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Abstract. We areinterested in proving Monte-Carlo approximations for 2d Navier-Stokes
equations with initial data u, belonging to the Lorentz space L>> and such that curl ug is
a finite measure. Giga, Miyakawa and Osada [7] proved that a solution u exists and that
u = K *curl u, where K isthe Biot-Savart kernel and v = curl « is solution of anonlinear
equation in dimension one, called the vortex equation.

In this paper, we approximate a solution v of this vortex equation by a stochastic in-
teracting particle system and deduce a Monte-Carlo approximation for a solution of the
Navier-Stokes equation. That gives in this case a pathwise proof of the vortex algorithm
introduced by Chorin and consequently generalizes the works of Marchioro-Pulvirenti [12]
and Méléard [15] obtained in the case of avortex equation with bounded density initial data.

1. Introduction

In this paper, we are interested in proving stochastic approximations for a 2d Na-
vier-Stokesequation with aninitial datau belonging to the L orentz space L2 and
such that curl () isafinite measure. Giga-Miyakawa-Osada[ 7] proved that in this
case, the equation hasaglobal solution u (not alwaysunique), andu = K = curl(u),
where K isthe Biot-Savart kernel and v = curl (1) is solution of anonlinear equa-
tion in dimension one, called the vortex equation, with afinite measureinitial data.
This equation appears as aMcKean-Vlasov equation, in which the drift term given
by K can explode.

Our @m in this paper is to give a pathwise Monte-Carlo approximation for a
solution of the Navier-Stokes equation, by using the probabilistic interpretation of
the vortex equation.

In a previous work [15], we obtained in the case of a vortex equation with
bounded density initial data a pathwise proof of the vortex algorithm introduced by
Chorin, i.e. the convergence of the empirical measures of the particle system, con-
sidered as probability measures on the path space, to the solution of the equation,
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withapreciserate of convergence. That work generalized apaper of Marchioro-Pul-
virenti [12], in which the convergence of the expectation of the empirical measures
was obtained for each time, and al so the one of Osada[18], where the convergence
isonly truefor large viscosities. However, our result was not completely satisfying
sincein aprobabilitic point of view, the hypothesis of bounded density initial data
was ununderstandabl e.

Here, we obtain a pathwise result, for each viscosity, and for a large class of
initial datas. We approach the Biot-Savart kernel by cutoff kernels K, and con-
struct particle systems associated with K, in an asymptotics relying the number
of particles n and the level of cutoff ¢,. The difficulties are mainly related to the
explosion of the Biot-Savart kernel and to the general form of theinitial condition.
The good spaces in which the solutions of the vortex equation live are L9-spaces,
with 1 < g < 2, and that induces new difficulties. We only obtain here a conver-
gencein law for the particle system, instead of a L1-convergence asin the bounded
density case, due to the explosions of al standard estimates.

1.1. Notations

Let @ = C(R4, R?), endowed with the topology of uniform convergence on com-
pact sets and with the corresponding Borel o-field. For each T > 0, Q7 denotes
C([0, T], R?) and X the canonical process.

For aBorel space E, P(E) isthe space of probability measures on E endowed
with the topology of weak convergence. We denote by M the space of finite
measures on R? normed by the total variation ||.].

C isapositive real constant which can change from line to line.

2. Existence and uniqueness for the vortex equation with finite measure
initial data

Let us consider the velocity flow u(z, x), t € Ry, x € R? of aviscous and in-
compressiblefluid in the whole plane. The governing equation of thismotionisthe
Navier—Stokes equation given by

d

8—?(t,x) + (u - V)u(t,x) =vAu(t,x) — Vp;

Voult,x)=0; u(x,t) > 0as|x| »> +oo, for0<t < +oo, (21

where p isthe pressure and v > 0 the viscosity (assumed to be constant).

It is well known that if the initial velocity ug € L? with a divergence equal
to 0 and curl (ug) = vg € L1 N L™, there is a unique weak solution to (2.1) and
the vorticity flow v(z, x) = curl u(¢, x) is weak solution of the nonlinear partial
differential equation, called the vortex equation

9
8—’;(t,x) (- V)ult, x) = vAV(, x) 3 vix, 1) — 08s |x| — 400,
for 0<t < +oo, (2.2

u(t, x) =f K(x —y)v(t, y)dy (2.3
R2
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with initial datavg. The Biot-Savart kernel K (x) is obtained from the fundamental
solution of the Poisson equation g(r) = —5=In|r| by

Vx € R?, K(x) = Vtg(x))

and V+ = (dy,, —dy,). The computation gives

1 1
———-(—x2, x1). (2.4)

Vx = (x1,x GRZ,sz—
(x1, x2) (x) 27 (2412

Notethat V - K = 0.

In [7], Giga-Miyakawa—Osada remark that the convolution of a finite signed
mesasure by the Biot-Savart kernel is a bounded operator in awell chosen Lorentz
space and generalize the previous properties with less regular initial velocities. We
recall here some of their results. Let usfirst introduce the Lorentz space L% *°(R?)
(cf. Bergh and Lofstrom [2]).

A measurable function £ on R? belongs to the space L% (R?) if

I 200 = SUpAmes(x; | ()| > AE < +oo, (25)
where mes is the Lebesgue measure on R?. Although || £ 1|2, does not satisfy the
usual triangle inequality, it is a pseudo-norm on the linear space L2 (RR?), which
is a Banach space with anorm equivalent to || f [|2.00-

The following lemma describes the main properties of the Biot-Savart kernel
we will use later.

