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Abstract. The estimates presented here for parabolic Bellman’s equations with variable
coefficients extend the ones earlier obtained for constant coefficients.

Introduction

The main purpose of the article is to present some estimates for the rate of con-
vergence of finite-difference approximations in the problem of finding viscosity
or probabilistic solutions to degenerate Bellman’s equations. Specifically, we are
dealing with the problem

F(Dtu, uxixj , uxi , u, t, x) = 0 in (0, T ) × Rd , u(T , x) = g(x) in Rd ,

(0.1)

whereRd is ad-dimensional Euclidean space of pointsx = (x1, . . . , xd), T is a
fixed finite positive number,Dtu = ∂u/∂t , uxi = ∂u/∂xi , uxixj = ∂2u/∂xi∂xj ,
and

F(u0, uij , ui, u, t, x)

= sup
α∈A

{u0 + aij (α, t, x)uij + bi(α, t, x)ui − cα(t, x)u + f α(t, x)}

with A, a, b, c, andf to be specified later. Such equations arise as dynamic pro-
gramming equations for value functions in control problems of diffusion processes.
Indeed, under our conditions the corresponding value function turns out to be a vis-
cosity solution of (0.1).

Numerical approximations for problem (0.1) has been considered for quite long
time (see [10], [3] and the references therein). There are known two methods for
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proving the convergence of numerical approximations to the true solution. One
of them, introduced by Kushner (see [10]), relies on constructing finite difference
schemes, which generate controlled Markov chains, and proving that the chains
converge weakly to the underlying controlled diffusion process. This turns out to
be not an easy task because generally the set of the weak limit points of controlled
Markov chains is wider than the set of the processes which can be obtained by con-
trolling the diffusion process. Therefore, in [10] (for controlled drift) and in [8] (for
controlled drift and diffusion) one has either to “convexify” the set of infinitesimal
characteristics of controlled processes or relax the notion of controlled diffusion
process as suggested in [2].

Another method is based on the uniqueness of viscosity solutions of (0.1). This
method is introduced in [1] in an abstract setting and discussed in detail in [3] for
our case.

Although both methods are quite general and allow one to treat a large variety
of control problems, neither of them is suitable for estimating the rate of conver-
gence. In our opinion, the main reason for this is that these methods do not use
analytic properties of solutions to Bellman’s equations. In this paper we present a
different method of proving the convergence, which also provides an estimate of
the rate of convergence. The idea of the method is explained in [5] for the case of
controlled processes with time and state independent coefficients, where we use
some quite elementary analytic properties of the value function. The arguments
here for the more general case are a little bit more involved and rely also on mean
value theorems for stochastic integrals (see [7]), which again are obtained on the
basis of simple properties of Bellman’s equations. By the way, ifA is a singleton,
then the value function is just the expectation of a certain well known functional of
a solution to It̂o’s equation and the results of [7] are not needed.

Finally, it is worth noticing that unlike [10] and [3] we only consider problem
(0.1) and unlike [5] we do not know anything about sharpness of our estimates even
if A is a singleton. To the best of our knowledge, even in this case our estimates
seem to be the first in their kind.

The article is organized as follows. In Sec. 1 we state our main results, which we
prove in Sec. 3. The proofs are based on the results of Sec. 2 dealing with approx-
imate smooth solutions of (degenerate) Bellman’s equations. These results make
sense even if the equation is linear and, in our opinion, are of independent interest.
In Appendix we present the proof of Hölder continuity of the value function. This
fact can be considered as well known and we give the proof only for the sake of
completeness.

Throughout the paperT ∈ (0, ∞), K, K1 ∈ [1, ∞), andδ0, δ ∈ (0, 1] are
fixed constants. Everywhere, apart from Sec. 2, byN we denote various constants
depending only onK, K1, andd unless explicitly stated otherwise.

1. The main results

Let (�,F, P ) be a complete probability space,{Ft ; t ≥ 0} be an increasing fil-
tration ofσ -algebrasFt ⊂ F which are complete with respect toF, P . Assume
that on(�,F, P ) a d1-dimensional Wiener processwt is defined fort ≥ 0. We
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suppose thatwt is a Wiener process with respect to{Ft }, or in other terms, that
{wt,Ft } is a Wiener process.

Let A be a separable metric space (the set of all admissible controls).

Definition 1.1. An A-valued functionαt = αt (ω) defined for allt ≥ 0 andω ∈ �

is calleda policy if it is measurable with respect to the product ofF and Borel
σ -field of [0, ∞) and, in addition,Ft -measurable with respect toω for eacht ≥ 0.
The set of all policies is denoted byA.

