Jon Aaronson • Manfred Denker

Group extensions of Gibbs-Markov maps

Received: 20 April 2000 / Revised version: 25 June 2001 /
Published online: 13 May 2002 - (c) Springer-Verlag 2002

Abstract

Let ϕ be an aperiodic cocycles with values in a locally compact abelian second countable group \mathbb{G} defined on an exact Gibbs-Markov map $T: X \rightarrow X$. We show that the group extension $T_{\phi}(x, g)=(T(x), g+\phi(x))(x \in X ; g \in \mathbb{G})$ is exact. Equivalent conditions for exactness are found.

1. Introduction

Let $(X, \mathcal{B}, m, T, \alpha)$ be an exact probability preserving Markov map (as in $\S 4.1$ of [A]) where (X, \mathcal{B}, m) denotes a probability space, $T: X \rightarrow X$ is a probability preserving transformation and α a generating Markov partition (possibly countable). We can and do assume that X is a topological Markov shift:

$$
X=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in \alpha^{\mathbb{N}}: m\left(x_{n} \cap T^{-1} x_{n+1}\right)>0 \forall n \geq 1\right\}
$$

endowed with the Polish topology inherited from the product topology on $\alpha^{\mathbb{N}}$.
It follows that T is locally invertible with respect to α in the sense that for each $n \geq 1, a \in \alpha_{0}^{n-1}$ the map $T^{n}: a \rightarrow T^{n} a$ is nonsingular and invertible. The inverse of this map is denoted $v_{a}: T^{n} a \rightarrow a$ and given by $v_{a}\left(x_{1}, x_{2}, \ldots\right)=$ $\left(a, x_{1}, x_{2}, \ldots\right)$, where a is identified with an element of $\alpha^{\{1, \ldots, n\}}$. We let v_{a}^{\prime} denote the Radon-Nikodym derivative of $m \circ v_{a}$ with respect to m.

The partition α enables the definition of a Hölder class of metrics $\left\{d_{r}: 0<\right.$ $r<1\}$ on X :
For $n \geq 1$, define $a_{n}: X \rightarrow \alpha_{0}^{n-1}$ by $x \in a_{n}(x) \in \alpha_{0}^{n-1}$.
For $x, y \in X$ define $t(x, y):=\min \left\{n \geq 1: a_{n}(x) \neq a_{n}(y)\right\}(\leq \infty)$.
For $r \in(0,1)$ define $d_{r}: X \times X \rightarrow \mathbb{R}$ by $d_{r}(x, y):=r^{t(x, y)}$.
It is easily seen that the identity : $\left(X, d_{r}\right) \rightarrow\left(X, d_{s}\right)$ is Hölder continuous $\forall r, s \in(0,1)$.
J. Aaronson: School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel. e-mail: aaro@math.tau.ac.il. Research supported by Eurandom.
M. Denker: Institut für Mathematische Stochastik, Universität Göttingen, Lotzestr. 13, 37083 Göttingen, Germany. e-mail: denker@math.uni-goettingen. de.

Research supported by Eurandom and the Deutsche Forschungsgemeinschaft, Schwerpunkt Ergodentheorie, Analysis und effiziente Simulation dynamischer Systeme.
Mathematics Subject Classification (2000): Primary 28D05, 60B15; Secondary 58F15, 58F19, 58F30

Accordingly, we define the Hölder constants of a function $h: A \rightarrow M(A \subset X)$ with values in a metric space (M, ρ) by

$$
D_{r, A}(h):=\sup _{x, y \in A} \frac{\rho(h(x), h(y))}{r^{t(x, y)}} .
$$

Let $\operatorname{Lip}_{r}(M):=\left\{h: X \rightarrow M: \sup _{a \in \alpha} D_{r, a}(h)<\infty\right\}$. In case $M=\mathbb{R}$ we simply write $\operatorname{Lip}_{r}:=\operatorname{Lip}_{r}(M)$ instead. A function $h: X \rightarrow M$ is called uniformly Hölder continuous on states if $h \in \operatorname{Lip}_{r}(M)$ for some $0<r<1$.

Recall (see e.g. [A-D1]) that ($X, \mathcal{B}, m, T, \alpha$) has the Gibbs property if $\exists C>$ $1,0<r<1$ such that $\forall n \geq 1, a \in \alpha_{0}^{n-1}, m(a)>0:\left|\frac{v_{a}^{\prime}(x)}{v_{a}^{\prime}(y)}-1\right| \leq C r^{t(x, y)}$ for $m \times m$-a.e. $(x, y) \in T^{n} a \times T^{n} a$. It is called a Gibbs-Markov map if it has in addition the property

$$
\inf _{a \in \alpha} m(T a)>0
$$

Recall that any topologically mixing probability preserving Markov map with the Gibbs property is exact (see for example [A-D-U]).

Now let \mathbb{G} be a locally compact, Abelian, second countable group, let $\|\cdot\|$ be a Lipschitz norm on \mathbb{G} (i.e. $\gamma: \mathbb{G} \rightarrow S^{1}$ is $\|\cdot\|$-Lipschitz for every $\gamma \in \widehat{\mathbb{G}}$), and let $\phi: X \rightarrow \mathbb{G}$ be measurable. Consider the skew product transformation $T_{\phi}: X \times \mathbb{G} \rightarrow X \times \mathbb{G}$ defined by $T_{\phi}(x, y):=(T x, y+\phi(x))$ with respect to the (invariant) product measure $m \times m_{\mathbb{G}}$ where $m_{\mathbb{G}}$ denotes Haar measure. We define $\phi_{n}=\phi+\phi \circ T+\ldots+\phi \circ T^{n-1}$ and for $x \in X$

$$
\mathbb{G}_{x}=\left\{t \in \mathbb{G}: \exists k_{n} \rightarrow \infty, y_{n}, z_{n} \in T^{-k_{n}}\{x\}:\left\{\begin{array}{l}
d_{r}\left(y_{n}, z_{n}\right) \rightarrow 0 \\
\phi_{k_{n}}\left(y_{n}\right)-\phi_{k_{n}}\left(z_{n}\right) \rightarrow t
\end{array}\right\} .\right.
$$

We're interested in the exactness of T_{ϕ} and prove
Theorem. Let \mathbb{G} be a LCA, second countable group, let (X, \mathcal{B}, m, T) be an exact probability preserving Gibbs-Markov map and let $\phi: X \rightarrow \mathbb{G}$ be uniformly Hölder continuous on states.

