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Abstract. Let φ be an aperiodic cocycles with values in a locally compact abelian second
countable group G defined on an exact Gibbs–Markov map T : X → X. We show that
the group extension Tφ(x, g) = (T (x), g + φ(x)) (x ∈ X; g ∈ G) is exact. Equivalent
conditions for exactness are found.

1. Introduction

Let (X,B,m, T , α) be an exact probability preserving Markov map (as in §4.1 of
[A]) where (X,B,m) denotes a probability space, T : X → X is a probability pre-
serving transformation and α a generating Markov partition (possibly countable).
We can and do assume that X is a topological Markov shift:

X =
{
x = (x1, x2, . . . ) ∈ αN : m

(
xn ∩ T −1xn+1

)
> 0 ∀ n ≥ 1

}

endowed with the Polish topology inherited from the product topology on αN.
It follows that T is locally invertible with respect to α in the sense that for

each n ≥ 1, a ∈ αn−1
0 the map T n : a → T na is nonsingular and invertible.

The inverse of this map is denoted va : T na → a and given by va(x1, x2, . . . ) =
(a, x1, x2, . . . ), where a is identified with an element of α{1,... ,n}. We let v′a denote
the Radon-Nikodym derivative of m ◦ va with respect to m.

The partition α enables the definition of a Hölder class of metrics {dr : 0 <

r < 1} on X:
For n ≥ 1, define an : X → αn−1

0 by x ∈ an(x) ∈ αn−1
0 .

For x, y ∈ X define t (x, y) := min {n ≥ 1 : an(x) �= an(y)} (≤ ∞).
For r ∈ (0, 1) define dr : X ×X → R by dr(x, y) := rt (x,y).

It is easily seen that the identity : (X, dr) → (X, ds) is Hölder continuous
∀ r, s ∈ (0, 1).
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Accordingly, we define the Hölder constants of a function h : A→ M (A ⊂ X)
with values in a metric space (M, ρ) by

Dr,A(h) := sup
x,y∈A

ρ(h(x), h(y))

rt (x,y)
.

Let Lipr (M) := {h : X → M : supa∈α Dr,a(h) < ∞}. In case M = R we
simply write Lipr := Lipr (M) instead. A function h : X → M is called uniformly
Hölder continuous on states if h ∈ Lipr (M) for some 0 < r < 1.

Recall (see e.g. [A-D1]) that (X,B,m, T , α) has the Gibbs property if ∃ C >

1, 0 < r < 1 such that ∀ n ≥ 1, a ∈ αn−1
0 , m(a) > 0:

∣∣∣∣ v′a(x)v′a(y)
− 1

∣∣∣∣ ≤ Crt(x,y)

for m × m-a.e. (x, y) ∈ T na × T na. It is called a Gibbs–Markov map if it has in
addition the property

inf
a∈α m(T a) > 0.

Recall that any topologically mixing probability preserving Markov map with
the Gibbs property is exact (see for example [A-D-U]).

Now let G be a locally compact, Abelian, second countable group, let ‖ · ‖
be a Lipschitz norm on G (i.e. γ : G → S1 is ‖ · ‖-Lipschitz for every γ ∈ Ĝ),
and let φ : X → G be measurable. Consider the skew product transformation
Tφ : X ×G → X ×G defined by Tφ(x, y) := (T x, y + φ(x)) with respect to the
(invariant) product measure m×mG where mG denotes Haar measure. We define
φn = φ + φ ◦ T + . . .+ φ ◦ T n−1 and for x ∈ X

Gx =
{
t ∈ G : ∃ kn →∞, yn, zn ∈ T −kn{x} :

{
dr(yn, zn)→ 0
φkn(yn)− φkn(zn)→ t

}
.

We’re interested in the exactness of Tφ and prove

Theorem. Let G be a LCA, second countable group, let (X,B,m, T ) be an exact
probability preserving Gibbs–Markov map and letφ : X → G be uniformly Hölder
continuous on states.

The following are equivalent:

1.) φ is aperiodic in the sense that γ ◦ φ = zgT
g

has no non-trivial solutions

in γ ∈ Ĝ, z ∈ S1 and g : X → S1 Hölder continuous.
2.) Tφ is weakly mixing (cf. §2.7 in [A]).
3.) Tφ is exact.
4.) For someA ∈ B,m(A) > 0 and for all x ∈ A, the smallest closed subgroup

generated by Gx is G.
5.) For every x ∈ X, G = Gx.