Forr1, r2 ∈ [0, ∞)and real-valued functionsf = f (t, x)given on [r1, r2]×Rd

we define

|f |0,[r1,r2] = sup
[r1,r2]×Rd

|f (t, x)|, [f ],δ,[r1,r2] =
sup

t∈[r1,r2]

x 6=y

|f (t, x) − f (t, y)|
|x − y|δ ,

[f ]δ/2,,[r1,r2] = sup
x∈Rd

sup
s,t∈[r1,r2]

s 6=t

|f (s, x) − f (t, x)|
|s − t |δ/2

,

[f ]δ,[r1,r2] = [f ],δ,[r1,r2] + [f ]δ/2,,[r1,r2], |f |δ,[r1,r2] = |f |0,[r1,r2] + [f ]δ,[r1,r2] .

If f = f (α, t, x) is defined onA × [r1, r2] × Rd we write

|f |0,[r1,r2] = sup
α∈A

|f (α, ·, ·)|0,[r1,r2], [f ],δ,[r1,r2] = sup
α∈A

[f (α, ·, ·)],δ,[r1,r2] ,

[f ]δ/2,,[r1,r2] = sup
α∈A

[f (α, ·, ·)]δ/2,,[r1,r2] ,

[f ]δ,[r1,r2] = [f ],δ,[r1,r2] + [f ]δ/2,,[r1,r2], |f |δ,[r1,r2] = |f |0,[r1,r2] + [f ]δ,[r1,r2] .

The same notation is applied for vector-valued and matrix-valued functions in which
case by| · | we mean the square root of the sum of squares of all entries. Actually,
in the case of matricesσ = (σ ij ) instead of|σ | we use a different notation||σ ||,
which is defined by

||σ ||2 =
∑
i,j

|σ ij |2 .

Sometimes we taker2 = ∞ in which case instead of [r1, r2] in the above definitions
we write [r1, ∞). If r1 = 0 andr2 = ∞, we drop [r1, r2], so that, for instance,
|f |0 := |f |0,[0,∞).

By C2+δ([r1, r2]) we denote the space of all functionsu = u(s, x) defined on
[r1, r2] × Rd with finite norm

|u|2+δ,[r1,r2] := |u|0,[r1,r2] + |Dxu|0,[r1,r2] + |Dtu|δ,[r1,r2] + |D2
xxu|δ,[r1,r2] .

Suppose that onA× [0, ∞)×Rd we are given ad ×d1 matrix-valued function
σ(α, t, x), anRd -valued functionb(α, t, x) and real-valued functionscα(t, x) ≥ 0,
f α(t, x), andg(x).

Assumption 1.2. The functionsσ(α, t, x), b(α, t, x), cα(t, x), andf α(t, x) are
Borel in all variables, continuous with respect toα, and

|σ |20 + |b|0 + |σ |,1 + |b|,1 + |σ |δ0/2, + |b|δ0/2, + |c|δ + |f |δ ≤ K, |g|δ ≤ K1 .
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Sinceσ andb are bounded and Lipschitz inx, by Itô’s theorem for anyα ∈ A,
s ∈ [0, ∞), andx ∈ Rd there exists a unique solutionxt = x

α,s,x
t , t ∈ [0, ∞), of

the following equation

xt = x +
∫ t

0
σ(αr , s + r, xr ) dwr +

∫ t

0
b(αr , s + r, xr ) dr .

For s ∈ [0, T ] andx ∈ Rd define

ϕα
t = ϕ

α,s,x
t =

∫ t

0
cαr (s + r, xα,s,x

r ) dr,

vα(s, x) = E[
∫ T −s

0
f αr (s + r, xα,s,x

r )e−ϕ
α,s,x
r dr + g(x

α,s,x
T −s )e−ϕ

α,s,x
T −s ] .

We follow usual abbreviations putting argumentsα, s, x around the symbols of ex-
pectation and probability to indicate that they should be placed inside in appropriate
places, so that, for instance,

vα(s, x) = Eα
s,x [

∫ T −s

0
f αr (s + r, xr )e

−ϕr dr + g(xT −s)e
−ϕT −s ] .

Let

v(s, x) := sup
α∈A

vα(s, x),

a(α, s, x) = 1
2σ(α, s, x)σ ∗(α, s, x),

Lαu(s, x) = aij (α, s, x)uxixj (s, x) + bi(α, s, x)uxi (s, x)

− cα(s, x)u(s, x) + Dsu(s, x),

F [u] = sup
α∈A

[Lαu + f α] .

By definitionv is the probabilistic solution of the problem

F [u] = 0 in (0, T ) × Rd , u(T , ·) = g . (1.1)

The functionv is also a viscosity solution of (1.1) (see, for instance, [3]).
Now we describe the approximating scheme for solving (1.1), which we are

going to study. LetRd+1
+ = [0, ∞) × Rd andB = B(Rd+1

+ ) be the set of all
bounded functions onRd+1

+ . For anyh ∈ (0, 1) let a numberph ∈ [1, ∞) and an
operatorFh : u ∈ B → Fh[u] ∈ B be defined.

