
Probab. Theory Relat. Fields 115, 237–285 (1999)

On the conditioned exit measures of super
Brownian motion

Thomas S. Salisbury1,?, John Verzani2,??

1 Department of Mathematics and Statistics, York University, Toronto, Ontario,
Canada M3J 1P3. e-mail: salt@nexus.yorku.ca
2 Department of Mathematics, CUNY – College of Staten Island, Staten Island, NY 10314,
USA. e-mail: verzani@math.csi.cuny.edu

Received: 27 August 1998 / Revised version: 8 January 1999

Abstract. In this paper we present a martingale related to the exit measures
of super Brownian motion. By changing measure with this martingale in the
canonical way we have a new process associated with the conditioned exit
measure. This measure is shown to be identical to a measure generated by
a non-homogeneous branching particle system with immigration of mass.
An application is given to the problem of conditioning the exit measure to
hit a number of specified points on the boundary of a domain. The results
are similar in flavor to the “immortal particle” picture of conditioned super
Brownian motion but more general, as the change of measure is given by a
martingale which need not arise from a single harmonic function.
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1. Introduction

One may think about super Brownian motion heuristically as a measure
valued process induced by a branching particle system in which each particle
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diffuses as a Brownian motion and critical branching is performed. With
this image in mind, Dynkin’s exit measure for super Brownian motion from
a domain D is a measure on the boundary of D, supported on the set of
points where the particles first exit the domain. Le Gall proved in [20]
that the exit measure will “hit” a fixed point on the boundary of D, with
positive probability, only in dimensions 1 and 2. In higher dimensions, a
fixed point on the boundary will be hit by an exiting particle with probability
0. One may ask, if we condition the process to hit that point, what do the
paths of the particles that hit the point look like? A naive guess is to say
they are Brownian particles which are conditioned to hit the point, and so
should look like h-transforms of Brownian motion. In dimension 2, where
no conditioning is necessary, this is essentially correct. Although the first
hit, as chronicled by the Brownian snake, is not an h-process, the typical
path is. This has been exploited by Abraham [1].

A rough heuristic shows that one’s intuition should be true in dimension
d ≥ 3. Let z be a fixed point on ∂D, and for each ε > 0 define1ε = 1ε(z) =
∂D ∩B(z, ε) to be a ball on the boundary ofD centered at z with radius ε.
Consider the “probability” uε(x) that the exit measure will charge the ball
1ε , under the excursion measure for the Brownian snake started from x. It
is known (cf. Abraham and LeGall [2]) that ifD is regular enough, then uε
will solve the equation 1u = 4u2, with boundary condition that is infinite
on 1ε and 0 on its complement. Fix some point x0 ∈ D. Then the ratio of
functions vε(x) = uε(x)/uε(x0) will solve the equation 1vε = 4v2

ε uε(x0).
As ε → 0, we will have that uε → 0, and thus vε should converge to a
harmonic function. The boundary conditions suggest that the limit function
is the harmonic function associated with Brownian motion conditioned to
exit D at z – that is the Martin kernel Kx0(·, z).

When this heuristic is formally inserted into the known formula for the
Laplace transform, one finds that the exit measure conditioned to hit the
point z will look like an h-path transform of the exit measure. Let D be
a bounded domain in R

d , and let Dk ⊆ D be an increasing sequence of
smooth subdomains with D = ∪kDk. Let XDk denote the exit measure
fromDk under an excursion measure Nx , let 〈·, ·〉 denote integration and let
φ be a test function defined on ∂Dk. Then formally,

lim
ε→0

Nx0(exp(−〈XDk, φ〉) | XD(1ε) > 0)

= Nx0((exp(−〈XDk, φ〉)〈XDk,Kx0(·, z)〉).

In this case the “harmonic” function is now H(µ) = 〈µ,Kx0(·, z)〉. As is
usual withh-path transforms, the change of measure is non-singular only for
events prior to the exit time. Hence the appearance ofXDk in the statement.
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In addition, there is a concrete representation of this h-transformed pro-
cess. It is given in terms of an “immortal particle”, or “backbone”, consisting
of a Brownian particle conditioned to exit D at z. The conditioned super
Brownian motion is obtained by allowing this particle to throw off mass in a
uniform Poisson manner. This mass then evolves as with an (unconditioned)
super Brownian motion.

Such h-transforms have been studied by Roelly-Coppoletta and Roualt
[25], Evans and Perkins [17], and Overbeck [23], while the immortal particle
representation originates with Evans [15]. For example, in
[17] and in [25], super Brownian motion conditioned on non-extinction
is shown to be described in terms of an h-path transform, where the har-
monic function is now H(µ) = 〈µ, 1〉. That is, if Xt denotes the super
Brownian motion in R

d at time t , then conditioning on non-extinction pro-
duces a Laplace functional of the form

N̄x(exp(−〈Xt, φ〉) = Nx((exp(−〈Xt, φ〉)〈Xt, 1〉) .

The immortal particle representation in this case was obtained in [15].
For h a harmonic function, [23] defines the transform by H(µ) = 〈µ, h〉.
The immortal particle representation in that case was obtained in Overbeck
[24].

Our interest is in more general conditionings, in which one conditions,
not just upon one, but upon several specified boundary points being hit. In
particular, we will show that if one fixes n distinct points on the boundary
of a bounded smooth domainD, and one conditions the exit measure to hit
all of them, then the conditioned exit measure can be described in terms of
an explicit martingale change of measure, or h-transform, the transforms of
the preceding paragraph being a special case. We will then give a backbone
representation of this h-transform, where now the backbone is a tree with n
leaves, each terminating at one of the n boundary points. Our main purpose
is to explicitly describe the evolution of this tree.

We note that in Etheridge [14], a different conditioning gives rise to
a particle representation, where the backbone is also a tree. In Evans and
O’Connell [16], a supercritical superprocess is given a particle representa-
tion in terms of a tree backbone throwing off subcritically evolving mass.
In Dembo and Zeitouni [9], a large deviation result with some similarities
to our problem gives rise to yet another tree structure.

We also note that steps have been taken towards a version of the Mar-
tin boundary, in the context of conditionings involving a single target (see
Dynkin and Kuznetsov [13]). We conjecture that a more general Martin
boundary theory would incorporate a modification of our basic condition-
ings, given in Section 6.
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To give a more precise formulation of the results, we first describe a
general class of h-transforms, which will include the ones we require as a
particular case. Section 3 of the paper gives an analysis of this general class
of transforms. To describe this class, we introduce some more notation.
Let g ≥ 0 be a solution to the non-linear equation 1

21u = 2u2 in D.
Let L4g be the generator of Brownian motion killed at rate 4g, and denote
the law of the corresponding process by E4g. Suppose we have n positive
solutions inD to the linear equation L4gv = 0, labeled v1, . . . , vn. Let U 4g

be the potential operator for the generator L4g inD and recursively define a
family of functions vA indexed by nonempty subsets A of N = {1, . . . , n},
as follows

vA =


vi A = {i},
2
∑

B⊆A
∅,A6=B

U 4g(vBvA\B) |A| ≥ 2.

For ∅ 6= A ⊆ N define

MA
k =

∑
σ∈P(A)

exp −〈XDk, g〉
∏
C∈σ

〈XDk, vC〉,

where P(A) is the set of partitions of A.
It turns out that {MA

k }k forms a family of martingales for the exit measure
with σ -fields Fk generated by the superprocess paths before they exit Dk.

Theorem 1.1 (Theorem 3.1).For each nonempty subset ofA ⊆ N,MA
k is

anFk-martingale underNx with Nx(M
A
k ) = vA(x).

Changing measure by MN
k thus consistently defines the h-transform

Mx(exp −〈XDk, φ〉) = 1

vN(x)
Nx(exp(−〈XDk, φ〉)MN

k ).

Such a transform appears when one conditions the exit measure to hit n
distinct points on the boundary of the domain, as in the following result.

Theorem 1.2 (Theorem 5.6).LetD be a bounded Lipschitz domain inR
d,

d ≥ 4, and let{zi}ni=1 ben distinct points on the boundary ofD. Setg = 0
and letvi = Kx(·, zi) be the Martin kernel with base point,x and pole at
zi . Then

lim
ε→0

Nx

(
exp(−〈XDk, φ〉) |

n∏
i=1

XD(1ε(zi)) > 0
)

= 1

vN(x)
Nx(exp(−〈XDk, φ〉)MN

k ).
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Section 5 is largely devoted to proving this theorem. The arguments are
based on an analysis of the asymptotics of small solutions to certain non-
linear PDEs. Many of the basic estimates draw on the work of Abraham
and LeGall [2]. In Section 6, we give a related conjecture concerning
conditioning super Brownian motion to hit the boundary in precisely n
points.

Having given an analytic formula for the conditioned exit measures, in
terms of the martingale change of measure by MN

k , we turn in Section 4 to
generalizing the immortal particle picture and representing Mx dynamically
in terms of a backbone shedding mass. This representation works for the
general class of processes described above, with the effect ofg being to prune
off mass that would otherwise reach ∂D. To summarize, in Theorem 4.2 we
construct a backbone, which consists of a branching process that eventually
branches into n particles. In the example above these individual particles
move as suitable transforms of Brownian motion. The particles in some
sense keep track of a number of different exit points. Eventually there are
n particles, each of which moves as a Brownian motion conditioned to
exit D at a certain point. On top of this backbone, mass is immigrated in
a Poisson manner and evolves as an unconditioned (but possibly pruned)
super Brownian motion, to give us exit measures on {∂Dk}. In the case
there is just one particle to hit, then the backbone is simply an h-transform
of Brownian motion. The arguments are based on an extended Palm formula
for super Brownian motion.

Conditioning the exit measure to hit a point z only produces a transform
of the above type in dimensions high enough that the probability of such an
event is actually zero. In dimension 2, any boundary point is hit with positive
probability, and one must seek for other types of backbone representations
for the conditioned exit measures. We give such a representation (among
others) in an accompanying paper, [27].

For clarity, we will carry out the proof of the backbone representation in
a simplified setting, avoiding the use of historical superprocesses. In fact,
the arguments given would yield the stronger version of the representation,
at the cost of a more baroque notation. In section 7 we will sketch the
modifications needed to derive the strengthened results.

We would like to thank the referee for a careful reading of the paper, and
for many helpful comments.

2. Preliminaries

In this section we gather together some basic facts which will be used in the
rest of the paper.
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2.1. Notation

For a setA, let |A| denote its cardinality, and let P(A) denote the collection
of partitions of A. Choose some arbitrary linear order ≺ on the set of finite
subsets of the integers. For A such a finite subset, and σ ∈ P(A), let σ(j)
be the j th element of σ in this order. Thus for example,

∏
C∈σ

〈XDk, vC〉 =
|σ |∏
j=1

〈XDk, vσ(j)〉.

We will switch between these notations according to which seems clearer.

2.2. Set facts

We begin with some lemmas about sets. We will use the convention that a
sum over an empty set is 0.

Lemma 2.1. LetA ⊆ B ⊆ C be subsets of{1, 2, . . . n}. Then∑
A⊆B⊆C

(−1)|B| = (−1)|C|1A=C.

Proof.∑
A⊆B⊆C

(−1)|B| = (−1)|A| ∑
B⊆C\A

(−1)|B|

= (−1)|A|
|C\A|∑
i=0

(|C \ A|
i

)
(−1)i

=
{
(−1)|C| C = A

(−1)|A|(1 − 1)|C\A| C \ A 6= ∅. ut
The following is immediate.

Lemma 2.2. LetA be finite, and letwi ∈ R for i ∈ A. Then∏
i∈A
(1 − wi) = 1 +

∑
C⊆A
∅6=C

(−1)|C|
(∏
i∈C

wi

)
.

In this paper we use the letterK to denote a generic non-trivial constant
whose particular value may vary from line to line. If it is important, explicit
dependencies on other values will be specified.



On the conditioned exit measures of super Brownian motion 243

2.3. Facts about conditioned diffusions

First we recall some formulae for conditioned Brownian motion.
Let B be d-dimensional Brownian motion started from x, under a prob-

ability measure Px . Write τD = τD(B) for the first exit time of B from
D.

Let g : D → [0,∞) be bounded on compact subsets of D, and set

Lg = 1

2
1− g.

