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Abstract. We are interested in proving Monte-Carlo approximations for 2d Navier-Stokes
equations with initial data u0 belonging to the Lorentz space L2,∞ and such that curl u0 is
a finite measure. Giga, Miyakawa and Osada [7] proved that a solution u exists and that
u = K ∗ curl u, where K is the Biot-Savart kernel and v = curl u is solution of a nonlinear
equation in dimension one, called the vortex equation.

In this paper, we approximate a solution v of this vortex equation by a stochastic in-
teracting particle system and deduce a Monte-Carlo approximation for a solution of the
Navier-Stokes equation. That gives in this case a pathwise proof of the vortex algorithm
introduced by Chorin and consequently generalizes the works of Marchioro-Pulvirenti [12]
and Méléard [15] obtained in the case of a vortex equation with bounded density initial data.

1. Introduction

In this paper, we are interested in proving stochastic approximations for a 2d Na-
vier-Stokes equation with an initial datau0 belonging to the Lorentz spaceL2,∞ and
such that curl(u0) is a finite measure. Giga-Miyakawa-Osada [7] proved that in this
case, the equation has a global solution u (not always unique), and u = K ∗curl(u),
where K is the Biot-Savart kernel and v = curl(u) is solution of a nonlinear equa-
tion in dimension one, called the vortex equation, with a finite measure initial data.
This equation appears as a McKean-Vlasov equation, in which the drift term given
by K can explode.

Our aim in this paper is to give a pathwise Monte-Carlo approximation for a
solution of the Navier-Stokes equation, by using the probabilistic interpretation of
the vortex equation.

In a previous work [15], we obtained in the case of a vortex equation with
bounded density initial data a pathwise proof of the vortex algorithm introduced by
Chorin, i.e. the convergence of the empirical measures of the particle system, con-
sidered as probability measures on the path space, to the solution of the equation,
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with a precise rate of convergence. That work generalized a paper of Marchioro-Pul-
virenti [12], in which the convergence of the expectation of the empirical measures
was obtained for each time, and also the one of Osada [18], where the convergence
is only true for large viscosities. However, our result was not completely satisfying
since in a probabilitic point of view, the hypothesis of bounded density initial data
was ununderstandable.

Here, we obtain a pathwise result, for each viscosity, and for a large class of
initial datas. We approach the Biot-Savart kernel by cutoff kernels Kεn and con-
struct particle systems associated with Kεn in an asymptotics relying the number
of particles n and the level of cutoff εn. The difficulties are mainly related to the
explosion of the Biot-Savart kernel and to the general form of the initial condition.
The good spaces in which the solutions of the vortex equation live are Lq -spaces,
with 1 < q < 2, and that induces new difficulties. We only obtain here a conver-
gence in law for the particle system, instead of aL1-convergence as in the bounded
density case, due to the explosions of all standard estimates.

1.1. Notations

Let � = C(R+,R2), endowed with the topology of uniform convergence on com-
pact sets and with the corresponding Borel σ -field. For each T > 0, �T denotes
C([0, T ],R2) and X the canonical process.

For a Borel space E, P(E) is the space of probability measures on E endowed
with the topology of weak convergence. We denote by MF the space of finite
measures on R

2 normed by the total variation ‖.‖.
C is a positive real constant which can change from line to line.

2. Existence and uniqueness for the vortex equation with finite measure
initial data

Let us consider the velocity flow u(t, x), t ∈ R+, x ∈ R
2 of a viscous and in-

compressible fluid in the whole plane. The governing equation of this motion is the
Navier–Stokes equation given by

∂u

∂t
(t, x)+ (u · ∇)u(t, x) = ν�u(t, x)− ∇p ;

∇ · u(t, x) = 0 ; u(x, t)→ 0 as |x| → +∞, for 0 ≤ t < +∞, (2.1)

where p is the pressure and ν > 0 the viscosity (assumed to be constant).
It is well known that if the initial velocity u0 ∈ L2 with a divergence equal

to 0 and curl(u0) = v0 ∈ L1 ∩ L∞, there is a unique weak solution to (2.1) and
the vorticity flow v(t, x) = curl u(t, x) is weak solution of the nonlinear partial
differential equation, called the vortex equation

∂v

∂t
(t, x)+ (u · ∇)v(t, x) = ν�v(t, x) ; v(x, t)→ 0 as |x| → +∞,

for 0 ≤ t < +∞, (2.2)

u(t, x) =
∫

R2
K(x − y)v(t, y)dy (2.3)
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with initial data v0. The Biot-Savart kernel K(x) is obtained from the fundamental
solution of the Poisson equation g(r) = − 1

2π ln|r| by

∀x ∈ R
2, K(x) = ∇⊥g(|x|)

and ∇⊥ = (∂x2 ,−∂x1). The computation gives

∀x = (x1, x2) ∈ R
2,K(x) = 1

2π

1

(x2
1 + x2

2 )
(−x2, x1). (2.4)

Note that ∇ ·K = 0.
In [7], Giga–Miyakawa–Osada remark that the convolution of a finite signed

measure by the Biot-Savart kernel is a bounded operator in a well chosen Lorentz
space and generalize the previous properties with less regular initial velocities. We
recall here some of their results. Let us first introduce the Lorentz space L2,∞(R2)

(cf. Bergh and Lofstrom [2]).
A measurable function f on R

2 belongs to the space L2,∞(R2) if

‖f ‖2,∞ = sup
λ>0

λ(mes{x; |f (x)| > λ}) 1
2 < +∞, (2.5)

where mes is the Lebesgue measure on R
2. Although ‖f ‖2,∞ does not satisfy the

usual triangle inequality, it is a pseudo-norm on the linear space L2,∞(R2), which
is a Banach space with a norm equivalent to ‖f ‖2,∞.

The following lemma describes the main properties of the Biot-Savart kernel
we will use later.

Lemma 2.1. 1) the Biot-Savart kernel K belongs to L2,∞(R2).
2) For every finite signed measure m0 on R

2, the function K ∗ m0 belongs to
L2,∞(R2) and

‖K ∗m0‖2,∞ ≤ C‖K‖2,∞‖m0‖, (2.6)

where C is independent of m0.
Moreover, suppose that u ∈ L2,∞(R2) with ∇ · u = 0 and curl u ∈ MF . Then

u = K ∗ (curl u). (2.7)

3) Let p > 2 and 1 < q < 2 such that 1
q
= 1

p
+ 1

2 , then for w ∈ Lq(R2),

‖K ∗ w‖p ≤ C‖K‖2,∞‖w‖q . (2.8)

Moreover, suppose that u ∈ Lp(R2) with ∇ · u = 0 and curl u ∈ Lq(R2). Then

u = K ∗ (curl u). (2.9)

4) For 1 < q < 2 and for each function w(t, x) on R+ × R
2 such that

‖w(t, .)‖1 ≤ C and ‖w(t, .)‖q ′ ≤ Ct
−1+ 1

q′ for every t > 0, with 1
q
+ 1

q ′ = 1,

‖K ∗ w(t, .)‖L∞ ≤ C(t
− 1
q + 1), (2.10)

and then the mapping t �→ ‖K ∗ w(t, .)‖L∞ is integrable on every time interval
[0, T ].
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Proof. The first part consists in a trivial computation giving ‖K‖2,∞ = 1
2
√
π

. The

proof of the second and third parts can be found in Giga and others [7] Lemma 2.2.
The equation (2.8) is obtained by an interpolation theorem for Lorentz spaces. (See
[2] Theorem 5.3.4).