Remarks. 1. In case α is a finite Markov partition and m a Gibbs measure as in
[Bo], Guivarc’h ([G]) has obtained exactness of the group extension with respect
to aperiodic, Hölder-continuous, R

d -valued cocycles.
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2. Let T be as in the theorem and let φ : X → Z
d be aperiodic, locally Lip-

schitz and in the domain of attraction of a stable distribution of order 0 < p < 2.
Exactness of Tφ follows from section 7 in [A-D1].

3. The assumptions on the cocycle and the dynamics in these results have been
weakened in [A-D2]:
For an exact Markov map T with the Renyi property and a cocycle φ : X → R

d

which is locally constant (on cylinders in αN0 for some N ≥ 0), topological mixing
of Tφ implies its exactness.

4. Let T be a locally invertible, exact endomorphism with quasicompact
Frobenius-Perron operator whose perturbations have a spectral representation à
la Nagaev ([N]). As shown in theorem 2 of [A-D2], if φ : X → R

d is ape-
riodic and for each real number λ > 1 there is a subsequence nk such that
φ + . . .+ φ ◦ T nk = o(λnk ) a.e., then Tφ is exact.

The proof of the theorem is given in the subsequent sections. The only non-triv-
ial implications are 4.)�⇒ 3.) and 1.)�⇒ 5.). Our proof follows general concepts,
like [L-R-W] and [F] for the first implication and [S] for the second. In particular
the last section contains a ratio limit theorem of independent interest.

The Frobenius-Perron operators R̂n : L1(m)→ L1(m) of a nonsingular trans-
formation (X,B,m,R) are defined by∫

X

R̂nf · gdm =
∫
X

f · g ◦ Rndm

where f ∈ L1(m) and g ∈ L∞(m). For a Gibbs–Markov map T these operators
have the form

T̂ nf (x) =
∑

a∈αn−1
0

1T na(x) · v′a(x) · f (va(x)) =
∑

T n(z)=x
pn(x, z)f (z),

where pn(x, z) = v′an(z)(x)1{T n(z)}(x), and for the group extension Tφ

T̂ nφ f (x, g) = T̂ n[f (·, g − φn(·))](x).
Fix some r ∈ (0, 1). We define the Banach spaceL of allL∞-functions f : X → R

with

Dr,X(f ) <∞.

Define the norm ‖ · ‖L by ‖f ‖L := ‖f ‖∞ +Dr,X(f ), then (L, ‖ · ‖L) is a Banach
space, and ‖ · ‖L-bounded sets are ‖ · ‖∞ -precompact (see e.g. §4.7 in [A]).

We may assume that r is chosen so large that Dφ = supa∈α Dr,a(φ) <∞. It is
shown in [A-D1] that T̂ n : L→ L (n ≥ 1) has a spectral representation

T̂ nf (x) =
∫
f dm+O

(
ρn‖f ‖L

)
for some 0 < ρ < 1 independent of f ∈ L.

Proof of 4.) =⇒ 3.).

We begin with the following easy observation: For ( ∈ L1(m) and ) ∈ L1(G) we
obtain
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∫
X

∫
G

∣∣∣T̂ n+1
φ (( ⊗ ))(x, g)

∣∣∣ dg m(dx)
≤

∫
X

∫
G

∑
T (z)=x

∣∣∣T̂ nφ [( ⊗ )](z, g − φ(z))

∣∣∣p1(x, z)dg m(dx)

=
∫

G

∫
X

T̂
[∣∣∣T̂ nφ [( ⊗ )](·, g − φ(·))

∣∣∣] (x)m(dx)dg
=

∫
X

∫
G

∣∣∣T̂ nφ [( ⊗ )](x, g − φ(x))

∣∣∣ dg m(dx)
=

∫
X

∫
G

∣∣∣T̂ nφ [( ⊗ )](x, g)
∣∣∣ dg m(dx) =: Un(( ⊗ )).

Therefore C(( ⊗ )) is well defined by

Un(( ⊗ )) ↓ C(( ⊗ )) ≥ 0. (1)

We define the operators Mt : L1(G) → L1(G) by Mt)(g) = )(g + t). Let
( ∈ L1(X) be fixed and let the measures {µn,x : n ≥ 1} on G be defined by

µn,x =
∑

T n(z)=x
((z)pn(x, z)δφn(z).