Let ξt be a process which, under a probability law P
g
x , has the law of a

diffusion with generator Lg started at x and killed upon leavingD. In other
words, ξ is a Brownian motion onD, killed at rate g. Write ζ for the lifetime
of ξ . Then

Egx (ξt ∈ A, ζ > t) = Ex(exp −
∫ t

0
ds g(Bs), Bt ∈ A, τD > t). (2.1)

Let Ugf (x) = ∫∞
0 P

g
x (f (ξt )1{ζ>t})dt be the potential operator for Lg. If

g = 0 we write U for Ug. If 0 ≤ u is Lg-superharmonic, then the law of
the u-transform of ξ is determined by the formula

P g,ux (Φ(ξ)1{ζ>t}) = 1

u(x)
P gx (Φ(ξ)u(ξt )1{ζ>t})

for Φ(ξ) ∈ σ {ξs; s ≤ t}. Assuming that 0 < u < ∞ on D, this defines a
diffusion onD. If u is Lg-harmonic, then it dies only upon reaching ∂D. If
for f ≥ 0, u = Ugf (that is, u is a potential) then it dies in the interior of
D, and in fact P g,ux satisfies

P g,ux (Φ(ξ)) = 1

u(x)

∫ ∞

0
P gx (Φ(ξ≤t )f (ξt )1{ζ>t})dt, (2.2)

where ξ≤t is the process ξ killed at time t .

2.4. Facts about the Brownian snake

Next we recall some useful facts about the Brownian snake. Refer to [7] or
[10] for a general introduction to superprocesses.

The Brownian snake is a path-valued process, devised by Le Gall as
a means to construct super Brownian motion without limiting procedures.
Refer to [19] or [21] for the construction.
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We use the standard notation (Ws, ζs) for the Brownian snake, and Nx

for the excursion measure of the Brownian snake starting from the trivial
path (w, ζ ), ζ = 0, w(0) = x. Note that Ws(·) is constant on [ζs,∞), and
ζ· has the distribution of a Brownian excursion under Nx .

Super Brownian motion Xt is defined as

〈Xt, φ〉 =
∫
φ(Ws(t)) dLt(s),

where Lt is the local time of ζ· at level t . Dynkin [11] introduced the exit
measureXD associated withXt . We follow Le Gall’s snake-based definition
of XD (see [21]) as

〈XD, φ〉 =
∫
φ(Ws(ζs)) dL

D(s),

where LD(·) is an appropriate local time for Ws(ζs) on ∂D. (In section 7
we define these in a historical sense.)

We denote the range of the Brownian snake by R(W) = {Ws(t) : 0 ≤
s ≤ σ, 0 ≤ t ≤ ζs} and the range inside D by RD(W) = {Ws(t) : 0 ≤ s ≤
σ, 0 ≤ t ≤ τD(Ws)∧ζs}. Recall that τD(Ws) is the first exit time ofW from
D. There is an obvious inclusion between the range inside D and the exit
measures, given by

{〈XD, 1A〉 > 0} ⊆ {RD(W) ∩ A 6= ∅}.
We make use of the following facts about the Brownian snake, which

are contained in Le Gall [21].
A useful first-moment calculation is: (cf. [21] Proposition 3.3)

Nx(〈XD, φ〉) = Ex(φ(BτD)).

The following is an immediate consequence of Theorem 4.2 and its
corollary in [21].

Lemma 2.3. Let g be a solution to1g = 4g2 in D, and let{Dk} be an
increasing sequence of smooth subdomains ofD. Then for eachk,

Nx(1 − exp −〈XDk, g〉) = g(x).

Remark 2.4. We make use of a generalization of this, replacing Brownian
motion by Brownian motion killed at a certain rate.

Let Fk = FDk be the σ -field of events determined by the superprocess
killed upon exitingDk. See [11] for a formal definition, or refer to section 7,
where we give a definition in terms of the historical superprocess.

Dynkin introduced a Markov property for the exit measures in [11]. In
our context, the Markov property is established in [22]. The next result gives
it in the form we will use it:
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Lemma 2.5.

Nx(exp −〈XD, φ〉 | Fk) = exp −〈XDk,N·(1 − exp −〈XD, φ〉)〉.

We use the following notation, where Bs denotes a path in D whose
definition will be clear from the context:

eDφ = eD(φ) = exp −〈XD, φ〉,
Nt (e

D
φ ) = Nt (e

D
φ , B) = exp −

∫ t

0
ds 4NBs (1 − eDφ ).

The Palm formula for the Brownian snake takes the form: (cf. [21],
Proposition 4.1)

Nx(〈XD, φ〉eDψ ) = Ex(φ(BτD)NτD (e
D
ψ )). (2.3)

We will make use of the following extension to the basic Palm formula.
See [8] for a general discussion of this type of Palm formula.

Lemma 2.6. LetN = {1, 2, . . . n}, n ≥ 2. LetD be a domain, and letB be
a Brownian motion inD with exit timeτ . Let{ψi} be a family of measurable
functions. Then

Nx(eφ
∏
i∈N

〈XD,ψi〉) = 1

2

∑
M⊆N

∅,N 6=M

Ex

(
4
∫ τ

0
dtNt (eφ)

× NBt (eφ
∏
i∈M

〈XD,ψi〉)NBt (eφ
∏

i∈N\M
〈XD,ψi〉)

)
.

Proof. Observe first that, by monotone convergence, it suffices to prove the
result in the case that D and the ψi are bounded, and φ is bounded away
from 0. So assume this.

Let N∗ = {2, 3 . . . , n}. Let Dλ denote the derivative in λ. Then

Nx(eφ
∏
i∈N

〈XD,ψi〉)

= Nx(〈XD,ψ1〉eφ
∏
i∈N∗

〈XD,ψi〉)

= (−1)n−1Dλ2 · · ·Dλn |λ2=···=λn=0

× Nx

(
〈XD,ψ1〉e(φ +

n∑
i=2

λiψi)

)
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= (−1)n−1Dλ2 · · ·Dλn |λ2=···=λn=0

× Ex

(
ψ1(Bτ )Nτ

(
e(φ +

n∑
i=2

λiψi)
)) (2.4)

=
∑

σ∈P(N∗)

Ex
(
ψ1(Bτ )Nτ (eφ)

×
|σ |∏
j=1


4

∫ τ

0
dt NBt (eφ

∏
i∈σ(j)

〈XD,ψi〉)

 .

Line (2.4) follows from the basic Palm formula. The final line uses the
notation P(A) for all the partitions of a setA, and follows from a simple in-
duction argument for the derivatives. BecauseD is bounded, differentiation
under the integral sign is easy to justify using dominated convergence, once
we establish that Ny(eφ

∏
N 〈XD,ψi〉) is bounded as a function of y. But

since the ψi are bounded, and φ is bounded from 0, in fact eφ
∏
N∗〈XD,ψi〉

is itself bounded, so that this follows from (2.3) and the boundedness of
ψ1.

We use the notation ab̂c . . . to denote all the elements abc . . . with the
exception of the bth one.

Let Gt be the filtration ofBt . Then by the Markov property for Brownian
motion, one has that

Nx(eφ
∏
i∈N

〈XD,ψi〉) =
∑

σ∈P(N∗)

Ex

(
ψ1(Bτ )Nτ (eφ)

×
∫ τ

0
· · ·
∫ τ

0
dt1 · · · dt|σ |

|σ |∏
j=1

4NB(tj )(eφ
∏
i∈σ(j)

〈XD,ψi〉)
)

=
∑

σ∈P(N∗)

Ex

(
ψ1(Bτ )Nτ (eφ)

×
|σ |∑
k=1

∫ τ

0
dtk 4NB(tk)(eφ

∏
i∈σ(k)

〈XD,ψi〉)

×
∫ τ

tk

· · ·
∫ τ

tk

dt1 · · · ˆdtk · · · dt|σ |
∏
j 6=k

4NB(tj )(eφ
∏
i∈σ(j)

〈XD,ψi〉)
)

=
∑

σ∈P(N∗)

|σ |∑
k=1

Ex


4

∫ τ

0
dtk NB(tk)(eφ

∏
i∈σ(k)

〈XD,ψi〉)

× Ex

(
ψ1(Bτ )Nτ (eφ)

∫ τ

tk

· · ·
∫ τ

tk

dt1 · · · ˆdtk · · · dt|σ |
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×
∏
j 6=k

4NB(tj )(eφ
∏
i∈σ(j)

〈XD,ψi〉) | Gtk
)

=
∑

∅6=M⊆N∗
Ex


4

∫ τ

0
dt NBt (eφ

∏
i∈M

〈XD,ψi〉)Nt (eφ)

×
∑

γ∈P(N∗\M)
EBt

(
ψ1(Bτ )Nτ (eφ)

×
|γ |∏
j=1

(4
∫ τ

0
dt NBt (eφ

∏
i∈γ (j)

〈XD,ψi〉))
)

=
∑

∅6=M⊆N∗
Ex

(
4
∫ τ

0
dtNt (eφ)

× NBt (eφ
∏
i∈M

〈XD,ψi〉)NBt (eφ
∏

i∈N\M
〈XD,ψi〉)

)

= 1

2

∑
M⊆N

∅,N 6=M

Ex

(
4
∫ τ

0
dtNt (eφ)

× NBt (eφ
∏
i∈M

〈XD,ψi〉)NBt (eφ
∏

i∈N\M
〈XD,ψi〉)

)
.

Note that in order to rewrite the set of partitions ofN∗, we designate one of
the elements of a given partition as M , so that the rest forms a partition of
N\M . This isn’t one-to-one, which is taken into account in the counting. The
last factor of 1/2 occurs because the summation in the last line counts ev-
erything twice. ut

We use the extended Palm formula to show an exponential bound on the
moments of the exit measure.

Lemma 2.7. Let D be a domain inRd satisfyingsupx∈D Ex(τD) < ∞,
whereτD is the exit time fromD for Brownian motion. Then there exists
λ > 0 such that

sup
x∈D

Nx(exp λ〈XD, 1〉 − 1) < ∞.

Remark 2.8. A bounded domain D in R
d will satisfy supD Ex(τD) < ∞.

Proof. It is enough to show that Nx(〈XD, 1〉n) ≤ n!Mn for some M <

∞. Our proof follows part of the proof of Lemma 3.1 in Serlet [28]. Set
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cn = supD Nx(〈XD, 1〉n). Then c1 = supD Px(τD < ∞) = 1 by the Palm
formula. By Lemma 2.6, with φ = 0 we have the immediate recursion
relation

cn ≤ 2c
n−1∑
j=1

(
n

j

)
cn−j cj , n ≥ 2,

where c = supD Ex[τD] < ∞ by assumption.
Let an+1 = (2c)n(2n)!/n!. Then one can easily verify, by induction, that

the sequence an satisfies the combinatorial identity

an = 2c
n−1∑
j=1

(
n

j

)
an−j aj .

Since c1 = 1 = a1, we get by induction that cn ≤ an. Stirling’s formula ap-
plied to an shows that someM < ∞ exists. ut

3. A general class of martingales

We now present a general class of martingales related to the exit measure.
Let D be a domain in R

d , d ≥ 1 and let g ≥ 0 be a solution in D to the
non-linear equation

1

2
1u = 2u2. (3.1)

In particular, g satisfies the conclusion of Lemma 2.3. Readers may feel
free to take g = 0. In fact, the only application given in this paper requiring
a non-zero g is that of Section 6. Another reason we opt to work with a
general g is for consistency with [27], in which such g’s play an essential
role.

Recall that E4g denotes the law of Brownian motion killed at rate 4g,
and that L4g is the generator of this process. That is

L4gw = 1

2
1w − 4gw.

Suppose we have n positive solutions inD to the linear equation L4gv = 0,
labeled v1, . . . , vn. Recall thatU 4g is the potential operator for the generator
L4g in D, and recursively define a family of functions vA, for ∅ 6= A ⊆
N = {1, . . . n}, as follows:

vA =


vi A = {i},
2
∑

B⊆A
∅,A6=B

U 4g(vBvA\B) |A| ≥ 2.
(3.2)
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Note that vA is either finite everywhere on D, or vA ≡ ∞.
LetDk ⇑ D be an increasing sequence of bounded, smooth subdomains

and for each k let Xk = XDk be the exit measure from Dk, and ekφ =
exp −〈Xk, φ〉. Let τk denote the exit time of a path fromDk. For ∅ 6= A ⊆ N

define

MA
k =

∑
σ∈P(A)

exp(−〈Xk, g〉)
∏
C∈σ

〈Xk, vC〉. (3.3)

It turns out that {MA
k }k forms a family of martingales for the exit measure.

Theorem 3.1. For each nonempty subset ofA ⊆ N ,MA
k is anFk martin-

gale underNx , providedvA < ∞.