For the last part, let us write

|K ∗ w(t, .)| ≤
∫
B(x,1)

|K(x − y)w(t, y)|dy +
∫
B(x,1)c

|K(x − y)w(t, y)|dy

≤
( ∫

B(x,1)
|K(x − y)|qdy

) 1
q
( ∫

B(x,1)
|w(t, y)|q ′dy

) 1
q′

+ sup
y∈B(0,1)c

|K(y)|‖w(t, .)‖L1 with
1

q
+ 1

q ′
= 1,

≤ C

(
t
−1+ 1

q′
( ∫

B(x,1)
|K(x − y)|qdy

) 1
q

+ sup
y∈B(0,1)c

|K(y)|
)

≤ C(t
− 1
q + 1),

since the mapping y �→ K(y)q, 1 < q < 2 is integrable at zero (we are in R
2). ��

Remark 2.2. The formulas (2.7) and (2.9) will allow us to deduce approximating
results for u from the ones for curl(u), and justify the interest we have in the vortex
equation.

Throughout the paper, v always denotes the vorticity of u.
The probabilistic interpretation will be based on the following theorem, proved

by Giga, Miyakawa and Osada ([7] Theorems 4.2 and 4.3).

Theorem 2.3. Suppose u0 ∈ L2,∞(R2), ∇ · u0 = 0 and curl(u0) = m0 is a finite
signed measure. There is at least one global solution u to the Navier-Stokes equa-
tion (2.1) with u0 as initial data and one solution v to the vortex equation. The
function v is bounded and continuous under the weak*-topology, from [0,+∞) to
MF with initial measure m0.

Moreover, for each t > 0, the solution v(t, .) is a differentiable function, such
that

‖v(t, .)‖r ≤ Ct−1+ 1
r ‖m0‖, ∀t > 0,∀1 ≤ r ≤ ∞ ; (2.11)

lim sup
t �→0

t
1− 1

q ‖v(t, .)‖q ≤ C‖(m0)pp‖, for 1 < q < 2, (2.12)

sup
[ε,T ]
‖∇k∂ht v(t, .)‖∞ ≤ Cε, (2.13)

where (m0)pp denotes the purely atomic part of m0, C and Cε are real constants
and (2.13) is true for each 0 < ε < T and k and h nonnegative integers.

The proof is based on Theorem 2.4 ([17]) concerning generators of generalized
divergence form and on Lemma 2.5 ([18]) below.



Monte-Carlo approximations for 2d 371

Theorem 2.4. Let us consider the parabolic operator Lb = ∂t − ν� + (b · ∇),
under the following assumptions:

a) The vector b = b(x, t) satisfies ∇ · b = 0, in distribution. (b is not always a
function).

b) There exist d > 0 and functions ci,j (x, t), 1 ≤ i, j ≤ 1, with bi =∑
j ∂j c

ij ,

bi being the ith component of b, and satisfying

sup
(x,t)∈R2×[0,T ]

sup
i,j

|cij (x, t)| ≤ d.

Then Lb has a unique fundamental solution .b, and there exist constants Cj de-
pending only on d and ν such that for all x, y ∈ R

2 and 0 ≤ s < t ≤ T ,

C1

(t − s) exp(−C2
|x − y|2
(t − s) ) ≤ .b(x, t, y, s) ≤ C3

(t − s) exp(−C4
|x − y|2
(t − s) ).

(2.14)

Lemma 2.5. The function K = (K1,K2) can be expressed as

K1 = ∂1A3 + ∂2A1 ; K2 = −∂1A1 − ∂2A2,

where A1 = − x2
1x

2
2

π |x|4 ; A2 = −3x1x2
2π |x|2 +

x3
1x2

π |x|4 ; A3 = −3x1x2
2π |x|2 +

x1x
3
2

π |x|4 .

The functions A1, A2, A3 are clearly bounded.

As an immediate application of (2.10) and (2.11), we have

Corollary 2.6. Under the same hypotheses as in Theorem 2.3, for every t > 0, for
1 < q < 2,

‖K ∗ v(t, .)‖L∞ ≤ C‖m0‖(t
−1
q + 1). (2.15)

Hence the mapping t �→ ‖K ∗v(t, .)‖L∞ is integrable on every time interval [0, T ].

We deduce from it the evolutive form of the solution v of (2.2).

Lemma 2.7. Each weak solution v of the vortex equation (2.2) with a finite measure
initial data m0 is solution of the mild equation

v(t, y) = Gν
t ∗m0(y)+

∫ t

0

∫
R2
∇xGν

t−s(x − y)K ∗ v(s, x)v(s, x)dxds
(2.16)

where Gν
t is the heat kernel in R

2 defined by Gν
t (x) = 1

4νtπ e
− |x|24tν .

The proof can be omitted since it consists in a standard mild formulation using

‖∇xGν
t ‖L1(R2) ≤

C√
νt

(2.17)

where C is a real constant and so
∫ t

0 ‖∇xGν
t−s‖L1(R2)ds < +∞.

Let us now recall the following technical estimates.
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Lemma 2.8. For 1 ≤ s ≤ r ≤ ∞, t > 0,

‖∇xGν
t ∗ f ‖r ≤ C(νt)−

1
2−( 1

s
− 1

r
)‖f ‖s . (2.18)

The proof of this lemma can be easily obtained by applying the Young inequal-
ity and by using estimates on the function ∇xGν

t that one can find for example in
Ladyzenskaya-Solonnikov-Ural’ceva [11] p. 274.

Giga and others prove the uniqueness of the solution of the Navier-Stokes
equation (2.1), in the case where m0 is a measure with no atoms. Our probabilistic
interpretation is based on the vortex equation, and needs a uniqueness result for this
equation which is not directly induced by the one of the Navier-Stokes equation.

Theorem 2.9. If the finite measure m0 is a measure with no atoms or if ‖m0‖ is
sufficiently small, then the solution v of the vortex equation is unique in the space
of functions which satisfy (2.11) and (2.12).