Note that

µn,x - )(g) = T̂ nφ (( ⊗ ))(x, g)

hence ‖µn,x - )‖L1(G) ≤ T̂ n|(|(x) ‖)‖L1(G) and t �→ ‖µn,x - Mt)‖L1(G) is
continuous with modulus of continuity bounded by T̂ n|(|(x)‖) −Mδ)‖L1(G).

Remark . Following [L-R-W], p. 287, a family of signed random measures {µn,x :
n ≥ 1, x ∈ X} on G is called completely mixing in L1(m) if for every ) ∈ L1(G)

with integral
∫
G
)(g)dg = 0 we have

‖µn,· - )‖L1(G) → 0

in L1(m). We’ll show in Proposition 1 and Lemma 2 below that the random signed
measures {µn,x : n ≥ 1} are completely mixing in L1(m).

Proposition 1. For every ) ∈ L1(G) the random sequence

‖µn,· - )‖L1(G)

converges in L1(m) to C(( ⊗ )). In addition,

C(( ⊗ )) ≤ ‖(‖L1(m)‖)‖L1(G).

Proof. Since T̂ nφ (( ⊗ ))(x, g) = T̂ n[((·))(g − φn(·))](x) for ( ∈ L1(X) and
) ∈ L1(G), it suffices to show the theorem for a subclass of pairs ((, )) which
generates a dense subspace in L1(X)× L1(G). Here we take the class of all func-
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tions ( ⊗ ) where ( belongs to the space L and ) is an integrable and Lipschitz
continuous function on G.

By definition

µn+1,x - )(g) =
∫

G

)(g − h)µn+1,x(dh)

=
∑

T n+1(z)=x
((z)pn+1(x, z))(g − φn+1(z))

=
∑

T (z)=x
p1(x, z)T̂

n
φ [( ⊗ )](z, g − φ(z))

whence as before,

‖µn+1,x - )‖L1(G)

≤
∫

G

∑
T (z)=x

p1(x, z)

∣∣∣T̂ nφ [( ⊗ )](z, g − φ(z))

∣∣∣ dg
=

∑
T (z)=x

p1(z, x)

∫
G

∣∣∣T̂ nφ [( ⊗ )](z, g)
∣∣∣ dg

= T̂
[‖µn,· - )‖L1(G)

]
(x).

By induction it is easily seen that for n fixed and k ≥ 1

‖µn+k,x - )‖L1(G) ≤ T̂ k
[‖µn,· - )‖L1(G)

]
(x).

Since the function

x → ‖µn,x - )‖L1(G)

is of classL it follows from the spectral representation of T̂ (mentioned above) that
∀ n ≥ 1, as k →∞

T̂ k
[‖µn,· - )‖L1(G)

] =
∫
X

‖µn,x - )‖L1(G)m(dx)+O(ρk)

→ Un(( ⊗ )) ↓ C(( ⊗ )),

whence

lim sup
n→∞

‖µn,x - )‖L1(G) ≤ C(( ⊗ )). (2)

By (1) and (2), given ε > 0, we can choose n0 so large that for n ≥ n0∫
{x:‖µn,x-)‖L1(G)−C((⊗))>0}

[‖µn,x - )‖L1(G) − C(( ⊗ ))
]
m(dx) ≤ ε

and ∫
X

‖µn,x - )‖L1(G)m(dx)− C(( ⊗ )) ≥ 0.



Group extensions of Gibbs–Markov maps 33

It follows that∫
X

∣∣∣∣‖µn,x - )‖L1(G) − C(( ⊗ ))

∣∣∣∣m(dx)
= 2

∫
{x:‖µn,x-)‖L1(G)−C((⊗))>0}

[‖µn,x - )‖L1(G) − C(( ⊗ ))
]
m(dx)

−
∫
X

[‖µn,x - )‖L1(G) − C(( ⊗ ))
]
m(dx)

≤ 2ε.

The additional claim follows from

C((⊗))←L1(m) ‖µn,x -)‖L1(G) ≤ T̂ n|(|(x)‖)‖L1(G) → ‖(‖L1(m)‖)‖L1(G).

