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Abstract. The solution to the Skorokhod Problem defines a deterministic
mapping, referred to as the Skorokhod Map, that takes unconstrained paths
to paths that are confined to live within a given domain G ⊂ IRn. Given a
set of allowed constraint directions for each point of ∂G and a path ψ , the
solution to the Skorokhod Problem defines the constrained version φ of ψ ,
where the constraining force acts along one of the given boundary directions
using the “least effort” required to keep φ inG. The Skorokhod Map is one
of the main tools used in the analysis and construction of constrained deter-
ministic and stochastic processes. When the Skorokhod Map is sufficiently
regular, and in particular when it is Lipschitz continuous on path space, the
study of many problems involving these constrained processes is greatly
simplified.

We focus on the case where the domainG is a convex polyhedron, with a
constant and possibly oblique constraint direction specified on each face of
G, and with a corresponding cone of constraint directions at the intersection
of faces. The main results to date for problems of this type were obtained
by Harrison and Reiman [22] using contraction mapping techniques. In this
paper we discuss why such techniques are limited to a class of Skorokhod
Problems that is a slight generalization of the class originally considered in
[22]. We then consider an alternative approach to proving regularity of the
Skorokhod Map developed in [13]. In this approach, Lipschitz continuity
of the map is proved by showing the existence of a convex set that satisfies
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a set of conditions defined in terms of the data of the Skorokhod Problem.
We first show how the geometric condition of [13] can be reformulated
using convex duality. The reformulated condition is much easier to verify
and, moreover, allows one to develop a general qualitative theory of the
Skorokhod Map. An additional contribution of the paper is a new set of
methods for the construction of solutions to the Skorokhod Problem.

These methods are applied in the second part of this paper [17] to par-
ticular classes of Skorokhod Problems.

Mathematics Subject Classification (1991):34A60, 52B11, 60K25, 60G99,
93A30

1. Introduction

1.1. The Skorokhod Problem

The Skorokhod Problem (SP) provides a very useful tool for the construction
and analysis of many constrained processes. Given a closed set G ⊂ IRn,
a set of unit vectors d(x) for each point x on the boundary of G, and a
path ψ taking values in IRn, the solution to the SP defines a constrained
version φ of ψ , where the constraint mechanism acts along the directions
d(·) using the “least effort” required to keep φ inG. Although for historical
reasons d(·) has been referred to in the literature as the set of “directions of
reflection,” we will use the more accurate term directions of constraint. A
precise definition of the SP is as follows. Let D([0,∞) : IRn) denote the
set of functions mapping [0,∞) to IRn that are right continuous and have
limits from the left. For η ∈ D([0,∞) : IRn) let |η|(T ) denote the total
variation of η on [0, T ] with respect to the Euclidean norm on IRn.

Definition 1.1 (Skorokhod Problem). Let ψ ∈ D([0,∞) : IRn) with
ψ(0) ∈ G be given. Then(φ, η) solves the SP forψ with respect toG
andd if φ(0) = ψ(0), and if for all t ∈ [0,∞)

1. φ(t) = ψ(t)+ η(t);
2. φ(t) ∈ G;
3. |η|(t) < ∞;

4. |η|(t) =
∫

[0,t]
I{φ(s)∈∂G}d|η|(s);

5. There exists measurableγ : [0,∞) → IRn such thatγ (s) ∈ d(φ(s))

(d|η|-almost surely) and

η(t) =
∫

[0,t]
γ (s)d|η|(s).
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Note that φ is constrained to remain within G, and that η changes only
when φ is on the boundary ∂G, in which case the change points in one of
the directions of d(φ). We will call the map ψ → φ the Skorokhod Map
(SM) and use 0 to denote the map wherever it is defined. When considering
the existence of solutions to the SP for ψ in any given function space, it is
assumed (even if it is not explicitly stated) that ψ(0) ∈ G.

The simplest version of the SP was formulated by Skorokhod in [39].
Skorokhod used regularity properties of the map in order to construct and
establish strong uniqueness of solutions to stochastic differential equations
on IR+

.= {x ∈ IR : x ≥ 0} with a reflecting boundary condition at the
origin. The SP has since proved to be convenient in analyzing a variety of
processes. Examples include stochastic differential equations with reflec-
tion (SDER) [including the important special case of reflecting Brownian
motion (RBM)], a related class of constrained ordinary differential equa-
tions, constrained stochastic approximation algorithms and related stochas-
tic adaptive algorithms, and certain models of queueing and communication
networks [1, 5, 7, 10, 15, 22, 29, 38, 39, 40, 41].

Such processes are ubiquitous in modern applied probability. For ex-
ample, SDER occur in singular stochastic control and mathematical fi-
nance, as diffusion approximations for physical transport processes, and in
many other areas. RBM models arise in “heavy-traffic” analysis of queue-
ing, communication, and manufacturing models. Constrained continuous
time stochastic processes that are not diffusions arise in current models for
ATM-type data networks. A small selection of work on these applications
is [5, 6, 21, 23, 24, 25, 26, 28, 31, 32, 33, 34, 36, 42, 43].

In recent years there has also been considerable interest in the related
class of constrained ordinary differential equations. These ODEs often ap-
pear as law of large numbers limits. For example, under appropriate condi-
tions they provide a characterization of and thus a means for analyzing the
so-called “fluid limits” of queueing networks and related processes. These
fluid limits are important because of their usefulness in establishing the sta-
bility and ergodicity of the prelimit stochastic model [4, 8, 9, 19]. It has also
been proposed that they be used as the basis for a simple approach to the
design of controls for queueing networks [2]. The same class of constrained
ODEs provides the limit differential equation for use in the ODE approach
to studying constrained stochastic algorithms [14]. In the setting of eco-
nomics constrained ODEs define the proper continuous time evolution of
prices, inventories, and related quantities in the presence of constraints (e.g.,
non-negative inventories) [15]. In all of these problems the domain G has
corners, and in most the directions of constraint are oblique with respect to
∂G.
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We will refer to the SM as “well behaved” if solutions to the SP exist for
a broad class of unconstrained paths, and if the mapping from unconstrained
to constrained paths is regular (i.e., Lipschitz continuous). It is well known
that much of the analysis one would like to perform on the processes men-
tioned in the last paragraph (e.g., construction, uniqueness, approximation,
simulation, weak and large deviation limit theories, etc.) is significantly
simplified if the processes can be represented in terms of an appropriate
“well behaved” SM. For example, constrained ODEs of the type studied in
[13], [15] and [16] have discontinuous right-hand sides, and do not fall into
the framework of the classical theory of ODEs or its extension developed
by Fillipov [20]. The reformulation of such ODEs in terms of a SP enables
one to address questions of existence and uniqueness of solutions for these
ODEs. In the case of SDEs with reflection, techniques such as the martingale
problem formulation are commonly used to characterize the distribution of
the diffusion (see [44] for a specific example). As illustrated in [1, 40],
when the SDER can be recast in terms of a SP the analysis is greatly sim-
plified. In addition, strong existence and uniqueness of the diffusion can be
established when the corresponding SM is defined on all continuous paths
and is Lipschitz continuous [1, 39]. Finally, simple necessary and sufficient
conditions for stability can be derived for constrained processes when their
weak limits (under a law of large numbers scaling) can be represented in
terms of a Lipschitz continuous SM [4].

Although there are many uses for a well behaved SM, apart from a
few special cases relatively little is known regarding even basic qualitative
properties of the map. As mentioned earlier, the one-dimensional case was
first analyzed by Skorokhod [39] in order to construct a SDER on the half
line. The paper [1] by Anderson and Orey considers the generalization of the
one-dimensional SP to the half space IR+ ×IRn−1 with constant and oblique
directions of constraint, and shows that the SP is Lipschitz on C([0, T ] :
IRn). The Lipschitz property allows a Picard iteration type construction
of a strong solution to the SDER for the half space, as well as a simple
proof of a large deviation result for the SDER when the diffusion matrix is
multiplied by a small parameter. A “localization” argument using suitable
coordinate transformations is used in order to solve SDERs for which the
domain G is the closure of an open set possessing a smooth boundary. If
n(x) denotes the inward normal to ∂G at x, then the required conditions
are that d(x) vary smoothly for x in ∂G and that infx∈∂G〈d(x), n(x)〉 >
0. Other authors that have made use of the SP to analyze and construct
SDER include Tanaka [40], Lions and Sznitman [29], and Saisho [38].
However, none of them obtains Lipschitz continuity and none considers
the case of nonsmooth domains and oblique directions of constraint in any
generality.
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In the context of oblique directions of constraint on polyhedral domains,
the only general results on Lipschitz continuity to date are [22] and [13]. In
[22], the case where G = IRn+ and the directions of constraint satisfy a
certain spectral radius condition is considered. A so called “reflection map-
ping” technique is employed to obtain existence and Lipschitz continuity of
0 on C([0, T ] : IRn). (Although the Lipschitz property is not stated explic-
itly in [22], it follows directly from the technique used to prove continuity.)
Chen and Mandelbaum [5] also consider G = IRn+, but with a different set
of restrictions on d that is natural for the study of closed, single class queue-
ing networks. They obtain continuity (though not Lipschitz continuity) of
0 on a particular subset of C([0, T ] : IRn), which proves to be adequate
for their purpose. In both [22] and [5], the properties of 0 are then used
to construct RBMs. Dupuis and Ishii [13] consider solutions to the SP on
D([0,∞) : IRn) and for more general domains. They develop a sufficient
condition for Lipschitz continuity of the SM which is phrased in terms of
the existence of a convex set B satisfying a certain geometric property. Two
particular classes of SPs are then considered in detail in [13]. It is proved that
the set B exists for any SP on a polyhedral domain for which the constraint
directions are the inward normals. It is also shown to exist for a class of SPs,
which we refer to as the generalized Harrison–Reiman class, that satisfies a
generalization of the algebraic criterion derived in [22]. The set B turns out
to have other important applications, including the qualitative (existence
and uniqueness) theory for partial differential equations that characterize
functionals of constrained processes [11].

1.2. The objectives of this paper

One of the main objectives of this paper is to develop a method for deriving
algebraic conditions for regularity (i.e. existence and Lipschitz continuity)
of SMs associated with SPs on polyhedral domains with oblique directions
of constraint. The two main existing approaches for studying regularity of
SPs are the reflection mapping method of [22] and the geometric approach
of [13]. We develop techniques that allow us to exactly identify which SPs
can be analyzed using the reflection mapping techniques of [22]. More
precisely, we show that the techniques of [22] are limited to a class of SPs
that is a slight generalization of the one originally considered in [22], thereby
motivating the geometric approach to the SP. While [13] was useful because
it introduced the geometric approach, it fell short of indicating either how
to verify the existence of the set B, or how the structure of the set B was
linked to the geometry of the associated SP. It also did not prescribe any
method for converting the geometric condition into algebraic conditions,
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which are in general more easily verified. The present paper makes two
important contributions in this direction. First, we reformulate the geometric
condition of [13] using convex duality. The conditions required of B are
recast as conditions on a setB∗ which is the convex dual ofB. Although the
dual conditions are still geometric in nature, they are easier to verify and
characterize in an algebraic form than the original conditions on B. Indeed,
the second main contribution is the development of a set of techniques for
the conversion of geometric into algebraic characterizations. The methods
developed in the paper are applied to three concrete classes of SPs in [17]
to prove new general results on regularity of the associated SMs.

A brief outline of the paper is as follows. In Section 2 we state the
sufficient geometric condition for Lipschitz continuity of the SM proved
in [13]. We then derive a number of interesting properties of the set B
which shed light on the connection between the reflection mapping tech-
nique of [22] and the geometric approach. We discuss why the reflection
mapping approach is limited to the class of SPs we have labeled the gen-
eralized Harrison–Reiman class. A rigorous proof of this fact uses convex
duality methods developed in this paper and is given in [17, Section 2.2].
The comparison of the two methods motivates the need for a systematic
approach to the construction of B as well as the algebraic characterization
of conditions for its existence.

Section 3 concentrates on methods for constructing the setB (and thereby
establishing Lipschitz continuity of the associated SM) using convex du-
ality. In this approach one does not directly construct B but instead one
constructs its convex dual B∗. The conditions originally posed on B are
reformulated in Section 3.2 as conditions on the dual set. Several necessary
structural properties of the dual set are derived in Section 3.3, and these
are used to identify families of convex sets that are appropriate for particu-
lar classes of SPs. Section 3.4 broaches the issue of when these geometric
conditions can be transformed to algebraic ones, thereby yielding algebraic
conditions for Lipschitz continuity of the SM. Section 4 develops a new set
of tools to construct solutions to the SP and illustrates how the geometric
condition proves useful in analyzing this aspect of the SP as well. The paper
concludes with a few remarks in Section 5.