Assumption 1.3. (i) Fh is anh2-local operator int , that is, for anyt ∈ [0, ∞)

andu1, u2 ∈ B, we haveFh[u1](t, x) = Fh[u2](t, x) for all x ∈ Rd whenever
u1(s, y) = u2(s, y) for all s ∈ [t, t + h2] andy ∈ Rd ;

(ii) Fh is locally consistent withF in the sense that, for anyt ∈ [0, ∞), x ∈ Rd ,
andu ∈ C2+δ0([t, t + h2]), we have

|Fh[u](t, x) − F [u](t, x)| ≤ Khδ0|u|2+δ0,[t,t+h2] ;
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(iii) the operatoru → 8h[u] := Fh[u] + phu is monotone, by which we mean
that if u1, u2 ∈ B andu1 ≥ u2, then8h[u1] ≥ 8h[u2]; moreover,

(iv) let ` := `(t) := e−2t , then for any constantM ≥ 0 andu1, u2 ∈ B such
thatu1 + M` ≥ u2, we have

8h[u1] + M`(ph − 1) ≥ 8h[u1 + M`] ≥ 8h[u2] .

Remark 1.4.As an example of approximating operatorsFh one may take operators
constructed on the basis of approximations ofLα in the following way. For any
h ∈ (0, 1) andα ∈ A, let a linear bounded operatorLα

h : B → B and a function
qα
h (t, x) > 0, (t, x) ∈ Rd+1

+ , be defined. Assume that
(a) for anyt ∈ [0, ∞) andu ∈ B, we haveLα

hu(t, x) = 0 for all x ∈ Rd

wheneveru(s, y) = 0 for all s ∈ [t, t + h2] andy ∈ Rd ;
(b) for anyu ∈ C2+δ0, α ∈ A, t ≥ 0, andx ∈ Rd , we have

|Lα
hu − Lαu|(t, x) ≤ Khδ0|u|2+δ0,[t,t+h2] ;

(c) we have
ph := sup

α∈A,t,x

qα
h (t, x) + 1 < ∞ ;

(d) the operatoru → Lα
hu+ qα

h u maps nonnegative functions into nonnegative
ones.

Under these conditions, the operator

Fh[u] := sup
α∈A

(Lα
hu + f α)

obviously satisfies conditions (i) through (iii) of Assumption 1.3. Condition (iv) is
also satisfied forh ∈ (0, h0] whereh0 is a constant depending only onK andδ0.

Indeed, owing to (b)

Lα
h` ≤ Lα` + N(K)hδ0` ≤ −2` + N(K)hδ0` ,

so that

8h[u + M`] = Fh[u+M`] + ph(u + M`)≤Fh[u] + phu + M sup
α∈A

Lα
h` + Mph`

= 8h[u]+M sup
α∈A

Lα
h`+Mph`≤8h[u]+M`(ph − 2 + N(K)hδ0) .

Hence, upon definingh0 so thatN(K)hδ0 ≤ 1, we see that the operatorFh∧h0

satisfies all conditions of Assumption 1.3.

Remark 1.5.One can use many different ways to construct the operatorsLα
h satis-

fying the conditions in Remark 1.4 (see [10], [8], [9]). For instance, taked = 1
and

Lα
hu(t, x) = a(α, t, x)h−2[u(t, x + h) − 2u(t, x) + u(t, x − h)]

+ b+(α, t, x)h−1[u(t, x + h) − u(t, x)]

+b−(α, t, x)h−1[u(t, x − h) − u(t, x)]

− cα(t, x)u(t, x) + h−2[u(t + h2, x) − u(t, x)] ,

qα
h = [2a(α) + 1]h−2 + |b(α)|h−1 + K ,
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whereb± = (|b| ± b)/2. Then the requirements (a), (c), and (d) of Remark 1.4 are
trivially satisfied and (b) is satisfied owing to the mean value theorem. Defining
Fh[u] as in Remark 1.4 and solvingFh[u] = 0 provides an implicit scheme of
solving (1.1).

By the way, the equationFh[u] = 0 can be considered only on the lattice
Qh := {t = ih2, x = jh : i = 0, 1, . . . , t ≤ T , j = 0, ±1, ±2, ...}, and this
explains the title of the article. However, considering this equation for all(t, x)

turns out to be very helpful in proving the convergence results we are after, even if
we were only interested in convergence at points which belong to all latticesQ2−n .

To discuss explicit schemes take a numberγ > 0 and defineLα
hu(t, x) as

a(α, t, x)(γ h)−2[u(t + h2, x + γ h) − 2u(t + h2, x) + u(t + h2, x − γ h)]
+ b+(α, t, x)(γ h)−1[u(t + h2, x + γ h) − u(t + h2, x)]
+ b−(α, t, x)(γ h)−1[u(t + h2, x − γ h) − u(t + h2, x)]
− cα(t, x)u(t + h2, x) + h−2[u(t + h2, x) − u(t, x)] .