Lemma 2.1. 1) the Biot-Savart kernel K belongsto L2°°(R?).
2) For every finite signed measure mo on R?, the function K x mg belongs to
L2 (R?) and

[ K s moll2,00 < ClIK]2,c0llmoll, (2.6)

where C isindependent of mo.
Moreover, suppose that u € L% (R?) withV - u = 0and curl u € M. Then

u = K * (curl u). (2.7)
3)Letp >2andl< g < 2suchthat T = = + 3, thenfor w e L9(R?),
1K *xwllp, < ClK|200llwllg- (2.8)

Moreover, suppose that u € L?(R?) with V - u = 0 and curl u € L1(R?). Then
u = K * (curl u). (2.9
4) For 1 < g < 2 and for each function w(z, x) on R x R? such that
lw(t, )1 < Cand lw(t, ), < Cr T for everyt > 0, with ql + q—l, =1,

1
IK xw(t, )= < C 7 +1), (2.10)

and then the mapping ¢ — ||K * w(z, .)||z~ iSintegrable on every time interval
[0, TT.
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Proof. Thefirst part consistsin atrivial computation giving || K ||2,c0 = ﬁ; The
proof of the second and third parts can befound in Gigaand others[7] Lemma?2.2.
The equation (2.8) is obtained by an interpolation theorem for Lorentz spaces. (See
[2] Theorem 5.3.4).

For the last part, let uswrite

K w(t, ) 5/

B(x,1)

1

q ’ q

< (/ |K<x—y>|’fdy) (/ w(t, ) dy)
B(x,1) B(x,1)

1 1
+ sup  [KWlllw(, )2 Wlth;+z=l,

|K(x = y)w(t, y)ldy +/1;< " |K(x = y)w(t, y)ldy

[

yeB(0,1)¢
—1+1 q q
<C(t Ta |IK(x —)l%dy) + sup [K(y)l
B(x,1) yeB(0,1)¢
1
<C@t 7+1D),

sincethe mapping y — K (y)?, 1 < ¢ < 2isintegrable at zero (wearein R?). O

Remark 2.2. Theformulas (2.7) and (2.9) will allow us to deduce approximating
resultsfor u fromthe onesfor curl(u), and justify the interest we have in the vortex
equation.

Throughout the paper, v always denotes the vorticity of u.
The probabilistic interpretation will be based on the following theorem, proved
by Giga, Miyakawa and Osada ([ 7] Theorems 4.2 and 4.3).

Theorem 2.3. Suppose ug € LZ®°(R?), V - ug = 0 and curl (ug) = mo is afinite
signed measure. Thereis at least one global solution u to the Navier-Sokes equa-
tion (2.1) with ug as initial data and one solution v to the vortex eguation. The
function v is bounded and continuous under the weak* -topology, from [0, 4+-00) to
M with initial measure mg.

Moreover, for each r > 0, the solution v(z, .) is a differentiable function, such
that

(. My < Ct= Y F Imoll, Ve >0¥l<r<oo; (211)

limsups>~7 [u(r, )y < Cllmo)ppll. forl<gq <2, 2.12)
t—0
sup [[V¥/v(r, )llos < Ce, (2.13)
[e.T]

where (mo) », denotes the purely atomic part of mg, C and C, are real constants
and (2.13) istruefor each 0 < ¢ < T and k and / nonnegative integers.

The proof isbased on Theorem 2.4 ([17]) concerning generators of generalized
divergence form and on Lemma 2.5 ([18]) below.
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Theorem 2.4. Let us consider the parabolic operator L, = 9; — vA + (b - V),
under the following assumptions:

a) Thevector b = b(x, t) satisfiesV - b = 0, in distribution. (b is ot always a
function).

b) Thereexistd > Oandfunctionsc’/ (x,1),1 < i, j < 1,withb' = > djct,
b’ being the i"” component of b, and satisfying

sup  suple(x,1)| < d.
(x,H)eR2x[0,T] i,J

Then L; has a unique fundamental solution T';,, and there exist constants C; de-
pending only on d and v such that for all x, y e RZand0<s <t < T,

C1 x — y|2 Cs lx — y/?
exp(—Ca2 ) < Tp(x,t,y,5) < ——exXp(—Cs ).
(t—s) (t—s) (t—s) (t—s)
(2.14)
Lemma 2.5. Thefunction K = (K1, K2) can be expressed as

K1 = 01A3+ 02A1; Kp = —01A1 — 0247,

xfx% xlxz x1x2

Ag = —3x1x2 +

. —3x1x
A2 - 2 + 27'[|X|2

where A1 = — =122 ; 2+ 1=
x| 27| x| x|
The functions A1, Ao, A3 are clearly bounded.

mlxl4”

As an immediate application of (2.10) and (2.11), we have
Coroallary 2.6. Under the same hypotheses asin Theorem 2.3, for every r > 0, for
l<g <2
IK % (1, iz~ < Cllmollt T +1). (2.15)
Hencethemappings — || K xv(z, .)| L~ iSintegrableon every timeinterval [0, T].
We deduce from it the evolutive form of the solution v of (2.2).

Lemma 2.7. Eachweak solution v of thevortex equation (2.2) with afinitemeasure
initial data mg is solution of the mild equation

t
v(t,y) = G} *mo(y) +/ fz ViG] _(x — y)K % v(s, x)v(s, x)dxds
0 JR
(2.16)

|2
where G} isthe heat kernel in RR? defined by G/ (x) = 4W e v,
The proof can be omitted since it consistsin a standard mild formulation using

C
||VxG;)||L1(R2) < — (2.17)

Vvt

where C isareal constant and so [y |V G}_ |l 11r2)ds < +00.

Let us now recall the following technical estimates.
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Lemmaz28. Forl<s <r <oo,t >0,
1 1 1
IViG) * fll, < Cot)" 2 G=D| £l (2.18)

The proof of thislemma can be easily obtained by applying the Young inequal-
ity and by using estimates on the function V, G} that one can find for example in
Ladyzenskaya-Solonnikov-Ural’ ceva[11] p. 274.