The following are equivalent:
1.) ϕ is aperiodic in the sense that $\gamma \circ \phi=\frac{z g T}{g}$ has no non-trivial solutions in $\gamma \in \widehat{\mathbb{G}}, z \in S^{1}$ and $g: X \rightarrow S^{1}$ Hölder continuous.
2.) T_{ϕ} is weakly mixing (cf. §2.7 in [A]).
3.) T_{ϕ} is exact.
4.) For some $A \in \mathcal{B}, m(A)>0$ and for all $x \in A$, the smallest closed subgroup generated by \mathbb{G}_{x} is \mathbb{G}.
5.) For every $x \in X, \mathbb{G}=\mathbb{G}_{x}$.

Remarks. 1. In case α is a finite Markov partition and m a Gibbs measure as in [Bo], Guivarc'h ([G]) has obtained exactness of the group extension with respect to aperiodic, Hölder-continuous, \mathbb{R}^{d}-valued cocycles.
2. Let T be as in the theorem and let $\phi: X \rightarrow \mathbb{Z}^{d}$ be aperiodic, locally Lipschitz and in the domain of attraction of a stable distribution of order $0<p<2$. Exactness of T_{ϕ} follows from section 7 in [A-D1].
3. The assumptions on the cocycle and the dynamics in these results have been weakened in [A-D2]:
For an exact Markov map T with the Renyi property and a cocycle $\phi: X \rightarrow \mathbb{R}^{d}$ which is locally constant (on cylinders in α_{0}^{N} for some $N \geq 0$), topological mixing of T_{ϕ} implies its exactness.
4. Let T be a locally invertible, exact endomorphism with quasicompact Frobenius-Perron operator whose perturbations have a spectral representation à la Nagaev ([N]). As shown in theorem 2 of [A-D2], if $\phi: X \rightarrow \mathbb{R}^{d}$ is aperiodic and for each real number $\lambda>1$ there is a subsequence n_{k} such that $\phi+\ldots+\phi \circ T^{n_{k}}=o\left(\lambda^{n_{k}}\right)$ a.e., then T_{ϕ} is exact.

The proof of the theorem is given in the subsequent sections. The only non-trivial implications are 4.) $\Longrightarrow 3$.) and 1.) $\Longrightarrow 5$.). Our proof follows general concepts, like [L-R-W] and [F] for the first implication and [S] for the second. In particular the last section contains a ratio limit theorem of independent interest.

The Frobenius-Perron operators $\widehat{R}^{n}: L_{1}(m) \rightarrow L_{1}(m)$ of a nonsingular transformation (X, \mathcal{B}, m, R) are defined by

$$
\int_{X} \widehat{R}^{n} f \cdot g d m=\int_{X} f \cdot g \circ R^{n} d m
$$

where $f \in L_{1}(m)$ and $g \in L_{\infty}(m)$. For a Gibbs-Markov map T these operators have the form

$$
\widehat{T}^{n} f(x)=\sum_{a \in \alpha_{0}^{n-1}} 1_{T^{n} a}(x) \cdot v_{a}^{\prime}(x) \cdot f\left(v_{a}(x)\right)=\sum_{T^{n}(z)=x} p_{n}(x, z) f(z)
$$

where $p_{n}(x, z)=v_{a_{n}(z)}^{\prime}(x) 1_{\left\{T^{n}(z)\right\}}(x)$, and for the group extension T_{ϕ}

$$
\widehat{T}_{\phi}^{n} f(x, g)=\widehat{T}^{n}\left[f\left(\cdot, g-\phi_{n}(\cdot)\right)\right](x)
$$

Fix some $r \in(0,1)$. We define the Banach space L of all L_{∞}-functions $f: X \rightarrow \mathbb{R}$ with

$$
D_{r, X}(f)<\infty
$$

Define the norm $\|\cdot\|_{L}$ by $\|f\|_{L}:=\|f\|_{\infty}+D_{r, X}(f)$, then $\left(L,\|\cdot\|_{L}\right)$ is a Banach space, and $\|\cdot\|_{L}$-bounded sets are $\|\cdot\|_{\infty}$-precompact (see e.g. §4.7 in [A]).

We may assume that r is chosen so large that $D_{\phi}=\sup _{a \in \alpha} D_{r, a}(\phi)<\infty$. It is shown in [A-D1] that $\widehat{T}^{n}: L \rightarrow L(n \geq 1)$ has a spectral representation

$$
\widehat{T}^{n} f(x)=\int f d m+O\left(\rho^{n}\|f\|_{L}\right)
$$

for some $0<\rho<1$ independent of $f \in L$.
Proof of 4.) \Longrightarrow 3.).
We begin with the following easy observation: For $\Psi \in L_{1}(m)$ and $\Gamma \in L_{1}(\mathbb{G})$ we obtain

$$
\begin{aligned}
& \int_{X} \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n+1}(\Psi \otimes \Gamma)(x, g)\right| d g m(d x) \\
& \quad \leq \int_{X} \int_{\mathbb{G}} \sum_{T(z)=x}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z, g-\phi(z))\right| p_{1}(x, z) d g m(d x) \\
& \quad=\int_{\mathbb{G}} \int_{X} \hat{T}\left[\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](\cdot, g-\phi(\cdot))\right|\right](x) m(d x) d g \\
& \quad=\int_{X} \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](x, g-\phi(x))\right| d g m(d x) \\
& \quad=\int_{X} \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](x, g)\right| d g m(d x)=: U_{n}(\Psi \otimes \Gamma) .
\end{aligned}
$$