This timeFh[u](t, x) = 9h[u](t, x)−h−2u(t, x), where9[u](t, x) is determined
by the values ofu(t + h2, ·), so that the equationFh[u] = 0 gives an explicit
formulau(t, x) = h29h[u](t, x) and allows one to go down to smaller values oft

just iterating this formula starting from the given valueu(T , x) = g(x). For such
Lα

h the requirements (a) and (b) in Remark 1.4 are satisfied by the same reason as
above. However, this time to satisfy (d) we obviously need to have

1 − 2a(α, t, x)γ −2 − γ −1h|b(α, t, x)| − h2cα(t, x) ≥ 0 , (1.2)

in which case one may takeqh = h−2. Of course (1.2) is satisfied for all small
h if γ is sufficiently large. This time after finding appropriateγ one can confine
oneself to solving the equationFh[u] = 0 on the lattice{t = ih2, x = jγ h : i =
0, 1, . . . , t ≤ T , j = 0, ±1, ±2, . . .}.
Remark 1.6.It is worth noting that if one wants to follow the approximating meth-
od of Remark 1.4, in general, one need not approximateall operatorsLα

h . The
following Bellman’s equation

Dtu + sup
α∈B1

αiαjuxixj = 0 , (1.3)

whereB1 = {x ∈ Rd : |x| < 1}, involves infinitely many operatorsLα =
Dt + αiαjDxi Dxj . Each ofLα can be approximated, say by

Lα
hu(t, x) := h−2[u(t + h2, x) − u(t, x)]

+ h−2[u(t, x + αh) − 2u(t, x) + u(t, x − αh)]

and then, as easy to see, the requirements of Remark 1.4 are satisfied. However,
we do not need to consider the approximations for|α| < 1 since the sup in (1.3) is
always equal to the sup overS1 = {|α| = 1}.
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Furthermore, for anyh ∈ (0, 1] one can findn(h) ∼ h(1−d)δ0 pointsαk on the
unit sphereS1 such that they form anhδ0-net. Then, for anyα ∈ S1, t ≥ 0, and
u ∈ C2+δ0([t, t + h2]) it holds that

inf
k

{
αiαjuxixj (t, x) − αi

kα
j
k uxixj (t, x)

}
≤ Nhδ0|u|2+δ0,[t,t+h2] ,

|F [u](t, x) − sup
k=1,...,n(h)

L
αk

h u(t, x)| ≤ Nhδ0|u|2+δ0,[t,t+h2] ,

so that we only have to deal with approximating finite number of operators,
although increasing whenh ↓ 0.

Lemma 1.7. (i) Let ξ(t, x) andζ(t, x) be bounded functions on[0, T +h2] × Rd .
Then the problem

Fh[η](t, x) = −ξ(t, x) ∀t ∈ [0, T ], x ∈ Rd;
η(t, x) = ζ(t, x) ∀t ∈ (T , T + h2], x ∈ Rd (1.4)

has a unique bounded solutionηh = ηh(ξ, ζ ).
(ii) If ξi(t, x) andζi(t, x) are bounded functions on[0, T +h2] × Rd , i = 1, 2,

then

ηh(ξ1, ζ1)

≥ ηh(ξ2, ζ2) − e2(T +h2) sup
(T ,T +h2]×Rd

(ζ2 − ζ1)+ − e2(T +h2) sup
[0,T ]×Rd

(ξ2 − ξ1)+ .

Proof. We introduceη̃(t, x) := e2t η(t, x) and ξ̃ (t, x) := p−1
h e2t ξ(t, x) and

rewrite the first equation in (1.4) as

8h[η] = phη − ξ, 8h[`η̃] = ph`η̃ − ph`ξ̃ , η̃ = 8̃h[η̃] + ξ̃ ,

where
8̃h[u] := p−1

h `−18h[`u] .

Hence, upon denoting̃ζ (t, x) := e2t ζ(t, x), we see that (1.4) is equivalent to the
equation

η̃ = 9h[η̃] := 9h[η̃, ξ̃ , ζ̃ ] := It∈[0,T ]{8̃h[η̃] + ξ̃} + It∈(T ,T +h2] ζ̃ .

Owing to Assumption 1.3 (i) the operatorη̃ → 9h[η̃, ξ̃ , ζ̃ ] can be regarded as
an operator in the spaceB([0, T + h2] × Rd) of all bounded functions on [0, T +
h2] × Rd . It turns out that this operator is a contraction.