2. Lipschitz continuity of the Skorokhod Map

2.1. Introduction

In this paper we focus on the class of SPs described in Section 2.2 that
have polyhedral domains. In Section 2.3 we present a sufficient condition
for Lipschitz continuity of the corresponding SMs that was developed in
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[13]. The condition is expressed in terms of the existence of a set B that
satisfies a certain geometric property (Assumption 2.1). In Section 2.4 we
review the main alternative approach to the analysis of SPs of the type we
consider, which is due to Harrison and Reiman [22] and uses contraction
mapping arguments.

The analysis of the SP in this paper will always require the construc-
tion of convex sets that satisfy Assumption 2.1 (or its dual formulation as
given in Section 3.2). These sets have a number of interesting features and
properties that can be used to simplify the problems of construction and
characterization of the sets, and also to understand necessary conditions for
the regularity of the SM. Section 2.5 discusses one of the most important
characterizations of B: as an invariant set for a family of projection opera-
tors that are naturally associated to the given SP. These properties will turn
out to be even more significant when we consider the construction of dual
sets in Section 3.

2.2. Skorokhod Problems on polyhedral domains

In Definition 1.1 we introduced the SP associated with a domain G and
directions of constraint d(x). In this paper, we will concentrate on the case
when the setG is a convex polyhedron with constant directions of constraint
along each face. In this case the domain G takes the form ∩Ni=1Gi , where
each Gi

.= {x : 〈x, ni〉 ≥ ci} is a closed half space with inward normal ni
and intercept ci . If x ∈ ∂G, and I (x)

.= {i : x ∈ ∂Gi} = {j}, then d(x) is
assumed to be equal to {dj }, where 〈dj , nj 〉 > 0. At all other points of ∂G
d(x) is defined by

d(x)
.=


γ =

∑
i∈I (x)

αidi : αi ≥ 0, ‖γ ‖ = 1


 .

Thus for such domains the SP is completely specified by the set of triplets
{(di, ni, ci), i = 1, . . . , N}, where ni is the inward normal to the closed half
space Gi with intercept ci , and di is the direction of constraint associated
with that face. Note thatG

.= ∩Ni=1Gi need not always be a minimal descrip-
tion of the domain in the sense that there may exist j ∈ {1, . . . , N} such
that G = ∩Ni=1,i 6=jGi . In such cases, Gj acts as a supporting hyperplane to
the domain G, and is introduced along with the corresponding direction of
constraint dj in order to enlarge the set of directions of constraint applicable
along the face Gj ∩G. Such situations are often encountered in examples
[17, Section 3]. The setup considered here is the simplest one in which
all the difficulties due to corners and nonsmooth directions of constraint
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are present. Problems in which the directions di vary smoothly within each
face, or where the faces themselves are smooth but not flat, can often be
reduced to the setup we consider via localization techniques [1, 13]. We
always adopt the convention that the directions have been normalized so
that 〈di, ni〉 = 1.

2.3. A sufficient condition for Lipschitz continuity: the setB

The class of SPs identified in the last subsection was studied in [13], and the
main result stated there is a sufficient condition for the Lipschitz continuity
(with respect to the sup norm metric) of the SM. The condition, which is
stated below as Assumption 2.1, is characterized geometrically in terms of
the existence of a convex setB that satisfies certain constraints on its inward
normals as a function of angular position. Given a convex set C ⊂ IRn and
x ∈ ∂C, define the set of inward normals to C at x by

ν(x)
.= {γ : ‖γ ‖ = 1, and 〈γ, x − y〉 ≤ 0 ∀y ∈ C} . (2.1)

A set C ⊂ IRn is called symmetricif x ∈ C ⇒ −x ∈ C. Consider a SP
with representation {(di, ni, ci), i = 1, . . . , N}.
Assumption 2.1 (Set B).There exists a compact, convex, symmetric setB
with 0 ∈ B◦, such that ifν(z) denotes the set of inward normals toB at
z ∈ ∂B, then there existsδ > 0 such that fori = 1, . . . , N ,{

z ∈ ∂B
|〈z, ni〉| < δ

}
⇒ 〈ν, di〉 = 0 for all ν ∈ ν(z). (2.2)

This assumption differs from the one used in [13] by the additional
requirement that B be symmetric. This strengthening is in appearance only,
as the assumption without the symmetry condition holds if and only if the
assumption holds as stated. Obviously the assumption used in [13] is implied
by Assumption 2.1. Conversely, it is easy to check that if B satisfies all the
other conditions of Assumption 2.1 save the symmetry, then so do −B and
the symmetric set D

.= B ∩ (−B). We impose the additional symmetry
requirement since it greatly simplifies the construction of the dual set B∗

(which is discussed in Section 3.3).
A two-dimensional SP and the associated set B that satisfies (2.2) for

the SP is illustrated in Figure 1.
The following theorem is proved in [13, Theorem 2.2].

Theorem 2.1 (Lipschitz Continuity). Suppose Assumption2.1 is satisfied
for a given SP{(di, ni, ci), i = 1, . . . , N}. Letψ1 andψ2 inD([0,∞) : IRn)
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Fig. 1. A Skorokhod problem and the associated set B

be given, and assume(φ1, η1) and (φ2, η2) are solutions to this SP forψ1

andψ2, respectively. Define

1φ

.= φ1 − φ2

1ψ
.= ψ1 − ψ2

1η
.= η1 − η2 .

Then there existsK < ∞ such that

sup
t∈[0,∞)

‖1η(t)‖ ≤ K sup
t∈[0,∞)

‖1ψ(t)‖,

sup
t∈[0,∞)

‖1φ(t)‖ ≤ K sup
t∈[0,∞)

‖1ψ(t)‖.

Thus the question of sufficient conditions for Lipschitz continuity of the
SM can be reformulated as a static geometric problem.

Remark.Note that Theorem 2.1 guarantees Lipschitz continuity only for
paths in D([0,∞) : IRn) that lie in the domain of the SM, i.e. paths for
which solutions to the SP exist. As discussed in greater detail in Section
4.2, there are often cases when the domain of the SP is a strict subset of
D([0,∞) : IRn), for example the SP analyzed in [17, Section 3].

Observe that if a set B satisfies (2.2) for a given value of δ > 0, then for
any c > 0 cB also satisfies the property but with δ replaced by cδ. Thus if
Assumption 2.1 holds then there is a set B1 which satisfies this assumption
and (2.2) with δ = 1. As noted in [13], and as is evident from the heuristic
discussion of Theorem 2.1 given below, the diameter of B1 plus 1 serves as
a valid Lipschitz constant K in Theorem 2.1.
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Sets that satisfy Assumption 2.1 and its dual formulation have a number
of interesting properties and interpretations. One useful interpretation is in
terms of a related norm on IRn. Consider the class of sets described by

S = {
C ⊂ IRn : C is compact, convex, symmetric, and 0 ∈ C◦} , (2.3)

where C◦ denotes the interior of C. There is a one to one correspondence
between the elements of S and norms on IRn. The elementary proof of
this fact can be found in [18, Lemma A.1]. Common examples of this
correspondence are the n-ball with the usual Euclidean norm and the n-cube
with the sup norm on IRn. In particular, any set B satisfying Assumption
2.1 belongs to S and consequently defines a norm on IRn. We will denote
this norm by ‖ · ‖B , where

‖x‖B .= min{r ≥ 0 : x ∈ rB}. (2.4)

Now consider a particular SP, and assume that B satisfies Assumption 2.1
for this SP with a value δ > 0. The norm defined above in terms ofB can be
used to intuitively understand the idea behind Theorem 2.1. In [13] this norm
is used as a sort of Lyapunov function to prove that if (φ1, η1) and (φ2, η2)

solve the SP for ψ1 and ψ2 respectively and if a
.= sup{‖ψ1(t) − ψ2(t)‖ :

t ∈ [0,∞)} (where ‖ · ‖ denotes the usual Euclidean norm), then

sup{‖η1(t)− η2(t)‖B : t ∈ [0,∞)} ≤ a/δ.

This implies the Lipschitz continuity of the SM. The conditions on the
inward normals at points x ∈ ∂B for which |〈x, ni〉| < δ are exactly what
are needed in order that the restrictions on the dynamics of η1 −η2 imposed
by the SP prohibit η1 −η2 from ever escaping the level set of ‖ ·‖B of height
a/δ.

Observe that Assumption 2.1 depends on the given SP only through
the vectors ni and di , and not at all on the scalars ci . Thus when trying to
verify Lipschitz continuity it will often prove convenient to set ci = 0. This
property is also exploited in Section 4 where the existence of the set B is
used to establish existence of solutions to the SP.

It should be noted that the description of the SP in terms of a finite set of
triplets is not unique. However, it is obviously true that the SM is Lipschitz
continuous if Assumption 2.1 holds for any valid representation of the given
SP. Section 5.3 of [17] discusses the issue of the choice of representation
that is most convenient for the verification of Assumption 2.1.

In the next section we review the main alternative approach to analyzing
regularity properties of the SP.
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2.4. The reflection map approach

The first paper to treat a SP on a domain with corners and oblique directions
of constraint was that of Harrison and Reiman [22], although Harrison and
Reiman defined the map ψ → φ in terms of what is called a “reflection
map” rather than the SP. In [22] the domainG is the positive orthant IRn+ =
{(x1, x2, . . . , xn) : xi ≥ 0 for i = 1, . . . , n}, with one direction of constraint
associated to each face. In terms of the notation of Section 2.2, the related SP
is {(di, ei, 0), i = 1, . . . , n}, where ei is the unit vector in the ith coordinate
direction. Note that exactly n directions of constraint are allowed for an
n-dimensional domain.

Given a continuous unconstrained trajectory ψ with ψ(0) ∈ G, φ is
called the reflected version of ψ if there exist continuous nondecreasing
θi : [0,∞) → IR with θi(0) = 0 such that

φ(t)
.= ψ(t)+

n∑
i=1

diθi(t) ∈ G

for all t ∈ [0,∞), and such that for all i ∈ {1, . . . , n} θi increases only
when φi(t) = 0: ∫ ∞

0
I{t :φi(t)>0}dθi(t) = 0.

One of the main results of [22] is the formulation of an algebraic sufficient
condition for the existence of solutions to the reflection map and Lipschitz
continuity of the mapping ψ → φ.

The connection between the reflection map and the SP is straightforward.
From the given properties of the θi , it is clear that if η(t)

.= ∑n
i=1 diθi(t)

then (φ(t), η(t)) solves the SP for ψ(t). It is also easy to check (under the
conditions used in [22] and restated below) that if (φ(t), η(t)) solves the
SP {(di, ei, 0), i = 1, . . . , n}, then aside from a measurable selection issue
addressed in [19] suitable θi’s can be constructed from η. Thus [22] also
proves regularity properties for a family of SPs.

The algebraic condition used in [22] is the following. Assume that
〈di, ej 〉 ≤ 0 if i 6= j and 〈di, ei〉 = 1, and define Q = [qij ] by

qij =
{

−〈di, ej 〉 if i 6= j,

0 if i = j.
(2.5)

If the spectral radius σ(Q) of Q is less than one, then a solution to the
SP exists for all ψ ∈ C([0,∞) : IRn), and moreover the SM is Lipschitz
continuous. (The Lipschitz continuity is not stated explicitly in [22], but
follows easily from the method used to prove existence of solutions and
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continuity of the SM.) We collectively call these conditions the Harrison–
Reiman (H–R) condition.

We will argue below that this class of SPs nearly exhausts the set of all
SPs that can be analyzed via the contraction mapping techniques used in
[22]. However, the following generalization can be proved. For any SP of
the form {(di, ni, ci), i = 1, . . . , n} where span({di, i = 1, . . . , n}) = IRn

and 〈di, ni〉 = 1, define Q = [qij ] by

qij =
{

|〈di, nj 〉| if i 6= j,

0 if i = j.

We will say that the generalized Harrison–Reiman (gH–R) condition holds if
σ(Q) < 1. Under this condition, the SM is defined and Lipschitz continuous
on all ofD([0,∞) : IRn). Note that when compared with the conditions of
the previous paragraph (where ni = ei and G = IRn+) this new condition
is equivalent to dropping the assumption that 〈di, ej 〉 ≤ 0 for i 6= j and
defining Q by qij = |〈di, ej 〉| when i 6= j and qij = 0 otherwise. Thus the
gH–R condition is indeed a generalization of the original H–R condition.