Proof. We consider two solutions v1 and v2 of the vortex equation with initial data
m0, and write indifferently vi,s(x) or vi(s, x). By Lemma 2.7 and for t ≤ T ,

|v1(t, y)− v2(t, y)| ≤
∫ t

0

∫
R2
|∇xGν

t−s(x − y)|
(
|K ∗ v1,s(x)v1(s, x)

−K ∗ v2,s(x)v2(s, x)|
)
dxds ≤

∫ t

0

∫
R2
|∇xGν

t−s(x − y)|

×
(
|(K ∗ v1,s(x)−K ∗ v2,s(x))v1(s, x)|

+|K ∗ v2,s(x)(v1(s, x)− v2(s, x))|
)
dxds.

Let us consider a real number q such that 4
3 < q < 2, and r defined by 1

r
= 2

q
− 1

2 ,

then 1 < r < q < 2 and we denote by q ′ the real number such that 1
r
= 1

q
+ 1

q ′ .
Since r < q, by (2.8) and the Hölder inequality, we obtain

‖v1(t, .)− v2(t, .)‖q ≤ C

∫ t

0
(t − s)− 1

2−( 1
r
− 1
q
)

(
‖(K ∗ v1,s −K ∗ v2,s)v1(s, .)‖r

+‖K ∗ v2,s(v1(s, .)− v2(s, .))‖r
)
ds

≤ C

∫ t

0
(t − s)− 1

q

(
‖K ∗ v1,s −K ∗ v2,s‖q ′ ‖v1(s, .)‖q +

+‖K ∗ v2,s‖q ′ ‖(v1(s, .)− v2(s, .))‖q
)
ds

≤ C‖K‖2,∞
∫ t

0
(t − s)− 1

q

(
‖v1,s − v2,s‖q‖v1(s, .)‖q +

+‖v2,s‖q‖v1(s, .)− v2(s, .)‖q
)
ds.
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Let us now introduce ‖v‖q,t = sup0<s≤t s
1− 1

q ‖v(s, .)‖q . Then a simple computa-
tion gives

‖v1 − v2‖q,T ≤ C‖K‖2,∞β(1− 1

q
,

2

q
− 1)(‖v1‖q,T + ‖v2‖q,T )‖v1 − v2‖q,T ,

where β is the beta function for the parameters 1− 1
q

and 2
q
− 1.

1) If m0 is diffuse, the estimate (2.12) implies that there exists T sufficiently
small for which C‖K‖2,∞β(1 − 1

q
, 2
q
− 1)(‖v1‖q,T + ‖v2‖q,T ) < 1. This yields

v1 = v2 on [0, T ]. On the interval [T ,∞), both v1 and v2 are classical solutions
and then equal on [T ,∞) by a standard uniqueness result.

2) If other cases, we use (2.11), and if 2C‖K‖2,∞β(1− 1
q
, 2
q
−1)‖m0‖ < 1, (for

the adequate real constant C), we obtain immediately a global uniqueness result.
��

3. The nonlinear martingale problem and the SDE associated with the
vortex equation

We are in a McKean-Vlasov context, and the interpretation of the vortex equation
as a Fokker-Planck equation allows us to define naturally a nonlinear martingale
problem (See for example Méléard [14], Jourdain [10]).

We want to take into account any finite initial measure m0. So let |m0|, ‖m0‖,
and h denote respectively the absolute value of m0, the total variation of m0 and a
density of m0 with respect to the probability measure |m0|

‖m0‖ . The function h is thus
a bounded measurable function with values in [−‖m0‖; ‖m0‖].

For P a probability measure on C(R+,R2), we denote by (Pt )t≥0 the flow of
time-marginals of P at each time t and define the flow (P̃t )t≥0 of signed measures
on R

2 by

∀B ∈ B(R2), P̃t (B) = EP (1B(Xt )h(X0)), (3.1)

where X denotes the canonical process on C(R+,R2). (One associates with each
sample path a signed weight depending on the initial data).

It is easy to prove that for each t ≥ 0, the signed measure P̃t is bounded with
a total mass less than ‖m0‖, and that if Pt is absolutely continuous with respect to
the Lebesgue measure, then it is the same for P̃t .

The vortex equation, seen as Fokker-Planck equation, leads naturally to the
following definition.

Definition 3.1. The probability measure P ∈ P(C(R+,R2)) is solution of the
nonlinear martingale problem (M) if for each φ ∈ C2

b (R
2),

φ(Xt )− φ(X0)−
∫ t

0
K ∗ P̃s(Xs).∇φ(Xs)ds − ν

∫ t

0
�φ(Xs)ds (3.2)

is a P -martingale, whereX is the canonical process onC(R+,R2), Ps = P ◦X−1
s

and P0 = |m0|
‖m0‖ .
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Let us remark that, if for each s > 0, the probability P̃s is absolutely continuous
with respect to the Lebesgue measure, with density v(s, .), then the function v is a
weak solution of the vortex equation (2.2) with initial data m0.

The nonlinear martingale problem (M) is related to the following nonlinear
stochastic differential equation.

Definition 3.2. Let us consider a random R
2-valued variable X0 with law |m0|

‖m0‖
and B a 2-dimensional Brownian motion independent of X0. We say that X̄ ∈
C(R+,R2) is solution of the nonlinear SDE satisfies for each t > 0,

X̄t = X0 +
√

2νBt +
∫ t

0
K ∗ P̃s(X̄s)ds,

Ps is the marginal at time s of the law of X̄s . (3.3)
We will see in the following that there exist weak solutions of this equation.

Remark 3.3. We denote by P the space of probability measures on C(R+,R2)

whose marginals Ps, s > 0 are absolutely continuous with respect to the Lebesgue
measure. For such probability measures P , there exists a measurable version
(s, x)→ p(s, x)ofthedensitiesoftheflowofsignedmeasuresP̃s .(cfMeyer[16]p.194)

The following theorem gives the probabilistic interpretation of the vortex equa-
tion.

Theorem 3.4. Let us consider a probability measure m0 satisfying the hypothe-
ses of Theorem 2.9. Then there exists a unique solution P ∈ P to the nonlinear
martingale problem (M) such that P0 = |m0|

‖m0‖ .
Moreover, the flow of measurable densities (vt ) of (P̃t ) is the unique solution

of the vortex equation.