��
Let (Y,A, µ,R) and (Z, C, ν, S) be nonsingular transformations of probability

spaces. The factor map π : Y → Z is called relatively exact if for f ∈ L1(µ)

E(f |π−1C) = 0 �⇒ R̂nf → 0

inL1(µ). By [G], see alternatively [A-D2],R is exact if the factor map π : Y → Z

is relatively exact and the factor S is exact. In the present situation Tφ is exact if the
factor map (x, g) �→ x =: 4(x, g) (X×G → X) is relatively exact. To establish
relative exactness of Tφ , it suffices to show∫

X

∫
G

∣∣∣T̂ nφ [( ⊗ )](x, g)
∣∣∣mG(dg)m(dx)→ 0

for all ( ∈ L1(m) and ) ∈ L1(G) satisfying
∫
G
)dg = 0 (see [G], [A-D2]).

It is left to prove the following

Lemma 2. If
∫
G
)(g)dg = 0, then

C(( ⊗ )) = 0.

Proof. The proof of this statement follows from a series of claims. For the first
4 claims we assume that ) ∈ L1(G) is Lipschitz continuous and has compact
support. These claims are needed for the proof of the statement of the lemma in
claim 5.

Define the measures νn,x =
∑

T n(z)=x pn(x, z)δz on X.

Claim 1. Let k ≥ 0 be fixed. For any subsequence {nl : l ∈ N} ⊂ N there exists a
further subsequence {mj : j ≥ 1} such that for a.e. x ∈ X and for every B ∈ B

lim
j→∞

1

νk,x(B)

∫
G

∣∣∣∣
∫
B

(
µmj ,y - Mφk(y))

)
(g)νk,x(dy)

∣∣∣∣ dg = C(( ⊗ )). (3)
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In order to see this claim, let nl be any subsequence and choose mj so that

‖µmj ,x - )‖L1(G), ‖µmj+k,x - )‖L1(G) → C(( ⊗ )) (4)

for x ∈ 8 where 8 is a T -invariant set of full measure (cf. Proposition 1). On the
one hand it follows from this that for every B fixed

1

νk,x(B)

∫
G

∣∣∣∣
∫
B

µmj ,y - Mφk(y)) νk,x(dy)

∣∣∣∣ dg
≤ 1

νk,x(B)

∫
B

‖µmj ,y - )‖L1(G)νk,x(dy)→ C(( ⊗ )), (5)

because the integrand is uniformly bounded and pointwise convergent by (4).
On the other hand, for x ∈ 8,

C(( ⊗ )) = lim
j→∞

‖µmj+k,x - )‖L1(G)

= lim
j→∞

∫
G

∣∣∣∣∣∣
∑

T k(y)=x
pk(x, y)T̂

mj

φ [( ⊗ )](y, g − φk(y))

∣∣∣∣∣∣ dg
≤ lim

j→∞

∫
G

∣∣∣∣
∫
B

µmj ,y - Mφk(y))(g)νk,x(dy)

∣∣∣∣
+

∣∣∣∣
∫
Bc
µmj ,y - Mφk(y))(g)νk,x(dy)

∣∣∣∣ dg
≤ C(( ⊗ ))

by (5), hence for x ∈ 8

lim
j→∞

1

νk,x(B)

∫
G

∣∣∣∣
∫
B

µmj ,y - Mφk(y))νk,x(dy)

∣∣∣∣ dg = C(( ⊗ )),

proving claim 1.

Claim 2. Let k ≥ 0 be fixed. For any subsequence {nl : l ∈ N} ⊂ N there exists a
further subsequence {mj : j ≥ 1} such that for a.e. x ∈ X and for every disjoint
sets A,B ∈ B

lim
j→∞

∫
G

∣∣∣∣ 1

νk,x(A)

∫
A

µmj ,y - Mφk(y))(g)νk,x(dy)

+ 1

νk,x(B)

∫
B

µmj ,y - Mφk(y))(g)νk,x(dy)

∣∣∣∣ dg = 2C(( ⊗ )) (6)
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Choose the subsequence and 8 as in (4). It follows that for x ∈ 8 by (3)∫
G

∣∣∣∣ 1

νk,x(A)

∫
A

µmj ,y - Mφk(y))νk,x(dy)

+ 1

νk,x(B)

∫
B

µmj ,y - Mφk(y))νk,x(dy)

∣∣∣∣dg
≤ 1

νk,x(A)

∫
G

∣∣∣∣
∫
A

µmj ,y - Mφk(y))(g)νk,x(dy)

∣∣∣∣dg
+ 1

νk,x(B)