We now describe the technique used in [22]. Let I ([0,∞) : IRn) be the
set of all θ ∈ D([0,∞) : IRn) such that each component θi is nondecreasing
and θi(0) = 0. Let x∨0 denote max(x, 0). Given any pathψ ∈ D([0,∞) :
IRn), one first defines the map 2ψ on I ([0,∞) : IRn) by

[2ψ(θ)]j (t)
.= sup
s∈[0,t]


−

n∑
i=1,i 6=j

〈di, nj 〉θi(s)− 〈ψ(s), nj 〉

 ∨ 0. (2.6)

Note that for the H–R class of SPs this map reduces to that given in
[22]:

[2ψ(θ)]j (t)
.= sup
s∈[0,t]


 n∑
i=1,i 6=j

qij θi(s)− ψj(s)


 ∨ 0,

where the qij are as defined in (2.5). The map 2ψ has the following two
properties.

1. 2ψ maps I ([0,∞) : IRn) into itself.
2. φ,ψ and θ solve the reflection map [and hence (φ, η = 6jdjθj ) solve

the SP for ψ] if and only if θ = 2ψ(θ).

The first property above is a direct consequence of the definition (2.6), while
the second was proved in [22,Theorem 1] for the case nj = ej . Equivalence
for the general case can be proved in an analogous fashion.
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One then constructs a norm ‖ · ‖H on IRn whose level sets are multiples
of a convex setH of the form ∩i=1,...,n{x : 〈x, ei〉 ≤ αi}, where αi > 0, i =
1, . . . , n. (Recall the equivalence between norms and sets in S discussed
in Section 2.3, and note thatH ∈ S.) The norm ‖ · ‖H depends only on the
directions {di}, and is chosen so that when I ([0,∞) : IRn) is endowed with
the norm ‖ · ‖H,D, defined to be the sup norm on path space with respect to
the ‖ · ‖H norm on IRn, then the following statements hold.

1. 2ψ is a contraction on I ([0,∞) : IRn) uniformly in ψ . In other words
there exists α ∈ (0, 1) such that for any ψ ∈ D([0,∞) : IRn) and θ1,
θ2 ∈ I ([0,∞) : IRn),

||2ψ(θ1)−2ψ(θ2)||H,D ≤ α||θ1 − θ2||H,D. (2.7)

2. The unique fixed point of the mapping 2ψ(·) is Lipschitz continuous
in ψ .

Since the space I ([0,∞) : IRn) is complete with respect to the norm ‖·‖H,D,
the first property above implies that for every ψ ∈ D([0,∞) : IRn) 2ψ(·)
has a unique fixed point, which we denote by xψ . Suppose α ∈ (0, 1) is the
contraction parameter defined in (2.7). Then for ψ , ζ ∈ D([0,∞) : IRn),

||xψ − xζ ||H,D = ||2ψ(xψ)−2ζ(xζ )||H,D
≤ ||2ψ(xψ)−2ψ(xζ )||H,D + ||2ψ(xζ )−2ζ(xζ )||H,D
≤ α||xψ − xζ ||H,D + C||ψ − ζ ||H,D,

where the last inequality follows from (2.7), (2.6), the form of H and the
fact that there existsC < ∞ such that ||ψ̂− ζ̂ ||H,D ≤ C||ψ−ζ ||H,D, where
ψ̂
.= ∑

j 〈ψ, nj 〉ej . Rearranging terms in the last display we obtain

||xψ − xζ ||H,D ≤ C

1 − α
||ψ − ζ ||H,D,

which establishes the Lipschitz continuity of the map ψ → xψ . Two im-
mediate consequences of the properties derived above are the existence of
solutions to the SP and Lipschitz continuity of the SM.

In contrast to the reflection mapping technique, the SP formulation works
directly with the constraining process η, and not with the individual local
times or components θj along the directions dj . In order to establish a
connection between the two techniques, we first observe that since η has a
unique decomposition η = 6n

j=1djθj , the mapping 2ψ on I ([0,∞) : IRn)
induces a mapping 2̃ψ on D([0,∞) : IRn). More precisely, let A be the
unique transformation such that Aej = dj , j = 1, . . . , n. Let || · ||H be
the norm used above to make 2ψ a contraction, and define the mapping
2̃ψ : D([0,∞) : IRn) → D([0,∞) : IRn) by
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2̃ψ(η)
.= A(2ψ(A

−1η)). (2.8)

DefineB
.= AH and let || · ||B,D be the sup norm on path space with respect

to the || · ||B norm on IRn, whose level sets are scalar multiples of the set
B. It is easy to see that properties 1 and 2 in the last paragraph hold if and
only if they hold with 2ψ , || · ||H,D and I ([0,∞) : IRn) replaced by 2̃ψ ,
|| · ||B,D and D([0,∞) : IRn). As we will see below, the set B forms the
link between the Harrison–Reiman approach and the geometric approach
towards SPs of this type adopted in the present paper. Note that since all
norms on IRn are equivalent, Lipschitz continuity would hold irrespective of
the underlying norm. However, the proof relies on the contraction property
which does depend on the particular choice of norm.

Although the technique of [22] described above is very natural, the class
of SPs to which it can be applied is limited by two factors. For one, the
technique requires that the constraining term η for the SP have a unique
decomposition in terms of the directions {dj } with the coefficients θj ’s
taking values in I ([0,∞) : IRn). This dictates that the set of directions {dj }
be a basis for IRn. Thus the class of SPs to which the reflection mapping
techniques apply is restricted to those that can be described using n faces
in IRn, and that satisfy span{dj } = IRn. For SPs with more than n faces in
n dimensions, non-uniqueness of the coefficients that play the role of θj ’s
is expected, and any argument that would imply such uniqueness cannot
work. Secondly, there are a number of SPs of interest (for example the
processor sharing model introduced in [17,Section 3]) for which a solution
is only possible on a strict subset ofD([0,∞) : IRn) (e.g., paths of bounded
variation). In such a case one cannot expect the argument of [22] to work,
since it would necessarily define a solution to the SP for allψ inD([0,∞) :
IRn) because the contraction norm is independent of ψ .

Comparing the approaches of [22] and [13] for the class of SPs for
which the reflection mapping technique can be applied, we note that the
set B

.= AH (where H defines the norm on path space used in [22] to
make2ψ a contraction, andA is the transformation defined above) satisfies
Assumption 2.1. In particular, for the case where 6n

i=1qij < 1 for all j , the
sup norm, which corresponds to H being the unit hypercube, was used in
[22]. The corresponding setAH does in fact satisfy Assumption 2.1 for this
class of SPs [17, Theorem 2.1]. The other cases treated in [22] are reduced
to this case by a change of variable. The same change of variable can be
directly applied to the unit hypercube to produce a set H such that (2.7)
holds. One can also prove a converse: given a set B in IRn with 2n faces
that satisfies Assumption 2.1 for a SP, the norm || · ||H,D associated with
the set H

.= A−1B makes 2ψ a contraction. Thus, if one were to restrict
the geometric approach to only sets B with exactly 2n faces in dimension
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n, then these two approaches give the same results for this class of SPs.
However, as is shown in [17,Section 2.4], for n > 2 there are SPs that fall
within the class that can be described by both the SP and the reflection map,
and yet require a set B with strictly more than 2n faces, and in this sense
the geometric approach is more general.

In Section 3 we will consider the general problem of constructing B
for classes of SPs. We end this section with a discussion of a number of
qualitative properties of sets that satisfy Assumption 2.1. These properties
are interesting in their own right, and moreover their dual formulations will
be used in Section 3.2 to simplify the construction of B.

2.5. Interpretation of the setB as an invariant set

The main results of this subsection are Theorem 2.4, which gives a useful
necessary condition for the existence ofB, and Lemma 2.5, which concerns
transformations.

Associated in a natural way with the SP {(di, ni, ci), i = 1, . . . , N} is
a collection of oblique projection operators {Li, i = 1, . . . , N}, where Li
projects along the direction di onto the hyperplane {x : 〈x, ni〉 = ci}. Note
that since the constants ci do not play any role in the existence of the set B,
we set ci = 0 so that the projection operators can without loss of generality
be assumed to project onto the hyperplanes {x : 〈x, ni〉 = 0}. The oblique
projection operators Li are then given by

Lix = x − 〈x, ni〉di, (2.9)

where we recall the normalization condition 〈ni, di〉 = 1.
The existence of solutions to a given SP is shown in Section 4 to depend

on the existence of a discrete projection π that maps points onto ∂G along
the directions of constraint d(x). The existence of π , which is highly non-
trivial, in fact automatically guarantees the existence of solutions to the SP
for the class of pure jump functionsFG([0,∞) : IRn) defined in (4.1). Given
ψ ∈ FG([0,∞) : IRn), φ can be defined in a simple manner by repeated
application of π . For points outside G that are near the relative interiors of
the faces of G one can imagine that the discrete projection π for the SP
{(di, ni, 0), i = 1, . . . , N} behaves like Li , and in general it can be loosely
thought to be some convex combination of the Li . Thus one might expect
that bounds on the projectionsLi that are independent of i would be closely
related to continuity properties of the SM. This is indeed the case, and in fact
the satisfaction of Assumption 2.1 implies a strong boundedness property
of the associated projections. The precise statement of this property is given
in Theorem 2.4.



168 P. Dupuis, K. Ramanan

Given any SP, let

L
.= {Li : i = 1, . . . , N}

denote the collection of projection operators associated with the SP. We next
introduce the concept of an invariant set for a collection of linear operators.

Definition 2.2 (Invariant Set). For a given collection of linear operators

M
.= {
Mi : IRn → IRn, i = 1, . . . , N

}
,

we say thatC is an invariant set with respect toM if C ∈ S and

MiC ⊂ C

for i = 1, . . . , N , whereMiC = {Mix : x ∈ C}.
Given a collection of linear operators M, let P denote the set of all

possible products of elements of M:

P
.=




k∏
j=1

M̄j : M̄j ∈ M, k < ∞

 .

Theorem 2.3 shows that the existence of an invariant set for M guarantees
the uniform boundedness of arbitrary products of the projection operators
Mi . This uniform boundedness property is sometimes referred to as the
absolute stability of the collection M. The existence of an invariant set is
equivalent to the stability of a related dynamical system [12, 27]. For any
choice of x0 ∈ IRn and any choice M̄j ∈ M, the sequence {xj } defined
by xj+1 = M̄jxj , j ≥ 0 remains within a bounded set which depends
only on x0. The theorem also establishes an equivalence between uniform
boundedness of the collection of operators and the existence of a norm with
respect to which the operator norms are bounded by 1. The proof of this
theorem can be found in [18, Appendix A.1].

Theorem 2.3. The following are equivalent:

1. There exists an invariant set for the collectionM.
2. The elements ofP are uniformly bounded.
3. There exists a norm‖ · ‖ on IRn such that for allM ∈ M the operator

norm ofM with respect to this norm,

‖M‖ .= sup
x 6=0

‖Mx‖/‖x‖,

is bounded by1.
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Assume that the setB ∈ S satisfies (2.2) for a given SP {(di, ni, ci), i =
1, . . . , N}. In Theorem 2.4 we show that with respect to the norm ‖ · ‖B
all the projection operators in L have norm less than or equal to 1, or
in other words that B is an invariant set for L. It should be noted that
general conditions which guarantee the existence of such a norm are far
from obvious. Indeed, if Lx = x − 〈x, n〉d with n 6= d and 〈n, d〉 = 1,
then even the single operatorL has norm strictly greater than 1 with respect
to the usual Euclidean norm. The analogue of this theorem for a set that is
dual to B will prove to be of consequence in deriving a dual condition for
Lipschitz continuity that implies Assumption 2.1.

Theorem 2.4. Given the SP{(di, ni, ci), i = 1, . . . , N}, suppose that a set
B ∈ S satisfies(2.2). LetLi, i = 1, . . . , N be the associated projection
operators defined in(2.9). Then the norm of every operatorLi is bounded
by 1 with respect to the norm‖ · ‖B defined in(2.4).

Proof.Fix i ∈ {1, . . . , N}, x ∈ IRn and let

c
.= ‖Lix‖B
= ‖x − 〈x, ni〉di‖B
= min{r ≥ 0 : x − 〈x, ni〉di ∈ rB}.

We must show that ‖Lix‖B ≤ ‖x‖B . If x = 0 or if c = 0, then this inequality
is automatically satisfied. For the rest of the proof we will assume that x 6= 0
and c 6= 0.