Therefore $C(\Psi \otimes \Gamma)$ is well defined by

$$
\begin{equation*}
U_{n}(\Psi \otimes \Gamma) \downarrow C(\Psi \otimes \Gamma) \geq 0 \tag{1}
\end{equation*}
$$

We define the operators $M_{t}: L_{1}(\mathbb{G}) \rightarrow L_{1}(\mathbb{G})$ by $M_{t} \Gamma(g)=\Gamma(g+t)$. Let $\Psi \in L_{1}(X)$ be fixed and let the measures $\left\{\mu_{n, x}: n \geq 1\right\}$ on \mathbb{G} be defined by

$$
\mu_{n, x}=\sum_{T^{n}(z)=x} \Psi(z) p_{n}(x, z) \delta_{\phi_{n}(z)} .
$$

Note that

$$
\mu_{n, x} \star \Gamma(g)=\widehat{T}_{\phi}^{n}(\Psi \otimes \Gamma)(x, g)
$$

hence $\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \leq \widehat{T}^{n}|\Psi|(x)\|\Gamma\|_{L_{1}(\mathbb{G})}$ and $t \mapsto\left\|\mu_{n, x} \star M_{t} \Gamma\right\|_{L_{1}(\mathbb{G})}$ is continuous with modulus of continuity bounded by $\widehat{T}^{n}|\Psi|(x)\left\|\Gamma-M_{\delta} \Gamma\right\|_{L_{1}(\mathbb{G})}$.

Remark. Following [L-R-W], p. 287, a family of signed random measures $\left\{\mu_{n, x}\right.$: $n \geq 1, x \in X\}$ on \mathbb{G} is called completely mixing in $L_{1}(m)$ if for every $\Gamma \in L_{1}(\mathbb{G})$ with integral $\int_{\mathbb{G}} \Gamma(g) d g=0$ we have

$$
\left\|\mu_{n, \cdot} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \rightarrow 0
$$

in $L_{1}(m)$. We'll show in Proposition 1 and Lemma 2 below that the random signed measures $\left\{\mu_{n, x}: n \geq 1\right\}$ are completely mixing in $L_{1}(m)$.

Proposition 1. For every $\Gamma \in L_{1}(\mathbb{G})$ the random sequence

$$
\left\|\mu_{n, \cdot} \star \Gamma\right\|_{L_{1}(\mathbb{G})}
$$

converges in $L_{1}(m)$ to $C(\Psi \otimes \Gamma)$. In addition,

$$
C(\Psi \otimes \Gamma) \leq\|\Psi\|_{L_{1}(m)}\|\Gamma\|_{L_{1}(\mathbb{G})} .
$$

Proof. Since $\hat{T}_{\phi}^{n}(\Psi \otimes \Gamma)(x, g)=\hat{T}^{n}\left[\Psi(\cdot) \Gamma\left(g-\phi_{n}(\cdot)\right)\right](x)$ for $\Psi \in L_{1}(X)$ and $\Gamma \in L_{1}(\mathbb{G})$, it suffices to show the theorem for a subclass of pairs (Ψ, Γ) which generates a dense subspace in $L_{1}(X) \times L_{1}(\mathbb{G})$. Here we take the class of all func-
tions $\Psi \otimes \Gamma$ where Ψ belongs to the space L and Γ is an integrable and Lipschitz continuous function on \mathbb{G}.

By definition

$$
\begin{aligned}
\mu_{n+1, x} \star \Gamma(g) & =\int_{\mathbb{G}} \Gamma(g-h) \mu_{n+1, x}(d h) \\
& =\sum_{T^{n+1}(z)=x} \Psi(z) p_{n+1}(x, z) \Gamma\left(g-\phi_{n+1}(z)\right) \\
& =\sum_{T(z)=x} p_{1}(x, z) \hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z, g-\phi(z))
\end{aligned}
$$

whence as before,

$$
\begin{aligned}
& \left\|\mu_{n+1, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \\
& \quad \leq \int_{\mathbb{G}} \sum_{T(z)=x} p_{1}(x, z)\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z, g-\phi(z))\right| d g \\
& \quad=\sum_{T(z)=x} p_{1}(z, x) \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z, g)\right| d g \\
& \quad=\hat{T}\left[\left\|\mu_{n, \cdot} \star \Gamma\right\|_{L_{1}(\mathbb{G})}\right](x) .
\end{aligned}
$$

By induction it is easily seen that for n fixed and $k \geq 1$

$$
\left\|\mu_{n+k, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \leq \hat{T}^{k}\left[\left\|\mu_{n, \cdot} \star \Gamma\right\|_{L_{1}(\mathbb{G})}\right](x) .
$$

Since the function

$$
x \rightarrow\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}
$$

is of class L it follows from the spectral representation of \widehat{T} (mentioned above) that $\forall n \geq 1$, as $k \rightarrow \infty$

$$
\begin{aligned}
\hat{T}^{k}\left[\left\|\mu_{n, \star} \star \Gamma\right\|_{L_{1}(\mathbb{G})}\right]= & \int_{X}\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} m(d x)+O\left(\rho^{k}\right) \\
& U_{n}(\Psi \otimes \Gamma) \downarrow C(\Psi \otimes \Gamma),
\end{aligned}
$$

whence

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \leq C(\Psi \otimes \Gamma) . \tag{2}
\end{equation*}
$$