∫
G

∣∣∣∣
∫
B

µmj ,y - Mφk(y))(g)νk,x(dy)

∣∣∣∣dg
→ 2C(( ⊗ )) (7)

and, since A ∩ B = ∅ (and w.l.o.g. assume that νk,x(A) ≤ νk,x(B)),

1

νk,x(A)

∫
G

∣∣∣∣
∫
A

µmj ,y - Mφk(y))νk,x(dy)

+νk,x(A)

νk,x(B)

∫
B

µmj ,y - Mφk(y))νk,x(dy)

∣∣∣∣dg
≥ 1

νk,x(A)

(∫
G

∣∣∣∣
∫
A∪B

µmj ,y - Mφk(y))(g)νk,x(dy)

∣∣∣∣ dg
−

(
1 − νk,x(A)

νk,x(B)

) ∫
G

∣∣∣∣
∫
B

µmj ,y - Mφk(y))(g)νk,x(dy)

∣∣∣∣ dg
)

→ 2C(( ⊗ )). (8)

Claim 2 follows from (7) and (8).

Claim 3. Let A,B ∈ αk−1
0 be images of inverse branches vA and vB of T k , where

k is still fixed. Let ε = dr(A,B) and let ) be Lipschitz continuous with compact
support K; then there exist constants C0, C1 > 0 such that for every n ≥ 1∫

G

∣∣µn,vA(x) - Mφk(vA(x)))(g)− µn,vB(x) - Mφk(vA(x)))(g)
∣∣ dg

≤ [
C1‖)‖L1(G) +D)C0DφmG(B(K,C0Dφε))

]
ε, (9)

where D) denotes the Lipschitz constant of ).

Let x ∈ X, v = vA(x) and w = vB(x). We may assume that dr(A,B) < r so
that A ∪ B is contained in some atom from α. By the Lipschitz property of φ and
by the expanding property of T , we have for any inverse branch va : A∪B → a ∈
(α)n−1

0 of T n that

|φn(va(v))− φn(va(w))| ≤ Dφ

n−1∑
l=0

dr(T
l(va(v)), T

l(va(w)))

≤ C′
0Dφdr(v,w) ≤ C′

0Dφε,



36 J. Aaronson, M. Denker

where C′
0 denotes some constant. Since ) has compact support

‖)(g)− )(g + φn(va(v))− φn(va(w)))‖ ≤ D)C
′
0Dφε1B(K,C′

0Dφε)
(g).

Similarly, there exists a constant C′
1 (also depending on the Lipschitz constant of

() so that (see [A-D1])

|pn(v, va(v))((va(v))− pn(w, va(w))((va(w))| ≤ C′
1pn(v, va(v))dr(v,w).

Therefore

∫
G

∣∣µn,vA(x) - Mφk(vA(x)))(g)− µn,vB(x) - Mφk(vA(x)))(g)
∣∣ dg

=
∫

G

∣∣∣∣∣
∑
a

pn(v, va(v))((va(v)))(g − φk(v)− φn(va(v)))

−
∑
a

pn(w, va(w))((va(w)))(g − φk(v)− φn(va(w)))

∣∣∣∣∣ dg
≤

∫
G

∣∣∣∣∑
a

[pn(v, va(v))((va(v))− pn(w, va(w))((va(w))]

×)(g − φk(v)− φn(va(v)))

∣∣∣∣dg
+

∫
G

∣∣∣∣∑
a

pn(w, va(w))((va(w))

× [)(g − φk(v)− φn(va(v)))− )(g − φk(v)− φn(va(w)))]

∣∣∣∣dg
≤ (

C′
1‖)‖L1(G) +D)C

′
0Dφ‖(‖∞mG(B(K,C

′
0Dφε))

) ‖T̂ n1‖∞ε,

where
∑

a extends over all a ∈ αn−1
0 satisfying T na ⊃ A ∪ B. The claim follows

setting Ci = 1 ∨ C′
i supn≥1 ‖T̂ n‖∞ for i = 0, 1.

Claim 4. There exists a set8 of measure 1 and a constantC > 0 with the following
property:
If x ∈ 8, k ≥ 1 and v,w ∈ T −k({x}), then

∣∣2C(( ⊗ ))− C(( ⊗ (I +Mφk(v)−φk(w))))
∣∣ < Cdr(v,w).