Giga and others prove the uniqueness of the solution of the Navier-Stokes
equation (2.1), in the case where mg is ameasure with no atoms. Our probabilistic
interpretation isbased on the vortex equation, and needs a uniquenessresult for this
equation which is not directly induced by the one of the Navier-Stokes equation.

Theorem 2.9. If the finite measure mg is a measure with no atoms or if ||mo] is
sufficiently small, then the solution v of the vortex equation is unique in the space
of functions which satisfy (2.11) and (2.12).

Proof. We consider two solutions v1 and vy of the vortex equation with initial data
mg, and writeindifferently v; s (x) or v; (s, x). By Lemma2.7 andfor¢t < T,

t
. vl = [ [ 196760 pi(1K < vncoue 0
t
—K * vz,s(x)vz(S,x)|)dde < f / IViGy_(x — y)|
0 Jre

X <I(K * 01,5 (x) — K % v2,5(x))vi(s, x)|

+IK * v2,5(x)(va(s, x) — va(s, x))|>dde~
Let usconsider areal number ¢ suchthat 3 < ¢ < 2, and r defined by

then1 < r < ¢ < 2 and we denote by ¢’ the real number such that 1 =
Sincer < ¢, by (2.8) and the Holder inequality, we obtain

2_1
qg 2
+

|
U |

! _1_,1_1
loa(, ) — vat, iy §C/ (t—s5) 270 q>(||<1<*vl,s—K*vz,s)m(s, Iy
0

+HIK * v 5 (vi(s, .) — vals, .))||r>ds
! _1
< C/O (t—s) ¢ (IIK *v1s — K vasllgllva(s, Jllg +
HIK *vallg I (vals, ) — va(s, .))Ilq>ds
! _1
< CIIKllz,oo/O (t—s) ¢ <||Ul,s —v2sllgllvals, Ilg +

Fllvzsligllvals, ) — vals, -)Ilq)d&
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1
Let us now introduce [[vll4,r = SUPp—s<, siTa lv(s, 4. Then asimple computa-
tion gives

2
lve —vallg.r = ClIK|2,008(1 - 77 Ddlvallg.r + llvallg.m)llve — vallg.7»

where B isthe beta function for the parameters 1 — 2 and 2 — 1.

1) If mg is diffuse, the estimate (2.12) implies that there exists T sufficiently
small for which C||K||2,008(1 — 1 5 — D(JJvallg, 7 + llvallg,7) < 1. Thisyields
vy = v2 on [0, T]. On the interva7 [T, 00), both v1 and v, are classical solutions
and then equal on [T, co) by a standard uniqueness result.

2) If other cases, weuse (2.11), andif 2C|| K || 2.00(1— %, 5—1)||m0|| < 1, (for
the adequate real constant C), we obtain immediately agf{obal uniqueness result.

O

3. Thenonlinear martingale problem and the SDE associated with the
vortex equation

We arein aMcKean-Vlasov context, and the interpretation of the vortex equation
as a Fokker-Planck equation allows us to define naturally a nonlinear martingale
problem (See for example Mé&eéard [14], Jourdain [10]).

We want to take into account any finite initial measure mg. So let |mo, ||moll,
and h denote respectively the absolute value of mg, the total variation of mg and a
density of mg with respect to the probability measure Imol The function & isthus

. . . mol|
a bounded measurable function with valuesin [—||mgl|; ||moll].

For P aprobability measure on C (R, R?), we denote by (Pt)=0 the flow of
time-marginals of P at each time+ and define the flow (ﬁ,)tzo of signed measures
on R? by

VB e B(R?), P(B)=E"(1(X,)h(Xo)), (3.2)

where X denotes the canonical process on C (R, R?). (One associates with each
sample path a signed weight depending on the initial data).

It is easy to prove that for each + > 0, the signed measure P, is bounded with
atotal masslessthan ||mg||, and that if P; isabsolutely continuous with respect to
the L ebesgue measure, then it is the same for P.

The vortex equation, seen as Fokker-Planck equation, leads naturally to the
following definition.

Definition 3.1. The probability measure P € P(C (R4, R?)) is solution of the
nonlinear martingale problem (M) if for each ¢ € C2(R?),

t t

¢ (X;) — ¢(Xo) —/0 K % Py(X,).Vo(X,)ds — V/O A¢p(X5)ds  (3.2)
isa P-martingale, where X isthe canonical processon C(R, R?), Py = Po Xt

— lmol
and Py = ol
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Let us remark that, if for each s > 0, the probability Py is absolutely continuous
with respect to the Lebesgue measure, with density v (s, .), then thefunction v isa
weak solution of the vortex equation (2.2) with initial datam.

The nonlinear martingale problem (M) is related to the following nonlinear
stochastic differential equation.

Definition 3.2. Let us consider a random R2-valued variable Xg with law 7ol

IIm [
and B a 2-dimensional Brownian motion independent of Xo. We say that X €
C(R,, R?) issolution of the nonlinear SDE satisfies for each r > 0,

t
X, = Xo+ V2vB, +/ K * Py(X,)ds,
0

P, isthe marginal at time s of the law of X. 3.3
We will seein the following that there exist weak solutions of this equation.

Remark 3.3. We denote by P the space of probability measures on C (R, R?)
whose marginals P, s > 0 are absolutely continuous with respect to the Lebesgue
measure. For such probability measures P, there exists a measurable version
(s, x) — p(s, x)ofthedensitiesoftheflowofsignedmeasures ;. (cfMeyer [ 16] p.194)

The following theorem gives the probabilistic interpretation of the vortex equa-
tion.

Theorem 3.4. Let us consider a probability measure mq satisfying the hypothe-
ses of Theorem 2.9. Then there exists a unique solution P < P to the nonlinear

martingale problem (M) such that Py = %

Moreover, the flow of measurable densities (v;) of (P;) isthe unique solution
of the vortex equation.