Remark 3.2. Because MN
k is a martingale, we can carry out a martingale

change of measure in a consistent way as follows. For Φk a Fk-measurable
function, we set

Mx(Φk) = 1

vN(x)
Nx(ΦkM

N
k ). (3.4)

Remark 3.3. Letting g = 0 be the trivial solution to (3.1) and v = 1 (or
v = h with h harmonic) we recover the well-known fact that 〈Xk, 1〉, (or
〈Xk, h〉) is a martingale.

We first establish the following lemma

Lemma 3.4. If vA < ∞, thenNx(M
A
k ) = vA(x).

Proof. The proof relies on the extended Palm formula. We induct on the
size of A. First consider the case |A| = 1.

Nx(M
A
k ) = Nx(exp(−〈Xk, g〉)〈Xk, vA〉)

= Ex(v
A(ξτk ) exp −

∫ τk

0
ds 4Nξs (1 − exp −〈Xk, g〉)) (3.5)

= Ex(v
A(ξτk ) exp −

∫ τk

0
ds 4g(ξs)) (3.6)

= E4g
x (v

A(ξτk ), ζ > τk) = vA(x).

Here, line (3.5) follows from the Palm formula, while (3.6) follows from
Lemma 2.3.
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Next, suppose that |A| = n and that the lemma holds for all smaller sets.
Then

vA(x) = 2
∑
B⊆A

0<|B|<|A|

U 4g(vBvA\B)(x)

= E4g
x

(
vA(ξτk ), ζ > τk

)
+ 2

∑
B⊆A

0<|B|<|A|

Ex

( ∫ τk

0
dt exp(−

∫ t

0
ds 4g(ξs))v

B(ξt )v
A\B(ξt )

)
.

Denote the first of the above terms by I, and the remainder by II . Basically
we are writing vA as the sum of a function I which is L4g-harmonic onDk,
and of a function II which is L4g-superharmonic on Dk and vanishes on
∂Dk.

As in the case |A| = 1, I = Nx(e
k
g〈Xk, vA〉). Further

II = 2
∑
B⊆A

0<|B|<|A|

Ex(

∫ τk

0
dtNt (e

k
g)Nξt (M

B
k )Nξt (M

A\B
k )) (3.7)

= 2
∑
B⊆A

0<|B|<|A|

Ex

( ∫ τk

0
dtNt (e

k
g)

∑
σ∈P(B)

Nξt (e
k
g

|σ |∏
i=1

〈Xk, vσ(i)〉)

×
∑

γ∈P(A\B)
Nξt (e

k
g

|γ |∏
j=1

〈Xk, vγ (j)〉)
)

(3.8)

=
∑
B⊆A

0<|B|<|A|

∑
σ∈P(B)

∑
γ∈P(A\B)

2Ex
( ∫ τk

0
dtNt (e

k
g)

× Nξt (e
k
g

|σ |∏
i=1

〈Xk, vσ(i)〉)Nξt (e
k
g

|γ |∏
j=1

〈Xk, vγ (j)〉)
)

=
∑

σ∈P(A)

∑
C⊆{1,...|σ |}
0<|C|<|σ |

2Ex
( ∫ τk

0
dtNt (e

k
g)

× Nξt (e
k
g

∏
i∈C

〈Xk, vσ(i)〉)Nξt (e
k
g

∏
j∈Cc

〈Xk, vσ(j)〉)
)

=
∑

σ∈P(A)
|σ |>1

Nx(e
k
g

|σ |∏
i=1

〈Xk, vσ(i)〉). (3.9)
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Here, (3.7) follows by induction, (3.8) by definition ofMA
k , and (3.9) by the

Palm formula.
Thus

vA(x) = I + II =
∑

σ∈P(A)
Nx(e

k
g

|σ |∏
i=1

〈Xk, vσ(i)〉) = Nx(M
A
k ). ut

Next we establish another lemma which is a step towards a full identi-
fication of Nx(M

A
k+1 | Fk).

Lemma 3.5.

Nx(M
A
k+1 | Fk)

= ekg

∑
σ∈P(A)

∑
γ∈P({1,...,|σ |})

|γ |∏
i=1

〈Xk,N·(ek+1
g

∏
j∈γ (i)

〈Xk+1, vσ(j)〉)〉

Proof. This lemma follows from the strong Markov property satisfied by
the exit measures (Lemma 2.5) and differentiation. Differentiation under
the integral sign can be justified as before.

Nx(M
A
k+1 | Fk)

=
∑

σ∈P(A)
(−1)|σ |Dλ1 · · ·Dλ|σ | |λ1=···=λ|σ |=0

× Nx

(
exp −〈Xk+1, g +

|σ |∑
i=1

λiv
σ(i)〉 | Fk

)

=
∑

σ∈P(A)
(−1)|σ |Dλ1 · · ·Dλ|σ | |λ1=···=λ|σ |=0 (3.10)

× exp −〈Xk,N·
(

1 − exp −〈Xk+1, g +
|σ |∑
i=1

λiv
σ(i)〉

)
〉

=
∑

σ∈P(A)
exp −〈Xk,N·(1 − exp −〈Xk+1, g〉)〉

∑
γ∈P({1,...,|σ |})

×
|γ |∏
i=1

〈Xk,N·(exp(−〈Xk+1, g〉)
∏
j∈γ (i)

〈Xk+1, vσ(j)〉)〉.
(3.11)

= ekg

∑
σ∈P(A)

∑
γ∈P({1,...,|σ |})

|γ |∏
i=1

〈Xk,N·(ek+1
g

∏
j∈γ (i)

〈Xk+1, vσ(j)〉).

Line (3.10) follows from the Markov property of the exit measures, and
(3.11) is from the chain rule of calculus. ut
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Proof (of Theorem 3.1). We have, by rearranging the following sum, that

MA
k = ekg

∑
σ∈P(A)

|σ |∏
i=1

〈Xk, vσ(i)〉

= ekg

∑
σ∈P(A)

|σ |∏
i=1

〈Xk,N·(M
σ(i)
k+1 )〉 (3.12)

= ekg

∑
σ∈P(A)

|σ |∏
i=1

∑
γ∈P(σ (i))

〈Xk,N·(ek+1
g

|γ |∏
j=1

〈Xk+1, vγ (j)〉)〉

= ekg

∑
γ∈P(A)

∑
σ∈P({1,··· ,|γ |})

|σ |∏
i=1

〈Xk,N·(ek+1
g

∏
j∈σ(i)

〈Xk+1, vγ (j)〉)〉 (3.13)

= N(MA
k+1 | Fk). (3.14)

Line (3.12) follows from Lemma 3.4, whereas line (3.13) follows from
rearranging the terms in the sums. Line (3.14) is from Lemma 3.5. ut

4. A branching particle description

We now show that changing measure via MN
k is equivalent to taking a

branching particle backbone process with immigration of mass along the
paths of the particles. To formulate this, we define two measures, Mx and
N̄x . Recall that the former is defined by

dMx

dNx

∣∣∣∣
Fk

= 1

vN(x)
MN
k ,

so that the law of Xk under Mx is given by

Mx(exp −〈Xk, φ〉) = 1

vN(x)
Nx(exp(−〈Xk, φ〉)MN

k ).

It remains to define the law of a corresponding “exit measure” Y k under N̄x ,
and then prove that the laws of the two exit measures coincide.

We leave to section 7 the task of defining the measure N̄x on all of
Fk, and of showing that N̄x and Mx actually coincide on Fk. The argument
involved is actually the same as that for the exit measures alone, but requires
even more complicated notation.
Y k arises from a backbone Υ throwing off mass. So to specify the law of

Y k under N̄x we need to give two ingredients: the law Qx of the backbone
Υ, and the measures Ñy which describe how the mass thrown off evolves.
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LetD,Dk,N , g and {vA} be as before. By (3.2) and the linearity ofU 4g,
we have that vA is an L4g-potential for |A| ≥ 2 (provided it is finite). For
|A| = 1 it is L4g-harmonic. The branching-particle process we desire will
start with a single vN -particle, that is, a particle moving as a vN -transform
of the process with generator L4g. If |N | = 1, then because vN is L4g-
harmonic, the particle dies on the boundary of D. If |N | ≥ 2 then vN is
an L4g-potential and the particle dies in the interior of D. At its death, it
splits into two independent particles, a vA-particle and a vN\A particle, with
position-dependent probability given by

p(A,N)(y) = (vAvN\A)(y)∑
∅6=B 6=N(vBvN\B)(y)

. (4.1)

The vA particle tracks the functions {vi}i∈A while the vN\A particle tracks
the remaining functions. This pattern then repeats for each new particle. For
example, the vA particle dies on the boundary of D if A is a singleton, and
otherwise it dies in the interior of D, giving birth to two new, independent
particles as before. Since the lifetime of each particle is finite almost surely,
eventually all of the particles will have died out. In total there will be 2n−1
particles of which n die on the boundary of D. The remaining n − 1 will
die in the interior of D.

Let nt denote the number of particles alive at time t . Label them with
1 ≤ i ≤ nt , and for each one set xi(s), 0 ≤ s ≤ t to be the history
(including the ancestors’ history) of the individual particle up until time t .
Define measure-valued branching processes as follows

Υt (dx) =
nt∑
i=1

δxi(t)(dx), Υ
k
t (dx) =

nt∑
i=1

1τk(xi )>tδxi(t)(dx). (4.2)

The process Υ k
t puts a mass at each particle alive at time t which hasn’t

already exitedDk. Without comment, these processes will be referred to in
terms of the underlying particles although strictly speaking they are mea-
sures. Let Qx denote the law of Υt .

We now specify how the mass Υ throws off evolves. The following
calculation shows that exp −〈Xk, g〉 is an Fk-martingale (although it has
an infinite moment under Nx), and follows by the Markov property and
Lemma 2.3.

Nx(exp −〈Xk, g〉 | Fk−1) = exp −〈Xk−1,N·(1 − exp −〈Xk, g〉)
= exp −〈Xk−1, g〉.

Thus we can define a consistent measure Ñx on the Fk measurable sets by

Ñx(Φk) = Nx(Φk exp −〈Xk, g〉). (4.3)
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The extra factor prunes off mass that would otherwise get to ∂Dk. Though
we will not need it in the rest of the argument, the following is a justification
for this interpretation of Ñx . It is essentially a special case of Dawson’s
Girsanov formula (see section 10.1.2 of [7]).

Lemma 4.1. Let ˜̃
Nx be the excursion law for the superprocess inD based

on the generatorL4g. Then

Ñx(1 − exp −〈Xk, φ〉) = ˜̃
Nx(1 − exp −〈Xk, φ〉)

for everyφ ≥ 0.

Proof. Let ψ be the solution to

L4gu = 2u2 in Dk

u = φ on ∂Dk.

It is then easily checked that u = ψ + g is the solution to

1

2
1u = 2u2 in Dk

u = φ + g on ∂Dk,

Thus by Lemma 2.3,

Ñx(1 − exp −〈Xk, φ〉)
= Nx

(
(1 − exp −〈Xk, φ〉) exp −〈Xk, g〉

)
= Nx(1 − exp −〈Xk, φ + g〉)− Nx(1 − exp −〈Xk, g〉)
=
(
ψ(x)+ g(x)

)
− g(x) = ψ(x)

= ˜̃
Nx(1 − exp −〈Xk, φ〉).

This suffices. ut

One thinks of mass being created continuously along the backbone, but
only at countably many times will it actually survive, even instantaneously.
At each such time, the mass created evolves like a superprocess with “law”
some Ñy , and, if it survives long enough, produces a contribution to the exit
measure. More properly, given the backbone Υk, we form a Poisson random
measure Nk(dµ) with intensity

∫∞
0 dt

∫
4Υkt (dy)Ñy(X

k ∈ dµ). We then
realize the exit measure under N̄x as Y k = ∫

µNk(dµ). This specifies the
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law of Y k under N̄x in probabilistic terms. A standard calculation shows
that

N̄x(exp −〈Y k, φ〉) = Qx(exp −
∫ ∞

0
dt 4〈Υkt , Ñ·(1−exp −〈Xk, φ〉)〉),

(4.4)

which could therefore equally well be taken to define the law of Y k under
N̄x .

Theorem 4.2. If vN < ∞, then

Mx(exp −〈Xk, φ〉) = N̄x(exp −〈Y k, φ〉)
for eachφ ≥ 0.