Proof. The proof will use a shift argument introduced by Jourdain [8].
1) Uniqueness
Let P and Q be two solutions of (M) belonging to P. Then for each t > 0,

the signed measures P̃t and Q̃t have densities pt and qt . By taking expectations
in the martingale problem, we obtain immediately that the flows (pt ) and (qt ) are
solutions of the vortex equation (2.2) with the same initial condition m0. They are
both solutions of ∂tp − ν�p + (K ∗ p)∇p = 0, and then by Theorem 2.4 and
Lemma 2.5, they satisfy (2.11) and (2.12). They are then equal and equal to the
unique solution v. So P and Q are solution of the same martingale problem with
the given drift term K ∗ vs . By Theorem 2.3, for each t > 0, v(t, .) is in L1, and is
bounded on every interval [ε, T ]. Then the function (s, x)→ K ∗vs(x) is bounded
on [ε, T ]× R

2, for each ε > 0.
We introduce the shift y → Dn(y) = y( 1

n
+ .) ∈ �. Let Pn = P ◦D−1

n ,Qn =
Q ◦D−1

n . Both Pn and Qn solve the martingale problem:

R0 = v(
1

n
, x)dx ;

φ(Xt )− φ(X0)−
∫ t

0
(ν�φ(Xs)+K ∗ vs+ 1

n
(Xs).∇φ(Xs))ds (3.4)

is a R martingale for any φ ∈ C2
b (R

2).
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Since the mapping x → K ∗v
s+ 1

n
(x) is bounded uniformly in s, the martingale

problem admits a unique solution and Pn = Qn, for each n ∈ N
∗.

As for any y ∈ �, limn→+∞Dn(y) = y, Pn and Qn converge weakly to P
and Q. Therefore, P = Q.

2) Existence.
The first idea consists in considering the martingale problem with the drift

K ∗ vs , where v is the solution of the vortex equation. This drift term is not bound-
ed and not Lipschitz continuous, and we do not have an immediate existence result.
So we consider again the solution Pn of the martingale problem (3.4). Since the
drift K ∗ v

s+ 1
n
(x) is bounded uniformly in s and by Girsanov’s theorem, the law

Pn belongs to P, and we denote by qn(t, x) the measurable version of the densities
of (P̃ n

t ). Then, multiplying all the terms in (3.4) by h(X0) and taking expectations,
we obtain that for each t > 0 and for each ψ ∈ C1,2

b ([0, t]× R
2),

∫
R2
ψ(t, x)qn(t, x)dx=

∫
R2
ψ(0, x)v(

1

n
, x)dx+

∫
(0,t]×R2

(
∂ψ(s, x)

∂s

+ν�ψ(s, x)+K ∗ v
s+ 1

n
(x).∇ψ(s, x)

)
qn(s, x)dxds.

Then by choosing for a fixed time t the functionψ(s, x) = ∫
R2 G

ν
t−s(x−y)φ(y)dy

for φ ∈ C2
b (R

2) and applying Fubini’s theorem, we obtain that qn is solution of the
evolution equation

∀t > 0, qn(t, x) = Gt ∗ v(1

n
, .)(x)−

∫ t

0

∂Gt−s
∂x

∗ (qn(s, .)K ∗ v
s+ 1

n
(.))(x)ds.

Now, using the weak equation satisfied by v issued from m0, and taking the same
test functions as before between times 1

n
and t , we obtain in the same way that

∀t > 0, v(
1

n
+ t, x) = Gt ∗ v(1

n
, .)(x)

−
∫ t

0

∂Gt−s
∂x

∗ (v(1

n
+ s, .)K ∗ v

s+ 1
n
(.))(x)ds.

Then by (2.17), (2.15) and for 1 < q < 2, n ∈ N
∗,

‖qn(t, .)− v(1

n
+ t, .)‖1 ≤ C√

ν
‖m0‖

∫ t

0

(s
− 1
q + 1)‖qn(s, .)− v

s+ 1
n
(.)‖1

√
t − s ds,

with C independent of n. By Gronwall’s lemma, we finally get that for each t > 0,

‖qn(t, .)− v
t+ 1

n
(.)‖1 = 0

Hence, the function (t, x)→ v
t+ 1

n
(x) is a measurable version of the densities for

(P̃ n
t ).
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Let us now denote by Qn the image measure of Pn by the shift y ∈ � →
y((.− 1

n
)∨ 0) ∈ �. We would like to prove that the sequence (Qn) converges to a

solution of (M).
We know by Theorem 2.3 that Qn

0 = v( 1
n
, x)dx converges weakly to m0 as n

tends to infinity. Moreover by (2.15) the mapping s �→ ‖K ∗v(s, .)‖∞ is integrable
on [0, T ], for each T > 0. Therefore, the sequence of laws (Qn) is tight. Let Q∞
be the limit of a subsequence that we will index by n for convenience.

Let p ∈ N
∗, φ ∈ C2

b (R
2), g ∈ Cb(R2p), 0 < s1 ≤ ... ≤ sp ≤ s < t ≤ T and

G : �T → R defined by

G(y) =
(
φ(y(t))− φ(y(s))−

∫ t

s

(
ν�φ(y(r))+K ∗ vr(y(r)).∇φ(y(r))

)
dr

)

g(y(s1), ..., y(sp)).

Since by Theorem 2.3, the function x �→ K ∗ vr(x) is continuous and bounded
uniformly in s ∈ [s1, T ], the function G is continuous and bounded on �T . Hence,
EQ∞(G(X)) = limn→+∞ EQn

(G(X)). For n ≥ 1
s1

, EQn
(G(X)) = 0, and then

EQ∞(G(X)) = 0.
Since s �→ ‖K ∗ v(s, .)‖∞ is integrable on [0, T ] and by Lebesgue’s theorem,

that always holds for a functional G such that sp �→ 0 and s �→ 0. It implies that

φ(Xt )− φ(X0)−
∫ t

0

(
ν�φ(Xr)+K ∗ vr(Xr).∇φ(Xr)

)
dr

is a Q∞ martingale.
By construction, for t > 0, for n ≥ 1

t
, vt is the density of Q̃n

t = P̃ n

t− 1
n

, and

then Q̃∞t is absolutely continuous with respect to the Lebesgue measure with the
density v. Moreover,Qn

0 = v( 1
n
, x)dx converge weakly tom0 as n tends to infinity.

Then Q∞ is solution of the nonlinear martingale problem (M).
Theorem 3.4 is proved. ��

Remark 3.5. 1) We have then obtained a unique weak solution to (3.3), but the
function K ∗ v is not Lipschitz continuous (see Proposition 5.5 for details), and we
do not have a strong uniqueness result.

2) If m0 does not satisfy the hypotheses of Theorem 2.9, then the previous proof
shows at least the existence of a solution of the nonlinear martingale problem.

We will see in the next section another proof of the existence of a solution
obtained by limit of particle approximations.

4. Stochastics Approximations of a solution of the vortex equation

4.1. The case of a cutoff kernel

We follow here the same scheme as in Méléard [15], but we take a different cutoff
kernel Kε. For technical reasons, we consider a convolution regularizing kernel of
the form Kε(x) = K ∗ ϕε(x), where ϕε(x) = 1

ε2 ϕ(
.
ε
) and ϕ is a smooth positive

function with a mass equal to 1 and with a radial symmetry. We then prove
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Lemma 4.1. ∀x = (x1, x2) ∈ R
2 and r = |x|,

Kε(x) =
(
− 1

r2

∫ r

0
ρϕε(ρ)dρ

)
(−x2, x1).