Indeed, ifη̃2 ≤ η̃1 + M with a positive constantM, then

9h[η̃2] − 9h[η̃1] = It∈[0,T ]{8̃h[η̃2] − 8̃h[η̃1]}
= It∈[0,T ]p

−1
h `−1{8h[`η̃2] − 8h[`η̃1]} ,

where, by Assumption 1.3 (iv), the last factor is less thanM`(ph − 1). Therefore,

9h[η̃2] − 9h[η̃1] ≤ M(1 − p−1
h ) .
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Taking hereM = |η̃1 − η̃2|0,[0,T +h2] and also interchanging̃ηi , we see that9h is

a contraction with coefficient 1− p−1
h < 1. By Banach’s theorem we get the first

assertion of the lemma.
To prove the second one, first notice that ifξ̃1 ≥ ξ̃2 and ζ̃1 ≥ ζ̃2, then, for

η̃i (n) defined byη̃i (n + 1) = 9h[η̃i (n), ξ̃i , ζ̃i ], n ≥ 0, with η̃i (0) = 0, we have
η̃1(n) ≥ η̃2(n) for all n because of monotonicity of9h[η̃, ξ̃ , ζ̃ ] in η̃, ξ̃ , and ζ̃ .
It follows that assertion (ii) holds true ifξ1 ≥ ξ2 andζ1 ≥ ζ2. In other words,
for any bounded functionsη1 andη2 given in [0, T + h2] × Rd , we see that if
Fh[η1] ≤ Fh[η2] in [0, T ] × Rd andη1 ≥ η2 in (T , T + h2] × Rd , thenη1 ≥ η2
in [0, T + h2] × Rd .

In the general case, denote

M = e2T +2h2
[ sup
[0,T ]×Rd

(ξ2 − ξ1)+ + sup
(T ,T +h2]×Rd

(ζ2 − ζ1)+] .

Observe that by Assumption 1.3 (iv)

Fh[η1 + M`] = 8h[η1 + M`] − ph(η1 + M`) ≤ 8h[η1]

+M`(ph − 1) − ph(η1 + M`)

= Fh[η1] − M` = −ξ1 − M` ≤ −ξ2 = Fh[η2]

in [0, T ] × Rd and obviouslyη1 + M` ≥ η2 in (T , T + h2] × Rd . Hence,
η1 + M ≥ η2 in [0, T + h2] × Rd and the lemma is proved.

Remark 1.8.We will apply Lemma 1.7 not only to the interval [0, T ] but also to
its subintervals changing the origin oft-axis if needed.

In the sequel byvh we denote the function defined by Lemma 1.7 forξ = 0
andζ = g.

Here are our main results.

Theorem 1.9. For anyh ∈ (0, 1], in [0, T ] × Rd we have

vh ≤ v + NeNT hδ1 ,

where the constantN depends only onK, K1, d andδ1 = δδ2
0/(2+ δ0 + δδ0 − δ),

which is1/3 if δ0 = δ = 1.

Corollary 1.10. If A is a singleton andFh[u] = Lhu + fh whereLh is a linear
operator, then for anyh ∈ (0, 1],

|vh − v| ≤ NeNT hδδ2
0/(2+δ0+δδ0−δ) .

Theorem 1.11. Let δ0 ≤ δ. Then for anyh ∈ (0, 1], in [0, T ] × Rd we have

v ≤ vh + NeNT hδ1 , (1.5)

where the constantN depends only onK, K1, d and δ1 = δ2δ3
0(8 + δδ0)

−1

(2 + δ0 + δδ0 − δ)−1, which is1/27 if δ0 = δ = 1.
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The estimates in Theorems 1.9 and 1.11 are of different order and it is inter-
esting to know to what extent the estimate in Theorem 1.11 can be improved. In
[5] we considered processes with time and space independent coefficients, so that
δ0 can be any number in [0, 1]. The result of [5] says that|v − vh| goes to zero as
h ↓ 0 at least ashδ/3. Takingδ0 = 1, from Theorem 1.9 we get the same estimate
of orderhδ/3. However, this estimate is only forvh −v from above. We believe that
under additional and quite general conditions onFh one can improve the estimate
in Theorem 1.11 to be of the same order as in Theorem 1.9. In [6] we prove that
the rate in Theorem 1.11 is not less than 1/21 if δ = δ0 = 1 and we also give some
approximations with rate 1/3. By the way, the examples in [5] show that generally
one cannot do better thanh1/2.

2. Auxiliary results

The proofs of our main results are based on the following theorem in which and
everywhere in this section byN we denote various constants depending only onK

andd.

Theorem 2.1. For anyε ∈ (0, 1] there exists a functionu defined in[0, T + ε2] ×
Rd such that

|u(t, x) − g(x)| ≤ NK1ε
δ for t ∈ [T , T + ε2] ; (2.1)

sup
α∈A

[Lαu + f α] ≤ 0, |u − v| ≤ NeNT K1ε
δδ0 in [0, T ] × Rd , (2.2)

|u|2+δ0,[0,T +ε2] ≤ NeNT K1ε
δ−2−δ0 . (2.3)

Proof. First observe that we may assume|g|δ ≤ 1 andK1 = 1. Indeed if|g|δ > 1
we can replacef andg with f (1 + |g|δ)−1 andg(1 + |g|δ)−1, respectively, and
then after getting an appropriate functionu make the inverse transformation.