By (1) and (2), given $\epsilon>0$, we can choose n_{0} so large that for $n \geq n_{0}$

$$
\int_{\left\{x:\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)>0\right\}}\left[\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)\right] m(d x) \leq \epsilon
$$

and

$$
\int_{X}\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} m(d x)-C(\Psi \otimes \Gamma) \geq 0
$$

It follows that

$$
\begin{aligned}
\int_{X} \mid & \left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma) \mid m(d x) \\
= & 2 \int_{\left\{x:\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)>0\right\}}\left[\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)\right] m(d x) \\
& -\int_{X}\left[\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)\right] m(d x) \\
& \leq 2 \epsilon
\end{aligned}
$$

The additional claim follows from

$$
C(\Psi \otimes \Gamma) \leftarrow \leftarrow_{L_{1}(m)}\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \leq \widehat{T}^{n}|\Psi|(x)\|\Gamma\|_{L_{1}(\mathbb{G})} \rightarrow\|\Psi\|_{L_{1}(m)}\|\Gamma\|_{L_{1}(\mathbb{G})}
$$

Let (Y, \mathcal{A}, μ, R) and (Z, \mathcal{C}, v, S) be nonsingular transformations of probability spaces. The factor map $\pi: Y \rightarrow Z$ is called relatively exact if for $f \in L_{1}(\mu)$

$$
E\left(f \mid \pi^{-1} \mathcal{C}\right)=0 \Longrightarrow \widehat{R}^{n} f \rightarrow 0
$$

in $L_{1}(\mu)$. By [G], see alternatively [A-D2], R is exact if the factor map $\pi: Y \rightarrow Z$ is relatively exact and the factor S is exact. In the present situation T_{ϕ} is exact if the factor map $(x, g) \mapsto x=: \Pi(x, g)(X \times \mathbb{G} \rightarrow X)$ is relatively exact. To establish relative exactness of T_{ϕ}, it suffices to show

$$
\int_{X} \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](x, g)\right| m_{\mathbb{G}}(d g) m(d x) \rightarrow 0
$$

for all $\Psi \in L_{1}(m)$ and $\Gamma \in L_{1}(\mathbb{G})$ satisfying $\int_{\mathbb{G}} \Gamma d g=0$ (see [G], [A-D2]).
It is left to prove the following
Lemma 2. If $\int_{\mathbb{G}} \Gamma(g) d g=0$, then

$$
C(\Psi \otimes \Gamma)=0
$$

Proof. The proof of this statement follows from a series of claims. For the first 4 claims we assume that $\Gamma \in L_{1}(\mathbb{G})$ is Lipschitz continuous and has compact support. These claims are needed for the proof of the statement of the lemma in claim 5.

Define the measures $v_{n, x}=\sum_{T^{n}(z)=x} p_{n}(x, z) \delta_{z}$ on X.
Claim 1. Let $k \geq 0$ be fixed. For any subsequence $\left\{n_{l}: l \in \mathbb{N}\right\} \subset \mathbb{N}$ there exists a further subsequence $\left\{m_{j}: j \geq 1\right\}$ such that for a.e. $x \in X$ and for every $B \in \mathcal{B}$

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{v_{k, x}(B)} \int_{\mathbb{G}}\left|\int_{B}\left(\mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma\right)(g) v_{k, x}(d y)\right| d g=C(\Psi \otimes \Gamma) . \tag{3}
\end{equation*}
$$

In order to see this claim, let n_{l} be any subsequence and choose m_{j} so that

$$
\begin{equation*}
\left\|\mu_{m_{j}, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})},\left\|\mu_{m_{j}+k, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \rightarrow C(\Psi \otimes \Gamma) \tag{4}
\end{equation*}
$$

for $x \in \Omega$ where Ω is a T-invariant set of full measure (cf. Proposition 1). On the one hand it follows from this that for every B fixed

$$
\begin{align*}
& \frac{1}{v_{k, x}(B)} \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y) \Gamma} v_{k, x}(d y)\right| d g \\
& \quad \leq \frac{1}{v_{k, x}(B)} \int_{B}\left\|\mu_{m_{j}, y} \star \Gamma\right\|_{L_{1}(\mathbb{G})} v_{k, x}(d y) \rightarrow C(\Psi \otimes \Gamma), \tag{5}
\end{align*}
$$

because the integrand is uniformly bounded and pointwise convergent by (4).
On the other hand, for $x \in \Omega$,

$$
\begin{aligned}
C(\Psi \otimes \Gamma)= & \lim _{j \rightarrow \infty}\left\|\mu_{m_{j}+k, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \\
= & \lim _{j \rightarrow \infty} \int_{\mathbb{G}}\left|\sum_{T^{k}(y)=x} p_{k}(x, y) \hat{T}_{\phi}^{m_{j}}[\Psi \otimes \Gamma]\left(y, g-\phi_{k}(y)\right)\right| d g \\
\leq & \lim _{j \rightarrow \infty} \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y)\right| \\
& +\left|\int_{B^{c}} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y)\right| d g \\
\leq & C(\Psi \otimes \Gamma)
\end{aligned}
$$

by (5), hence for $x \in \Omega$

$$
\lim _{j \rightarrow \infty} \frac{1}{v_{k, x}(B)} \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma v_{k, x}(d y)\right| d g=C(\Psi \otimes \Gamma),
$$

proving claim 1.
Claim 2. Let $k \geq 0$ be fixed. For any subsequence $\left\{n_{l}: l \in \mathbb{N}\right\} \subset \mathbb{N}$ there exists a further subsequence $\left\{m_{j}: j \geq 1\right\}$ such that for a.e. $x \in X$ and for every disjoint sets $A, B \in \mathcal{B}$

$$
\begin{align*}
\lim _{j \rightarrow \infty} \int_{\mathbb{G}} & \left\lvert\, \frac{1}{v_{k, x}(A)} \int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y)\right. \\
& \left.+\frac{1}{v_{k, x}(B)} \int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y) \right\rvert\, d g=2 C(\Psi \otimes \Gamma) \tag{6}
\end{align*}
$$