Proof. We have seen that K = ∇⊥g where g(x) = g(|x|) = − 1
2π ln|x|. In the

same way, Kε = ∇⊥gε, with gε defined by �gε = −ϕε. We write the Laplace
operator in polar coordinates. Since gε has a radial symmetry, we get

∂

∂r
(r
∂gε

∂r
) = −rϕε.

We deduce that r ∂gε
∂r
= − ∫ r

0 ρϕε(ρ)dρ and get the value for Kε. ��
To fix the ideas, we choose a good cutoff function, given by Raviart [19] in

a general context of approximations, and proposed by Bossy [3] for a numerical
study of the vortex algorithm. We consider

ϕ(r) = 2(2− r2)

π(1+ r2)4
.

The function ϕ is a C1
b -function. By Lemma 4.1 we compute

Kε(x) = 4ε4 + (r2 + 3ε2)r2

2π(r2 + ε2)3
(−x2, x1). (4.1)

Since for each fixed ε > 0, the function ϕε belongs toL∞∩L1 and the kernelK
is integrable near 0 and bounded at infinity, the function Kε is bounded. Moreover,
it is Lipschitz continuous since ϕε is in C1

b . We denote by Mε the maximum value
of Kε on R

2 (which behaves as 1
ε2 when ε � 1), and by Lε a Lipschitz constant

(which behaves as 1
ε3 ).

We now define the interacting particle system we are interested in.

Definition 4.2. Consider a sequence (Bi)i∈N of independent Brownian motions on
R

2 and a sequence of independent variables (Zi
0)i∈N with values in R

2 distributed

according |m0|
‖m0‖ , and independent of the Brownian motions. For a fixed ε, for each

n ∈ N
∗, and 1 ≤ i ≤ n, let us consider the interacting processes defined by

Z
in,ε
t = Zi

0 +
√

2νBi
t +

∫ t

0
Kε ∗ µ̃n,εs (Zin,ε

s )ds (4.2)

where µ̃n,εs = 1
n

∑n
j=1 h(Z

j

0 )δZjn,εs
∈ P(R2) is the weighted empirical measure of

the system at time s.
We also define the limiting independent processes by

Z̄
i,ε
t = Zi

0 +
√

2νBi
t +

∫ t

0
Kε ∗ P̃ ε

s (Z̄
i,ε
s )ds, (4.3)

where P ε
s is the law of Z̄i,ε

s , and P̃ ε
s is defined from P ε

s by (3.1).
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Proposition 4.3. 1) For each T > 0 and for each n, there exits a unique (path-
wise) solution to the interacting particle system (4.2) inC([0, T ],R2n) and a unique
(pathwise) solution to the nonlinear equation (4.3) in C([0, T ],R2).

2) For a fixed ε > 0, for each T > 0,

E(sup
t≤T
|Zin,ε

t − Z̄i,ε
t |) ≤

Mε√
nLε

exp(‖m0‖T Lε). (4.4)

Proof. We are in the well-known case of a McKean-Vlasov equation

dYt = b[Yt ,mt ]dt + σ [Yt ,mt ]dBt ; mt = L(Yt )

with b[x, µ] = ∫
b(x, z)µ(dz) ; σ [x, µ] = ∫

σ(x, z)µ(dz). Here, σ(x, z) = √2ν
and b(x, z) = Kε(x− z) =

∫
ϕε(x− z− y)K(y)dy. Since ϕε is in C∞b ∩L1(R2),

it is obvious that b ∈ C∞b (R4).
The proof of the first assertion is standard and can be adapted from Sznitman

[21] Theorem 1.1 and the second assertion comes from an easy adaptation of the
computations in Jourdain-Méléard [9] Proposition 2.3. See also Jourdain [10]. ��

4.2. The approximating interacting particle system

We now consider T > 0 and a sequence (εn) tending to 0 such that

lim
n

Mεn√
nLεn

exp(‖m0‖T Lεn) = 0. (4.5)

Let us now consider for each n the coupling of processes (Zin, Ȳ in)1≤i≤n driv-
en by the same Brownian motion, where Zin = Zin,εn are defined with the drift
Kεn as in (4.2), and Ȳ in = Z̄i,εn .

Let us denote by Pn the common law of each Ȳ in. Then since the drift term is
bounded, it turns out from the Girsanov theorem that ∀s > 0, the law P̃ n

s admits a
density function pns of class C∞, which is solution of the equation

∂pn

∂t
= ν�pn − (Kεn ∗ pn · ∇)pn ; pn0 = m0. (4.6)

(As previously, we get (4.6) by computing φ(Ȳ int ) for a smooth function φ by Itô’s
formula and by taking expectations after having multiplied by h(Zi

0)).
A key point of the paper is the following result.

Theorem 4.4. 1) For each n, there exist a kernel .n(x, t, y, s) and constants Cj
depending only on ν such that ∀n,∀x, y ∈ R

2 and 0 ≤ s < t ≤ T ,

pn(x, t) =
∫

R2
.n(x, t, y, 0)m0(dy), t > 0 (4.7)

C1

(t − s) exp(−C2
|x − y|2
(t − s) ) ≤ .n(x, t, y, s) ≤ C3

(t − s) exp(−C4
|x − y|2
(t − s) ). (4.8)
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2) We deduce immediately that ∀r ≥ 1,

sup
n

sup
t≤T

t1−
1
r ‖pnt ‖r ≤ C‖m0‖. (4.9)

The constant C depends only on r and ν.

Proof. The function (s, y) �→ Kεn ∗ pns (y) is clearly continuous and bounded on
[0, T ]×R

2, and y �→ Kεn ∗pns (y) is Lipschitz continuous, uniformly in s ∈ [0, T ].
Then, (4.7) and (4.8) follow from results of Friedman ([6] Theorem 4.5), but the
constantsCi depend a priori on n. We apply Theorem 2.4. Let us prove that the func-
tionsKεn ∗pn satisfy the required assumptions. Since∇ ·K = 0, then∇ ·Kεn = 0,
and hence ∇ ·Kεn ∗ pn = 0 .

Moreover, using Lemma 2.5,

Kεn(x)=(∂x1(A3∗ϕεn)(x)+∂x2(A1∗ϕεn)(x),−∂x1(A1∗ϕεn)(x)−∂x2(A2∗ϕεn)(x)).

Since pn and ϕεn are densities of probability, the functions Kεn ∗ pn satisfy the
assumption (b) of Theorem 2.4, with d independent of εn and n.

The proof of Theorem 4.4 is thus immediate. ��
Let us now introduce for each n the coupling of processes (Zin, Ȳ in, X̄i)1≤i≤n,

where (X̄i) are independent copies of X̄ defined as in (3.2) on a certain probability
space andZin, Ȳ in are driven, for each i respectively, following the same Brownian
motion as X̄i . We will now compare the two processes Ȳ in and X̄i . We need to
estimate v − pn.