Remark 4.3. As remarked earlier, in section 7 we will sketch a proof that
in fact, Mx = N̄x on Fk.

Proof. Recall that

Mx(exp −〈Xk, φ〉) = 1

vN(x)
Nx(e

k
φM

N
k ).

For A ⊆ N , σ ∈ P(A) define mσk = ekg
∏
B∈σ 〈Xk, vB〉, so that MA

k =∑
σ∈P(A) m

σ
k . For B ⊆ A define

σ |B =
{

{B1, . . . , Bm} B = ∪mj=1Bj, each Bj ∈ σ
∅ if no such decomposition exists.

That is, if σ can be restricted to be a partition of B, then define it as such,
otherwise set σ |B to be the empty set.

We use ξ for the canonical process with lifetime ζ .
We first mention a consequence of the Palm formula. Let σ ∈ P(N).

Then

Nx(e
k
φm

σ
k )

= 1

2

∑
C⊂{1,...,|σ |}
1<|C|<|σ |

Ex

(
4
∫ τk

0
dtNt (e

k
φ+g)Nξt (e

k
φ+g

∏
i∈C

〈Xk, vσ(i)〉)

× Nξt (e
k
φ+g

∏
i∈{1,...,|σ |}\C

〈Xk, vσ(i)〉)
)

= 1

2

∑
A⊂N

∅,N 6=A
σ |A 6=∅

Ex(4
∫ τk

0
dtNt (e

k
φ+g)Nξt (e

k
φm

σ |A
k )Nξt (e

k
φm

σ |N\A
k )). (4.5)
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The branching processes Υ naturally partitions the |N | points in the
following manner. We eventually have n particles that exit the domain D.
Group together those that have a common ancestor that exits Dk. We will
write Υk ∼ σ for the relationship that the resulting partition is σ .

Before continuing with the proof of the Theorem, we need the following
result:

Lemma 4.4. On the event{Υk ∼ σ } one has

Qx(exp −
∫ ∞

0
dt 4〈Υkt , Ñ·(1 − exp −〈Xk, φ〉)〉; Υ

k ∼ σ)

= 1

vN(x)
Nx(e

k
φm

σ
k ). (4.6)

Proof. This will be established by induction on the size of |σ |. First we
look at the case |σ | = 1, in other words, where there is no branching and
σ = {N}. Recall that Υkt is formed from a vN -particle which exitsDk before
dying. In other words, this particle has the law P

4g,vN
x of a vN -transform of

the process with generator L4g. Thus,

Qx(exp −
∫ ∞

0
dt 4〈Υkt , Ñ·(1 − exp −〈Xk, φ〉)〉,Υk ∼ σ)

= E4g,vN
x (exp −

∫ τk

0
dt 4Ñξt (1 − exp −〈Xk, φ〉), ζ > τk)

= 1

vN(x)
E4g
x (v

N(ξτk ) exp
(

−
∫ τk

0
dt 4Nξt

(
exp −〈Xk, g〉

× (1 − exp −〈Xk, φ〉)
))
, ζ > τk)

= 1

vN(x)
Ex

(
vN(ξτk ) exp(−

∫ τk

0
dt 4g(ξt ))

× exp(
∫ τk

0
dt 4Nξt (1 − exp −〈Xk, g〉))

× exp(−
∫ τk

0
dt 4Nξt (1 − exp −〈Xk, φ + g〉))

)

= 1

vN(x)
Ex

(
vN(ξτk ) exp(−

∫ τk

0
dt 4g(ξt )) exp(

∫ τk

0
dt 4g(ξt ))

× exp(−
∫ τk

0
dt 4Nξt (1 − exp −〈Xk, φ + g〉))

)
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= 1

vN(x)
Ex(v

N(ξτk )Nτk (e
k
φ+g))

= 1

vN(x)
Nx(e

k
φe
k
g〈Xk, vN 〉) = 1

vN(x)
Nx(e

k
φm

σ
k ). (4.7)

Line (4.7) follows from the Palm formula with σ = {N}.
To establish (4.6) for all σ ∈ P(N), we assume the induction hypothesis

is true for allA ⊆ N and all partitions ofA of size j or smaller, j ≥ 1. Now
consider σ ∈ P(N) of size j + 1. Since |σ | ≥ 2, Υ must branch before it
exits Dk. The first branch time of Υ is the lifetime ζ of the vN -particle.

Qx(exp
(

−
∫ ∞

0
dt 4〈Υkt , Ñ·(1 − exp −〈Xk, φ〉)〉

)
; Υ

k ∼ σ)

= Qx(exp
(

−
( ∫ ζ

0
+
∫ ∞

ζ

)
dt

× 4〈Υkt , Ñ·(1 − exp −〈Xk, φ〉)〉
)
; Υ

k ∼ σ)

= E4g,vN
x (1ζ<τk exp

(
−
∫ ζ

0
dt 4Ñξt (1 − exp −〈Xk, φ〉)

)
×

∑
A⊂N

∅,A6=N
σ |A 6=∅

p(A,N)(ξζ )Qξζ (exp
(

−
∫ ∞

0
dt 4〈Υkt ,

Ñ·(1 − exp −〈Xk, φ〉)〉
)
; Υ

k ∼ σ |A)

×Qξζ (exp
(

−
∫ ∞

0
dt 4〈Υkt ,

Ñ·(1 − exp −〈Xk, φ〉)〉
)
; Υ

k ∼ σ |N\A))

(4.8)

= E4g,vN
x (1ζ<τk exp

(
−
∫ ζ

0
dt 4Ñξt (1 − exp −〈Xk, φ〉)

)
×

∑
A⊂N

∅,A6=N
σ |A 6=∅

p(A,N)(ξζ )
1

vA(ξζ )

× Nξζ (e
k
φm

σ |A
k )

1

vN\A(ξζ )
Nξζ (e

k
φm

σ |N\A
k ))

(4.9)

=
∑
A⊂N

∅,A6=N
σ |A 6=∅

E4g,vN
x (1ζ<τk exp

(
−
∫ ζ

0
dt 4Ñξt (1 − exp −〈Xk, φ〉)

)
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× 1∑
B⊂N

∅,N 6=B
(vBvN\B)(ξζ )

Nξζ (e
k
φm

σ |A
k )Nξζ (e

k
φm

σ |N\A
k ))

=
∑
A⊂N

∅,A6=N
σ |A 6=∅

1

vN(x)
E4g
x (

∫ τk

0
ds 1ζ>s

× exp
(

−
∫ s

0
dt 4Ñξt (1 − exp −〈Xk, φ〉)

)

× 1∑
B⊂N

∅,N 6=B
(vBvN\B)(ξs)

Nξs (e
k
φm

σ |A
k )Nξs (e

k
φm

σ |N\A
k )

× (2
∑
B⊂N

∅,N 6=B

(vBvN\B)(ξs)))

(4.10)

= 2
∑
A⊂N

∅,A6=N
σ |A 6=∅

1

vN(x)
Ex(

∫ τk

0
ds exp

(
−
∫ s

0
dt 4g(ξt )

)

× exp
( ∫ s

0
dt 4Nξt (1 − exp −〈Xk, g〉)

)

× exp
(

−
∫ s

0
dt 4Nξt (1 − exp −〈Xk, φ + g〉)

)
× Nξs (e

k
φm

σ |A
k )Nξs (e

k
φm

σ |N\A
k ))

(4.11)

= 2
∑
A⊂N

∅,A6=N
σ |A 6=∅

1

vN(x)
Ex(

∫ τk

0
dsNs(e

k
φ+g)Nξs (e

k
φm

σ |A
k )Nξs (e

k
φm

σ |N\A
k ))

= Nx(e
k
φm

σ
k ). (4.12)

Line (4.8) follows from the strong Markov property for the branching pro-
cess Υ applied at the first branch time, and the description of the branching
process having independent offspring. The next line, (4.9) then follows from
the induction hypothesis. The formula (2.2) for a conditioned u-processes
gives line (4.10) and (4.11) follows since underE4g the process is Brownian
motion killed at rate 4g. Finally, (4.12) comes from (4.5). ut

Returning to the proof of Theorem 4.2, we sum (4.6) over σ ∈ P(N)

and get that
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Qx(exp −
∫ ∞

0
dt 4〈Υkt , Ñ·(1 − exp −〈Xk, φ〉)〉)

= 1

vN(x)
Nx(e

k
φ

∑
σ∈P(N)

mσk ) = Nx(e
k
φM

N
k ) = Mx(e

k
φ).

Using the definition of N̄ from (4.4) we have that

N̄x(exp −〈Y k, φ〉) = Mx(exp −〈Xk, φ〉),
which completes the proof of the Theorem. ut

5. Conditioning the support of the exit measure to hitn points on∂D

In this section we investigate the exit measure when it is conditioned to
charge n small balls on the boundary of D. In the limit as the radius of
the balls tends to 0, the conditioned process converges to one given by a
martingale change of measure as in section 3.

Let N = {1, 2, . . . , n} and let {zi}i∈N be a finite set of distinct points
on the boundary of a bounded, Lipschitz domain D. In general we use the
notation B(x, ε) for a ball centered at x with radius ε, and1z

ε = B(z, ε) ∩
∂D for its trace on the boundary. But for z = zi we instead write

Biε = B(zi, ε),

1i
ε = 1zi

ε = Biε ∩ ∂D.
For a setA ⊆ N set BAε = ∪ABiε and1A

ε = ∪A1i
ε . Furthermore, for x ∈ D

define the functions

uAε (x) = Nx(
∑
i∈A

〈XD, 11(zi ,ε)〉 > 0)

= Nx(Hit at least one of 1(zi, ε) while exiting),

vAε (x) = Nx(
∏
i∈A

〈XD, 11(zi ,ε)〉 > 0)

= Nx(Hit all the 1(zi, ε) while exiting).

It follows from Theorem 7.1 of [2] that

1

2
1uAε = 2(uAε )

2

lim
y→z∈∂D

uAε (y) =
{

0 z ∈ ∂D \ BAε
∞ z ∈ BAε

(5.1)
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A simple relationship between the two functions is summarized in this
lemma which is proved by an inclusion exclusion argument.

Lemma 5.1. We have the following relationships:

vAε = −
∑

∅6=B⊆A
(−1)|B|uBε

uAε = −
∑

∅6=B⊆A
(−1)|B|vBε .

We now show that the family of functions vAε satisfies the following
recursive relations.

Theorem 5.2. ForD a bounded Lipschitz domain, andA andvAε as above,
the functionsvAε satisfy

(a) vAε ∈ C2(D).

(b)
1

2
1vAε = −2

∑
∅6=B,C⊆A
B∪C=A

(−1)|B∩C|vBε v
C
ε .

= 2
((

2uAε + (−1)|A|vAε
)
vAε −

∑
B∪C=A∅,A6=B,C

(−1)|B∩C|vBε v
C
ε

)
.

(c) lim
y→z∈∂D

vAε (y) =




0 |A| ≥ 2{
0 z ∈ ∂D \1A

ε

∞ z ∈ 1A
ε

|A| = 1.

Proof. For convenience, drop the ε subscript. When |A| = 1 this is Theorem
7.1 of [2]. Let Θ denote surface measure on ∂D, which exists by the Lipschitz
condition. The condition on D in [2] is that it satisfy

lim inf
r→0

Θ(1a
r ∩1A

ε )

Θ(1a
r )

> 0, for all a ∈ 1A
ε .

For this problem, this is trivially true as the limit is 1.
For |A| ≥ 2, we have by Lemma 5.1 and the relation (1/2)1uA =

2(uA)2, that
1

2
1vA = −2

∑
∅6=B⊆A

(−1)|B|(uB)2

= −2
∑

∅6=B⊆A
(−1)|B|

( ∑
∅6=C⊆B

(−1)|C|vC
)2

(5.2)

= −2
∑

∅6=B⊆A
(−1)|B| ∑

∅6=C,D⊆B
(−1)|C|+|D|vCvD
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= −2
∑

∅6=C,D⊆A
(−1)|C|+|D|vCvD

∑
C∪D⊆B⊆A

(−1)|B|

= −2
∑

∅6=C,D⊆A
(−1)|A|+|C∩D|vCvD(−1)|A|1C∪D=A (5.3)

= −2
(

2
∑

∅6=C⊆A
(−1)|C|vCvA − (−1)|A|(vA)2

)

− 2
∑

C∪D=A∅,A6=C,D

(−1)|C∩D|vCvD

= −2
(

2(−uA)vA − (−1)|A|(vA)2
)

− 2
∑

C∪D=A∅,A6=C,D

(−1)|C∩D|vCvD.