The properties 〈Lix, ni〉 = 0 and Lix ∈ ∂(cB) follow from the def-
inition of Li and c respectively. Since B satisfies (2.2), so does cB and
thus 〈ν, di〉 = 0 for all ν ∈ νc (Lix), where νc(x) = ν(x/c) is the set
of inward normals to cB at x. Thus Lix + αdi lies in a supporting hy-
perplane to cB at Lix for all α ∈ IR. The convexity of B then implies
Lix + αdi 6∈ (cB)◦ for all α ∈ IR. In particular, choosing α = 〈x, ni〉, we
find that Lix + αdi = x − 〈x, ni〉di + 〈x, ni〉di = x 6∈ (cB)◦. Thus from
the definition of the norm ‖x‖B ≥ c = ‖Lix‖B , and hence the norm of the
operator is bounded by 1 with respect to this norm.

We conclude this section with a simple but extremely useful observation
on the relation between the invariant sets for two collections of operators
that are obtained as similarity transforms of each other.

Lemma 2.5. Suppose that the collectionM possesses an invariant setC.
LetA be invertible, and definẽM = {AMA−1 : M ∈ M}. ThenC̃ = AC

.=
{Ax : x ∈ C} is an invariant set forM̃.

Proof. Choose any operator M̃ in M̃. By definition it can be expressed as
M̃ = AMA−1 for some M ∈ M. Then since C is invariant for M,
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M̃C̃ = AMA−1AC = AMC ⊂ AC = C̃.

Moreover, C̃ ∈ S since C ∈ S and A is invertible. Thus C̃ is invariant for
M̃.

3. Construction of the setB

3.1. Introduction

As discussed in Section 2.5, the construction of a set B that satisfies
Assumption 2.1 for a given SP is a highly non-trivial task. Here we use
convex duality to obtain a dual characterization of the geometric condi-
tion for Lipschitz continuity stated in Assumption 2.1. This dual condition,
which is introduced in Section 3.2, is phrased in terms of the existence of
a set B∗ which is the convex dual to a set B that satisfies Assumption 2.1.
Although the dual property is also geometric in nature, it is generally much
easier to verify and often lends itself to algebraic characterizations. Indeed
the aim of this section is to outline how one can obtain an algebraic criterion
for the satisfaction of the dual condition for SPs with a given structure.

Section 3.3 develops guidelines for the construction of dual sets B∗ that
have the form conv[±akwk, k = 1, . . . , K], where the wk are known unit
vectors and the ak > 0 are unknown constants that must be found to satisfy
the dual condition. We note that the number 2K is an interesting quantity
because it provides an upper bound on the number of faces of the corre-
sponding dual set B, and can be regarded as a measure of the complexity of
the SP. If B∗ can be expressed as an intersection of a finite number of half
spaces then the property required of the dual set can be rephrased as a finite
number of linear inequalities. The derivation of such a finite external rep-
resentation for the dual set is usually simpler if the directions of constraint
have some degree of symmetry. Transformation techniques like those de-
veloped in Section 3.4 can then be used to generalize algebraic conditions
derived for symmetric directions of constraint to arbitrary directions of con-
straint. In [17] the techniques derived here are applied to concrete classes
of SPs, and it is seen that the complexity of the set B depends strongly on
the structure of the particular SP.

3.2. A dual sufficient condition for Lipschitz continuity: the SetB∗

Given a convex set C ⊂ IRn, we define the dual closed convex set by

C∗ =
{
y : sup

x∈C
〈y, x〉 ≤ 1

}
. (3.1)
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C∗ is sometimes referred to as the polar of the set C. A standard result from
elementary convex analysis is that (C∗)∗ = cl(C), where cl(C) denotes the
closure of C. The following properties can be verified without difficulty: if
the origin is in C◦ then C∗ is bounded; if C is bounded then the origin is in
(C∗)◦; if C is symmetric then so is C∗. Thus C ∈ S implies C∗ ∈ S.

We introduce operatorsL∗
i that are adjoint (with respect to the usual inner

product on IRn) to the oblique projection operators Li defined in (2.9):

L∗
i x = x − 〈x, di〉ni. (3.2)

Let

Hi
.= {x : 〈x, di〉 = 0}

be the hyperplane normal to di . L∗
i x = x for x ∈ Hi , and thus Hi is

an invariant linear sub-space for L∗
i . Since 〈ni, di〉 = 1, L∗

i is an oblique
projection operator onto Hi . The collection of adjoint projection operators
is denoted by

L∗ .= {L∗
i , i = 1, . . . , N}.

Let M∗ denote the adjoint of an operator M and let M∗ = {M∗ : M ∈ M}.
The following lemma shows that the dual of an invariant set for M is an
invariant set for M∗. Note that all matrices considered here are real and
therefore the transpose of a matrix is equal to its adjoint.

Lemma 3.1. If C is an invariant set for a collection of linear operatorsM,
then

C∗ =
{
y : sup

x∈C
〈x, y〉 ≤ 1

}

is an invariant set forM∗, andC∗ ∈ S.

Proof.As observed above, C ∈ S implies that C∗ ∈ S. If y ∈ C∗, then for
any M∗ ∈ M∗

sup
x∈C

〈x,M∗y〉 = sup
x∈C

〈Mx, y〉

= sup
x∈MC

〈x, y〉

≤ sup
x∈C

〈x, y〉

≤ 1.

This implies M∗y ∈ C∗, and so C∗ is an invariant set for M∗.
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SET  B SET  B*

Fig. 2. The set B and its dual B∗

Given a SP {(di, ni, ci), i = 1, . . . , N}, we now propose an alternate
geometric condition for Lipschitz continuity of the SM, expressed in terms
of the collection of adjoint operators L∗. If the convex hull of a finite set
of points has interior then it is called a polytope. A set B∗ that satisfies
(3.3) for the SP given in Figure 1 is presented in Figure 2 Note that the
vertex directions ofB correspond to normals of the faces of the dualB∗ and
vice versa. This is a generic property of sets and their duals which is stated
precisely in Lemma 3.3.

Assumption 3.1 (set B∗ ). There exists a finite set of verticesv1, . . . , vJ
with span({vj , j = 1, . . . , J }) = IRn, such that ifB∗ .= conv[±vj , j =
1, . . . , J ] then for everyi ∈ {1, . . . , N} andj ∈ {1, . . . , J }

eitherL∗
i vj = vj or L∗

i vj ∈ (B∗)◦. (3.3)

Note that from the definition it is clear that a set B∗ that satisfies
Assumption 3.1 must lie in S, and that B

.= (B∗)∗ ∈ S if and only if
B∗ ∈ S.

As illustrated in Figure 2, a polytope B that satisfies (2.2) for the SP
is dual to a set B∗ that satisfies (3.3). Theorem 3.2 shows that the dual of
any set in S that satisfies (3.3) satisfies (2.2). Thus Assumption 3.1 implies
Assumption 2.1, and hence serves as a more easily verifiable sufficient
condition for Lipschitz continuity of the SM. We conjecture that the reverse
statement that Assumption 2.1 implies Assumption 3.1 also holds. Note
that any set B∗ ∈ S satisfying (3.3) is invariant with respect to each adjoint
operator in L∗. It then follows from Lemma 3.1 that the dual B

.= (B∗)∗ is
an invariant set for the projection operators L

.= {Li, i = 1, . . . , N}. The
additional requirement in (3.3) that each vertex vj be mapped strictly into
the interior of B∗ when it is not left unchanged is the strengthening needed
so that the invariant set B satisfies (2.2) for some δ > 0. In fact, it is the
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dual formulation of the strengthening of conditions required to go from the
uniqueness of [27] to the Lipschitz continuity of [13].

Theorem 3.2 (Dual Formulation). Given a SP{(di, ni, ci), i = 1, . . . , N},
Assumption3.1 implies Assumption2.1. Moreover, if Assumption2.1 is sat-
isfied by a polytope, then Assumption3.1 holds.

Proof.First suppose that Assumption 3.1 holds. ForV of the form {±vj , j =
1, . . . , J }, assume that B∗ .= conv[V ] satisfies (3.3). We will establish
Assumption 2.1 by showing that (B∗)∗ satisfies (2.2). Let

B
.=

{
x : sup

y∈B∗
〈x, y〉 ≤ 1

}
= (B∗)∗.

Since Assumption 3.1 implies B∗ ∈ S, we automatically obtain B ∈ S. If
z ∈ ∂B and if there exists τ > 0 such that |α| ≤ τ implies z + αdi ∈ B,
then 〈ν, di〉 = 0 for all ν ∈ ν(z). Indeed, if ν ∈ ν(z) and z+ αdi ∈ B then
the definition of the inward normal implies 〈z, ν〉 ≤ 〈z+ αdi, ν〉, which in
turn shows that α〈di, ν〉 ≥ 0 for all 0 ≤ |α| ≤ τ . Clearly this is satisfied if
and only if 〈ν, di〉 = 0.

Claim. There exists τ > 0 such that if i ∈ {1, . . . , N} and if z ∈ ∂B satisfies
〈z, ni〉 = 0, then |α| ≤ τ implies z+ αdi ∈ B.

Let us suppose that the claim is true. In this case, the discussion preceding
the claim shows that B satisfies (2.2) for δ = 0. However, because B is a
polytope (2.2) automatically holds for some δ > 0. The proof is as follows.
For each z ∈ {z : 〈z, ni〉 = 0}, it is possible to choose εz > 0 small enough
so that ν(x) ⊂ ν(z) for every x in the neighbourhood {z : ‖z − x‖ < εz}.
This obviously implies 〈ν, di〉 = 0 for every ν ∈ ν(x) when ‖z− x‖ < εz.
Since the setDi

.= {z ∈ ∂B : 〈z, ni〉 = 0} is compact, we can select a finite
subset {zj , j = 1, . . . , J } ⊂ Di so that

Di ⊂ D̃i
.= ∪Jj=1{x : ‖x − zj‖ < εzj }.

Because D̃i is open and Di is compact, there exist δi > 0 such that z ∈
∂B and |〈z, ni〉| < δi imply z ∈ D̃i . Thus B satisfies (2.2) with δ

.=
mini=1,...,N δi > 0, and therefore Assumption 2.1 is satisfied.

We now prove the claim. Fix i ∈ {1, . . . , N} and z ∈ ∂B satisfying
〈z, ni〉 = 0. For any j such that 〈vj , di〉 = 0 we have

〈z+ αdi, vj 〉 = 〈z, vj 〉 ≤ 1, (3.4)

where the last inequality follows from the fact that 〈z, v〉 ≤ 1 for any z ∈ B
and any v ∈ B∗. Since B∗ satisfies (3.3), for any j such that 〈vj , di〉 6= 0,
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(
L∗
i vj

) ∈ (B∗)◦. For such a value of j and anyy ∈ Bwe have 〈y, L∗
i vj 〉 < 1,

which is the same as 〈y, vj −〈vj , di〉ni〉 < 1. If we choose y = z and recall
that 〈z, ni〉 = 0, then the last inequality becomes 〈z, vj 〉 < 1. Since there
are only finitely many j with 〈vj , di〉 6= 0, there exists σi(z) > 0 such that
if α ∈ IR satisfies |α| < σi(z), then

max
j :〈vj ,di〉6=0

〈z+ αdi, vj 〉 < 1. (3.5)

The inequalities (3.4), (3.5), and the definition of B∗ as the convex hull of
V imply for the given i and z that

sup
x∈B∗

〈z+ αdi, x〉 ≤ 1

whenever |α| < σi(z). SinceB = (B∗)∗, this implies z+αdi ∈ B whenever
|α| < σi(z). Let τi(z) be the maximum value of σi(z) for which (3.5)
holds. τi(z) is well defined since σi(z) is bounded above by the diameter
of the compact set B∗. It follows from the continuity of the inner product
that τi(z) is a continuous function of z. Now define τi

.= inf{τi(z) : z ∈
∂B and 〈z, ni〉 = 0}. Since ∂B ∩ {z : 〈z, ni〉 = 0} is a compact set, the
infimum is achieved on this set and therefore τi > 0. This establishes the
claim with τ

.= mini τi > 0 and completes the proof that Assumption 3.1
implies Assumption 2.1.

We next show that if Assumption 2.1 is satisfied by a polytope B, then
Assumption 3.1 holds. In analogy with the previous argument, we will show
that the dual B∗ of B satisfies Assumption 3.1.