Proof. The proof will use a shift argument introduced by Jourdain [8].

1) Uniqueness

Let P and Q be two solutions of (M) belonging to P. Then for each t > 0,
the signed measures P, and Q, have densities p, and ¢,. By taking expectations
in the martingale problem, we obtain immediately that the flows (p;) and (¢;) are
solutions of the vortex eguation (2.2) with the sameinitial condition mgq. They are
both solutions of 8;p — vAp + (K * p)Vp = 0, and then by Theorem 2.4 and
Lemma 2.5, they satisfy (2.11) and (2.12). They are then equal and equal to the
unique solution v. So P and Q are solution of the same martingale problem with
the given drift term K « v,. By Theorem 2.3, for eachr > 0, v(z, .) isin L1, and is
bounded on every interval [, T]. Thenthefunction (s, x) — K *vg(x) isbounded
on[e, T] x R?, for each ¢ > O.

Weintroducethe shift y — D, (y) = y(1 +.) € Q.Let P" = Po D%, Q" =
Qo Dn—l. Both P" and Q" solve the martingale problem:

1
Ro=v(=,x)dx ;
n

t
o(Xy) — d(Xo) — /(; (VAP (Xs) + K * vs+%(XS)'V¢(XS))dS (34)
isa R martingale for any ¢ € C2(R?).
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Sincethemapping x — K v, 1(x) isbounded uniformly ins, themartingale

problem admits a unique solution and P"* = Q", for eachn € N*.

Asforany y € @, lim,— 1 Dn(y) = vy, P" and Q" converge weakly to P
and Q. Therefore, P = Q.

2) Existence.

The first idea consists in considering the martingale problem with the drift
K * v, where v isthe solution of the vortex equation. This drift term is not bound-
ed and not Lipschitz continuous, and we do not have an immediate existence result.
So we consider again the solution P" of the martingale problem (3.4). Since the
drift K % v, 1(x) is bounded uniformly in s and by Girsanov’s theorem, the law
P" belongs to P, and we denote by ¢" (¢, x) the measurable version of the densities
of (15,”). Then, multiplying al thetermsin (3.4) by 2 (X) and taking expectations,
we obtain that for each ¢ > 0 and for each ¢ € c,}z([o, 1] x R?),

/yﬁ(t,x)q"(t,x)dx:/ w(O,x)v(E,x)dx—i—/
R2 R2 n ( as

0,1]xR2

<8w(s,x)

FVAY (s, x) + K x v 1(x). VY (s, x))q” (s, x)dxds.

Then by choosing for afixed timet thefunction v (s, x) = fRZ G}_(x—y)p(y)dy
for ¢ e C2(R?) and applying Fubini’s theorem, we obtain that ¢” is solution of the
evolution equation

" 1 "9G;_g n
vVt >0, q"(t,x)=G;* v(;, J(x) — /0 e *(q" (s, )K % UH%(.))()C)ds.

Now, using the weak equation satisfied by v issued from mg, and taking the same
test functions as before between times % and ¢, we obtain in the same way that

1 1
Vi >0, v(—+4tx)=G;xv(—,.)x)
n n

t
_/ 20 * (v(} 5, DK * v 1())(x)ds.
0 ax n * n

Then by (2.17), (2.15) andfor 1 < ¢ < 2, n € N*,

qn(S7 ) - vs+%(‘)”ld's’

1
) 1 c 67T+ D)
t,.) —v(— t,. < —
I9"6.) =G+ .12 < <ol | -

with C independent of n. By Gronwall’slemma, we finally get that for each ¢ > 0,
”qn(t’ ) - vt+%(')”1 = 0

Hence, the function (7, x) — v, 1(x) is a measurable version of the densities for
(P).
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Let us now denote by Q" the image measure of P" by the shift y € Q —
y((. — %) v 0) € Q. Wewould like to prove that the sequence (Q™) convergesto a
solution of (M).

We know by Theorem 2.3 that QO = v(%, x)dx converges weakly to mg asn
tendsto infinity. Moreover by (2.15) themapping s — || K *v(s, .) || iSintegrable
on [0, T], for each T > 0. Therefore, the sequence of laws (Q") istight. Let Q%
be the limit of a subsequence that we will index by » for convenience.

Let p e N*, ¢ € C2(R?), g € C,(R¥?),0<s1<..<s,<s <t <Tand
G : QT — R defined by

t
Gy) = <¢(y(t)) —9(y()) —/ <vA¢(y(r)) + K * vr(y(r))V(P(y(r)))dr)

g(y(s1), ..., y(sp)).

Since by Theorem 2.3, the function x — K % v,(x) is continuous and bounded
uniformly ins € [s1, T, thefunction G is continuous and bounded on Q7. Hence,
EQ7(G(X)) = limy— 400 E2"(G(X)). For n > % E2"(G(X)) = 0, and then
EC¥(G(X)) =0.

Sinces — ||K * v(s, .)|lco iSintegrable on [0, 7] and by Lebesgue’s theorem,
that always holds for afunctional G such that s, — O and s — O. It implies that

t
¢(Xr)—¢(Xo)—/o (vAcb(Xr)—i-K*vr(Xr).V¢(Xr)>dr

isa 0* martingale. 3 ;
By construction, for ¢t > 0, forn > 71 v; isthe density of O} = Pt’:l, and

then Q;’O is absolutely continuous with respect to the L ebesgue measure with the
density v. Moreover, Qg = v(%, x)dx convergeweakly to mg asn tendsto infinity.
Then Q*° is solution of the nonlinear martingale problem (M).

Theorem 3.4 is proved. ]

Remark 3.5. 1) We have then obtained a unique weak solution to (3.3), but the
function K * v isnot Lipschitz continuous (see Proposition 5.5 for details), and we
do not have a strong uniqueness result.