Choose the subsequence and Ω as in (4). It follows that for $x \in \Omega$ by (3)

$$
\begin{align*}
\int_{\mathbb{G}} \mid & \frac{1}{v_{k, x}(A)} \int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma v_{k, x}(d y) \\
& \left.+\frac{1}{v_{k, x}(B)} \int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma v_{k, x}(d y) \right\rvert\, d g \\
\leq & \frac{1}{v_{k, x}(A)} \int_{\mathbb{G}}\left|\int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y)\right| d g \\
& +\frac{1}{v_{k, x}(B)} \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y)\right| d g \\
& \rightarrow 2 C(\Psi \otimes \Gamma) \tag{7}
\end{align*}
$$

and, since $A \cap B=\emptyset$ (and w.l.o.g. assume that $\nu_{k, x}(A) \leq \nu_{k, x}(B)$),

$$
\begin{align*}
& \left.\frac{1}{v_{k, x}(A)} \int_{\mathbb{G}} \right\rvert\, \int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma v_{k, x}(d y) \\
& \left.\quad+\frac{v_{k, x}(A)}{v_{k, x}(B)} \int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma v_{k, x}(d y) \right\rvert\, d g \\
& \geq \frac{1}{v_{k, x}(A)}\left(\int_{\mathbb{G}}\left|\int_{A \cup B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y)\right| d g\right. \\
& \left.\quad-\left(1-\frac{v_{k, x}(A)}{v_{k, x}(B)}\right) \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y)\right| d g\right) \\
& \quad \rightarrow 2 C(\Psi \otimes \Gamma) . \tag{8}
\end{align*}
$$

Claim 2 follows from (7) and (8).
Claim 3. Let $A, B \in \alpha_{0}^{k-1}$ be images of inverse branches v_{A} and v_{B} of T^{k}, where k is still fixed. Let $\epsilon=d_{r}(A, B)$ and let Γ be Lipschitz continuous with compact support K; then there exist constants $C_{0}, C_{1}>0$ such that for every $n \geq 1$

$$
\begin{align*}
& \int_{\mathbb{G}}\left|\mu_{n, v_{A}(x)} \star M_{\phi_{k}\left(v_{A}(x)\right)} \Gamma(g)-\mu_{n, v_{B}(x)} \star M_{\phi_{k}\left(v_{A}(x)\right)} \Gamma(g)\right| d g \\
& \quad \leq\left[C_{1}\|\Gamma\|_{L_{1}(\mathbb{G})}+D_{\Gamma} C_{0} D_{\phi} m_{\mathbb{G}}\left(B\left(K, C_{0} D_{\phi} \epsilon\right)\right)\right] \epsilon, \tag{9}
\end{align*}
$$

where D_{Γ} denotes the Lipschitz constant of Γ.
Let $x \in X, v=v_{A}(x)$ and $w=v_{B}(x)$. We may assume that $d_{r}(A, B)<r$ so that $A \cup B$ is contained in some atom from α. By the Lipschitz property of ϕ and by the expanding property of T, we have for any inverse branch $v_{a}: A \cup B \rightarrow a \in$ $(\alpha)_{0}^{n-1}$ of T^{n} that

$$
\begin{aligned}
& \left|\phi_{n}\left(v_{a}(v)\right)-\phi_{n}\left(v_{a}(w)\right)\right| \leq D_{\phi} \sum_{l=0}^{n-1} d_{r}\left(T^{l}\left(v_{a}(v)\right), T^{l}\left(v_{a}(w)\right)\right) \\
& \quad \leq C_{0}^{\prime} D_{\phi} d_{r}(v, w) \leq C_{0}^{\prime} D_{\phi} \epsilon
\end{aligned}
$$

where C_{0}^{\prime} denotes some constant. Since Γ has compact support

$$
\left\|\Gamma(g)-\Gamma\left(g+\phi_{n}\left(v_{a}(v)\right)-\phi_{n}\left(v_{a}(w)\right)\right)\right\| \leq D_{\Gamma} C_{0}^{\prime} D_{\phi} \in 1_{B\left(K, C_{0}^{\prime} D_{\phi} \epsilon\right)}(g) .
$$

Similarly, there exists a constant C_{1}^{\prime} (also depending on the Lipschitz constant of Ψ) so that (see [A-D1])

$$
\left|p_{n}\left(v, v_{a}(v)\right) \Psi\left(v_{a}(v)\right)-p_{n}\left(w, v_{a}(w)\right) \Psi\left(v_{a}(w)\right)\right| \leq C_{1}^{\prime} p_{n}\left(v, v_{a}(v)\right) d_{r}(v, w)
$$

Therefore

$$
\begin{aligned}
& \int_{\mathbb{G}}\left|\mu_{n, v_{A}(x)} \star M_{\phi_{k}\left(v_{A}(x)\right)} \Gamma(g)-\mu_{n, v_{B}(x)} \star M_{\phi_{k}\left(v_{A}(x)\right)} \Gamma(g)\right| d g \\
&= \int_{\mathbb{G}} \mid \sum_{a} p_{n}\left(v, v_{a}(v)\right) \Psi\left(v_{a}(v)\right) \Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(v)\right)\right) \\
& \quad-\sum_{a} p_{n}\left(w, v_{a}(w)\right) \Psi\left(v_{a}(w)\right) \Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(w)\right)\right) \mid d g \\
& \leq \int_{\mathbb{G}} \mid \sum_{a}\left[p_{n}\left(v, v_{a}(v)\right) \Psi\left(v_{a}(v)\right)-p_{n}\left(w, v_{a}(w)\right) \Psi\left(v_{a}(w)\right)\right] \\
& \quad \times \Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(v)\right)\right) \mid d g \\
& \quad+\int_{\mathbb{G}} \mid \sum_{a} p_{n}\left(w, v_{a}(w)\right) \Psi\left(v_{a}(w)\right) \\
& \quad \times\left[\Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(v)\right)\right)-\Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(w)\right)\right)\right] \mid d g \\
& \leq\left(C_{1}^{\prime}\|\Gamma\|_{L_{1}(\mathbb{G})}+D_{\Gamma} C_{0}^{\prime} D_{\phi}\|\Psi\|_{\infty} m_{\mathbb{G}}\left(B\left(K, C_{0}^{\prime} D_{\phi} \epsilon\right)\right)\right)\left\|\hat{T}^{n} 1\right\|_{\infty} \epsilon,
\end{aligned}
$$