Define

B∗ .=
{
x : sup

y∈B
〈y, x〉 ≤ 1

}
.

Since B ∈ S, it follows that B∗ ∈ S. Let S be the set of extreme points of
B∗ so thatB∗ = conv[S]. SinceB∗ is a symmetric polytope, S is symmetric
and finite. Define Hi

.= {x : 〈x, di〉 = 0}.
Fix any value of i ∈ {1, . . . , N}. It will suffice to prove (3.3) for this

given value of i. If v ∈ S ∩ Hi , then L∗
i v = v and (3.3) is satisfied. Next

assume that v ∈ S \ Hi . According to Theorem 2.4, B is an invariant set
for L. Lemma 3.1 then implies that B∗ is invariant for L∗, and therefore
L∗
i v ∈ B∗. If L∗

i v ∈ (B∗)◦ we are done, and thus we need only consider the
case where L∗

i v ∈ ∂B∗.
We will use the facts that 〈v, di〉 6= 0 and L∗

i v ∈ ∂B∗ to arrive at a
contradiction. Let z ∈ ∂B be such that maxy∈B〈y, L∗

i v〉 = 〈z, L∗
i v〉. Since

L∗
i v ∈ ∂B∗, it follows from the definition of B∗ as the dual of B that
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〈z, L∗
i v〉 = 1. Define z̃

.= Liz = z − 〈z, ni〉di . Since B is invariant for L
and z ∈ B, z̃

.= Liz ∈ B. Note that

sup
y∈B

〈y, v〉 = 1 = 〈z, L∗
i v〉 = 〈Liz, v〉 = 〈z̃, v〉.

Since 〈z̃, v〉 = 1 it follows that z̃ ∈ ∂B, and since 〈z̃, v〉 = supy∈B〈y, v〉
it follows that −v ∈ ν(z̃). Finally we make use of the normalization
〈di, ni〉 = 1 to obtain 〈z̃, ni〉 = 0. Then 〈z̃, ni〉 = 0, z̃ ∈ ∂B, −v ∈ ν(z̃),
and 〈−v, di〉 6= 0 contradict the fact that the set B satisfies (2.2), and we
conclude that L∗

i v ∈ ∂B∗ is impossible. This completes the proof that if B
is a polytope then Assumption 2.1 implies Assumption 3.1.

3.3. Structure of the dual set

A number of key qualitative properties of the sets B and B∗ are developed
in this section. The most important result is Theorem 3.4, which identifies
a collection of vectors which mustbe used in the construction of B∗, in
the sense that a scalar multiple of each of these vectors must be one of the
extreme points of B∗.

In general one would like to derive algebraic conditions which guarantee
the existence of a setB that satisfies (2.2). This is most easily accomplished
by characterizing the conditions under which its dual B∗ satisfies (3.3).
By Theorem 3.2 it then follows that B = (B∗)∗ satisfies (2.2). Given any
polytope C we use the term minimal internal representationto refer to the
characterization of C as a convex hull of its vertices, and the term minimal
external representationto refer to the characterization of the polytope as the
intersection of a minimal number of halfspaces. The following lemma states
a well known connection between internal and external representations of
sets and their duals. A proof is given in [18].

Lemma 3.3. A polytopeBwith0 ∈ B◦ hasB = ∩j=1,...,J {x : 〈x, vj 〉 ≤ kj }
as its minimal external representation for a set of unit vectorsvj and scalars
kj > 0, j = 1, . . . , J if and only if its dualB∗ has the minimal internal
representationconv[vj/kj , j = 1, . . . , J ].

Given any polytopeB, as illustrated by Figure 2, each vertex of its dual is
equal to a scalar multiple of the normal to some face of B, and conversely.
We exploit this to infer properties of the structure of the dual B∗ from
the fact that B satisfies (2.2). Note that (2.2) imposes restrictions on the
inward normals of the set B. This naturally translates into a property of the
vertices of B∗. Suppose there exists a set B∗ that satisfies (3.3) for a SP
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{(di, ni, ci), i = 1, . . . , N} whose directions of constraint span IRn. Then
we can associate a set of unit directions V, such that B∗ must have a vertex
along every direction in V.

We now describe how to construct V for a given SP and then demon-
strate the significance of the set in Theorem 3.4. Observe that the vertex
directions are chosen so that each vertex is left invariant by as many opera-
tors as possible in order to minimize the number of conditions in (3.3) that
have to be verified. We use dim[M] to denote the dimension of a space M
and |S| to denote the cardinality of a set S.

Construction of the SetV of fundamental vertex directions

Consider a SP {(di, ni, ci), i = 1, . . . , N} with span({di, i = 1, . . . , N}) =
IRn.

1. Define D
.= {di, i = 1, . . . , N} to be the set of directions of constraint.

2. Define {Dj , j = 1, . . . , J } to be the collection of maximal subsets of D
that span distinct (n− 1)-dimensional subspaces of IRn. By a maximal
subset, we mean that if d ∈ D ∩ span(Dj ), then d ∈ Dj .

3. Let d∗
j be a unit normal to the hyperplane span(Dj ), so that 〈d∗

j , d〉 = 0
for every d ∈ Dj .

4. Then V
.= {±d∗

j , j = 1, . . . , J } is the set of fundamental vertex direc-
tions.

Note that the construction above assumes that span({di, i=1, . . . , N})=
IRn. This condition will be satisfied by all the classes of SPs that we con-
sider. Although we do not give the details here, it is worth observing that
this assumption is really without loss of generality, in that the regularity
properties of a SP which does not satisfy this condition can be deduced
from those of an associated SP which does satisfy the condition.

Theorem 3.4. LetV be the set of fundamental vertex directions associated
with a given SP{(di, ni, ci), i = 1, . . . , N}. Then any polytopeB∗ that
satisfies(3.3) for the SP must have a vertex along every direction inV.

Proof. For the proof we will use the same notation as was just used in the
construction of the fundamental set of vertices.

Fix d∗
j ∈ V such that d∗

j is orthogonal to span(Dj ) for some subset Dj of
D. Let Ej ⊂ Dj be a basis for span(Dj ), so that |Ej | = dim[span(Dj)] =
n−1, and letFj = {ni : di ∈ Ej }. Then clearly dim[span(Fj )] ≤ n−1 since
|Fj | = n − 1. Define m̄j to be a non-zero vector orthogonal to span(Fj ).
Since B∗ satisfies (3.3), B = (B∗)∗ satisfies (2.2) by Theorem 3.2. Let
aj

.= max{s ≥ 0 : sm̄j ∈ B}, so that zj
.= aj m̄j is the point on ∂B
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along the direction m̄j . Since m̄j is orthogonal to span(Fj ), it follows that
〈zj , ni〉 = 0 for all i such that ni ∈ Fj . The continuity of the inner product
implies that given δ > 0, there exists a neighbourhood of zj such that for all
z in that neighbourhood |〈z, ni〉| < δ for all i such thatni ∈ Fj . LetNj be the
intersection of the neighbourhood with ∂B. Then property (2.2) demands
that for every z ∈ Nj , each inward normal ν ∈ ν(z) to B at z must satisfy
〈ν, di〉 = 0 for all i such that di ∈ Ej . In other words, any ν ∈ ν(z) must
be orthogonal to span(Ej ) = span(Dj ). Since [span(Dj )]⊥ has dimension
1 and contains d∗

j , we conclude that for every z ∈ Nj , ν(z) ⊂ {±d∗
j }. The

symmetry ofB dictates that in fact both d∗
j and −d∗

j must be inward normals
of (n − 1)-dimensional extreme faces of B, and consequently Lemma 3.3
implies that the dual set B∗ must have vertices along the directions ±d∗

j .

The symmetry of the set B∗ dictates that the vertex directions of B∗

always come in pairs, corresponding to parallel sides of the set B. Thus
when trying to satisfy the projection property in (3.3), one always looks
for polytopes B∗ = conv[vj , j = 1, . . . , J ] of the form conv[±akwk, k =
1, . . . , K] with J = 2K , thewk fixed unit vectors and the ak unknown con-
stants. The goal then is to determine algebraic conditions on the problem
data under which values ak exist for which the projection property holds. In
many examples (3.3) is satisfied by a polytopeB∗ whose set of vertex direc-
tions coincides with V. This is true of most of the applications considered
in [17]. In general, however, one may need to consider polytopes having
additional vertex directions. This is illustrated by the example considered
in [17, Section 2.4].

When considering directions in addition to those in V, the following
monotonicity property is very useful. Note that the requirement that the
dual set B be bounded requires that B∗ contain 0 in its interior. In this case
if a set B∗ with vertices of the form {±akwk, k = 1, . . . , K} exists, then a
setB∗ will also exist of the form {±akwk, k = 1, . . . , K+1} for any vector
wK+1. The total number of vertices of any polytope that satisfies (3.3) is
an interesting quantity since it serves as an upper bound on the minimum
number of faces that any set B ∈ S satisfying (2.2) must possess, and thus
provides a measure of the complexity of B. It turns out that different SPs
require sets of different complexity, and examples of this phenomenon are
presented in [17]. The monotonicity property shows that if (3.3) is satisfied
for a SP by a polytope that has a simple structure, then (3.3) will also be
satisfied by a more complex polytope (i.e. one that has additional vertices.)
However, although (3.3) will be satisfied even if one chooses a set that
is more complicated than necessary, the verification of the property may
become more difficult. In order to facilitate algebraic characterizations of
the geometric property (3.3), it is always desirable to work with the simplest
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set that can possibly satisfy (3.3) for any given SP. Further discussion of
this issue is provided in [17, Section 5.2].

Theorem 3.5 (Monotonicity Property). Consider the SP{(di, ni, ci), i =
1, . . . , N}. Suppose there exists a polytope whose set of vertex directions is
given byW = {±wi, i = 1, . . . ,M} and which satisfies(3.3) for the SP.
Then given any set̃W ⊃ W , there exists a polytope with̃W as its vertex
directions that also satisfies(3.3) for the SP.

Proof.Let B∗ be the polytope with vertex directions W that satisfies (3.3).
Choose v ∈ W̃ \W . It is clearly sufficient to establish that (3.3) is satisfied
by a polytope whose vertex directions are W ∪ {v}. One can then appeal
to an inductive argument in order to establish the theorem as stated. Let
α = sup{κ > 0 : κv ∈ B∗}. Then since B∗ is compact and 0 ∈ (B∗)◦,
α ∈ (0,∞) and αv ∈ ∂B∗.

We show that there exists an ε > 0 such that B̃∗ .= conv[B∗, (α + ε)v]
satisfies (3.3). Since the vertices ofB∗ satisfy (3.3) andB∗ ⊂ conv[B∗, (α+
ε)v] for any ε > 0, it only remains to show that there exists ε > 0 such that
for every i = 1, . . . , N , either

L∗
i ((α + ε)v) ∈ (B̃∗)◦ or L∗

i ((α + ε)v) = (α + ε)v.

We know that the last display is true whenαv is substituted for (α+ε)v since
αv ∈ B∗ and B∗ satisfies (3.3). For those operators for which L∗

i αv = αv,
linearity dictates that L∗

i (α + ε)v = (α + ε)v. The remaining operators
must satisfy L∗

i αv ∈ (B∗)◦. Define ρ
.= maxi ||L∗

i v||, where the max is
taken over i such that L∗

i does not leave v invariant, and let ε > 0 be small
enough so that the ρε-neighbourhoods for all suchL∗

i (αv) lie in the interior
of B∗. Such an ε exists since N < ∞ and (B∗)◦ is open. Then

L∗
i ((α + ε)v) = L∗

i (αv)+ εL∗
i v ⊂ Nρε(L

∗
i (αv)) ⊂ (B∗)◦ ⊂ (B̃∗)◦,

and the theorem is established.

Remark 3.6.Another obvious but very useful monotonicity property is the
following. Suppose there exists a set B∗ that satisfies (3.3) for the SP
{(di, ni, ci), i = 1, . . . , N}. Then given any subset J ⊂ {1, . . . , N}, the
set B∗ also satisfies (3.3) for the SP defined by {(di, ni, ci), i ∈ J }.