2) If mo does not satisfy the hypotheses of Theorem 2.9, then the previous proof
shows at |east the existence of a solution of the nonlinear martingale problem.

We will see in the next section another proof of the existence of a solution
obtained by limit of particle approximations.

4. Stochastics Approximations of a solution of the vortex equation

4.1. The case of a cutoff kernel

We follow here the same scheme asin Mé&éard [15], but we take a different cutoff
kernel K. For technical reasons, we consider a convolution regularizing kernel of

theform K. (x) = K * ¢.(x), where g, (x) = S%w(;) and ¢ is a smooth positive
function with amass equal to 1 and with aradial symmetry. We then prove



Monte-Carlo approximations for 2d 377

Lemmad4.l. Vx = (x1,x2) € R2and r = |x|,
1 r
Ke(x) = (— ﬁfo pwe(p)dp>(—xz,x1).

Proof. We have seen that K = Vg where g(x) = g(lx|) = —s-In|x|. In the
same way, K, = V-'g,, with g, defined by Ag, = —¢.. We write the Laplace
operator in polar coordinates. Since g, has aradial symmetry, we get

d 08
E(FB_r) = —TI@e.

We deduce that r 35 = — [ pg(p)dp and get the value for K. O

To fix the ideas, we choose a good cutoff function, given by Raviart [19] in
a genera context of approximations, and proposed by Bossy [3] for a numerical
study of the vortex algorithm. We consider

The function ¢ isa Cg-function. By Lemma 4.1 we compute

4e* + (r2 + 382)}’2

Ke@) = 2r(r2 4+ ¢2)3

(—x2, x1). (4.1

Sincefor eachfixede > 0, thefunction ¢, belongsto L N L1 andthekernel K
isintegrable near 0 and bounded at infinity, the function K is bounded. Moreover,
it is Lipschitz continuous since ¢, isin C,}. We denote by M, the maximum value
of K. on R? (which behaves as 5 when & < 1), and by L. a Lipschitz constant

(which behaves as ).
We now define the interacting particle system we are interested in.

Definition 4.2. Consider a sequence (B');cn of independent Brownian motionson
R2 and a sequence of independent variables (Z{); <y with valuesin R? distributed

according ”'ngh , and independent of the Brownian mations. For a fixed ¢, for each

neN* and1 <i <n,letusconsider the interacting processes defined by

. . '] t [
Z™* = Zh+V2vB! + / K 1€ (Z)ds (4.2)
0

~1,&

where fi;"° = % Z?zlh(zé)azm,g € P(R?) isthe weighted empirical measure of
the system at time s. '
We also define the limiting independent processes by
. . . l ~ P
Z; =ZH+~2vB] + f K. x PE(Z0%)ds, (4.3
0

where P¢ isthe law of Z%¢, and P? is defined from PZ by (3.1).
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Proposition 4.3. 1) For each T > 0 and for each n, there exits a unique (path-
wise) solutiontotheinteracting particlesystem(4.2)in C ([0, T], R?") and aunique
(pathwise) solution to the nonlinear equation (4.3) in C([0, T], R?).

2) For afixed e > O, for each T > 0,

E(sup|Z"™* - Z}°) <

(<T \/_ e

Proof. We are in the well-known case of a McKean-Vlasov equation

exp(lmollT Le)- (4.4)

dY[ = b[Y[, m;]dt + U[Y[, m;]dB, s, my = E(Y[)

withblx, u] = [ b(x, Du(d2); olx, 1] = [0 (x, 2)u(dz). Here,o (x, 2) = v/2v
andb(x,z) = Ko(x —2) = [ @s(x —z — y)K (y)dy. Since g, isin C° N LY(R?),
itisobviousthat b € C2°(R%).

The proof of the first assertion is standard and can be adapted from Sznitman
[21] Theorem 1.1 and the second assertion comes from an easy adaptation of the
computations in Jourdain-Mé& éard [9] Proposition 2.3. See also Jourdain [10]. O

4.2. The approximating interacting particle system

We now consider T > 0 and a sequence (g,,) tending to 0 such that

M,
lim ﬁ—z exp(llmol| T Lg,) = 0. (4.5)
&n

Let us now consider for each n the coupling of processes (Z/, Y")1<; <, driv-
en by the same Brownian motion, where Zi" = Zi"-¢» are defined with the drift
K., asin(4.2),and Yi" = Zién,

Let usdenote by P” the common law of each Y. Then since the drift term is
bounded, it turns out from the Girsanov theorem that Vs > 0, the law P admitsa
density function p? of class C°°, which is solution of the equation

ap"
Jat

=vAp" — (K¢, x p" - V)p" 5 ppy = mo. (4.6)

(Aspreviously, we get (4.6) by computing ¢ (Y;") for asmooth function ¢ by 1t0's
formulaand by taking expectations after having multiplied by i (Zj ).
A key point of the paper is the following result.

Theorem 4.4. 1) For each n, there exist a kernel ', (x, ¢, y, s) and constants C;
depending only on v such that Vn, Vx, y e R2and0<s <t < T,

plx,t) = / Ty(x,t,y,0mo(dy), t >0 4.7
R2

lx — y? C3 Ix — y|?
— r, ,8) < -C
(t_) exp( 2( ))< (x,,y,8) < 7 exp( 4(t—s)

). (4.8)
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2) We deduce immediately that Vr > 1,

supsup 7 || pl, < Climol). (4.9)

n t<T N
The constant C depends only on » and v.