where \sum_{a} extends over all $a \in \alpha_{0}^{n-1}$ satisfying $T^{n} a \supset A \cup B$. The claim follows setting $C_{i}=1 \vee C_{i}^{\prime} \sup _{n \geq 1}\left\|\widehat{T}^{n}\right\|_{\infty}$ for $i=0,1$.

Claim 4. There exists a set Ω of measure 1 and a constant $C>0$ with the following property:
If $x \in \Omega, k \geq 1$ and $v, w \in T^{-k}(\{x\})$, then

$$
\left|2 C(\Psi \otimes \Gamma)-C\left(\Psi \otimes\left(I+M_{\phi_{k}(v)-\phi_{k}(w)}\right) \Gamma\right)\right|<C d_{r}(v, w) .
$$

By claims $1-3$ there exists a subsequence $\left\{m_{j}: j \geq 1\right\} \subset \mathbb{N}$ and a subset Ω so that (6) and (9) hold for any $x \in \Omega, k \geq 1$ and $v, w \in T^{-k}(\{x\}), A=a_{k}(v)$, $B=a_{k}(w)$. Therefore

$$
\begin{aligned}
\int_{\mathbb{G}} \mid & \frac{1}{v_{k, x}(A)} \int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y) \\
& \left.+\frac{1}{v_{k, x}(B)} \int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) v_{k, x}(d y) \right\rvert\, d g \\
= & \int_{\mathbb{G}}\left|\mu_{m_{j}, v} \star M_{\phi_{k}(v)} \Gamma(g)+\mu_{m_{j}, w} \star M_{\phi_{k}(w)} \Gamma(g)\right| d g \\
\leq & \int_{\mathbb{G}}\left|\mu_{m_{j}, v} \star M_{\phi_{k}(v)} \Gamma(g)-\mu_{m_{j}, w} \star M_{\phi_{k}(v)} \Gamma(g)\right| d g \\
& +\int_{\mathbb{G}}\left|\mu_{m_{j}, w} \star M_{\phi_{k}(w)} \Gamma(g)+\mu_{m_{j}, w} \star M_{\phi_{k}(v)} \Gamma(g)\right| d g \\
\leq & \int_{\mathbb{G}}\left|\mu_{m_{j}, w} \star\left(I+M_{\phi_{k}(v)-\phi_{k}(w)}\right) \Gamma(g)\right| d g+C d_{r}(v, w),
\end{aligned}
$$

where $C=C_{1}\|\Gamma\|_{L_{1}(\mathbb{G})}+D_{\Gamma} C_{0} D_{\phi}\|\Psi\|_{\infty} m_{\mathbb{G}}\left(B\left(K, C_{0} D_{\phi}\right)\right)$. The lower bound is shown similarly, proving claim 4.

Claim 5. Let $\Psi \in L$, then for all $\Gamma \in L_{1}(\mathbb{G})$,

$$
C\left(\Psi \otimes\left(\Gamma-M_{t} \Gamma\right)\right)=0 .
$$

First observe that by Proposition 1 the set of $t \in \mathbb{G}$ satisfying the claim is a group.

Hence it suffices to prove the claim for t in a generating set G_{0}. Moreover, it suffices to prove the claim for Γ Lipschitz continuous with compact support, since $\Gamma \mapsto C(\Psi \otimes \Gamma)$ is $L_{1}(\mathbb{G})$-norm continuous.

Fix such a Γ. By assumption, and by claim 4 there is a measurable set $A \in \mathcal{B}$ of positive measure and a constant $C>0$ satisfying:
For $x \in A$ there is a subset $G_{0} \subset \mathbb{G}$ generating a dense subgroup of \mathbb{G} such that for all $v, w \in T^{-k}(x)$

$$
\begin{equation*}
\left|2 C(\Psi \otimes \Gamma)-C\left(\Psi \otimes\left(I+M_{\phi_{k}(v)-\phi_{k}(w)}\right) \Gamma\right)\right|<C d_{r}(v, w) \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
& \forall t \in G_{0} \exists k_{n} \geq 1, v_{n}, w_{n} \in T^{-k_{n}}(x) \\
& \quad \text { such that } \phi_{k_{n}}\left(v_{n}\right)-\phi_{k_{n}}\left(w_{n}\right) \rightarrow t \& d_{r}\left(v_{n}, w_{n}\right) \rightarrow 0 . \tag{11}
\end{align*}
$$

Since $t \rightarrow C\left(\Psi \otimes M_{t} \Gamma\right)$ is continuous, it follows from properties (10) and (11) that

$$
\begin{equation*}
2 C(\Psi \otimes \Gamma)=C\left(\Psi \otimes\left(I+M_{t}\right) \Gamma\right) \quad\left(t \in G_{0}\right) . \tag{12}
\end{equation*}
$$