As in the proof of (2.16), and using the boundedness ofKεn , (2.17) and Fubini’s
theorem, we can prove that pn is solution of the evolution equation

pnt (x) = Gν
t ∗m0(x)+

∫ t

0
∇xGν

t−s ∗ (pns ·Kεn ∗ pns )(x)ds. (4.10)

Using (2.16), we obtain

pnt (x)− vt (x) =
∫ t

0

∫
R2
∇xGν

t−s(x − y).(
Kεn ∗ pns (y)pns (y)−K ∗ vs(y)vs(y)

)
dyds (4.11)

We now prove the

Theorem 4.5. For every 1 < q < 2,

sup
t≤T

t
1− 1

q ‖pnt − vt‖q ≤ C(εn)
2−q
q (4.12)

where the constant C depends only on T , q, ν and ‖m0‖.
The proof of this theorem uses some technical lemmas.
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Lemma 4.6. For all 1 ≤ l < 2, for all n ∈ N
∗,

‖Kεn −K‖l ≤ C(εn)
2−l
l (4.13)

where the constant C depends only on l.

Proof. We have

Kεn(x)−K(x) =
ε4
n

2π

r2 − ε2
n

(r2 + ε2
n)

3

1

r2
(−x2, x1).

Then, for l ≥ 1,

‖Kεn −K‖ll ≤
(εn)

4l

(2π)l−1

∫ +∞
0

(r2 − ε2
n)
l

(r2 + ε2
n)

3lr l−1
dr

≤ (εn)
2−l 1

(2π)l−1

∫ +∞
0

(α2 − 1)l

(α2 + 1)3lαl−1
dα

≤ C(εn)
2−l , for l < 2. ��

Corollary 4.7. 1) For all n, s ∈ [0, T ], 1 < q < 2,

‖Kεn ∗ pns −K ∗ pns ‖q ≤ Cq(εn)
2−q
q (4.14)

2) For all n, s ∈ [0, T ], p > 2,

‖Kεn ∗ pns −K ∗ pns ‖p ≤ ‖Kεn −K‖q‖pns ‖2
≤ Cqs

−1
2 (εn)

2−q
q ‖m0‖, (4.15)

and q ∈]1, 2[ is related to p by 1
q
= 1

p
+ 1

2 , and Cq is a constant depending only
on q and ν.

Proof. In the two cases one uses the Young inequality: if f ∈ Lq and g ∈ Lm, then
f ∗ g ∈ Lp, for all 1

p
= 1

q
+ 1

m
− 1 and ‖f ∗ g‖p ≤ ‖f ‖q‖g‖m.

1) we take p = q and m = 1, and apply the previous lemma.
2) We take 1 < q < 2 and p with 1

q
= 1

p
+ 1

2 , and m = 2. Then the result
follows from (4.9). ��

Corollary 4.8. For all 1 < q < 2 and 1
r
= 2

q
− 1

2 , for all n ∈ N
∗ and t ≤ T ,

∫ t

0
(t − s)− 1

q ‖(Kεn ∗ pns −K ∗ pns )pns ‖rds ≤ C(εn)
2−q
q (4.16)

where C is a real constant depending only on T , q, ν, ‖m0‖.
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Proof. ∫ t

0
(t − s)− 1

q ‖(Kεn ∗ pns −K ∗ pns )pns ‖rds

≤
∫ t

0
(t − s)− 1

q ‖Kεn ∗ pns −K ∗ pns ‖q‖pns ‖q ′ds with
1

q
+ 1

q ′
= 1

r

≤ C(εn)
2−q
q

∫ t

0
(t − s)− 1

q s
−1+ 1

q′ ds.

But −1+ 1
q ′ = −1+ 1

r
− 1

q
= −1+ 1

q
− 1

2 = 1
q
− 3

2 > −1.
Then the integral converges and the corollary follows. ��
Let us now come back to the proof of Theorem 4.5.

Proof. As in the proof of Theorem 2.9, for 1 < q < 2 and 1
r
= 2

q
− 1

2 , we can
write

‖pnt − vt‖q
≤C

∫ t

0
(t−r)− 1

2−( 1
r
−1
q
)

(
‖(Kεn ∗ pns −K ∗ vs)pns ‖r + ‖K ∗ vs(pns − vs)‖r

)
ds

≤C
∫ t

0
(t − s)− 1

q

(
‖(Kεn ∗ pns −K ∗ pns )pns ‖r + ‖K ∗ pns −K ∗ vs‖q ′ ‖pns ‖q

+‖K ∗ vs‖q ′ ‖pns − vs‖q
)
ds with

1

q
+ 1

q ′
= 1

r
, (q ′ > 2)

≤ C(εn)
2−q
q + C

∫ t

0
(t − s)− 1

q ‖pns − vs‖q(‖pns ‖q + ‖vs‖q)ds
by (2.8) and Corollary 4.8

≤ C(εn)
2−q
q + C

∫ t

0
(t − s)− 1

q s
−1+ 1

q ‖pns − vs‖q
)
ds

The function t �→ ‖pns − vt‖q is not bounded on [0, T ], so we introduce

‖|pnt − vt‖|q = t
1− 1

q ‖pnt − vt‖q and we obtain

‖|pnt − vt‖|q ≤ C(εn)
2−q
q t

1− 1
q + Ct1− 1

q

∫ t

0
(t − s)− 1

q s
−2+ 2

q ‖|pns − vs‖|qds.
(4.17)

Since the function s �→ (t − s)− 1
q s

2
q
−2 is integrable in 0 and in t , we can apply

Gronwall’s lemma and finally deduce (4.12). ��
By associating Theorem 4.5 and Corollary 4.7, we deduce

Corollary 4.9. For any p > 2, n ∈ N
∗, t ≤ T ,

‖Kεn ∗ pnt −K ∗ vt‖p ≤ C(εn)
2−q
q (t−

1
2 + t−1+ 1

q ), (4.18)

where C depends only on p, T , ν, ‖m0‖ and 1
q
= 1

p
+ 1

2 .
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Proof.

‖Kεn ∗ pnt −K ∗ vt‖p ≤ ‖Kεn ∗ pnt −K ∗ pnt ‖p + ‖K ∗ pnt −K ∗ vt‖p
≤ C(εn)

2−q
q t−

1
2 + C‖pnt − vt‖q

≤ C(εn)
2−q
q t−

1
2 + C(εn)

2−q
q t
−1+ 1

q . ��

5. The convergence theorem

Let us now come back to the processes we have introduced before. We are interested
in proving a propagation of chaos result for the interacting particle system (Zin) to
the solution P of the nonlinear martingale problem (M) defined in Section 3.