Proof. The function (s, y) — K., * p?(y) isclearly continuous and bounded on
[0, T]xR?,andy > K., * p”(y) isLipschitz continuous, uniformly ins e [0, T].
Then, (4.7) and (4.8) follow from results of Friedman ([6] Theorem 4.5), but the
constants C; depend apriori onn. Weapply Theorem 2.4. L et us provethat thefunc-
tions K, * p" satisfy therequired assumptions. SinceV-K = 0,thenV-K,, =0,
andhenceV - K, xp"=0.

Moreover, using Lemma 2.5,

Ke, (x) = (3x; (A3%@g, ) () +0x, (A1, ) (X), —0x (A1%0g, ) (X) =0y (A2, ) (X)).

Since p" and ¢, are densities of probability, the functions K., « p" satisfy the
assumption (b) of Theorem 2.4, with d independent of ¢, and n.
The proof of Theorem 4.4 is thusimmediate. O

Let us now introduce for each n the coupling of processes (Z", Y, X')1<i<y,
where (X') areindependent copies of X defined asin (3.2) on acertain probability
spaceand Z", Y aredriven, for each i respectively, following the same Brownian
motion as X*. We will now compare the two processes Y and X’. We need to
estimate v — p”

Asintheproof of (2.16), and using the boundedness of X, , (2.17) and Fubini’s
theorem, we can prove that p” is solution of the evolution equation

'
pi(x) = G} % mo(x) +/O ViG)_, * (py - K, * pt)(x)ds. (4.10)

Using (2.16), we obtain

PE) — 0 (x) —/ / ViG'(x — y).

(Kgn * pr(V)ps (v) — K * vs(y)vs(y)>dyds (4.11)

We now prove the

Theorem 4.5. Forevery1 < g < 2,

2—q
supr* ‘fllp, —vlly < Cen) ¢
t<T

(4.12)

where the constant C dependsonlyon T, ¢, v and ||mg]].

The proof of this theorem uses some technical lemmas.
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Lemma4.6. Forall 1 <[ < 2, for all n € N*,
2-1
”Ks,, — K| <C(gy) 7 (4-13)

where the constant C depends only on /.

Proof. We have

e 12— g2
Ka ) = KO = o G2 a3 21210,
Then, for! > 1,
4 oo 2 2\
K¢, — Kllf < (Sn)l 1 / 2(r 2837)1 14r
@2y =+ Jo (r +8n) re

< (e f ey,
n o
- (27.[)1—1 0 (a2 + 1)3lal—1

< C(gp)? !, forl < 2. O

Corollary 4.7. 1) Foralln,s € [0,T],1 < g < 2,

—q

2—q
”Ka,, * p? — K % p?”q =< Cq(sn) g (4.14)
2)Foraln,s €[0,T], p > 2,

IKe, * py — K x pillp < IKe, — Kligllpy ll2
=1 2—q
=< Cys2 (en) @ limoll, (4.15)

and ¢ €]1, 2[ isrelated to p byg1 = % + 3, and C, is a constant depending only
ong and v.

Proof. Inthetwo casesone usesthe Young inequality: if f € L9 and g € L™, then
frgerrforal =241 _1and|fxgl, < fllgligln-

1) wetake p = ¢ andqm =1, and apply the previous lemma.

2)Wetake 1 < ¢ < 2and p with 2 = 1 + 3, and m = 2. Then the resuilt

follows from (4.9). O

Corollary 4.8. Forall1 < g <2and%=§—%,fora|ln eN*andr < T,

2

t 1 2-g
fo (t =) 0 [(Ke, % p! = K 5 pl)pllleds < Clen) @ (4.16)

where C isareal constant depending onlyon T, g, v, ||mol.
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Proof.

! _1
/ (t —9) 4|l(Ke, * py — K * p)p§ | rds
0
! _1 ; ) ; 1 1 1
< | @—s) 7Kg, x pg — K * pillgllpsllgds with — + — = —
0 qg q r

2= ! 1 _q.1
§C(8n)7q/ (t—s) a5 T 4s.
0

But—-1+3=-142-t=—141_3-1_485
Then the integral converges and the corollary follows. O
Let us now come back to the proof of Theorem 4.5.

Proof. Asin the proof of Theorem 2.9, for 1 < ¢ < 2and & = g — %, wecan
write

Py — vellg

! 1,11
sC/ t-r) 26 4><||<Ksn*p;?—K*vs>p:?||r+||1<*vs<p;’—vs>||r>ds
0

! _1
SC/(I—S) ‘1<||(Ke,,*p?—K*pf)p?IIrJrIIK*p?—K*vsIIq/IIP?IIq
0

E)
r

11 1
+||K * v5||qr||p? — vs||q)ds with C—] + ? = q > 2

—q

2 t 1
<C(en) ¢ + C/O (t —s) allpy —vsllqgU Py llg + llvsllg)ds
by (2.8) and Corollary 4.8

—q

e ! -1yl
< C(ep) 7 +C/ (t—s) ds "Ilpﬁ'—vsllq)ds
0

The function ¢+ +— ||pf — v:ll, is not bounded on [0, 7], so we introduce

1-1 .
Ip} —villlg =t “llp} — vlly and we obtain

2q 4 1 _1 (! _1 .2
it = ully = e 7 8 0 [ —97857 Fipt = wlyds,
(4.17)
1 2
Sincethefunction s +— (¢ —s)_?sT2 isintegrablein O andin ¢, we can apply
Gronwall’s lemma and finally deduce (4.12). O

By associating Theorem 4.5 and Corollary 4.7, we deduce
Corollary4.9. Foranyp > 2,n e N*,t < T,

1
2

2-q —141
|Ke, * pi — K svll, <Clep) @ (17241 74), (4.18)

where C dependsonly on p, T, v, ||mo| and [—} = % +1.
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Proof.
|Ke, * pf — K *v;llp < |IKe, * pf — K % pll, + | K * p} — K % vl

g _1 n_
=C(en) 1 72+ Cllp; —ullq

2-q 1 2—q _1_;'_1
<C(ep) 19t 24+C(ey) 7t q. i

5. The convergence theorem

Let usnow come back to the processeswe haveintroduced before. We areinterested
in proving apropagation of chaos result for the interacting particle system (Z'") to
the solution P of the nonlinear martingale problem (M) defined in Section 3.