Next, defineÃ = A × {(τ, β) : τ ∈ (−1, 0), β ∈ B1}. Extendσ, b, c, f for
negativet following the exampleσ(α, t, x) = σ(α, 0, x) and for a fixedε ∈ (0, 1]
and anyα̃ = (α, τ, β) ∈ Ã let

σ(α̃, t, x) = σε(α̃, t, x) = σ(α, t + ε2τ, x + εβ)

and similarly defineb(α̃, t, x), cα̃(t, x), andf α̃(t, x). We denote bỹA the set of all
measurableFt -adaptedÃ-valued processes. As usual starting with these objects
defined onÃ, for anyα̃ ∈ Ã, s ≥ 0, andx ∈ Rd , we define the controlled diffusion
processxα̃,s,x

t and the value functions

uα̃(s, x) = Eα̃
s,x [

∫ S−s

0
f α̃t (s + t, xt )e

−ϕt dt + g(xS−s)e
−ϕS−s ],

u(s, x) = sup
α̃∈Ã

vα̃(s, x) ,
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which we consider fors ≤ S, whereS = T + ε2. We will keep in mind that
uα̃(s, x) andu(s, x) also depend onε which is not explicitly shown just for sim-
plicity of notation.

Next, take a nonnegative functionζ ∈ C∞
0 ((−1, 0) × B1) with unit integral,

and forε > 0 defineζε(t, x) = ε−d−2ζ(t/ε2, x/ε). We also use the notation

u(ε)(t, x) = u(t, x) ∗ ζε(t, x).

Our goal is to prove thatu(ε) is a function for which the assertions of the theorem
are true.

To prove (2.3) it suffices to use well-known properties of mollifiers and notice
that (see Appendix and remember|g|δ ≤ 1)

|u(t, x) − u(s, y)| ≤ NeNT (|t − s|δ/2 + |x − y|δ) . (2.4)

Next assume temporarily thatσ andb are twice continuously differentiable
in x with the derivatives being bounded. Then by Lemma 4.1.5 of [4], for any
α̃ = (α, τ, β) ∈ Ã,

L̃α̃u(t, x) + f α̃(t, x) := Dtu(t, x) + aij (α, t + ε2τ, x + εβ)uxixj (t, x)

+ bi(α, t + ε2τ, x + εβ)uxi (t, x)

− cα(t + ε2τ, x + εβ)u(t, x)

+ f α(t + ε2τ, x + εβ) ≤ 0 (2.5)

in the sense of generalized functions of(t, x) ∈ (0, S) × Rd . The same inequality
holds in the sense of generalized functions of(t, x, τ, β) ∈ (0, S)×Rd ×(−1, 0)×
B1. After “changing variables”, we easily get that the inequality

Dtu(t − ε2τ, x − εβ) + aij (α, t, x)uxixj (t − ε2τ, x − εβ)

+ bi(α, t, x)uxi (t − ε2τ, x − εβ) − cα(t, x)u(t − ε2τ, x − εβ)

+f α(t, x) ≤ 0 (2.6)

holds in the sense of generalized functions of(t, x, τ, β) ∈ (0, T )×Rd ×(−1, 0)×
B1. Furthermore, sinceu, a, b, c, f are continuous in(t, x), inequality (2.6) holds
in the sense of generalized functions of(τ, β) ∈ (−1, 0) × B1 for any (t, x) ∈
[0, T ] × Rd . By multiplying (2.6) byζ(τ, β) and integrating (that is using the
definition of the words “in the sense of generalized functions”), we conclude that
Lαu(ε) + f α ≤ 0 in [0, T ] × Rd for any α ∈ A. This proves the first inequali-
ty in (2.2) in the particular case of smoothσ, b. The general case is obtained by
mollifying σ, b with respect tox and passing to the limit, when the kernel tends
to the delta function, on the basis of Theorem 3.1.13 of [4] which says that the
corresponding value functions converge uniformly tou on any bounded subset of
[0, S] × Rd .

To prove (2.1) observe that obviously

−N(S − s) + inf
α̃∈Ã

Eα̃
x g(xS−s) ≤ u(s, x) ≤ sup

α̃∈Ã

Eα̃
x g(xS−s) + N(S − s) .
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ForS − s ≤ ε2, it follows that

|u(s, x) − g(x)| ≤ Nε2 + sup
α̃∈Ã

Eα̃
s,x |g(xS−s) − g(x)|

≤ Nε2 + N sup
α̃∈Ã

Eα̃
s,x |xS−s − x|δ ≤ Nεδ .