It follows that (12) holds for all Lipschitz continuous Γ with compact support. Because of continuity, this equation holds for any $\Gamma \in L_{1}(\mathbb{G})$. Hence, replacing Γ by $\left(I-M_{t}\right) \Gamma$ and repeating this argument for each $\left(I+M_{t}\right)^{k}\left(I-M_{t}\right) \Gamma, k \geq 0$, we obtain

$$
C\left(\Psi \otimes\left(I-M_{t}\right) \Gamma\right)=2^{-k} C\left(\Psi \otimes\left(I+M_{t}\right)^{k}\left(I-M_{t}\right) \Gamma\right)
$$

for every $k \geq 0$ and $t \in G_{0}$. From this we deduce $C(\Psi \otimes \Gamma)=0$ as in [F].
The lemma follows now from the well known fact (see [L], [?]) that

$$
\overline{\bigcup_{t \in \mathbb{G}}\left(I-M_{t}\right) L_{1}(\mathbb{G})}=\left\{f \in L_{1}(\mathbb{G}): \int f(g) d g=0\right\}
$$

Proof of 1.) \Longrightarrow 5.)
Ratio limit theorem for symmetric cocycles. Suppose that $\phi: X \rightarrow \mathbb{G}$ is Hölder continuous, aperiodic and symmetric in the sense that there exists a probability preserving invertible transformation $S: X \rightarrow X$ such that $S T=T S$ and $\phi \circ S=-\phi$, then there exists $u_{n}>0$ such that

$$
\frac{\widehat{T}_{\phi}^{n}(h \otimes f)(x, y)}{u_{n}} \rightarrow \int_{X \times \mathbb{G}} h \otimes f d m \times m_{\mathbb{G}}
$$

for all $h \in L, f \in C_{c}(\mathbb{G}), x \in X, y \in \mathbb{G}$.
Proof. First let (as in[A-D1]) $P_{\gamma}: L \rightarrow L(\gamma \in \widehat{\mathbb{G}})$ be defined by

$$
P_{\gamma} h:=\widehat{T}(\gamma \circ \phi \cdot h) .
$$

As shown in [A-D1], $\gamma \mapsto P_{\gamma}$ is continuous $(\widehat{\mathbb{G}} \rightarrow \operatorname{Hom}(L, L))$, and $\exists \epsilon>$ $0,0 \leq \theta<1$ and continuous functions
$\lambda: B_{\widehat{\mathbb{G}}}(0, \epsilon) \rightarrow B_{\mathbb{C}}(0,1), N: B_{\widehat{\mathbb{G}}}(0, \epsilon) \rightarrow \operatorname{Hom}(L, L)$ and $g: B_{\widehat{\mathbb{G}}}(0, \epsilon) \rightarrow L$, such that

$$
\begin{aligned}
& \lambda(0)=1, g(0) \equiv 1, \int_{X} g(\gamma) d m \equiv 1, \\
& \quad|\lambda(\gamma)| \leq 1 \text { with equality iff } \gamma=0, \\
& P_{\gamma} h=\lambda h \Longrightarrow|\lambda| \leq|\lambda(\gamma)| \quad\left(\gamma \in B_{\widehat{\mathbb{G}}}(0, \epsilon)\right), \\
& P_{\gamma} h=\lambda(\gamma) h \Longleftrightarrow h \in \mathbb{R} \cdot g(\gamma) \quad\left(\gamma \in B_{\widehat{\mathbb{G}}}(0, \epsilon)\right), \\
& P_{\gamma}^{n} h=\lambda(\gamma)^{n} N(\gamma) h g(\gamma)+O\left(\theta^{n}\right) \quad\left(\gamma \in B_{\widehat{\mathbb{G}}}(0, \epsilon)\right.
\end{aligned}
$$

and (as is easily shown)

$$
g(-\gamma)=\overline{g(\gamma)}, \lambda(-\gamma)=\overline{\lambda(\gamma)}
$$

Since $T S=S T$ and $\phi \circ S=-\phi, P_{\gamma} h(x)=\left[P_{\gamma} h \circ S^{-1}\right](S x)$. It follows that $P_{-\gamma}[g(\gamma) \circ S](x)=\lambda(\gamma) g(\gamma) \circ S(x)$ whence

$$
g(-\gamma)=g(\gamma) \circ S, \text { and } \lambda(\gamma) \in \mathbb{R}
$$

Next, for $0<\eta \leq \epsilon \operatorname{set} u_{n}(\eta):=\int_{B(0, \eta)} \lambda(\gamma)^{n} d \gamma$. For η small enough (so that $\lambda>0$ on $B(0, \eta)), u_{n}(\eta)>0$. Choose one such $\eta_{0}>0$ and define $u_{n}:=u_{n}\left(\eta_{0}\right)$.

Note that $\rho^{n}=o\left(u_{n}\right) \forall \rho<1$ since $\exists \eta<\eta_{0}$ such that $\min _{|\gamma|<\eta}|\lambda(\gamma)|=r>\rho$ whence

$$
\frac{u_{n}}{\rho^{n}} \geq \frac{u_{n}(\eta)}{\rho^{n}} \geq \frac{r^{n}}{\rho^{n}} \cdot m(B(0, \eta)) \rightarrow \infty
$$

Also, for $0<\eta<\eta^{\prime}$,

$$
u_{n}(\eta)=u_{n}\left(\eta^{\prime}\right) \pm O\left(\rho(\eta)^{n}\right)
$$

where $\rho(\eta):=\sup _{\eta \leq|\gamma| \leq \epsilon}|\lambda(\gamma)|<1$. Thus

$$
u_{n}(\eta) \sim u_{n} \text { as } n \rightarrow \infty \quad \forall 0<\eta \leq \epsilon
$$