Here line (5.2) follows by Lemma 5.1, and line (5.3) by Lemma 2.1.
Finally, we remark that vA(y) ≤ vi(y) for i ∈ A. Fix z ∈ ∂D. For

ε sufficiently small, because of the Lipschitz assumption on D, z is not
contained in Biε for some i ∈ A. Thus as y → z we, have 0 ≤ vAε (y) ≤
viε(y) → 0 by the |A| = 1 case. ut

Theorem 5.3. Let D be a bounded Lipschitz domain inRd for d ≥ 4.
Let {z1, . . . zn} be distinct points on the boundary ofD. TakeA ⊆ N =
{1, 2, . . . n}, andx, y ∈ D. LetU be the potential operator for Brownian
motion killed upon hitting the boundary ofD,KD

x the Martin kernel forD.
Then, the following limit exists

lim
ε→0

vAε (y)∏
A v

i
ε(x)

= Ψ
A
x (y).

Furthermore, the limit satisfies

Ψ
A
x (y) =



KD
x (y, zi) A = {i},

2
∑

B⊆A
A,∅6=B

U(ΨBx ΨA\B
x )(y) |A| ≥ 2.

Fix δ > 0 such that B(zi, δ) ∩ B(zj , δ) = ∅ if i 6= j ∈ A. Set DA
ε =

D \ ∪AB(zi, ε), and τε = τAε = τDA
ε
.

The proof of this theorem relies on the following lemma.

Lemma 5.4. Assume the conditions of Theorem 5.3, and fix anx ∈ D.
There exist constantsK < ∞ andε0 > 0 such that for allε < ε0, A ⊆ N
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andy ∈ DA
4|A|ε

vAε (y)∏
A v

i
ε(x)

≤ K
∑
A

KD
x (y, zi).

In particular, the expression on the left is bounded iny on any compact
subset ofD, uniformly inε.

Proof (of lemma).We prove the lemma by induction on the size of A. First
the case A = {i}. Set z = zi , and v = vi . This part simply extends the
argument of the proof of Theorem 3.1 of [2] to the Lipschitz case.

Since1vε = 4(vε)2 inD and vε vanishes on ∂D \1(z, ε) the Feynman-
Kac formula (applied in D \ B(z, 2ε)) gives

vε(y) = Py

(
vε(B(τ2ε)) exp(−

∫ τ2ε

0
2vε(Bs)ds)

)
≤ Py

(
vε(B(τ2ε)), B(τ2ε) ∈ ∂B(z, 2ε)

)
. (5.4)

But, from the definition of vε one has the bound

vε(w) = Nw(X
D(B(z, ε)) > 0)

≤ Nw(R
D(W) ∩ ∂D 6= ∅)

≤ cd(w, ∂D)−2, (5.5)

for everyw ∈ D. Line (5.5) follows from comparing the hitting probability
with the exit probability from a ball (see Proposition 2.3 of [21]).

Combining this with (5.4) and the definition of DA
2ε yields

vε(y) ≤ Kε−2Py

(
B(τ2ε) ∈ ∂B(z, 2ε)

)
.

We now show that for y ∈ DA
4ε ,

Py(Bτ2ε ∈ ∂B(z, 2ε)) ≤ KPy(BτD ∈ 1(z, ε)). (5.6)

WritingmDy for harmonic measure, this leaves us with the bound (for d ≥ 3)

vε(y) ≤ Kε−2mDy (1(z, ε)). (5.7)

Let Γα(n̂, z) be the cone with opening 2α, vertex at z and axis of sym-
metry in the n̂ direction opening in the n̂ direction. SinceD is Lipschitz we
can find an α and a unit vector n̂ such that Γα(n̂, z) is an exterior cone toD.
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Let γ = 1/ sin α, and set aε = z+ εγ n̂. Then for ε sufficiently small, one
has

B(aε, ε) ⊆ Γα(n̂, z) ∩Dc

B(z, 2ε) ⊆ B(aε, (γ + 2)ε)

B(aε, (γ + 3)ε) ∩ ∂D ⊆ 1(z, (2γ + 3)ε).

As in the proof of Theorem 3.1 of [2], it follows then that

Py(Bτ2ε ∈ ∂B(z, 2ε)) ≤ KPy(BτD ∈ 1(z, 5ε)).

Finally (5.6) follows by the doubling lemma on harmonic measure (see
Lemma 5.9 of [18], which requires d ≥ 3).

Next we show a similar estimate holds for a lower bound, again using
the same proof as in [2]. By the Cauchy-Schwarz lemma we have

vε(x) = Nx(X
D(1(z, ε)) > 0)

≥ Nx(X
D(1(z, ε)))2

Nx(XD(1(z, ε))2)

= mDx (1(z, ε))
2∫

Gd(x, y)mDy (1(z, ε))
2dy

.

The last line following from the Palm formula, Lemma 2.6.
The lower estimate

vε(x) ≥ Kε−2mDx (1(z, ε)) (5.8)

will follow if we show that∫
GD(x, y)m

D
y (1(z, ε))

2dy ≤ Kε2mDx (1(z, ε)). (5.9)

To do this in the d ≥ 5 case we use two results for Lipschitz domains.
First, the “3-g” theorem of Cranston, Fabes and Zhao (cf. [5]) shows that
there exists a constant c, depending on the domain D, for which for all
x, y, z ∈ D the following bound holds

GD(x, y)GD(y, z)

GD(x, z)
≤ c

(|x − y|2−d + |y − z|2−d) .
Second, we use the following comparison between the harmonic measure
and the Green function (cf. [18], Lemma 5.8)

M−1 ≤ mDy (1(z, ε))

εd−2G(y,Aε)
≤ M, (5.10)
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where M ≥ 1 is a constant depending on D, y ∈ DA
2ε and Aε is a point

satisfying εM−1 ≤ |Aε − z| ≤ εM and εM−1 ≤ d(Aε, ∂D) (Aε may be
taken to be z+ εn̂ where Γα(n̂, z) is an interior cone at z).

First, set B = B(z, 2Mε). Then on B ∩ D one has for ε sufficiently
small that

G(x, y)/G(x,Aε) < K.

Since mDx (1(z, ε)) must be ≤ 1, it follows that∫
B∩D

GD(x, y)m
D
y (1(z, ε))

2dy ≤ KG(x,Aε)

∫
B

dy

≤ KG(x,Aε)ε
d

≤ Kε2mDx (1(z, ε)).

The last inequality is a consequence of (5.10).
Next,∫
Bc∩D

GD(x, y)m
D
y (1(z, ε))

2dy

≤ K

∫
Bc∩D

εd−2mDx (1(z, ε))
GD(x, y)GD(y,Aε)

GD(x,Aε)
GD(y,Aε)dy

(5.11)

≤ Kεd−2mDx (1(z, ε))

×
∫
Bc∩D

(|x − y|2−d + |y − Aε|2−d)GD(y,Aε)dy (5.12)

≤ Kεd−2mDx (1(z, ε))

(
K +

∫
B(Aε,Mε)c

|y − Aε|2(2−d)dy
)

≤ Kεd−2mDx (1(z, ε))

(
K +

∫ ∞

Mε

dr r3−d
)

≤ Kε2mDx (1(z, ε)). (5.13)

Here, (5.11) holds by (5.10), and (5.12) by the “3-g” theorem. Note that
(5.13) requires that d ≥ 5. Therefore in that case we have by (5.8), (5.7)
and the boundary Harnack principle, that

vε(y)

vε(x)
≤ K

ε2mDy (1(z, ε))

ε2mDx (1(z, ε))
≤ KKx(y, z).

In the case d = 4, the argument proceeds to (5.11) just as before. Choose
η > 0 and a closed circular coneCwith vertex z, such thatC∩B(z, η) ⊆ Dc.
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Set D0 = R
4 \ C. Then

∫
Bc∩D

GD(x, y)m
D
y (1(z, ε))

2dy

≤ Kε2mDx (1(z, ε))
(
K +

∫
Bc∩D0

|y − Aε|−2GD0(y,Aε)dy
)
.

Thus, to show (5.9) in the case d = 4, it will suffice to show that∫
Bc∩D0

|y − Aε|−2GD0(y,Aε)dy ≤ K. (5.14)

We may assume that z = 0. If y, y ′ ∈ D0 and |y ′| ≤ 1, |y| ≥ M , then
GD0(y, y

′) is dominated by a harmonic function of the form

y 7→ |y|−αΘ(|y|−1y).

Separating variables in Laplace’s equation gives that α = 1 + √
1 + β, for

some β > 0 depending on the opening angle of C. Thus α > 2, and so by
the Brownian scaling and a change of variable,∫

Bc∩D0

|y − Aε|−2GD0(y,Aε)dy

= (ε−2)2
∫
B(0,M)c∩D0

|y − ε−1Aε|−2GD0(y, ε
−1Aε)ε

4 dy

≤ K

∫
B(0,M)c∩D0

|y|−2GD0(y, ε
−1Aε)dy

≤ K

∫ ∞

M

r−2−αr3 dr < ∞.

This shows (5.14).
Suppose now the lemma holds for all proper subsets ofA. Setα = 4|A|ε.

From Theorem 5.2 we have

1

2
1vAε = kAε v

A
ε − 2

∑
B,C⊆A

∅,A6=B,C
B∪C=A

(−1)|B∩C|vBε v
C
ε ,

with kAε = 2(2uAε + (−1)|A|vAε ) > 0. Set

E = {(B,C) : ∅, A 6= B,C;B ∪ C = A; |B ∩ C| is even},
O = {(B,C) : ∅, A 6= B,C;B ∪ C = A; |B ∩ C| is odd}.
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By the Feynman-Kac formula we have

vAε (y) = Ey

(
vAε (Bτα ) exp −

∫ τα

0
kAε (Br)dr)

)

+ 2
∑
E

Ey

(∫ τα

0
(vBε v

C
ε )(Bt) exp(−

∫ t

0
kAε (Br)dr)dt

)

− 2
∑
O

Ey

(∫ τα

0
(vBε v

C
ε )(Bt) exp(−

∫ t

0
kAε (Br)dr)dt

)

≤ Ey

(
vAε (Bτα ) exp(−

∫ τα

0
kAε (Br)dr)

)

+ 2
∑
E

Ey

(∫ τα

0
(vBε v

C
ε )(Bt) exp(−

∫ t

0
kAε (Br)dr)dt

)

= I + II .

First we analyze the harmonic term I. Since kAε ≥ 0 we have that

I ≤ Ey(v
A
ε (Bτα ))

=
∑
i∈A

Ey(v
A
ε (Bτα )1(Bτα ∈ ∂B(zi, α)))

≤
∑
i∈A

sup
∂B(zi ,α)

vAε (·)Py(Bτα ∈ ∂B(zi, α))

But vA\{i}
ε ≥ vAε , and as in (5.6),

Py(Bτα ∈ ∂B(zi, α)) ≤ KmDy (1(zi, α)).

Thus

I ≤ K
∑
i∈A

sup
∂B(zi ,α)

vA\{i}
ε (·)mDy (1(zi, α)).

Therefore by (5.8)

I∏
j∈A v

j
ε (x)

≤ K
∑
i∈A

(
sup∂B(zi ,α) v

A\{i}
ε (·)∏

j∈A\{i} v
j
ε (x)

)
mDy (1(zi, α))

ε−2mDx (1(zi, α))

≤ K
∑
i∈A

ε2Kx(y, zi), (5.15)

since the first factors are bounded by induction. We see that the contribution
from the harmonic term vanishes in the limit as ε → 0 when |A| ≥ 2.
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To bound II we first remark that vBε v
C
ε ≤ vB\C

ε vCε (or vBε v
C\B
ε if B \C is

empty), and so it suffices to assume that we can bound the terms of II when
B ∩ C = ∅. The induction hypothesis applies to proper subsets of B ⊂ A

as α > 4|A|ε ≥ 4|B|ε. For B ∩ C = ∅, B ∪ C = A, B 6= ∅, C 6= ∅, we
have that

Ey

(∫ τα

0
(vBε v

C
ε )(Bt) exp(−

∫ t

0
kAε (Br)dr)dt

)

≤ K(
∏
i∈A
viε(x))Ey

(∫ τD

0
dt (

∑
B

KD
x (Bt , zi))(

∑
C

KD
x (Bt , zj ))

)
.