This and (2.4) easily yield (2.1) foru(ε) in place ofu.
Thus, to finish the proof of the theorem, it only remains to prove that the second

relation in (2.2) holds foru(ε) in place ofu.
Fix s ∈ [0, T ] andx ∈ Rd , takeα̃ = (α, τ, β) ∈ Ã, and notice that by com-

paring equations definingxα̃,s,x
t andx

α,s,x
t one can easily get (see, for instance,

Theorem 2.5.9 in [4]) that

E sup
t≤T −s

|xα̃,s,x
t − x

α,s,x
t |2 ≤ NeNT sup{||σ(α, t + ε2τ, x + εβ) − σ(α, t, x)||2

+ |b(α, t + ε2τ, x + εβ) − b(α, t, x)|2} ,

where the sup is taken over

α ∈ A, t ≤ T , τ ∈ (−1, 0), x ∈ Rd , β ∈ B1 .

It follows by our assumptions and Hölder’s inequality that

E sup
t≤T −s

|xα̃,s,x
t − x

α,s,x
t |2 ≤ NeNT ε2δ0 ,

E sup
t≤T −s

|xα̃,s,x
t − x

α,s,x
t |δ ≤ NeNT εδδ0 ,

E

∫ S−s

0
|f α̃t (s + t, x

α̃,s,x
t ) − f αt (s + t, x

α,s,x
t )| dt

≤ NT εδ + E

∫ T −s

0
|f αt (s + t, x

α̃,s,x
t ) − f αt (s + t, x

α,s,x
t )| dt ≤ NeNT εδδ0 ,

E

∫ S−s

0
|cα̃t (s + t, x

α̃,s,x
t ) − cαt (s + t, x

α,s,x
t )| dt ≤ NeNT εδδ0 ,

Eα̃
s,x |g(xS−s) − g(xT −s)| ≤ Nεδ .

Next, upon using the inequality

|f1e
−c1 − f2e

−c2| ≤ |f1 − f2| + (|f1| + |f2|)|c1 − c2|, c1, c2 ≥ 0 , (2.7)

we get that, fors ∈ [0, S] andx ∈ Rd ,

|uα̃(s, x) − vα(s ∧ T , x)| ≤ NeNT εδδ0, |u(s, x) − v(s ∧ T , x)| ≤ NeNT εδδ0,

|u(ε)(s, x) − [v(· ∧ T , ·)](ε)(s, x)| ≤ NeNT εδδ0 .

Now, to get the second inequality in (2.2) foru(ε) in place ofu, it only remains to
notice that (2.4) holds withv in place ofu, so that|[v(· ∧T , ·)](ε) − v| ≤ NeNT εδ.
The theorem is proved.
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Remark 2.2.In the second inequality in (2.2) only the estimate ofu−v from above
is of interest. Indeed, the following estimate from below is trivially derived by using
Itô’s formula from the first relation in (2.2) and from (2.1):

u ≥ v − NK1ε
δ .

WhenA consists of only one point, replacingf, g with −f, −g leads to replac-
ing v with −v and easily leads to the following.

Corollary 2.3. For anyα ∈ A andε ∈ (0, 1] there exist functionsu±(s, x) defined
in [0, T + ε2] × Rd such that

|u±(t, x) − g(x)| ≤ NK1ε
δ for t ∈ [T , T + ε2],

±(Lαu± + f α) ≤ 0, |u± − vα| ≤ NeNT K1ε
δδ0 in [0, T ] × Rd ,

|u±|2+δ0,[0,T +ε2] ≤ NeNT K1ε
δ−2−δ0 ,

whereN depends only onK and d and vα is generated by the constant policy
αt ≡ α.

3. Proof of Theorems 1.9 and 1.11

Proof of Theorem 1.9.Takeh ∈ (0, 1], ε ∈ [h, 1], and a functionu from Theorem
2.1. Then by Assumption 1.3 (ii) we have that

Fh[u] ≤ NeNT hδ0εδ−2−δ0

in [0, T ] × Rd andu(t, x) ≥ g(x) − Nεδ = vh(t, x) − Nεδ in (T , T + h2]. It
follows from Lemma 1.7 that, in [0, T ] × Rd ,

vh ≤ u + NeNT (εδ + hδ0εδ−2−δ0) .

By applying the second equation in (2.2) we conclude

vh ≤ v + NeNT (εδδ0 + hδ0εδ−2−δ0) .

It only remains to setε = hξ , whereξ = δ0(2+δ0+δδ0−δ)−1 (<1). The theorem
is proved.