3.4. Algebraic conditions and transformation techniques

Once one assumes that B∗ is of the form conv[±akwk, k = 1, . . . , K] with
wk fixed unit vectors and the ak > 0 unknown, it is desirable to derive
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finite algebraic conditions under which such a polytope satisfies (3.3) for
the SP. In general, one needs to derive a finite external representation from
the given internal representation for the set B∗. Then clearly (3.3) can be
expressed algebraically in the form of a finite number of linear inequalities.
We first use the fact thatC = (C∗)∗ for any closed convex setC to obtain an
external representation (though not necessarily finite) from a given internal
representation. It will be convenient to express C = (C∗)∗ in the following
form:

C =
{
x ∈ IRn : 〈x, ν〉 ≤ 1 for all ν satisfying max

u∈C
〈u, ν〉 ≤ 1

}
. (3.6)

Given the internal representation of any polytope, (3.6) automatically gives
us an external representation. However, in order to derive a useful algebraic
condition for (3.3) from the external representation, we require the minimal
or at least a finite external representation of the polytope. This requires
the identification of a finite set of vectors K such that any ν satisfying
maxu∈C〈u, ν〉 ≤ 1 can be written as the convex combination of vectors in
K. The external representation then takes the form

C = ∩ν∈K{x : 〈x, ν〉 ≤ 1}. (3.7)

Such a representation provides a finite algebraic characterization of the set
of normals associated with those fixed direction of constraints for which
(3.3) is satisfied. In general, this characterization is expressed in terms of a
finite number of algebraic conditions on the matrix

V = [vij ]
.= [〈di, nj 〉].

The precise form of the algebraic condition is dictated by the class of the
SP, which is in turn determined by the number and structure of the direc-
tions of constraint in the representation of the SP. This is illustrated by the
concrete examples studied in [17]. The purpose of this section is to describe
how transformation techniques can be used to extend the algebraic condi-
tion available for a particular set of constraint directions to other directions
of constraint within the same class. Given a SP that satisfies Assumption
3.1, Theorem 3.6 identifies a corresponding class of SPs which also satisfy
Assumption 3.1. Recall that A∗ denotes the adjoint of the operator A.

Theorem 3.6. Suppose there exists a polytopeB∗ that satisfies Assump-
tion 3.1 for the SP{(zi, wi, ki), i = 1, . . . , N}. Then given any invertible
transformationA : IRn → IRn, A∗B∗ satisfies Assumption3.1 for the SP
{(A−1zi, A

∗wi, ci), i = 1, . . . , N}.
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Proof. Note that the particular values of ki and ci are of no consequence
in proving the theorem. Let L∗

i and L̃∗
i , i = 1, . . . , N be the collections

of projection operators associated with the SPs {(zi, wi, ki), i = 1, . . . , N}
and {(A−1zi, A

∗wi, ci), i = 1, . . . , N}, respectively. Since

A∗L∗
i (A

∗)−1x = A∗[(A∗)−1x − 〈(A∗)−1x, zi〉wi]
= x − 〈x,A−1zi〉A∗wi,

the two collections of projection operators are related by

L̃∗
i = A∗L∗

i (A
∗)−1.

If vj , j = 1, . . . , J are the vertices of B∗, then since A is an invertible
transformation A∗vj , j = 1, . . . , J are the vertices of A∗B∗. Moreover,
L∗
i vj lies in the interior of B∗ or L∗

i vj = vj if and only if L̃∗
i (A

∗vj ) lies in
the interior ofA∗B∗ or L̃∗

i (A
∗vj ) = A∗vj , respectively. ThusA∗B∗ satisfies

(3.3) for the SP {(A−1zi, A
∗wi, ci), i = 1, . . . , N}.

We conclude from Theorem 3.6 that if Assumption 3.1 is satisfied for a
collection C of SPs of the form {(zi, wi, ki), i = 1, . . . , N}, then Assump-
tion 3.1 is also satisfied for all SPs in the class F defined by

F
.=

⋃
{(zi ,wi ,ki ),i=1,...,N}∈C

⋃
c∈IRN

⋃
A:detA6=0

{(A−1zi, A
∗wi, ci), i = 1, . . . , N},

(3.8)
where c = (c1, . . . , cN).

In [17] we apply the methods of this section to examine concrete classes
of SPs. Sections 2 and 3 of [17] show how the transformation technique
described above can be used to extend results within two classes of SPs
– the generalized Harrison–Reiman class and the generalized processor
sharing class of SPs. In the following section, we develop new methods for
the construction of solutions to the SP.

4. Existence of solutions to the Skorokhod Problem

4.1. Introduction

In this section we develop a new set of methods for the construction of
solutions to the SP. Under Assumption 2.1 the existence of solutions to the
SP for pathsψ of bounded variation is equivalent to the existence of a certain
non-linear projection on IRn. In Section 4.2 we introduce the definitions of
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local and global projections for a SP. Theorem 4.2 summarizes the extent
to which the existence of a projection guarantees existence of solutions to
the SP. In Section 4.3 we develop a decomposition approach to constructing
solutions to SPs that satisfy Assumption 2.1. In Section 4.3.2 we introduce a
broad class of SPs, which we refer to as simple SPs, that can be represented as
the union of SPs with a more elementary structure, which we term standard
SPs. We present criteria for the existence of solutions to standard SPs and
indicate how they can be used to obtain existence of solutions to simple SPs.
In Section 4.4 we show that any SP on a polyhedral domain can in a sense
be approximated by a sequence of simple SPs. Theorem 4.12 proves that if
Assumption 2.1 is satisfied by the limit SP, then the existence of projections
for the elements of the approximating sequence of SPs guarantees that for
the limit. These results are applied in [17, Sections 2.3, 2.5 and 3.4] to
establish the existence of solutions to SPs from two classes of SPs. In the
case of the generalized processor sharing SP considered in [17, Section 3],
existence is (necessarily) obtained only for a strict subset ofD([0,∞) : IRn)
that includes all functions of bounded variation.

4.2. The projection

The existence of solutions to the SP has been shown to be predicated on the
existence of a projection π of IRn onto the domain G [7, 13, 29, 40]. For
δ > 0, we define Nδ

.= {x ∈ IRn : infy∈G ‖x − y‖ < δ}.
Definition 4.1 (Projection). A mappingπ : IRn → G is said to be a
projection for the SP with domainG and directions of constraintd(x) if

1. π(y) = y for y ∈ G.
2. π(y) ∈ ∂G for y 6∈ G, andπ(y) − y = αγ for someα ≥ 0 and
γ ∈ d(π(y)).

When a mapping with the above properties can only be defined on some
neighbourhoodNδ(G) with δ > 0, then it is said to be a local projection.

We sometimes refer to the projection as global when it is defined on all
of IRn. Consider the space D([0,∞) : IRn) equipped with the topology of
uniform convergence on compact sets and the metric

ρ(ψ1, ψ2)
.=

∞∑
i=1

1

2−i

[
sup

0≤t≤i
‖ψ1(t)− ψ2(t)‖ ∧ 1

]
.

For any given set G, let DG([0,∞) : IRn) be the set of trajectories in
D([0,∞) : IRn) that start in G. Define
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FG([0,∞) : IRn)
.=



ψ ∈ DG([0,∞) : IRn) : ψ is piecewise
constant with a finite number of
jumps on each interval [0, T ], T < ∞


 . (4.1)

Given any SP, if the projection associated to that SP exists, then it follows
immediately that a solution to the SP exists for all ψ ∈ FG([0,∞) : IRn).
Note that this set is dense inDG([0,∞) : IRn)with respect to the sup norm.
If the SP also satisfies Assumption 2.1 then the Skorokhod Map is Lips-
chitz continuous on FG([0,∞) : IRn). Hence, by a standard theorem from
analysis [37, p.149], there exists a unique Lipschitz continuous extension
of the Skorokhod Map to DG([0,∞) : IRn). The extension may not define
a solution to the SP for all paths in DG([0,∞) : IRn) since the bounded-
ness of the total variation of the constraining term η, though true for every
element of the sequence, is not guaranteed in the limit. Such “generalized”
solutions to the SP are still useful. In particular, one often considers a func-
tional of φ or η that is well-behaved even when the total variation of η is not
bounded. An example of such a situation arises in the generalized processor
sharing SP that is discussed in [17, Section 3.4]. Solutions to the SP that
satisfy Definition 1.1 can be obtained as limits of sequences of functions in
FG([0,∞) : IRn) when there exists an a priori bound on |η|(T ) for every
T < ∞. In other words, solutions exist for functions in the class

FG = ∩T<∞ ∪s<∞ {ψ ∈ FG([0,∞) : IRn) : |η|(T ) ≤ s}, (4.2)

where the closure is taken with respect to the sup norm [13]. When
Assumption 2.1 is satisfied, the class FG contains all functions of bounded
variation in DG([0,∞) : IRn). Under an additional condition that is stated
below as Assumption 4.1, the class FG can be shown to coincide with
DG([0,∞) : IRn).

Assumption 4.1. For everyx ∈ ∂G, there isn ∈ n(x) such that〈d, n〉 > 0
for all d ∈ d(x).

Assumption 4.1 states that for every x ∈ ∂G, there exists a hyperplane of
support toG through x that separates x−d(x) andG. For SPs withG = IRn+
and n directions of constraint this geometric assumption is equivalent to
the algebraic one used in Reiman and Williams [35] and Bernard and El
Kharroubi [3], where it is referred to as the condition that the matrix formed
by the directions of constraint is completely-S. For such SPs, it serves as
a necessary and sufficient condition for the existence of solutions to the
SP on DG([0,∞) : IRn) [3]. The existence results discussed above are
summarized in the following theorem [13].
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Theorem 4.2. Given a SP with domainG, the existence of a projection
π : IRn → G implies the existence of solutions for allψ ∈ FG. If the
SP satisfies Assumption2.1, then solutions are unique for all suchψ and
there exists a unique Lipschitz continuous extension of the Skorokhod Map
to DG([0,∞) : IRn). If in addition Assumption4.1 holds, thenFG =
DG([0,∞) : IRn).

Note that if for some δ > 0 a local projection is defined for a SP on
the neighbourhood Nδ(G), then one obtains existence of solutions for the
subsetHG([0,∞) : IRn) of functions inFG([0,∞) : IRn)whose maximum
jump size is less than δ. As in (4.2), we can then obtain solutions to the SP
on the closure (with respect to the sup norm) of the set of functions in
HG([0,∞) : IRn) for which there exists an a priori bound on |η|(T ) for
every T < ∞. When Assumption 2.1 holds for the SP this includes all
continuous functions of bounded variation.

4.3. The existence of a projection for simple Skorokhod Problems

From Theorem 4.2 it is apparent that a crucial step in proving existence of
solutions to the SP is establishing the existence of a global projection for
the SP. Section 4.3.1 shows how local projections can be pieced together
in order to obtain global projections for a SP. Consider a SP that satisfies
Assumption 2.1. For such SPs, Theorem 4.4 shows that the existence of a
local projection is equivalent to that of a global one. SPs with a complex
structure can often be represented as a combination of smaller sub-SPs
which are easier to analyze. Theorem 4.5 derives conditions under which a
global projection for the SP can be synthesized from local projections for
the sub-SPs. In Section 4.3.2 we introduce a class of SPs, which we call
simple SPs, for which a natural decomposition exists. Simple SPs can be
represented as the union of SPs with a more elementary structure, which we
term standard SPs.

4.3.1. Construction of global projections

Suppose there exists a local projection π for a SP that is defined on a
neighbourhood Nδ(G) of the domain for δ > 0. Then for α ∈ [0,∞) we
define the map Fα on Nδ(G) ∩Gc by

Fα(x)
.= π(x)+ x − π(x)

||x − π(x)||(α + ||x − π(x)||). (4.3)

When α = 0 Fα is simply the identity map. In general Fα(x) locates a point
α units away from x on the ray joining π(x) to x. It is evident that the point
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π(x) also serves as a projection for all points on this ray. In other words,
we can define π(Fα(x))

.= π(x). To see that π(x) defines a valid projection
for Fα(x) note that π(x) ∈ ∂G, and from (4.3) we get

π(Fα(x))− Fα(x) = π(x)− Fα(x) = (π(x)− x)

(
α + ||x − π(x)||

||x − π(x)||
)
,

which is contained in d(π(x)) = d(π(Fα(x))) since π(x) is a valid pro-
jection for x. Thus we can use Fα to extend the domain of definition of the
local projection to G ∪ C, where

C
.= ∪α≥0Fα(Nδ(G) ∩Gc), (4.4)

by defining π(x)
.= x for x ∈ G and π(x)

.= π(y) for any x ∈ C such
that x = Fα(y) for some y ∈ Nδ(G) ∩Gc and α ≥ 0. Suppose x = Fα(y)

and x = Fα′(y ′) for some (y, y ′) ∈ (Nδ(G) ∩Gc)2 and (α, α′) ∈ [0,∞)2.
Then, as just shown, both π(y) and π(y ′) are valid projections for x. Let x0

be any point in G, and let x1 and x2 be points in Gc. Define ψi(t) to be x0

if t ∈ [0, 1) and xi if t ∈ [1,∞). If a projection π is defined at both x1 and
x2, then a solution to the SP for ψi , i = 1, 2 is given by

φi(t) =
{

x0 for t ∈ [0, 1)
π(xi) for t ∈ [1,∞).