Theorem 5.1. VT > 0, thelaws of the particle systems (Z"")lf,vf,,, considered as
probability measures on the path space C([0, T], R?), are P-chaotic in the sense
that for every fixed k,

LZY, .., 7" = P®* - oo (5.1)
This convergence is then a pathwise convergence.

Remark 5.2. Unhappily, and in contrast tothe casewith aninitial bounded density
data, we do not obtain a L 1-type convergence, and we have no rate of convergence.
That is due to the degenerated behaviour of the laws of the processes at time 0.

Remark 5.3. Since the laws £(Z1", ..., Z") are exchangeable, the propagation
of chaos for the system is equivalent to the convergence in probability of its em-
pirical measuresto P, as probability measures on the path space (cf. [21]). That
implies the convergence in probability of the flow of weighted empirical measures
(fif"*")o<<7, Where

1

n
TR - Zh(zg,)azfn,
i=1
to the flow (v, (x)dx)o<;<7 inthe space C([0, T], MF). Indeed, Theorem 5.1 im-
pliesimmediatly the convergence of theflow of theempirical measures (u; " )o<;<r
to (P;):>0. Theweight function 7 isnot necessarily continuous and we approximate
it by a sequence of continuous functions /i bounded as & by ||mg]|, in the sense

that ”'ﬁg‘” ({hr # h}) < % Then if F isa continuous and bounded function on R2,

E|(p; ", F) — / F(x)v (x)dx|

1 , :
< EIZ Y hZYFZ") = (P h(Xo) F (X))
i=1

1 . . . 1 . .
< EI= Y (h(Zo) = e Zp) F(Z{)| + EI= Y hi(Zg) F(Z]")
i=1 i=1
—(P. hi(X0) F (X)) + [(P. (h(Xo) — h(X0) F(X)).
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The first and third terms tend to O as & tends to infinity, and if now k is fixed, the
second termtendsto 0 asn tends to infinity.

Let us now prove some preliminaries for the proof of Theorem 5.1.

Proposition 5.4. For each 1 < ¢ < 2,for each1 < i < n, we have

t
Esup [ Koy % p(F) = K 5 0,(FiM)|ds) < Clen) (52)
t<T JO
where the constant C dependsonlyon T, v, g and ||mol].

Proof. We have seen that for each s > 0 and i € N*, the variable Y/* has the law
pi(x)dx. Then,

t

E@sup | |Ke, * p"(YI") — K % vg(YI")|ds)

t<T JO

T
< / ( / Ko, % p(x) — K % v, (0) | pl (x)dx)ds
0

r 1 1
5/ | Ke, * py — K s vsllpllpg |l prds forp>2and?=1—;
0

2= [T el Lo 1 1 1
< C(&p) 7 / (s_% + 5 1+4)s » 1ds by Corollary 4.9, with— = — + >
0 q p

2 (T _3 1
§C(sn)7q/ A -2+14+4 ’)ds
7(1
<C(en) 4
since % =3- % and then the integral is convergent. O
Proposition 5.5. For each x, z € R? foreach1 < ¢ < 2,

IK s vg(x) — K # v5(2)] < s q(Ix —2]) (53

Wherefor eachr > 0,¢;,(r) = C(r +s ‘}rq )|f0< r < landg,(r) =
1+s qlfrzl.

Proof. The proof follows approximately the same steps than the one of Marchiro-
Pulvirenti ([12] Lemma 3.1), but with the additionnal difficulty that the functions
vs arenotin L. Letusdenoter = |x —z]and A = {y € R?, |x — y| < 2r}. Then

IK *vs(x) — K xvy(2)| < /A |K(x —y) = K(z = y)vs(y)dy

+[AC |K(x —y) — K(z = y)lvs(y)dy.
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Now,

fA K(x — y) — Kz — Ylus(n)dy
1 1
< / v () dy + / 0, (3)dy
[x—y|<2r lx — ¥l lz—y|<3r |z — yl

1 1
L)’ o) 11
lyl<2r |}’|q lyl<3r [¥19 9 q

_1 2 4
<Cs 4ra

By aTaylor expansion, we obtain

1
K(xr — y) — K(z — o (0)dy < r/ —(dy
Ac A =yl

c |x’

where x” € [x, z]. Weremark |x” — y| > 3|x — y|if y € A°. Then, forr < 1,

1
[ KG =3 — K=oy < 0 [ =0y

1
<cr f T (ydy
2r<|x—y|<2 lx —yl

1
+Cr/ 5 Us(»)dy.
2<|x—y| lx — |

The second term is trivially upperbounded by Cr since v, € L1, uniformly in s.

Now
/ ! ()d<C</ d)ll llg
r vs(y)dy r 0 Vg
2r<|x—y|<2 |x_y|2 ’ (o )2q ¢
<Cs 4ar r22‘1—222‘1>q
1 2_
< (Cs 4ra
Then
_1 2_
[ IKG =) = K@= oy = CrvesTH
A€
Ifr >1,

K *vg(x) — K % v5(2)| < |K *vg(x)| + [K *v5(2)| < 21K * v loo
1
<C+s 9). i

Proposition 5.6. V7' > 0, the sequence of processes (Y'1),,>1 convergesin lawin
C ([0, T], R?) to the process (X 1) asn tends to infinity.
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Proof. The proof has two steps. Firstly we prove the uniform tightness of the laws
P" of (Y1) and secondly we identify the limiting process.
1) Exactly asin (2.10) and (2.15), we can prove that

_1
1Kz, * pilloc < C(s™ ¢ +1)

where C depends only on g, v, |lmg]|, for any 1 < ¢ < 2. Then the function
t fé | K, * P} llcods iscontinuous and then uniformly continuouson [0, T']. So
the Aldous criterion (cf. Aldous [1]) is satisfied for the laws of (Y1*). Theinitial
laws being all equal to % the laws of (Y1) are uniformly tight.