By claims 1–3 there exists a subsequence {mj : j ≥ 1} ⊂ N and a subset 8
so that (6) and (9) hold for any x ∈ 8, k ≥ 1 and v,w ∈ T −k({x}), A = ak(v),
B = ak(w). Therefore
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∫
G

∣∣∣∣ 1

νk,x(A)

∫
A

µmj ,y - Mφk(y))(g)νk,x(dy)

+ 1

νk,x(B)

∫
B

µmj ,y - Mφk(y))(g)νk,x(dy)

∣∣∣∣ dg
=

∫
G

∣∣µmj ,v - Mφk(v))(g)+ µmj ,w - Mφk(w))(g)
∣∣ dg

≤
∫

G

∣∣µmj ,v - Mφk(v))(g)− µmj ,w - Mφk(v))(g)
∣∣ dg

+
∫

G

∣∣µmj ,w - Mφk(w))(g)+ µmj ,w - Mφk(v))(g)
∣∣ dg

≤
∫

G

∣∣µmj ,w - (I +Mφk(v)−φk(w)))(g)
∣∣ dg + Cdr(v,w),

where C = C1‖)‖L1(G)+D)C0Dφ‖(‖∞mG(B(K,C0Dφ)). The lower bound is
shown similarly, proving claim 4.

Claim 5. Let ( ∈ L, then for all ) ∈ L1(G),

C(( ⊗ () −Mt))) = 0.

First observe that by Proposition 1 the set of t ∈ G satisfying the claim is a
group.

Hence it suffices to prove the claim for t in a generating set G0. Moreover, it
suffices to prove the claim for ) Lipschitz continuous with compact support, since
) �→ C(( ⊗ )) is L1(G)-norm continuous.

Fix such a ). By assumption, and by claim 4 there is a measurable set A ∈ B
of positive measure and a constant C > 0 satisfying:
For x ∈ A there is a subset G0 ⊂ G generating a dense subgroup of G such that
for all v,w ∈ T −k(x)∣∣2C(( ⊗ ))− C(( ⊗ (I +Mφk(v)−φk(w))))

∣∣ < Cdr(v,w), (10)

and

∀ t ∈ G0 ∃ kn ≥ 1, vn, wn ∈ T −kn(x)
such that φkn(vn)− φkn(wn)→ t & dr(vn,wn)→ 0. (11)

Since t → C((⊗Mt)) is continuous, it follows from properties (10) and (11)
that

2C(( ⊗ )) = C(( ⊗ (I +Mt))) (t ∈ G0). (12)

It follows that (12) holds for all Lipschitz continuous ) with compact support.
Because of continuity, this equation holds for any ) ∈ L1(G). Hence, replacing )
by (I −Mt)) and repeating this argument for each (I +Mt)

k(I −Mt)), k ≥ 0,
we obtain
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C(( ⊗ (I −Mt))) = 2−kC(( ⊗ (I +Mt)
k(I −Mt)))

for every k ≥ 0 and t ∈ G0. From this we deduce C(( ⊗ )) = 0 as in [F].
The lemma follows now from the well known fact (see [L], [?]) that⋃

t∈G

(I −Mt)L1(G) = {f ∈ L1(G) :
∫
f (g)dg = 0}.

�

Proof of 1.) =⇒ 5.)

Ratio limit theorem for symmetric cocycles. Suppose that φ : X → G is Hölder
continuous, aperiodic and symmetric in the sense that there exists a probability pre-
serving invertible transformation S : X → X such that ST = T S and φ◦S = −φ,
then there exists un > 0 such that

T̂ nφ (h⊗ f )(x, y)

un
→

∫
X×G

h⊗ f dm×mG

for all h ∈ L, f ∈ Cc(G), x ∈ X, y ∈ G.

Proof. First let (as in[A-D1]) Pγ : L→ L (γ ∈ Ĝ) be defined by

Pγ h := T̂ (γ ◦ φ · h).
As shown in [A-D1], γ �→ Pγ is continuous (Ĝ → Hom (L,L)), and ∃ ε >

0, 0 ≤ θ < 1 and continuous functions

λ : B
Ĝ
(0, ε)→ BC(0, 1), N : B

Ĝ
(0, ε)→ Hom(L,L) and g : B

Ĝ
(0, ε)→ L,

such that

λ(0) = 1, g(0) ≡ 1,
∫
X

g(γ )dm ≡ 1,

|λ(γ )| ≤ 1 with equality iff γ = 0,

Pγ h = λh �⇒ |λ| ≤ |λ(γ )| (γ ∈ B
Ĝ
(0, ε)),

Pγ h = λ(γ )h ⇐⇒ h ∈ R · g(γ ) (γ ∈ B
Ĝ
(0, ε)),

P n
γ h = λ(γ )nN(γ )h g(γ )+O(θn) (γ ∈ B

Ĝ
(0, ε)

and (as is easily shown)

g(−γ ) = g(γ ), λ(−γ ) = λ(γ ).