As II is bounded by a finite constant times terms as above, it suffices to
consider terms of the following type with i 6= j

Ey

(∫ τD

0
dt KD

x (Bt , zi)K
D
x (Bt , zj )

)
= GD

(
KD
x (·, zi)KD

x (·, zj )
)
(y).

(5.16)

Since zi and zj are separated by at least δ we have that there exists a constant
K depending only on δ and D such that

GD

(
KD
x (·, zi)KD

x (·, zj )
)
(y)

≤ K
(
GD

(
KD
x (·, zi)

)
(y)+GD

(
KD
x (·, zj )

)
(y)
)
.

The “3-g” theorem gives

GD(K
D
x (·, zi))(y) =

∫
D

lim
z→zi

GD(y,w)GD(w, z)

GD(x, z)
dw

≤ K

∫
D

lim
z→zi

GD(y, z)

GD(x, z)

(|y − w|2−d + |w − z|2−d) dw
≤ KKD

x (y, zi). (5.17)

Putting together lines (5.17), (5.16), and (5.15) we get the necessary
bounds for the proof of the lemma. ut
Proof (of Theorem 5.3). We again use induction on the size of A. First
consider the case where we hit a single point. Let A = {i}. Let δ > 0, and
recall that τδ = τAδ = τDA

δ
. Where convenient, we will also write Dδ for

DA
δ . Let Pyz be the law of Brownian motion conditioned to leave a domain

at z starting from y.
We start with the following lemma
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Lemma 5.5. Lety ∈ DA
δ . Then uniformly inz ∈ ∂D

lim
ε→0

Pyz(exp(−
∫ τδ

0
kAε (Bt)dt)) = 1.

Proof. We have viε(x) → 0, so by Lemma 5.4 it suffices to prove that

lim
λ→0

Pyz(exp(−λτδ)) = 1, (5.18)

uniformly in z. But

sup
y∈Dδ,z∈∂D

Pyz(τδ) < ∞

since D is Lipschitz [5]. Line (5.18) then follows immediately by a well-
known argument of Khasminsky. See Lemma 3.7 of [4]. ut

Let x, y ∈ Dδ0 , by the Feynman-Kac formula, for each fixed δ < δ0 we
have

viε(y)

viε(x)
= Ey(v

i
ε(Bτδ ) exp − ∫ τδ0 2kAε (Br)dr)

Ex(viε(Bτδ ) exp − ∫ τδ0 2kAε (Br)dr)

=
(∫

∂Dδ
Pyz(exp − ∫ τδ0 kAε (Br)dr)K

Dδ
x (y, z)v

i
ε(z)m

Dδ
x (dz)∫

∂Dδ
viε(z)m

Dδ
x (dz)

)

×
( ∫

∂Dδ
viε(z)m

Dδ
x (dz)∫

∂Dδ
Pxz(exp − ∫ τδ0 kAε (Br)dr)v

i
ε(z)m

Dδ
x (dz)

)
.

The measure

λε,δ(x, dz) = viε(z)m
Dδ
x (dz)∫

∂Dδ
viε(z)m

Dδ
x (dz)

∈ M1(∂D
A
δ ).

Since the boundary ofDA
δ is compact, by Prohorov’s theorem any sequence

εj has a subsequence, again written εj , for which λεj ,δ ⇒ λδ ∈ M1(∂D
A
δ ).

Also, KDδ
x (y, z) is continuous and bounded in z, for z ∈ D ∩ ∂DA

δ , when
x, y ∈ DA

δ0
. Since Pyz(exp − ∫ τδ0 kAε (Br)dr) → 1 uniformly as ε → 0 by

Lemma 5.5, we have that for x, y ∈ DA
δ0

and for all δ < δ0

lim
j→∞

viε(y)

viε(x)
= Ψ

(εj )
x (y) =

∫
∂Dδ

KDδ
x (y, z)λδ(x, dz).

This limit is then harmonic in y for y ∈ Dδ0 . By a diagonalization argument,
we can assume there exists a convergent subsequence of our sequence such



On the conditioned exit measures of super Brownian motion 269

that the convergence holds simultaneously for a sequence of δj ’s which
converge to 0. By Lemma 5.4 we see then that the limit is harmonic in y
with boundary value 0 on ∂D ∩ ∂DA

δ for all δ > 0, and is 1 at y = x. In
other words, limj Ψ

(εj )
x (y) is the Martin kernel for Brownian motion in D.

Thus all subsequences have a subsequence which converges to the Martin
kernel, and so the limit itself exists.

To prove the induction step, fix A and assume the result is true for all
proper subsets of A. Therefore, if B ∪ C = A and B,C 6= A we have

lim
ε→0

vBε (y)v
C
ε (y)∏

A v
i
ε(x)

= (ΨBx Ψ
C
x )(y)1B∩C=∅.

Again by the Feynman-Kac formula and Theorem 5.2, we have a δ0 such
that if δ < δ0 and x, y ∈ Dδ0 then

vAε (y)∏
A v

i
ε(x)

≥ 2


 ∑
(B,C)∈E

−
∑

(B,C)∈O




Ey

(∫ τδ

0

vBε (Bt)v
C
ε (Bt)∏

A v
i
ε(x)

exp(−
∫ t

0
kAε (Br)dr)dt

)
.

Consider the right-hand side as ε → 0. By Lemmas 5.4 and 5.5, the
dominated convergence theorem applies, and thus by the induction hypoth-
esis,

lim inf
ε→0

vAε (y)∏
A v

i
ε(x)

≥ 2
∑

B∩C=∅
B∪C=A
B,C 6=∅

Ey(

∫ τD

0
(ΨBx Ψ

C
x )(Bt)dt).

For the upper bound, set α = 12|A|ε. As in the proof of Lemma 5.4, for
y ∈ DA

α the differential equation for vAε again yields the bound

vAε (y)∏
i∈A viε(x)

≤ Ey(v
A
ε (Bτα ))∏

i∈A viε(x)
+ 2

∑
(B,C)∈E

Ey(
∫ τα

0 (v
B
x v

C
x )(Bt)dt)∏

A v
i
ε(x)

.

As in (5.15), the first term goes to 0. Therefore we can apply the domi-
nated convergence theorem to the second term as before, and get by induc-
tion that

lim sup
ε→0

vAε (y)∏
A v

i
ε(x)

≤ 2
∑

B∩C=∅
B∪C=A
B,C 6=∅

Ey(

∫ τD

0
(ΨBx Ψ

C
x )(Bt)dt). ut
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Theorem 5.6. LetD satisfy the conditions of Theorem 5.3, Φk ∈ Fk be
bounded, and fix x ∈ D. Then for y ∈ D

lim
ε→0

Ny(Φk |
n∏
i=1

〈XD, 11iε 〉 > 0) = 1

ΨNx (y)
Ny(ΦkM

N
k ),

where
MN
k =

∑
σ∈P(N)

∏
C∈σ

〈Xk,ΨCx 〉.

Remark 5.7. By Theorem 5.3, the probabilistic representation of section 4
applies to the limiting measures

My(Φk) = 1

ΨNx (y)
Ny(ΦkM

N
k ).

We take g = 0. The backbone is a tree connecting y to the n points
{z1, . . . zn}, which throws off mass that evolves as an unconditioned su-
perprocess.

Proof. The idea is to use the special Markov property of the Exit mea-
sure to get a formal expression for the limit and then show that the con-
vergence indeed holds. Set WC

ε = exp
(
(−1)|C|〈Xk, vCε 〉

)
− 1, so that

WC
ε = (−1)|C||WC

ε |.
To carry out the proof, we need two preliminary results.

Lemma 5.8.

Ny

(
n∏
i=1

〈XD, 11iε 〉 > 0 | Fk

)

=
2|N |−1∑
j=1

∑
C1≺C2≺···≺Cj
C1∪···∪Cj=N

∅6=Ci ∀i

(
j∏
i=1

|WCi
ε |
)
(−1)n+

∑j

i=1 |Ci |

Proof. By Theorem 7.1 of [2], uAε is the unique solution to to the boundary
value problem (5.1). The arguments of Dynkin [12] or Le Gall [21] (see
Corollary 4.3 and Proposition 5.1 of [21]) show that

uA,λε = N·(1 − exp −λ〈XD,
∑
i∈A

11iε 〉)

solves the same PDE, now with boundary values{
0, on ∂D \ BAε
λ, on BAε ,
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and moreover that

uA,λε ↑ uAε (5.19)

as λ → ∞. Thus

Ny

(
n∏
i=1

〈XD, 11iε 〉 > 0 | Fk

)

= lim
λ→∞

Ny

(
n∏
i=1

(1 − exp(−λ〈XD, 11iε 〉)) | Fk

)

= lim
λ→∞

Ny

(
1 +

∑
∅6=A⊆N

(−1)|A| exp −λ〈XD,
∑
i∈A

11iε 〉 | Fk

)
(5.20)

= lim
λ→∞

1 +
∑

∅6=A⊆N
(−1)|A| exp −〈Xk, uA,λε 〉 (5.21)

= 1 +
∑

∅6=A⊆N
(−1)|A| exp −〈Xk, uAε 〉 (5.22)

= 1 +
∑

∅6=A⊆N
(−1)|A| exp −

∑
∅6=C⊆A

(−1)|C|+1〈Xk, vCε 〉 (5.23)

= 1 +
∑

∅6=A⊆N
(−1)|A|

(
1 +

2|A|−1∑
j=1

∑
C1≺C2≺···≺Cj

∅6=Ci⊆A ∀i

j∏
i=1

WCi
ε

)
(5.24)

= 1 +
∑

∅6=A⊆N
(−1)|A|

+
2|N |−1∑
j=1

∑
C1≺C2≺···≺Cj
∅6=Ci⊆N ∀i

j∏
i=1

WCi
ε

( ∑
C1∪···∪Cj⊆A⊆N

(−1)|A|
)

=
2|N |−1∑
j=1

∑
C1≺C2≺···≺Cj
C1∪···∪Cj=N

∅6=Ci ∀i

(−1)n
j∏
i=1

WCi
ε (5.25)

=
2|N |−1∑
j=1

∑
C1≺C2≺···≺Cj
C1∪···∪Cj=N

∅6=Ci ∀i

(−1)n
(

j∏
i=1

(−1)|Ci |
)

j∏
i=1

|WCi
ε |

=
2|N |−1∑
j=1

∑
C1≺C2≺···≺Cj
C1∪···∪Cj=N

∅6=Ci ∀i

(
j∏
i=1

|WCi
ε |
)
(−1)n+

∑j

i=1 |Ci |.
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In the above, (5.20) and (5.24) follow from Lemma 2.2, (5.21) follows from
Lemma 2.5, (5.22) from (5.19), (5.23) from Lemma 5.1, and (5.25) from
Lemma 2.1. ut
Lemma 5.9. Let Φk ∈ Fk be bounded. LetC1, . . . , Cj be distinct and
nonempty, with∪ji=1Ci = N . Then

lim
ε→0

Ny(Φk

∏j

i=1 |WCi
ε |)∏n

i=1 v
i
ε(x)

= Ny(Φk

j∏
i=1

〈Xk,ΨCix 〉)1{Ci disjoint}.

Proof. For fixed k we note that for C 6= N there exists a constant K < ∞
for which vCε (·)/

∏
i∈C v

i
ε(x) < K in Dk. Since 1 − e−x ≤ ex − 1 ≤ xex

for x > 0 we have

|WC
ε |∏

i∈C viε(x)
≤ exp〈Xk, vCε 〉 − 1∏

i∈C viε(x)

≤ K〈Xk, 1〉 exp
(
〈Xk, 1〉K

∏
i∈C

viε(x)
)
.

Moreover, by Theorem 5.3 (with dominated convergence verified using
Lemma 5.4)

lim
ε→0

〈Xk, vCε 〉∏
i∈C viε(x)

= 〈Xk,ΨCx 〉,

so also

lim
ε→0

|WC
ε |∏

i∈C viε(x)
= 〈Xk,ΨCx 〉.

Set mnε = supC⊆N
∏
i∈C v

i
ε(x), so mnε → 0, as ε → 0. This gives that

for bounded Φk ∈ Fk,∣∣∣∣∣Φk

∏j

i=1 |WCi
ε |∏n

i=1 v
i
ε(x)

∣∣∣∣∣
≤ cKn〈Xk, 1〉n exp(〈Xk, 1〉Knmnε )

n∏
i=1

(viε(x))
αi−1,

where αi ≥ 1 is the number of times i appears in the {Ck}. By Lemma 2.7,
and the fact that xnex ≤ K(e2x − 1) for x ≥ 0, this bound is in L1(Nx)

and it decreases as ε → 0. Thus we may apply the dominated convergence
theorem.
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If the Ci are not disjoint, then we have αi > 1 for some i, and the given
bound converges to 0 as ε → 0. Thus

lim
ε→0

Ny(Φk

∏j

i=1 |WCi
ε |)∏n

i=1 v
i
ε(x)

= 0.