2) Let usnow provethat thereisauniquelimiting law equal to P. Let usdenote
by O alimit value of the sequence (P"). We have to prove that Q satisfies the
nonlinear martingale problem (M) defined in Section 3.

If asusual X denotes the canonical processon C ([0, 7], R?), let us define, for
any smooth enough function ¢, for bounded continuous functions g1, g2,..., gk, for
O<sy<..<sy <s <t <T,thefunction

t
Gu(X) = (¢>(x,> —$(X,) — / v AG(X,)du
t
- / K., *p;:(xu).w(xu)du)g1<Xsl>...gk<Xsk>. (5.4)

Thenthelaw Q" ischaracterized by EP" (G, (X)) = 0. Now if we define the func-
tion G by the same formulaas (5.4) in which we havereplaced K,  p} by K % v,,
the distribution law P is characterized by E¥ (G (X)) = 0.

Let us provethat E2(G(X)) = 0.

EC(G(X) = E2(G(X)) — EP (G(X)) + EP (G(X) — G"(X))
Proposition 5.5 implies that x +— K * vy (x) is a continuous function, and we
have seen otherwise that s — || K * vs|loo iSintegrable on [0, T]. So the function
X — G(X) isacontinuous function on the path space, and the first term of the

right hand side of the previous expression tends to 0 as n tends to infinity.
In another hand,

t
EP'1GM(X) - G(Xx)| < EY” ( / |(Ke, % pI(Xs) — K % vs(Xs».v(zs(Xs)us)
0
|81(X5)-- 8k (X))
t
< CE</ |Ke, % p" (YY) — K * vs(?}")ms)
0

2
<C (%)Tq by Proposition 5.4 .

Thus, E€(G(X)) =0,and Q = P. O
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Proof of Theorem 5.1. Since the processes (Y); are independent, and the same
for (X7);, Proposition 5.6 implies that for every fixed k, the law of (Y1, ..., Ykn)
convergesto the law of (X1, .., Xk

Otherwise, by adding the results obtained in Proposition 4.3 and in (4.5), we
obtain that for eachi € {1, ..., n},

(wp| [ln [ln ) =< Ms eXp(”m || 1)
<17 ﬁLSn

and then tendsto 0 asn tendsto infinity. Now, if we endow P (C ([0, T], R%)) with
the metric

p(P, Q) =inf{f sup |x; — yi|R(dx, dy);
C([0,T].R%)xC([0,T].R%*) 0<t<T

R hasmarginas P and Q}

We have:

p(L(ZY, ..., ZM), L(X, ..., X¥))
< p(LZY, ... ZkYy, L7, L TR+ p(L (P, L TR, £(X, L XR)

M, _ _ _ _
< k—=2—exp(|mol| T Le,) + p(LY ™, ..., Y*"), £L(X1, ..., X¥)).
\/EL‘QN

Since the two terms of the sum tend to 0, then p(L(ZY", ..., Zk), £(X1, ..., XK))
converges to 0, and we get the propagation of chaos result we wished. O

We deduce now from Theorem 5.1 a theorical justification for Monte-Carlo
approximations for the equation (2.1).

Theorem 5.7. Foreacht € [0, T]andx € Rz,therandomvariable% Z}’zlh(z{))
K., (x — Zi™) convergesin law and then in probability to u(z, x). The convergence
isuniformfor ¢ € [n, T],foreach0O < n < T.

Proof. Sincesup,.; p(fi;"*", P;) tendsto 0 asn tendsto infinity (cf. Remark 5.3),
% Z?Zlh(zé)F(Zjn) convergesin law and then in probability to [ F (x)v, (x)dx
uniformly in ¢+ € [0, T] and for each bounded and continuous function F on RZ.
Let usfix ¢ €]1, 2[, let « > 0 and consider ng defined thanks to (4.13) such that

Ke,, — Kllg <.

Eno
For each fixed x € R?, the function y > Ke,, (x — y) is bounded and continu-

ous, so %Z;’zlh(zf))l(e,,o (x — ZI™) converges in law and then in probability to
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i Ke,, (x — y)vi(y)dy uniformly inz € [0, T]. But,

f |Ke, (x —¥) = K¢, (x = W) |vr(dy < Ky — Kngllg llvrllg

. 1 1
Wlth1§q<2and—+—,=1
q q

= (IKn = Kllg + 1K = Knolig) vz llg

—q

2 _1
<C(&y) ¢ +oa)r ¢
where the constant C depends only on ¢, ||mol|| and v. Finally we estimate the
quantity
1< . .
E|=) h(Zp)(Ke, = Keyp)x = Z{)] < Imoll EI(Ke, — Ke,o)(x = Zi).
i=1

We remark, following Osada [17] p.602 and using Lemma 2.5, that the generator
of the particle system (21", ..., Z"") isof generalized divergenceform. Then asal-
ready seen before (see Theorem 4.4), for eachr > 0, thelaw of therandom variable
Z" has a density of probability w! satisfying (2.11), with a constant depending
only onv and r. Now,

E|(Ke, — Ke, ) (x — Z")| = / |(Ke, — K, )(x — y)w)' (y)dy|
< |IKe, — Ky llglw] g
2—g 1
<Clen) T +a)a (5.5)

which tendsto 0 as» tends to infinity, and Theorem 5.7 is proved. O

Acknowledgements. | thank Mireille Bossy for helpfulness discussions concerning vortex
methods.
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