S = —¢, P, h(x) = [Pyh o S~1(Sx). It follows that
P_y[g(y) o S](x) = A(y)g(y) o S(x) whence

g(—=y) =g(y) oS, and A(y) € R.

Next, for0 < n < e setu,(n) := fB(O " A(y)"dy. For n small enough (so that
A > 0on B(0, n)), uy(n) > 0. Choose one such ny > 0 and define u, := u, (o).
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Note that p" = o(u,) Y p < 1since 31 < ng such that min|,|<, |A(y)| =7 > p
whence

<
~

u, (n) "

> >
sl pn sl

-m(B(0, n)) — oo.

n

h

:l:

k)

Also, for0 < n < 7/,
un(n) = un(n') £ 0(p(M™)
where p(n) := sup, <, |<c [A(y)| < 1. Thus
upy(n) ~u, asn—->o00 V0<n<e.

Now fix s € L and f € L1(G) with f € C.(G), thenVx € X, y € G,
709 ) = [ Fv BRIy
G
- / hdm / ARG gy + 06"
X B(0,n0)

(by reality of A(y), for some 0 < 6 < 1). Since ER(f(y)y(y)g(y)(x)) —
Jg fdmg as y — 0, it follows that

75009 £ ) ~ s [ hdm [ fam.
X G

By the method of Breiman ([Brei], Theorem 10.7),

T} (h® f)(x,) ~un/ hdm/ fdmg Yhel,feCuG).
X G
0

Corollary. Under the same assumptions, Vx,y € X, t € G, € > 0, Ing such
thatVn >ng3z € T "{x} suchthatd(y,z) < € and ||t — ¢,(2)|| < €.

Proof. Leta = [a1,...,an] = B(y,€), h=1, € Landlet f € C(G), f >
0, [f > 0] C B(0, ¢€), then

T/ (h® f)(x, 1) .

Un

/ h® fdm x mg
XxG
and d ng such that Vn > ny,

0<TIh® N D= 3 palx.2Dft = da(2)

T'z=x, d(y,z)<€
and in particular 3z € T7"{x} such that d(y, z) < € and ||t — ¢, (2)|| < €. (Il

Exactness lemma. Suppose that ¢ : X — G is Holder continuous, aperiodic,
thenVx € X, t € G, € >0, Ing such thatVn > ng 3 y,z € T "{x} such that

d(y,z) < €and ||t + ¢a(y) — P (D < €.
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Proof. Consider the mixing Gibbs—Markov map (X x X, B(X x X), T x T, m X
m,a x a) equipped with the cocycle ¢ : X x X — G defined by ¢(x, x') :=
() = p(x).

The cocycle ¢ : X x X — G is also Holder continuous, aperiodic, but also sym-
metric: ¢ o § = —¢p where S(x, x") := (x’, x) (evidently S(T x T) = (T x T)S).

Thus the conclusion of the corollary holds and this is the lemma. ([
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