On the other hand, if the Ci are disjoint, then dominated convergence
gives that

lim
ε→0

Ny(Φk

∏j

i=1 |WCi
ε |)∏n

i=1 v
i
ε(x)

= Ny(Φk

j∏
i=1

〈Xk,ΨCix 〉). ut

To complete the proof of the Theorem, observe that

Ny(Φk |
n∏
i=1

〈XD, 11iε 〉 > 0)

= Ny(Φk,
∏n
i=1〈XD, 11iε 〉 > 0)

Ny(
∏n
i=1〈XD, 11iε 〉 > 0)

= Ny(ΦkNy(
∏n
i=1〈XD, 11iε 〉 > 0 | Fk))/

∏n
i=1 v

i
ε(x)

vNε (y)/
∏n
i=1 v

i
ε(x)

. (5.26)

By Theorem 5.3, the denominator of (5.26) converges to ΨNx (y). By
Lemma 5.8, the numerator of (5.26) equals

2|N |−1∑
j=1

∑
C1≺C2≺···≺Cj
C1∪···∪Cj=N

∅6=Ci ∀i

Ny(Φk

∏j

i=1 |WCi
ε |)∏n

i=1 v
i
ε(x)

(−1)n+
∑j

i=1 |Ci |.

By Lemma 5.9, this converges to

2|N |−1∑
j=1

∑
C1≺C2≺···≺Cj
C1∪···∪Cj=N

∅6=Ci ∀i
Ci disjoint

Ny(Φk

j∏
i=1

〈Xk,ΨCix 〉) = Ny(ΦkM
N
k ).

The statement of the Theorem follows immediately. ut
Remark 5.10. Recall that Theorem 3.1 includes the hypothesis that vN <
∞. With z1, . . . , zn distinct and D Lipschitz, this condition follows from
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Lemma 5.4. It is worth observing that it may fail if the zi are not distinct.
For example, ifD = B(0, 1) and z ∈ ∂D, we take n = 2, z1 = z2 = z, and
v1 = v2 = K0(·, z). Then for C a suitable cone, with vertex at z,

vN(x) = 2
∫
D

GD(x, y)K
D
0 (y, z)

2 dy

≥ K

∫
C∩B(z,1/2)

d(y, ∂D)[d(y, ∂D)−(d−1)]2 dy

≥ K

∫ 1/2

0
r1−2(d−1)rd−1 dr

= K

∫ 1/2

0
r2−d dr = ∞,

for d ≥ 3.

Remark 5.11. What if, instead of using the excursion measure Ny , we use
the probability measure Pµ, under which the superprocess Xt hasX0 = µ?
In this case, one expects the form of the answer to change, as it is no longer
necessary that the backbone originate with a single path. In genealogical
terms, there may be more than one ancestor for the particles reaching the
set {z1, . . . , zn}.

In fact, the argument of Theorem 5.6 still applies (assuming for simplic-
ity that µ has compact support in D), so that for Φk ∈ Fk,

lim
ε→0

Pµ(Φk |
n∏
i=1

〈XD, 11iε 〉 > 0) = 1

Pµ(M
N
k )

Pµ(ΦkM
N
k ), (5.27)

where MN
k = ∑

σ∈P(N)
∏
C∈σ 〈Xk,ΨCx 〉 as before. For simplicity, drop

the subscript x. It remains to evaluate the expressions in (5.27).
Recall that

Pµ(exp −〈Xk, φ〉) = exp −〈µ,N·(1 − ekφ)〉.
Let σ ∈ P(N), and take s = |σ |. As in Lemma 2.6,

Pµ(e
k
φ

s∏
i=1

〈Xk,Ψσ(i)〉)

= (−1)s
ds

dλ1 . . . dλs

∣∣∣∣
0...0

Pµ(e
k(φ +

s∑
i=1

λiΨ
σ(i)))

= (−1)s
ds

dλ1 . . . dλs

∣∣∣∣
0...0

exp −〈µ,N·(1 − ek(φ +
s∑
i=1

λiΨ
σ(i)))〉

= Pµ(e
k
φ)

∑
γ∈P({1,...,s})

|γ |∏
i=1

〈µ,N·(ekφ
∏
j∈γ (i)

〈Xk,Ψσ(j)〉)〉.
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Thus

Pµ(e
k
φM

N
k ) = Pµ(e

k
φ)

∑
γ∈P(N)

∑
σi∈P(γ (i))
i=1,...,|γ |

|γ |∏
i=1

〈µ,N·(ekφ
∏
A∈σi

〈Xk,ΨA〉)〉

= Pµ(e
k
φ)

∑
γ∈P(N)

|γ |∏
i=1

〈µ,N·(ekφ
∑

σ∈P(γ (i))

∏
A∈σ

〈Xk,ΨA〉)〉

= Pµ(e
k
φ)

∑
γ∈P(N)

|γ |∏
i=1

〈µ,N·(ekφM
γ(i)

k )〉

= Pµ(e
k
φ)

∑
γ∈P(N)

∏
B∈γ

〈ΨBµ,MB
· (e

k
φ)〉,

where M
B
y (e

k
φ) = 1

ΨB(y)
Ny(e

k
φM

B
k ). In particular,

Pµ(M
N
k ) =

∑
γ∈P(N)

∏
B∈γ

〈µ,ΨB〉.

Thus, the conditioned exit measure Xk, with Laplace functional

φ 7→ P̂µ(e
k
φ) = 1

Pµ(M
N
k )

Pµ(e
k
φM

N
k )

can be realized as a sum of two independent components. The first is a copy
of the unconditioned exit measure, which we will denote Xk0. To construct
the other component, we choose a random γ ∈ P(N) with probability pro-
portional to

∏
B∈γ 〈µ,ΨB〉. For each B ∈ γ , we then independently choose

a starting point x with law 1
〈µ,ΨB 〉Ψ

Bµ, and then independently generate exit
measures XkB with Laplace functionals

φ 7→ M
B
x (e

k
φ).

We then have that

Xk = Xk0 +
∑
B∈γ

XkB.

In other words, the backbone now consists of a branching forest, each tree
of which has the same description as before, except that it targets a given
subset of N .
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Remark 5.12. One way to generalize 3.3 would be to seek martingales of
the form

Mk =
n∑
j=1

〈Xk,⊗j , uj 〉, (5.28)

whereXk,⊗j = Xk ⊗· · ·⊗Xk (with j factors), and uj (x1, . . . , xj ) ≥ 0 is a
symmetric function of j variables. Taking un+1 = 0, the required conditions
are that

1

2
1(xi)uj (x1, . . . , xj ) = −2(j + 1)uj+1(xi, x1, x2, . . . , xj ),

for each j . An example would be the symmetrization of the function

∑
σ∈P(N),|σ |=j

j∏
i=1

vσ(i)(xi).

Note that the leading term un is n-harmonic, in the sense that it is harmonic
in each variable separately. Rather than trying to derive an analogue of Theo-
rem 4.2 in this context, we simply note that there is an integral representation
of the n-harmonic functions, in terms of products of the Martin kernel, of
the form h(x1, . . . , xj ) = ∏j

i=1K
D(xj , zj ) (see [3]). Thus a transform by

Mk of the above form will typically be a superposition of transforms of the
type arising in Theorem 5.6. See [6] or [26] for other connections between
n-harmonic functions and conditionings.

6. Conditioning on the Brownian snake exiting at exactlyn points

If we designate n small balls on the boundary of D and this time condition
the exit measure to charge each one, but not to charge the complement of
their union, then the following formal calculations suggest a representation
of the exit measures as before. The new process will again correspond to
a branching process with immigration, however the immigrated mass is
conditioned to die before reaching the boundary of D. The importance of
this type of conditioning is that these conditionings should be minimal, in
some sense, and so should correspond to points of some generalized Martin
boundary. Recall that 1A

ε = ∪i∈A1i
ε . The analogue of Theorem 5.2 is:

Theorem 6.1. For A ⊆ {1, 2 . . . , n}. Define

u(x) = Nx(hit ∂D) = Nx(〈XD, 1〉 > 0),

uAε (x) = Nx(hit 1A
ε , miss∂D \1A

ε )

= Nx(〈XD, 11Aε 〉 > 0, 〈XD, 1∂D\1Aε 〉 = 0),
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vAε (x) = Nx(hit each1i
ε, miss∂D \1A

ε )

= Nx(〈XD, 11iε 〉 > 0 ∀i ∈ A, 〈XD, 1∂D\1Aε 〉 = 0).

ThenvAε is twice differentiable inD and satisfies

1

2
1vAε = 4uvAε − 2

∑
B∪C=A∅6=B,C

vBε v
C
ε

= 2
(

2(u− uAε )+ vAε

)
vAε − 2

∑
B∪C=A∅,A6=B,C

vBε v
C
ε ,

with boundary condition

lim
y→z∈∂D

vAε (y) =




0 |A| ≥ 2,{
0 z ∈ ∂D \1i

ε

∞ z ∈ 1i
ε

A = {i}.

Conjecture 6.2.We conjecture, in analogy to Theorem 5.3, that the limit

lim
ε→0

vAε (y)∏
i∈A viε(x)

= Γ
A
x (y) (6.1)

exists, where
1

2
1Γ

A
x = 4uΓAx − 2

∑
B⊆A

∅,A6=B

Γ
B
x Γ

A\B
x , (6.2)

and that moreover, as in (3.2),

Γ
A
x = 2

∑
B⊆A

∅,A6=B

U 4u(ΓBx Γ
A\B
x ), for |A| ≥ 1. (6.3)

Given this, letMN
k and Mx be as in (3.3) and (3.4), with g(x) = u(x) =

Nx(hit ∂D) and vi = Γ
{i}
x . We will give a formal argument, along the lines

of Theorem 5.6, that

lim
ε→0

Ny(Φk | hit each 1i
ε, miss ∂D \1A

ε ) = 1

ΓNx (y)
Ny(ΦkM

n
k ), (6.4)

for Φk ∈ Fk. Note that the particle representation of Theorem 4.2 would
automatically apply.

For ease of notation, we will drop the ε subscripts. We introduce the
notation

UA = {〈XD, 11Aε 〉 > 0, 〈XD, 1∂D\1Aε 〉 = 0},
UA = {〈XD, 1∂D\1Aε 〉 > 0},
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V A = {〈XD, 11iε 〉 > 0 ∀i ∈ A, 〈XD, 1∂D\1Aε 〉 = 0},
uA(x) = Nx(UA),

so that uA(x) = Nx(U
A) and vA(x) = Nx(V

A).

Lemma 6.3. We have the following relationships,
(a) UA = ⋃

∅6=B⊆A V
B disjointly, souA(x) = ∑

∅6=B⊆A v
B(x).

(b) 1UA = 1U − 1UA , whereU = {hit ∂D}.
(c) 1V A = ∑

∅6=B⊆A(−1)|A|+|B|1UB .

Proof. To prove the third statement we use part (a) and rearrange terms as
follows:∑
∅6=B⊆A

(−1)|A|+|B|1UB =
∑

∅6=B⊆A
(−1)|A|+|B| ∑

∅6=C⊆B
1V C

=
∑

∅6=C⊆A
1V C (−1)|A| ∑

C⊆B⊆A
(−1)|B|

=
∑

∅6=C⊆A
1V C (−1)|A|(−1)|A|1C=A

= 1V A. ut

Proof (of Theorem 6.1). By (a) and (b) of Lemma 6.3 we have

vA =
∑

∅6=B⊆A
(−1)|A|+|B|uB =

∑
∅6=B⊆A

(−1)|A|+|B|(u− uB).