Thus Lipschitz continuity of the SM implies Lipschitz continuity of π on its
domain of definition. Therefore if Assumption 2.1 is satisfied for the SP, then
π(y) = π(y ′) since the projection must be unique and hence the extension
is well defined. In fact, as established in Lemma 4.3, when Assumption 2.1
holds Fα : Nδ(G)∩Gc → Fα(Nδ(G)∩Gc) is a homeomorphism for every
α ≥ 0.

Lemma 4.3. Suppose Assumption2.1 is satisfied for a SP for which a local
projectionπ exists on some neighbourhoodNδ(G) of the domainG. Then
for anyα ≥ 0 the mappingFα : Nδ(G) ∩Gc → Fα(Nδ(G) ∩Gc) defined
in (4.3) is a homeomorphism.

Proof. For α = 0 Fα is just the identity map which is clearly a homeo-
morphism. Fix α > 0. Since the SP satisfies Assumption 2.1, the extension
of π defined on (4.4) is continuous. Moreover, since ||x − π(x)|| > 0 on
Nδ(G) ∩ Gc, Fα is continuous on Nδ(G) ∩ Gc. Now suppose there exists
(y, y ′) ∈ (Nδ(G) ∩ Gc)2 such that x

.= Fα(y) = Fα(y
′). Then by the

definition of the extension, π(Fα(y)) = π(y) and π(Fα(y ′)) = π(y ′) and
thus
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x = π(y)+ y − π(y)

||y − π(y)|| (α + ||y − π(y)||)

= π(y ′)+ y ′ − π(y ′)
||y ′ − π(y ′)||

(
α + ||y ′ − π(y ′)||) . (4.5)

However, π(y) = π(y ′) since both define valid projections for x and As-
sumption 2.1 implies that the projection is unique. Substituting this in (4.5)
we obtain ‖y − π(y)‖ = ‖y ′ − π(y ′)‖, and thus y = y ′. This implies that
Fα is one-to-one. The continuity of the inverse mapping is then apparent
from the explicit expression

F−1
α (x) = π(x)+ x − π(x)

‖x − π(x)‖ (||x − π(x)|| − α)

for x ∈ Fα(Nδ(G)∩Gc). This is well defined because the extension defines
π(x) uniquely for all x ∈ C. Thus for every α ≥ 0, Fα is a homeomorphism
from Nδ(G) ∩Gc to Fα(Nδ(G) ∩Gc).

The homeomorphism Fα is used in Theorem 4.4 to demonstrate that
when Assumption 2.1 holds, C = Gc and so the extension of π to C given
in (4.4) yields a projection for the SP that is defined on the whole of IRn.

Theorem 4.4. Suppose Assumption2.1 is satisfied for theSP {di, ni, ci),
= 1, . . . ., N} with domainG. Moreover suppose that there exists a local
projectionπ for the SP defined onNδ(G) for someδ > 0. Thenπ can be
uniquely extended to define a projection onIRn.

Proof. On G, π(x) = x. Given a local projection π for the SP, for α ≥ 0
consider the map Fα defined in (4.3) and the extension of π to C described
in (4.4). We prove the theorem by showing that C is both open and closed
relative toGc. SinceFα is a homeomorphism by Lemma 4.3 andNδ(G)∩Gc

is open, Fα(Nδ(G) ∩Gc) is also open for every α ≥ 0. Consequently C is
a union of open sets and is therefore also open.

Now let {xn} be a sequence in C that converges to x ∈ Gc. If x ∈
Nδ(G)∩Gc, then it lies in the domain of definition of the local projection and
so x ∈ C. Suppose x 6∈ Nδ(G). Since limn→∞ xn = x, given any γ ∈ (0, δ),
there exists N < ∞ such that xn ∈ [Nγ (G)]c for n ≥ N . Therefore
||π(xn)−xn|| ≥ γ since infx∈C\Nγ (G) ||x−π(x)|| ≥ infx∈C\Nγ (G) d(x,G) ≥
γ . Now set γ = δ/2 and choose N < ∞ such that ||xn − π(xn)|| ≥ γ for
n ≥ N . Then since xn ∈ C there exist yn ∈ Nδ(G) ∩Gc and αn ≥ 0 such
that xn = Fαn(yn), and thus

xn = π(yn)+ yn − π(yn)

||yn − π(yn)|| (αn + ||yn − π(yn)||) .
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With no loss it can be assumed that yn ∈ {y : ||y − π(y)|| = γ } ⊂
Nδ(G). This is because if ||yn − π(yn)|| 6= γ we can always choose y ′

n and
α′
n to be

y ′
n

.= π(yn)+ yn − π(yn)

||yn − π(yn)||γ,

and

α′
n

.= αn + ||yn − π(yn)|| − γ,

so that π(y ′
n) = π(yn) = π(xn). It is easy to verify that ||y ′

n−π(y ′
n)|| = γ ,

y ′
n ∈ Nδ(G)\G and xn = Fα′

n
(y ′
n). Moreover, α′

n ≥ 0 since ||xn−π(xn)|| =
αn + ||yn − π(yn)|| ≥ γ .

Thus there always exists a sequence yn ∈ {y : ||y − π(y)|| = γ } and
αn ≥ 0 such that xn = Fαn(yn). Then xn can be expressed as

xn = π(yn)+ αn + γ

γ
(yn − π(yn)) .

Since xn converges to x, {xn, n ∈ IN} is bounded and so lies inside some
neighbourhood NK1(0) for K1 < ∞. Since xn ∈ C π(xn) exists, and thus
the boundedness of {xn, n ∈ IN} along with the Lipschitz continuity of π
implies that there exists K2 < ∞ such that {π(xn), n ∈ IN} ⊂ NK2(0).
Noting that π(yn) = π(xn) and αn ≥ 0, from the last display it follows
that ‖yn − π(xn)‖ ≤ ‖xn − π(xn)‖. This shows that {yn, n ∈ IN} is a
bounded sequence. Moreover, {y : ||y−π(y)|| = γ } is closed because π is
continuous. Thus since ‖yn − π(yn)‖ = γ , {yn, n ∈ IN} lies in a compact
set and therefore there exists a subsequence, which we denote again by {yn},
that converges to some y ∈ Nδ(G)∩Gc with ||y−π(y)|| = γ . The fact that
π is Lipschitz continuous then implies that limn→∞ π(yn) = π(y). Since
xn → x, αn must also converge to some limit α ∈ [0,∞). So we obtain

x = limn→∞ xn = π(y)+ y − π(y)

γ
(α + γ )

= π(y)+ y − π(y)

||y − π(y)|| (α + ||y − π(y)||) .

In other words x = Fα(y) where y ∈ Nδ(G)∩Gc and α ≥ 0, which shows
that x ∈ C. Thus we conclude that xn ∈ C → x ∈ Gc implies x ∈ C.
Thus C is closed relative to Gc and since it is also open, C = Gc. Since
Assumption 2.1 holds for the SP, the extension of the projection to IRn is
unique.

Consider the SP Pj
.= {(dji , nji , cji ), i = 1, . . . , I j } with domainGj for

j = 1, . . . , J . Let G
.= ∩Jj=1Gj and suppose that each of the domains G
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andGj, j = 1, . . . , J has nonempty interior relative to ∪Jj=1Gj . Define the
composite SP associated with the collection {Pj , j = 1, . . . , J } to be

Q
.= {(d, n, c) : (d, n, c) = (d

j

i , n
j

i , c
j

i ) for some i ∈ {1, . . . , I j } and

j ∈ {1, . . . , J } such that {x : 〈x, nji 〉 = c
j

i } ∩ ∂G 6= ∅}.
(4.6)

The collection {Pj , j = 1, . . . , J } of SPs is said to be consistent if
(d, n, c) ∈ Q, (d ′, n′, c′) ∈ Q, and (n, c) = (n′, c′), imply d = d ′. This
simply ensures that every face of G has a single direction of constraint as-
sociated with it and consequently that Q represents a well defined SP on
the polyhedral domain G. Suppose that the SP Q satisfies Assumption 2.1
and that each Pj has a local projection πj . Theorem 4.5 shows that if the
domains Gj overlap sufficiently, as prescribed by condition (4.7), then the
projections πj can be patched together to obtain a local projection for Q.
The local projection can then be extended to all of IRn using Theorem 4.4.
Let rel int A and rel ∂A refer to the interior and boundary respectively of a
set A relative to some set C ⊃ A, which is specified explicitly according to
the use. More precisely, rel int A with respect to C ⊃ A is defined to be

{x ∈ A : ∃ε > 0 such that y ∈ C and d(x, y) < ε ⇒ y ∈ A},

and rel ∂A is defined to be cl(A)\rel int A. If no subset is explicitly specified,
then the set C is taken to be the affine hull of A.

Theorem 4.5. SupposePj is a Skorokhod Problem with local projection
πj and domainGj for j = 1, . . . , J . LetG

.= ∩Jj=1Gj . Suppose that the
collection{Pj , j = 1, . . . , J } is consistent and the domains satisfy

J⋂
j=1

[
∂G \ (

∂G ∩ ∂Gj

)] = ∅. (4.7)

If the composite Skorokhod ProblemQ defined in(4.6) satisfies Assumption
2.1, then a unique global projection exists forQ.

Proof.As stated just before the theorem,Q is a well-defined SP with domain
G = ∩Jj=1Gj . For j = 1, . . . , J and ε > 0 define

Oj(ε)
.= {x ∈ ∂G ∩ ∂Gj : d(x, rel ∂(∂G ∩ ∂Gj)) > ε},

where the relative boundary is considered with respect to ∂Gj . By (4.7) and
the fact that the Gj are polyhedral, there exists ε0 > 0 such that for ε < ε0
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J⋂
j=1

N2ε
(
∂G \ (

∂G ∩ ∂Gj

)) = ∅.

Since by the definition ofOj(ε), ∂G \Oj(ε) ⊂ N2ε(∂G \ (∂G∩ ∂Gj)) for

j = 1, . . . , J , the last display implies ∂G \
[
∪Jj=1Oj(ε)

]
= ∅ for ε < ε0.

Since ∪Jj=1Oj(ε) ⊂ ∂G, this implies that ∂G = ∪Jj=1Oj(ε). Fix ε < ε0

and to simplify notation we no longer explicitly specify the dependence of
Oj on ε.

Suppose πj is defined on the neighbourhood Nδj (Gj) for δj > 0, j =
1, . . . , J . Let δ0

.= mini∈{1,...,J } δi so thatNδ0(G) ⊂ ∪Jj=1Nδj (Gj). Then πj
is defined onNδ0(G)∩Nδ0(Gj) for every j ∈ {1, . . . , J }. Since Assumption
2.1 holds forQ, it also holds for everyPj . Thus the projectionsπj are unique
and Lipschitz continuous. By definition of the projection, πj(y) = y for
each y ∈ Oj , j = 1, . . . , J . From the uniform Lipschitz continuity of the
projections, given ε > 0 there exists δ ∈ (0, δ0) such that for x ∈ IRn and
any j = 1, . . . , J ,

y ∈ Oj and d(x, y) < δ ⇒ d(πj (x), πj (y)) = d(πj (x), y) < ε. (4.8)

For δ ∈ (0, δ0) chosen so that (4.8) holds, for each j ∈ {1, . . . , J } let

Oδ
j

.= {x ∈ Gc
j : d(x, y) < δ for some y ∈ Oj }.

For x ∈ Nδ(G)∩Gc, let θ(x)
.= min{j ∈ {1, . . . , J } : x ∈ Oδ

j }. SinceGc =
(∩Jj=1Gj)

c = ∪Jj=1G
c
j and ∪Jj=1Oj = ∂G, it is evident that ∪Jj=1O

δ
j =

Nδ(G) ∩Gc. Thus θ(x) is well defined on Nδ(G) ∩Gc. Define

π(x) =
{

x for x ∈ G,
πθ(x)(x) for x ∈ Nδ(G) ∩Gc.