Since T S = ST and φ ◦ S = −φ, Pγ h(x) = [Pγ h ◦ S−1](Sx). It follows that
P−γ [g(γ ) ◦ S](x) = λ(γ )g(γ ) ◦ S(x) whence

g(−γ ) = g(γ ) ◦ S, and λ(γ ) ∈ R.

Next, for 0 < η ≤ ε set un(η) := ∫
B(0,η) λ(γ )

ndγ . For η small enough (so that
λ > 0 on B(0, η)), un(η) > 0. Choose one such η0 > 0 and define un := un(η0).
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Note that ρn = o(un) ∀ ρ < 1 since ∃ η < η0 such that min|γ |<η |λ(γ )| = r > ρ

whence

un

ρn
≥ un(η)

ρn
≥ rn

ρn
·m(B(0, η))→∞.

Also, for 0 < η < η′,

un(η) = un(η
′)±O(ρ(η)n)

where ρ(η) := supη≤|γ |≤ε |λ(γ )| < 1. Thus

un(η) ∼ un as n→∞ ∀ 0 < η ≤ ε.

Now fix h ∈ L and f ∈ L1(G) with f̂ ∈ Cc(Ĝ), then ∀ x ∈ X, y ∈ G,

T̂ nφ (h⊗ f )(x, y) =
∫

Ĝ

f̂ (γ )γ (y)P n
γ h(x)dγ

=
∫
X

hdm

∫
B(0,η0)

λ(γ )n((γ (y)f̂ (γ )g(γ )(x))dγ +O(θn)

(by reality of λ(γ ), for some 0 < θ < 1). Since ((f̂ (γ )γ (y)g(γ )(x)) →∫
G
f dmG as γ → 0, it follows that

T̂ nφ (h⊗ f )(x, y) ∼ un

∫
X

hdm

∫
G

f dmG.

By the method of Breiman ([Brei], Theorem 10.7),

T̂ nφ (h⊗ f )(x, y) ∼ un

∫
X

hdm

∫
G

f dmG ∀h ∈ L, f ∈ Cc(G).

�

Corollary. Under the same assumptions, ∀ x, y ∈ X, t ∈ G, ε > 0, ∃ n0 such
that ∀ n ≥ n0 ∃ z ∈ T −n{x} such that d(y, z) < ε and ‖t − φn(z)‖ < ε.

Proof. Let a = [a1, . . . , aN ] = B(y, ε), h = 1a ∈ L and let f ∈ C(G), f ≥
0, [f > 0] ⊂ B(0, ε), then

T̂ nφ (h⊗ f )(x, t)

un
→

∫
X×G

h⊗ f dm×mG

and ∃ n0 such that ∀ n ≥ n0,

0 < T̂ nφ (h⊗ f )(x, t) =
∑

T nz=x, d(y,z)<ε
pn(x, z)f (t − φn(z))

and in particular ∃ z ∈ T −n{x} such that d(y, z) < ε and ‖t − φn(z)‖ < ε. �

Exactness lemma. Suppose that φ : X → G is Hölder continuous, aperiodic,
then ∀ x ∈ X, t ∈ G, ε > 0, ∃ n0 such that ∀ n ≥ n0 ∃ y, z ∈ T −n{x} such that
d(y, z) < ε and ‖t + φn(y)− φn(z)‖ < ε.
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Proof. Consider the mixing Gibbs–Markov map (X×X,B(X×X), T × T ,m×
m,α × α) equipped with the cocycle φ̃ : X × X → G defined by φ̃(x, x′) :=
φ(x)− φ(x′).

The cocycle φ̃ : X×X → G is also Hölder continuous, aperiodic, but also sym-
metric: φ̃ ◦ S = −φ̃ where S(x, x′) := (x′, x) (evidently S(T × T ) = (T × T )S).
Thus the conclusion of the corollary holds and this is the lemma. �
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