Theorem 5.1. ∀T > 0, the laws of the particle systems (Zin)1≤i≤n, considered as
probability measures on the path space C([0, T ],R2), are P -chaotic in the sense
that for every fixed k,

L(Z1n, ..., Zkn) �⇒ P⊗k , n→+∞. (5.1)

This convergence is then a pathwise convergence.

Remark 5.2. Unhappily, and in contrast to the case with an initial bounded density
data, we do not obtain aL1-type convergence, and we have no rate of convergence.
That is due to the degenerated behaviour of the laws of the processes at time 0.

Remark 5.3. Since the laws L(Z1n, ..., Znn) are exchangeable, the propagation
of chaos for the system is equivalent to the convergence in probability of its em-
pirical measures to P , as probability measures on the path space (cf. [21]). That
implies the convergence in probability of the flow of weighted empirical measures
(µ̃

n,εn
t )0≤t≤T , where

µ̃
n,εn
t = 1

n

n∑
i=1

h(Zi
0)δZint

,

to the flow (vt (x)dx)0≤t≤T in the space C([0, T ],MF ). Indeed, Theorem 5.1 im-
plies immediatly the convergence of the flow of the empirical measures (µn,εnt )0≤t≤T
to (Pt )t≥0. The weight function h is not necessarily continuous and we approximate
it by a sequence of continuous functions hk bounded as h by ‖m0‖, in the sense
that |m0|

‖m0‖ ({hk "= h}) ≤ 1
k

. Then if F is a continuous and bounded function on R
2,

E|〈µ̃n,εnt , F 〉 −
∫
F(x)vt (x)dx|

≤ E|1
n

n∑
i=1

h(Zi
0)F (Z

in
t )− 〈P, h(X0)F (Xt )〉|

≤ E|1
n

n∑
i=1

(h(Zi
0)− hk(Zi

0))F (Z
in
t )| + E|

1

n

n∑
i=1

hk(Z
i
0)F (Z

in
t )

−〈P, hk(X0)F (Xt )〉| + |〈P, (hk(X0)− h(X0))F (Xt )〉|.
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The first and third terms tend to 0 as k tends to infinity, and if now k is fixed, the
second term tends to 0 as n tends to infinity.

Let us now prove some preliminaries for the proof of Theorem 5.1.

Proposition 5.4. For each 1 < q < 2, for each 1 ≤ i ≤ n, we have

E(sup
t≤T

∫ t

0
|Kεn ∗ pns (Ȳ ins )−K ∗ vs(Ȳ ins )|ds) ≤ C(εn)

2−q
q , (5.2)

where the constant C depends only on T , ν, q and ‖m0‖.

Proof. We have seen that for each s > 0 and i ∈ N
∗, the variable Ȳ ins has the law

pns (x)dx. Then,

E(sup
t≤T

∫ t

0
|Kεn ∗ pns (Ȳ ins )−K ∗ vs(Ȳ ins )|ds)

≤
∫ T

0
(

∫
|Kεn ∗ pns (x)−K ∗ vs(x)|pns (x)dx)ds

≤
∫ T

0
‖Kεn ∗ pns −K ∗ vs‖p‖pns ‖p′ds for p > 2 and

1

p′
= 1− 1

p

≤ C(εn)
2−q
q

∫ T

0
(s−

1
2 + s−1+ 1

q )s
1
p′ −1

ds by Corollary 4.9, with
1

q
= 1

p
+ 1

2

≤ C(εn)
2−q
q

∫ T

0
(s
− 3

2+ 1
p′ + s−2+ 1

q
+ 1
p′ )ds

≤ C(εn)
2−q
q ,

since 1
p′ = 3

2 − 1
q

and then the integral is convergent. ��

Proposition 5.5. For each x, z ∈ R
2, for each 1 < q < 2,

|K ∗ vs(x)−K ∗ vs(z)| ≤ φs,q(|x − z|) (5.3)

where for each r > 0, φs,q(r) = C(r + s
− 1
q r

2
q
−1
) if 0 < r < 1 and φs,q(r) =

1+ s− 1
q if r ≥ 1.

Proof. The proof follows approximately the same steps than the one of Marchiro-
Pulvirenti ([12] Lemma 3.1), but with the additionnal difficulty that the functions
vs are not in L∞. Let us denote r = |x− z| and A = {y ∈ R

2, |x− y| ≤ 2r}. Then

|K ∗ vs(x)−K ∗ vs(z)| ≤
∫
A

|K(x − y)−K(z− y)|vs(y)dy

+
∫
Ac
|K(x − y)−K(z− y)|vs(y)dy.
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Now,
∫
A

|K(x − y)−K(z− y)|vs(y)dy

≤
∫
|x−y|≤2r

1

|x − y|vs(y)dy +
∫
|z−y|≤3r

1

|z− y|vs(y)dy

≤
(( ∫

|y|≤2r

1

|y|q dy
) 1

q

+
( ∫
|y|≤3r

1

|y|q dy
) 1

q
)
‖vs‖q ′ with

1

q
+ 1

q ′
= 1

≤ Cs
− 1
q r

2
q
−1
.

By a Taylor expansion, we obtain
∫
Ac
|K(x − y)−K(z− y)|vs(y)dy ≤ r

∫
AC

1

|x′′ − y|2 vs(y)dy

where x′′ ∈ [x, z]. We remark |x′′ − y| > 1
2 |x − y| if y ∈ Ac. Then, for r < 1,

∫
Ac
|K(x − y)−K(z− y)|vs(y)dy ≤ Cr

∫
Ac

1

|x − y|2 vs(y)dy

≤ Cr

∫
2r<|x−y|<2

1

|x − y|2 vs(y)dy

+Cr
∫

2<|x−y|
1

|x − y|2 vs(y)dy.

The second term is trivially upperbounded by Cr since vs ∈ L1, uniformly in s.
Now

r

∫
2r<|x−y|<2

1

|x − y|2 vs(y)dy ≤ Cr

( ∫ 2

2r

ρ

(ρ)2q
dρ

) 1
q

‖vs‖q ′

≤ Cs
− 1
q r

(
r2−2q − 22−2q

) 1
q

≤ Cs
− 1
q r

2
q
−1

Then ∫
Ac
|K(x − y)−K(z− y)|vs(y)dy ≤ Cr + Cs− 1

q r
2
q
−1
.

If r ≥ 1,

|K ∗ vs(x)−K ∗ vs(z)| ≤ |K ∗ vs(x)| + |K ∗ vs(z)| ≤ 2‖K ∗ vs‖∞
≤ C(1+ s− 1

q ). ��
Proposition 5.6. ∀T > 0, the sequence of processes (Ȳ 1n)n≥1 converges in law in
C([0, T ],R2) to the process (X̄1) as n tends to infinity.
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Proof. The proof has two steps. Firstly we prove the uniform tightness of the laws
Pn of (Ȳ 1n) and secondly we identify the limiting process.