Now fix $h \in L$ and $f \in L^{1}(\mathbb{G})$ with $\hat{f} \in C_{c}(\widehat{\mathbb{G}})$, then $\forall x \in X, y \in \mathbb{G}$,

$$
\begin{aligned}
\widehat{T}_{\phi}^{n}(h \otimes f)(x, y) & =\int_{\widehat{\mathbb{G}}} \hat{f}(\gamma) \overline{\gamma(y)} P_{\gamma}^{n} h(x) d \gamma \\
& \left.=\int_{X} h d m \int_{B\left(0, \eta_{0}\right)} \lambda(\gamma)^{n} \mathfrak{R} \overline{\gamma(y)} \hat{f}(\gamma) g(\gamma)(x)\right) d \gamma+O\left(\theta^{n}\right)
\end{aligned}
$$

(by reality of $\lambda(\gamma)$, for some $0<\theta<1$). Since $\mathfrak{R}(\hat{f}(\gamma) \overline{\gamma(y)} g(\gamma)(x)) \rightarrow$ $\int_{\mathbb{G}} f d m_{\mathbb{G}}$ as $\gamma \rightarrow 0$, it follows that

$$
\widehat{T}_{\phi}^{n}(h \otimes f)(x, y) \sim u_{n} \int_{X} h d m \int_{\mathbb{G}} f d m_{\mathbb{G}} .
$$

By the method of Breiman ([Brei], Theorem 10.7),

$$
\widehat{T}_{\phi}^{n}(h \otimes f)(x, y) \sim u_{n} \int_{X} h d m \int_{\mathbb{G}} f d m_{\mathbb{G}} \quad \forall h \in L, f \in C_{c}(\mathbb{G})
$$

Corollary. Under the same assumptions, $\forall x, y \in X, t \in \mathbb{G}, \epsilon>0, \exists n_{0}$ such that $\forall n \geq n_{0} \exists z \in T^{-n}\{x\}$ such that $d(y, z)<\epsilon$ and $\left\|t-\phi_{n}(z)\right\|<\epsilon$.

Proof. Let $a=\left[a_{1}, \ldots, a_{N}\right]=B(y, \epsilon), h=1_{a} \in L$ and let $f \in C(\mathbb{G}), f \geq$ $0,[f>0] \subset B(0, \epsilon)$, then

$$
\frac{\widehat{T}_{\phi}^{n}(h \otimes f)(x, t)}{u_{n}} \rightarrow \int_{X \times \mathbb{G}} h \otimes f d m \times m_{\mathbb{G}}
$$

and $\exists n_{0}$ such that $\forall n \geq n_{0}$,

$$
0<\widehat{T}_{\phi}^{n}(h \otimes f)(x, t)=\sum_{T^{n} z=x, d(y, z)<\epsilon} p_{n}(x, z) f\left(t-\phi_{n}(z)\right)
$$

and in particular $\exists z \in T^{-n}\{x\}$ such that $d(y, z)<\epsilon$ and $\left\|t-\phi_{n}(z)\right\|<\epsilon$.
Exactness lemma. Suppose that $\phi: X \rightarrow \mathbb{G}$ is Hölder continuous, aperiodic, then $\forall x \in X, t \in \mathbb{G}, \epsilon>0, \exists n_{0}$ such that $\forall n \geq n_{0} \exists y, z \in T^{-n}\{x\}$ such that $d(y, z)<\epsilon$ and $\left\|t+\phi_{n}(y)-\phi_{n}(z)\right\|<\epsilon$.

Proof. Consider the mixing Gibbs-Markov map $(X \times X, \mathcal{B}(X \times X), \underset{\sim}{T} \times T, m \times$ $m, \alpha \times \alpha$) equipped with the cocycle $\tilde{\phi}: X \times X \rightarrow \mathbb{G}$ defined by $\tilde{\phi}\left(x, x^{\prime}\right):=$ $\phi(x)-\phi\left(x^{\prime}\right)$.

The cocycle $\tilde{\phi}: X \times X \rightarrow \mathbb{G}$ is also Hölder continuous, aperiodic, but also symmetric: $\tilde{\phi} \circ S=-\tilde{\phi}$ where $S\left(x, x^{\prime}\right):=\left(x^{\prime}, x\right)$ (evidently $\left.S(T \times T)=(T \times T) S\right)$. Thus the conclusion of the corollary holds and this is the lemma.

References

[A] Aaronson, J.: An introduction to infinite ergodic theory, Mathematical surveys and monographs 50, American Mathematical Society, Providence, R.I, U.S., 1997
[A-D1] Aaronson, J., Denker, M.: Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stochastics and Dynamics 1(2), 193-238 (2001)
[A-D2] Aaronson, J., Denker, M.: On exact group extensions, Sankhya ser. A 62(3), 339-349 (2000)
[A-D-U] Aaronson, J., Denker, M., Urbański, M.: Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337, 495-548 (1993)
[Bo] Bowen, R.: Equilibrium states and the ergodic theory for Anosov diffeomorphisms, Lect. Notes in Math. 470, Springer Verlag, Berlin, Heidelberg, New York, 1975
[Brei] Breiman, L.: Probability, Addison-Wesley, Reading, Mass. US, 1968
[F] Foguel, S.R.: On iterates of convolutions, Proc. Amer. Math. Soc. 47, 368-370 (1975)
[G] Guivarc'h, Y.: Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés, Ergod. Th. and Dynam. Sys. 9, 433-453 (1989)
[L] Lin, M.: Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19, 231-242 (1971)
[L-R-W] Lin, M., Rubshtein, B.-Z., Wittmann, R.: Limit theorems for random walks with dynamical random transitions, Probab. Theory Relat. Fields 100, 285-300 (1994)
[N] Nagaev, S.V.: Some limit theorems for stationary Markov chains, Theor. Probab. Appl. 2, 378-406 (1957)
[S] Stone, C.: Ratio limit theorems for random walks on groups, Trans. Amer. Math. Soc. 125, 86-100 (1966)