(4.9)

We now show that π is a local projection for Q. Fix x ∈ Nδ(G) ∩ Gc

and suppose j = θ(x) so that π(x) = πj(x). The fact that πj(x) is a
valid projection for Pj implies that πj(x) ∈ ∂Gj . Then (4.8) and the fact
that x ∈ Oδ

j imply that πj(x) ∈ Nε(Oj) ∩ ∂Gj . From the definition of
Oj it follows that Nε(Oj) ∩ ∂Gj ⊂ rel int(∂G ∩ ∂Gj) (where the inte-
rior is considered relative to ∂Gj ) and thus πj(x) ∈ ∂G. Consequently
π(x) = πj(x) ∈ ∂G. Moreover, πj(x) − x belongs to the allowed di-
rections of constraint for Pj at πj(x). Since the SPs {Pj , j = 1, . . . , J }
are consistent, for y ∈ rel int(∂G ∩ ∂Gj) (again relative to ∂Gj ) the
allowed directions of constraint d(y) are the same for Pj and Q. Thus
π(x) − x = πj(x) − x ∈ dPj (πj (x)) = dQ(πj (x)) = dQ(π(x)), where
dPj (x) and dQ(x) represent the directions of constraint associated with the
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SPs Pj and Q, respectively. This establishes that π(x) given in (4.9) is a
well-defined local projection for the SPQ onNδ(G). Since we also assume
Assumption 2.1 holds for the SP, the existence of a unique global projection
follows from Theorem 4.4.

A complex SP can sometimes be decomposed into a collection of con-
sistent SPs which have simpler structures. For example, see Figure 7 in [17].
Existence of a projection is usually more easily verified for the simpler SPs.
Theorem 4.5 is very useful in such situations as it states conditions under
which a projection for the complex SP can be inferred from the existence
of projections for the collection of consistent SPs. In the next section, we
introduce a class of SPs called simple SPs, which lends itself naturally to
such a decomposition.

4.3.2. Existence for simple Skorokhod Problems

In this section we introduce two classes of SPs – standard SPs and simple SPs
in Definitions 4.6 and 4.7, respectively. Conditions that guarantee existence
of projections and solutions are best understood for the class of standard
SPs. After discussing these conditions we indicate how they can be used
along with Theorem 4.5 to verify existence of solutions to simple SPs, which
locally resemble standard SPs. In [17, Section 3.4] we apply this technique
to prove the existence of solutions to SPs that arise from a generalized
processor sharing network, on a subset of DG([0,∞) : IRn).

Definition 4.6 (Standard SP). The SP{(di, ni, ci), i = 1, . . . , N} is said
to be standard ifN = n andspan({n1, n2, . . . , nN }) = IRn.

Definition 4.7 (Simple SP).A polyhedronG ⊂ IRn is simple if each of its
vertices lies in exactlyn of its faces. The SP{(di, ni, ci), i = 1, . . . , N} is
simple if its domainG = ∩Ni=1{x : 〈x, ni〉 ≥ ci} is simple.

Let a simple domain have vertices vj , j = 1, . . . , K . Then we define
Ij ⊂ {1, . . . , N} to be the set that identifies the n hyperplanes that contain
the vertex vj , so that

vj = ∩i∈Ij {x : 〈x, ni〉 = ci}.
The standard SP associated with the vertex vj is defined to be

Pj
.= {(di, ni, ci), i ∈ Ij }, (4.10)

and its domain is given by
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Gj = ∩i∈Ij {x : 〈x, ni〉 ≥ ci}.

We first consider two criteria for the existence of solutions to standard SPs.
LetD

.= [d1, d2, . . . , dn] be the matrix of directions of constraint for a stan-
dard SP. As mentioned earlier, for standard SPs with domainG = IRn+, As-
sumption 4.1 is equivalent to the condition that the matrixD be completely-
S. This latter condition is a necessary and sufficient condition for the ex-
istence of solutions to the SP on D([0,∞) : IRn) [3, 30, 35]. In particular,
it is sufficient for the existence of a global projection for the associated SP.
In [13, Theorem 3.1] another sufficient condition for the existence of a pro-
jection was introduced for SPs {(di, ni, ci), i = 1, . . . , N} whose domain
G is a closed convex cone with vertex w = ∩Ni=1{x : 〈x, ni〉 = ci}. The
condition requires the existence of an n×nmatrixR that satisfies di = Rni
for i = 1, . . . , N , and 〈ν, Rν〉 ≥ a > 0 for all ν ∈ ν(w). (Recall that ν(w)
is the set of unit inward normals toG atw.) The simplest situation in which
this assumption is applicable is whenG is the intersection ofN half-spaces
with N ≤ n and di = Rni , i = 1, . . . , N for some n × n matrix R. In
particular, it is applicable to standard SPs.

Now suppose a projection exists for every standard SP associated with a
simple SP. It is natural to ask whether a projection can then be constructed
for the simple SP. Theorem 4.5 shows that this is possible if Assumption
2.1 holds for the simple SP and the domains of the constituent standard SPs
overlap sufficiently to satisfy the condition in (4.7).

Theorem 4.8. Consider the simple SPQ = {(di, ni, ci), i = 1, . . . , N}
whose domainGhas verticesvj , j = 1, . . . , K. Suppose that the associated
standard SPsPj have local projectionsπj and domainsGj such that(4.7) is
satisfied. If Assumpion2.1 holds forQ, then there exists a global projection
π for Q.

Proof.The proof is a direct consequence of Theorem 4.5. It is easy to see that
the simple SP Q can be represented as the composite SP for the collection
Pj , j = 1, . . . , J of standard SPs. SupposeGj is the domain of the standard
SPPj . Since the standard SPs arise from the simple SPQ, they automatically
satisfy the consistency condition that the directions of constraint coincide
on faces that are common to G, Gj and Gk for any j, k ∈ {1, . . . , N}.
By assumption, the domains satisfy (4.7) and Assumption 2.1 holds for Q.
Thus by Theorem 4.5, Q has a unique global projection.

4.4. Existence of solutions to general Skorokhod Problems

We now study existence of solutions to any SP on a polyhedral domain that
has constant directions of constraint defined on each face. Theorem 4.11
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asserts that any such SP can be approximated by a sequence of simple SPs.
Theorem 4.12 shows that the existence of projections for SPs is in a certain
sense closed under limits. More precisely, it proves that under Assumption
2.1 the existence of projections for the approximating simple SPs implies
the existence of a projection for the limit. This suggests a method of obtain-
ing existence of solutions for any SP by first constructing projections for
an appropriate sequence of approximating simple SPs, which in turn can
be obtained by building local projections for the corresponding standard
SPs. The following lemma shows that any polytope can be approximated
arbitrarily closely (using just radial perturbations) by a simplical polytope
having the same set of vertex directions. This lemma is used in Theorem
4.11 below. A proof can be found in [18, Lemma A.4].

Definition 4.9 (Simplical Polytope). A simplical polytope is a polytope in
IRn for which each(n−1)-dimensional face is the convex hull ofn vertices.

Lemma 4.10. Consider a polytopeZ
.= conv[C] for some finite set of

pointsC = {vj , j = 1, . . . , J } and suppose that0 ∈ Z◦. Then given any
ε > 0 there exists a setS = {(1 + εj )vj , j = 1, . . . , J } such thatconv[S]
is a simplical polytope and|εj | < ε for all j ∈ {1, ..., J }.
Theorem 4.11. Given any SP{(di, ni, ci), i = 1, . . . , N} andδ > 0, there
exists a simple SP of the form{(di, ni, c′i), i = 1, . . . , N} such thatc′i ∈
(ci − δ, ci) for all i ∈ {1, . . . , N}.
Proof. This is simply the statement dual to Lemma 4.10, which states that
given any polytopeZ, a simplical polytope can be obtained using arbitrarily
small radial perturbations of the vertices of Z. One can without loss of
generality assume that 0 lies in the relative interior of G since properties
of the SP are invariant to translation of the domain. Therefore there exists
an external representation of the domain G = ∩Ni=1{x : 〈x, ni〉 ≥ ci} with
all ci ≤ 0. Now let bi

.= ci − δ/3 and define F
.= ∩Ni=1{x : 〈x, ni〉 ≥ bi}.

Then bi < 0 for every i ∈ {1, . . . , N} and 0 lies in the interior of F .
This implies that the dual domain F ∗ is bounded, and by Lemma 3.3, the
internal representation of F ∗ is F ∗ .= conv[{ni/bi, i = 1, . . . , N}]. Given
any δ > 0, by Lemma 4.10 there exists a simplical polytope of the form
F ∗
δ

.= conv[{ni/b̃i, i = 1, . . . , N}], where b̃i ∈ (bi − δ/3, bi). The dual
Fδ

.= (F ∗
δ )

∗ is then a simple domain with representation Fδ = ∩Ni=1{x :
〈x, ni〉 ≥ b̃i}. Thus {(di, ni, b̃i), i = 1, . . . , N} is a simple SP and since
b̃i ∈ (ci − δ, ci), the theorem is established.

Thus if we use a description of the SP for which 0 lies in the relative
interior of the domain, then it is always possible to choose the approximating
sequence of simple domains to be such that c′i < ci . We will assume without
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loss of generality for the rest of this section that 0 lies in the relative interior
of the domain of the SP. However, note that the proof of Theorem 4.12 given
below only uses the fact that 0 ∈ G.

Theorem 4.12. Consider a sequenceP k
.= {(di, ni, cki ), i = 1, . . . , N},

k ∈ IN , of SPs such that for everyi, the sequencecki monotonically converges
up toci . Suppose there exists a projectionπk for eachP k. If the SPP =
{(di, ni, ci), i = 1, . . . , N} satisfies Assumption2.1, then it has a unique
global projection.

Proof.LetGk be the domain and dk(·) the directions of constraint associated
with the SP P k. Since 0 ∈ G and cki converges monotonically up to ci ,G =
∩kGk. Note that 0 ∈ ∩kGk implies πk(0) = 0 for every k ∈ IN . Fix x 6∈ G.
Since Assumption 2.1 holds for the limit SP, it holds for every P k because
Assumption 2.1 is independent of the values of ci in the representation of the
SP. Thus everyπk is Lipschitz continuous with a common Lipschitz constant
M . Fix x 6∈ G. We now show that {πk(x), k ∈ IN} is contained in a compact
set. The uniform Lipschitz continuity of the projections dictates that

‖πk(x)‖ = ‖πk(x)− πk(0)‖ ≤ M‖x‖.
This shows that the sequence {πk(x), k ∈ IN} is bounded. Hence there
exists a convergent subsequence, which we also label by πk(x), that has
limit π(x)

.= limk→∞ πk(x). Now because x 6∈ G and cki ↑ ci , there exists
K < ∞ such that for k ≥ K , x 6∈ Gk and hence πk(x) ∈ ∂Gk. Then
since {πk(x), k ∈ IN} is a bounded sequence, cki ↑ ci and πk(x) ∈ ∂Gk,
π(x) = limk→∞ πk(x) ∈ ∂G.

We next state an upper semicontinuity property of the set of directions
of constraint. If yk ∈ ∂Gk and yk → y ∈ ∂G, then there exists K < ∞
such that for k ≥ K ,

dk(yk) ⊂ d(y). (4.11)

We know that πk(x) − x ∈ dk(πk(x)). Substituting yk = πk(x) and y =
π(x) in (4.11), for large enough k we obtain πk(x)− x ∈ d(π(x)). Taking
the limit in k and noting that d(π(x)) is a closed cone we conclude that
π(x)− x ∈ d(π(x)). Thus π(x) is a projection for all x 6∈ G.

If x ∈ G, then x ∈ Gk for all k and so π(x) = πk(x) = x. Therefore
π(x) is a valid global projection for P .

5. Conclusion

In summary, this paper develops methods for constructing solutions to the
SP and for verifying Lipschitz continuity of the SM for SPs on polyhedral
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domains. The key step is the construction of a set B∗ that satisfies Assump-
tion 3.1. Once the existence of B∗ is verified, the consequent Lipschitz
properties are also useful in establishing existence of solutions to the SP.
Assumption 3.1 is geometric in nature. However, the paper shows how con-
vex analysis and transformation methods can be applied to obtain algebraic
conditions on the problem data that guarantee that Assumption 3.1 is satis-
fied. It is this interesting interplay between convex geometry and algebraic
characterizations that makes the general study of the SP challenging.

The duality methods developed in this paper are applied to concrete
classes of SPs in the sequel [17] to this paper. All SPs outside the general-
ized Harrison–Reiman class turn out to be much harder to analyze, in part
because techniques more sophisticated than contraction mapping techniques
are required, and also because of the greater complexity of the associated
set B.
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