1) Exactly as in (2.10) and (2.15), we can prove that

‖Kεn ∗ pns ‖∞ ≤ C(s
− 1
q + 1)

where C depends only on q, ν, ‖m0‖, for any 1 < q < 2. Then the function
t �→ ∫ t

0 ‖Kεn ∗pns ‖∞ds is continuous and then uniformly continuous on [0, T ]. So
the Aldous criterion (cf. Aldous [1]) is satisfied for the laws of (Ȳ 1n). The initial
laws being all equal to |m0|

‖m0‖ , the laws of (Ȳ 1n) are uniformly tight.
2) Let us now prove that there is a unique limiting law equal to P . Let us denote

by Q a limit value of the sequence (P n). We have to prove that Q satisfies the
nonlinear martingale problem (M) defined in Section 3.

If as usual X denotes the canonical process on C([0, T ],R2), let us define, for
any smooth enough function φ, for bounded continuous functions g1, g2,..., gk , for
0 < s1 < ... < sk ≤ s < t ≤ T , the function

Gn(X) =
(
φ(Xt )− φ(Xs)−

∫ t

s

ν�φ(Xu)du

−
∫ t

s

Kεn ∗ pnu(Xu).∇φ(Xu)du

)
g1(Xs1)...gk(Xsk ). (5.4)

Then the law Qn is characterized by EPn
(Gn(X)) = 0. Now if we define the func-

tionG by the same formula as (5.4) in which we have replacedKεn ∗pnu byK ∗vu,
the distribution law P is characterized by EP (G(X)) = 0.

Let us prove that EQ(G(X)) = 0.

EQ(G(X)) = EQ(G(X))− EPn

(G(X))+ EPn

(G(X)−Gn(X))

Proposition 5.5 implies that x �→ K ∗ vs(x) is a continuous function, and we
have seen otherwise that s �→ ‖K ∗ vs‖∞ is integrable on [0, T ]. So the function
X �→ G(X) is a continuous function on the path space, and the first term of the
right hand side of the previous expression tends to 0 as n tends to infinity.

In another hand,

EPn |Gn(X)−G(X)| ≤ EPn

( ∫ t

0
|(Kεn ∗ pns (Xs)−K ∗ vs(Xs)).∇φ(Xs)|ds

)

|g1(Xs1)...gk(Xsk )|

≤ CE

( ∫ t

0
|Kεn ∗ pns (Ȳ 1n

s )−K ∗ vs(Ȳ 1n
s )|ds

)

≤ C(εn)
2−q
q by Proposition 5.4 .

Thus, EQ(G(X)) = 0, and Q = P . ��
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Proof of Theorem 5.1. Since the processes (Ȳ in)i are independent, and the same
for (X̄i)i , Proposition 5.6 implies that for every fixed k, the law of (Ȳ 1n, ..., Ȳ kn)

converges to the law of (X̄1, ..., X̄k).
Otherwise, by adding the results obtained in Proposition 4.3 and in (4.5), we

obtain that for each i ∈ {1, ..., n},

E

(
sup
t≤T
|Zin

t − Ȳ int |
)
≤ Mεn√

nLεn
exp(‖m0‖T Lεn)

and then tends to 0 as n tends to infinity. Now, if we endow P(C([0, T ],R2k))with
the metric

ρ(P,Q) = inf

{ ∫
C([0,T ],R2k)×C([0,T ],R2k)

sup
0≤t≤T

|xt − yt |R(dx, dy);

R has marginals P and Q

}

We have:

ρ(L(Z1n, ..., Zkn),L(X̄1, ..., X̄k))

≤ ρ(L(Z1n, ..., Zkn),L(Ȳ 1n, ..., Ȳ kn))+ ρ(L(Ȳ 1n, ..., Ȳ kn),L(X̄1, ..., X̄k))

≤ k
Mεn√
nLεn

exp(‖m0‖T Lεn)+ ρ(L(Ȳ 1n, ..., Ȳ kn),L(X̄1, ..., X̄k)).

Since the two terms of the sum tend to 0, then ρ(L(Z1n, ..., Zkn),L(X̄1, ..., X̄k))

converges to 0, and we get the propagation of chaos result we wished. ��
We deduce now from Theorem 5.1 a theorical justification for Monte-Carlo

approximations for the equation (2.1).

Theorem 5.7. For each t ∈ [0, T ] and x ∈ R
2, the random variable 1

n

∑n
i=1 h(Z

i
0)

Kεn(x−Zin
t ) converges in law and then in probability to u(t, x). The convergence

is uniform for t ∈ [η, T ], for each 0 < η ≤ T .

Proof. Since supt≤T ρ(µ̃
n,εn
t , P̃t ) tends to 0 as n tends to infinity (cf. Remark 5.3),

1
n

∑n
i=1 h(Z

i
0)F (Z

in
t ) converges in law and then in probability to

∫
F(x)vt (x)dx

uniformly in t ∈ [0, T ] and for each bounded and continuous function F on R
2.

Let us fix q ∈]1, 2[, let α > 0 and consider n0 defined thanks to (4.13) such that

‖Kεn0
−K‖q ≤ α.

For each fixed x ∈ R
2, the function y �→ Kεn0

(x − y) is bounded and continu-

ous, so 1
n

∑n
i=1 h(Z

i
0)Kεn0

(x − Zin
t ) converges in law and then in probability to
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∫
Kεn0

(x − y)vt (y)dy uniformly in t ∈ [0, T ]. But,

∫
|Kεn(x − y)−Kεn0

(x − y)|vt (y)dy ≤ ‖Kn −Kn0‖q‖vt‖q ′

with 1 ≤ q < 2 and
1

q
+ 1

q ′
= 1

≤ (‖Kn −K‖q + ‖K −Kn0‖q)‖vt‖q ′
≤ C((εn)

2−q
q + α)t− 1

q

where the constant C depends only on q, ‖m0‖ and ν. Finally we estimate the
quantity

E|1
n

n∑
i=1

h(Zi
0)(Kεn −Kεn0

)(x − Zin
t )| ≤ ‖m0‖E|(Kεn −Kεn0

)(x − Z1n
t )|.

We remark, following Osada [17] p.602 and using Lemma 2.5, that the generator
of the particle system (Z1n, ..., Znn) is of generalized divergence form. Then as al-
ready seen before (see Theorem 4.4), for each t > 0, the law of the random variable
Z1n
t has a density of probability wn

t satisfying (2.11), with a constant depending
only on ν and r . Now,

E|(Kεn −Kεn0
)(x − Z1n

t )| =
∫
|(Kεn −Kεn0

)(x − y)wn
t (y)dy|

≤ ‖Kεn −Kεn0
‖q‖wn

t ‖q ′
≤ C((εn)

2−q
q + α)t− 1

q (5.5)

which tends to 0 as n tends to infinity, and Theorem 5.7 is proved. ��
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methods.
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