Thus

1vA =
∑

∅6=B⊆A
(−1)|A|+|B|(1u−1uB)

=
∑

∅6=B⊆A
(−1)|A|+|B|4(u2 − u2

B)

= 4
∑

∅6=B⊆A
(−1)|A|+|B| (u2 − (u− uB)2

)
(6.5)

= 4
∑

∅6=B⊆A
(−1)|A|+|B| (2uuB − (uB)2

)

= 4
(

2u
∑

∅6=B⊆A
(−1)|A|+|B|uB −

∑
∅6=B⊆A

(−1)|A|+|B|
( ∑

∅6=C⊆B
vC
)2)

(6.6)
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= 4
(

2uvA −
∑

∅6=B⊆A
(−1)|A|+|B| ∑

∅6=C,D⊆B
vCvD

)

= 4
(

2uvA −
∑

∅6=C,D⊆A
(−1)|A|vCvD

∑
C∪D⊆B⊆A

(−1)|B|
)

= 4
(

2uvA −
∑

C∪D=A∅6=C,D

vCvD
)

(6.7)

= 4
(

2uvA − 2vA
∑

∅6=C⊆A
vC + (vA)2 −

∑
C∪D=A∅,A 6=C,D

vCvD
)

= 4
(

2(u− uA)+ vA
)
vA − 4

∑
C∪D=A∅,A 6=C,D

vCvD.

Here, (6.5) and (6.6) follow by (b) and (a) of Lemma 6.3 , and (6.7) follows
by Lemma 2.1.

As for the boundary conditions, we note that by inclusion

Ny(hit each 1i
ε, miss ∂D \1A

ε ) ≤ Ny(hit 1j
ε)

for each j . If |A| ≥ 2, then each z ∈ ∂D the latter tends to 0 for some j . The
caseA = {i} follows as before. ut

Now, assuming the conjecture, we sketch an informal argument for for-
mula (6.4).

Nx(Φk, V
N)

= Nx

(
Φk

∑
∅6=B⊆N

(−1)n+|B|1UB

)
(6.8)

= (−1)nNx

(
Φk

∑
∅6=B⊆N

(−1)|B|(1U − 1UB )

)
(6.9)

= lim
λ→∞

(−1)nNx

(
Φk

∑
∅6=B⊆N

(−1)|B|

×
(

exp(−λ〈XD, 1〉)− exp(−λ〈XD, 11Bε 〉)
))

= (−1)nNx

(
Φk

∑
∅6=B⊆N

(−1)|B|(exp −〈Xk, uB〉 − exp −〈Xk, u〉)
)

(6.10)
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= (−1)nNx(Φk exp(−〈Xk, u〉)
∑

∅6=B⊆N
(−1)|B|(exp〈Xk, uB〉 − 1)

)

= (−1)nNx

(
Φk exp(−〈Xk, u〉)

(
1 +

∑
∅6=B⊆N

(−1)|B| ∏
∅6=C⊆B

exp〈Xk, vC〉
))

= (−1)nNx

(
Φk exp(−〈Xk, u〉)

(
1 +

∑
∅6=B⊆N

(−1)|B| ∏
∅6=C⊆B

(
1 + (exp〈Xk, vC〉 − 1)

)))
.

Set WC = exp〈Xk, vC〉 − 1, so by Lemma 2.2

∏
∅6=C⊆B

(1 +WC) = 1 +
∑
j≥1

∑
C1≺···≺Cj
∅6=Ci⊆B ∀i

j∏
i=1

WCi .

Again, we note that
∑

∅6=B⊆N(−1)|B| = −1 by Lemma 2.1. Thus we may
continue the above calculation to arrive at

Nx(Φk, V
N)

= (−1)nNx

(
Φk exp(−〈Xk, u〉)

×
( ∑

∅6=B⊆N
(−1)|B|∑

j≥1

∑
C1≺···≺Cj
∅6=Ci⊆B ∀i

j∏
i=1

WCi .
))

= (−1)nNx

(
Φk exp(−〈Xk, u〉)

×
(∑
j≥1

∑
C1≺···≺Cj
∅6=Ci⊆N ∀i

j∏
i=1

WCi
∑

∪Ci⊆B⊆N
(−1)|B|

))

= Nx

(
Φk exp(−〈Xk, u〉)

(∑
j≥1

∑
C1≺···≺Cj
∅6=Ci ∀i
∪Ci=N

j∏
i=1

WCi

))
,
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the last equation being a consequence of Lemma 2.1. Therefore, if we as-
sume there are no problems with the convergence, we have that

lim
ε→0

Nx(Φk | V N) = lim
ε→0

Nx(Φk, V
N)

vNε (x)

= lim
ε→0

Nx

(
Φk exp(−〈Xk, u〉)

(∑
j≥1

∑
C1≺···≺Cj
∅6=Ci ∀i
∪Ci=N

j∏
i=1

WCi

))

/ vNε (x)∏
N v

i
ε(x)

∏
N

viε(x)

= Nx(Φk exp(−〈Xk, u〉)∑σ∈P(N)
∏
C∈σ 〈Xk,ΓCx 〉)

ΓNx (x)
.

The last line follows as the terms with the C’s not disjoint disappear in the
limit.

7. Historical processes

In previous sections we have, for simplicity, avoided the use of historical
processes, even though this would have given us better results. In this sec-
tion we remedy this problem, and sketch how those earlier results can be
strengthened.

We start by adding to the material of section 2.4. Again, let D ⊆ R
d

be a domain, and take bounded, smooth domains Dk ⇑ D, with Xk the
exit measure from Dk, and τk(ξ) the exit time of ξ from Dk. Recall that
(Ws, ζs) denotes the Brownian snake. Let Wt

s denote the stopped snake,
Wt
s (u) = Ws(t ∧ u). Define the historical process, of paths killed upon

exiting Dk, to be

〈Hk
t ,Φ〉 =

∫
Φ(W t

s )1τk(Ws)>tdLt(s),

where now Φ is a measurable function on path space.
We have repeatedly used the σ -fields Fk of information determined by

the super Brownian paths prior to exitingDk. Their formal definition is that

Fk = σ {Hk
t | t ≥ 0}.

Let

hks (Φ·) = exp −
∫ ∞

s

〈Hk
t ,Φt〉 dt, (7.1)
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where t 7→ Φt is positive and continuous. Since Hk
· is continuous under

Nx , or under any law absolutely continuous with respect to Nx , such laws
are characterized on Fk by the expectations of random variables hk0(Φ·). In
particular, our approach to extending Theorem 4.2 will be to take the calcu-
lation of the ek(φ) = exp −〈Xk, φ〉 under Mx , and extend it to the hk0(Φ·).

To do so, we need to record versions of the Palm formulae in this context.
A first step towards doing so is to redefine our underlying measures, allowing
them to start from a path rather than a single point. Ifw is a path, and t ≥ 0,
we let Nw,t be the excursion measure of the Brownian snake, started from
the stopped pathwt(s) = w(s∧ t). In other words, under Nw,t , we have that
W0 = wt and that the law of ζ· is that of a Brownian excursion above level
t . Thus Lu = 0 for u ≤ t , so that Hk

u = 0 for u ≤ t . Alternatively, we can
obtain Nw,t directly as the image of Nw(t) under the mapping ξ 7→ ξ̂ , where

ξ̂ (s) =
{
w(s), s ≤ t

ξ(s − t), s > t.

We write Pw,t for the probability under which Bs = w(s) for s ≤ t , and
for which Bt+· has the law of a Brownian motion started from w(t). For
s < t , let

Ns,t (e
k(φ), hk· (Φ·)) = exp −

∫ t

s

du 4NB,u(1 − ek(φ)hku(Φ·)).

The basic Palm formula (2.3) then takes the form

Nw,t

(
〈Xk, φ〉ek(ψ)hkt (Ψ·)

)
= Ew,t

(
φ(Bτk )Nt,τk (e

k(ψ), hk· (Ψ·))
)
, (7.2)

whenever τk(w) > t . This may be proved as in Proposition 4.1 of [21],
using the point of view of chapter 4 of [8].

Using (7.2) in place of (2.3), the following extended Palm formula may
be proved, exactly as in Lemma 2.6.

Lemma 7.1. LetN = {1, 2, . . . n}, n ≥ 2. Let {ψi} be a family of measur-
able functions, and suppose thatτk(w) > s. Then

Nw,s(e
k(φ)hks (Φ·)

∏
i∈N

〈Xk,ψi〉)

= 1

2

∑
M⊆N

∅,N 6=M

Ew,s

(
4
∫ τk

s

dtNs,t (e
k(φ), hk· (Φ·))

× NB,t

(
ek(φ)hkt (Φ·)

∏
i∈M

〈Xk,ψi〉
)

× NB,t

(
ek(φ)hkt (Φ·)

∏
i∈N\M

〈Xk,ψi〉
))
.
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We now define a probability Qw,s under which Υt is a measure-valued
process living on a branching tree. The tree starts as a single particle follow-
ingw, but evolves as before following time s. In other words, Υt = δw(t) for
t ≤ s, and Υs+· has the same law under Qw,s as Υ· under Qw(s). Of course,
we actually need a historical version of this construction, so we let Υ̇t be the
atomic measure on path space, which gives unit mass to each path which is
the history of an atom of Υt . In the notation of (4.2),

Υ̇t (dω) =
nt∑
i=1

δxi (dω).

To define N̄w,s , we again form a Poisson random measure, which we
denote Nk(dχ, dµ). Its intensity will be∫ ∞

s

dt

∫
4Υ̇

k

t (dω)Ñω,t (H
k ∈ dχ,Xk ∈ dµ),

where χ belongs to the space of paths of measure-valued processes, and µ
belongs to the space of measures on ∂Dk. We then realize the exit measure
under N̄w,s as Xk = ∫

µNk(dχ, dµ), and the historical superprocess as
Hk = ∫

χNk(dχ, dµ). In concrete terms,

N̄w,s(e
k(φ)hks (Φ))

= Qw,s

(
exp −

∫ ∞

s

dt 4〈Υ̇kt , Ñ·,t (1 − ek(φ)hkt (Φ))〉
)
.

(7.3)

The generalization of Theorem 4.2 is then

Theorem 7.2. In the notation of Theorem4.2, if vN < ∞ thenMx = N̄x

onFk.

Proof. The result to be shown is that if τk(w) > s, then

Mw,s(e
k(φ)hks (Φ)) = N̄w,s(e

k(φ)hks (Φ)),

where

Mw,s(e
k(φ)hks (Φ)) = 1

vN(w(s))
Nw,s(e

k(φ)hks (Φ)M
N
k ).

In fact, the argument proceeds exactly as before, with induction being used to
prove a generalization of (4.6). The necessity of considering Mw,s and N̄w,s ,
rather than just Mx and N̄x , arises from the induction. ut

Similar arguments can be used to show that other measure equations,
proved before simply for expectations of random variables ekφ , can be ex-
tended to arbitrary elements of Fk. We leave the details to the interested
reader.
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Saint-Flour 1991, Lecture Notes in Math. 1541, Springer-Verlag, Berlin, 1–260, 1993.

8. D.A. Dawson and E.A. Perkins. Historical processes, Mem. Amer. Math. Soc., 454:1991.
9. A. Dembo and O. Zeitouni. Large deviations for random distribution of mass, In Random

Discrete Structures, IMA Vol. Math. Appl. 76, Springer-Verlag, New York, 45–53, 1996.
10. E.B. Dynkin. An Introduction to Branching Measure-Valued Processes, CRM Mono-

graphs series 6: Amer. Math. Soc., Providence, 1991.
11. E.B. Dynkin. Path processes and historical superprocesses, Probab. Theory Relat.

Fields, 90:1–36, 1991.
12. E.B. Dynkin. A probabilistic approach to one class of nonlinear differential equations,

Probab. Theory Relat. Fields, 89:89–115, 1991.
13. E.B. Dynkin and S.E. Kuznetsov. Solutions of nonlinear differential equations on a

Riemannian manifold and their trace on the Martin boundary. Trans. Amer. Math. Soc.,
350:4521–4552, 1998.

14. A.M. Etheridge. Conditioned superprocesses and a semilinear heat equation, In Seminar
on Stochastic Processes 1992, Birkhäuser, Boston, 91–99, 1993.

15. S.N. Evans. Two representations of a conditioned superprocess, Proc. Roy. Soc. Edin-
burgh Sect. A123:959–971, 1993.

16. S.N. Evans and N. O’Connell. Weighted occupation time for branching particle systems
and a representation for the supercritical superprocess, Canad. Math. Bull., 37:187–196,
1994.

17. S.N. Evans and E.A. Perkins. Measure-valued Markov branching processes conditioned
on non-extinction, Israel J. Math, 71:329–337, 1990.

18. D. Jerison and C. Kenig. Boundary value problems on Lipschitz domains, In Studies in
Partial Differential Equations, MAA Stud. Math., Math. Assoc. America, Washington,
23:1–68, 1982.

19. J.F. Le Gall. Superprocesses, Brownian snakes and partial differential equations,
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