To prove Theorem 1.11 we need two more auxiliary results before which we
introduce the following notation. For anyβ ∈ A, t ≥ s ≥ 0, and Borel function
u = u(x) define

G
β
s,tu(x) = Eα

s,x [
∫ t−s

0
f β(s + r, xr )e

−ϕr dr + u(xt−s)e
−ϕt−s ] ,

whereαt ≡ β. Also letGs,tu = supβ G
β
s,tu.
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Lemma 3.1. Letu = u(x) be a function such that|u|δ < ∞. Take0 ≤ s ≤ t ≤ T

andh ∈ (0, 1] and assume thatu(y) ≤ vh(r, y)+q for r ∈ (t, t +h2] andy ∈ Rd ,
whereq is a positive constant. Then

Gs,tu(x) ≤ vh(s, x) + qe2(t−s)+2h2 + NeN(t−s)Mhδ1 ∀ x ∈ Rd ,

whereδ1 := δδ2
0/(2 + δ0 + δδ0 − δ) andM = 1 + |u|δ.

Proof. We need to prove that

G
β
s,tu(x) ≤ vh(s, x) + NMeN(t−s)hδ1 + qe2(t−s)+2h2

for anyβ ∈ A, which we therefore fix. Takeh ∈ (0, 1] andε ∈ [h, 1] and notice
that by Corollary 2.3 there exists a functionz(r, x) defined in [s, t + ε2] × Rd such
that

|z(r, x) − u(x)| ≤ NMεδ for r ∈ [t, t + ε2], x ∈ Rd ,

Lβz + f β ≥ 0, z(r, x) ≥ G
β
r,tu(x) − NMeN(t−r)εδδ0 (3.1)

in [s, t ] × Rd and|z|2+δ0,[s,t+ε2] ≤ NeN(t−s)Mεδ−2−δ0.
In particular,F [z] ≥ 0, so that by Assumption 1.3 (ii)

Fh[z] ≥ −NeN(t−s)Mhδ0εδ−2−δ0 in [s, t ] × Rd .

In addition,

sup
(t,t+h2]×Rd

(z − vh)+ ≤ sup
(t,t+h2]×Rd

(u − vh)+ + NMεδ ≤ NMεδ + q ,

Fh[vh] = 0 in [s, t ] × Rd

vh = vh in (t, t + h2] × Rd ,

which by Lemma 1.7 (ii) and Remark 1.8 implies that

z(s, x) ≤ vh(s, x) + NeN(t−s)M(εδ + hδ0εδ−2−δ0) + qe2(t−s)+2h2
.

Combining this with (3.1) we get

G
β
s,tu(x) ≤ vh(s, x) + NeN(t−s)M(εδδ0 + hδ0εδ−2−δ0) + qe2(t−s)+2h2

.

By taking the sameε as in the preceding proof, we get the result. The lemma is
proved.

For s ∈ [0, T ] and integersn ≥ 1 denote byAn(s) the set of allα ∈ A
satisfyingαt = α(κn(t+s)−s)+ for t ≥ 0, whereκn(r) = [rn]/n. The policies
of classAn(s) are constant on the intervals [tnk(s), tn,k+1(s)) with tn0(s) = 0,
tnk(s) = κn(s) − s + k/n for k ≥ 1. Also let

vn(s, x) = sup
α∈An(s)

vα(s, x) .
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From Lemma 3.2.14 and the proof of Lemma 3.3.1 in [4], we infer that the following
dynamic programming equation holds

vn(s, x) = Gs,τn,k+1v
n(τn,k+1, ·)(x) if s ∈ 1(n, k), k = 0, . . . , k(n) − 1 ,

(3.2)
wherek(n) is the number of intervals(i/n, (i + 1)/n], i ≥ 0, intersecting [0, T ],
1(n, k) = [τnk, τn,k+1], τnk = (k/n) ∧ T (so thatτnk(n) = T andτnk < T if
k < k(n)).

In the following few lines we introduce several different constantsN0 depending
only onK, K1. We will use that (see Appendix)

|vn|,δ,[s,T ] ≤ N0e
N0(T −s) , (3.3)

which implies (see Appendix) that, for anyβ ∈ A ands ≤ t ≤ T , we have

[Gβ
·,t vn(t, ·)]δ/2,,[s,t ] ≤ N0e

N0(T −s) , (3.4)

and on account of (3.2),

|vn(s, x) − vn(s + r, x)| ≤ N0e
N0(T −s)rδ/2 (3.5)

if s ands + r belong to the same interval1(n, k) andr ≥ 0.

Lemma 3.2. For anyn ≥ 1 andh2 ≤ 1/n, we have

vn(s, x) ≤ vh(s, x) + NeN(T −s)nhδ1 , (3.6)

whereδ1 is the same as in Lemma 3.1.

Proof. Lemma 3.1 applied withu = g immediately implies that, fors ∈ 1n,k(n)−k

with k = 1
vn(s, x) ≤ vh(s, x) + Mke

Nk/nhδ1 , (3.7)

whereM1 andN1 are some constants depending only onK, K1, d. Bearing in mind
the induction onk, assume that (3.7) holds fors ∈ 1n,k(n)−k and somek ≥ 1. We
are going to prove then that, ifk < k(n), then (3.7) also holds fors ∈ 1n,k(n)−k−1
with appropriate constantsNk+1 andMk+1 in place ofNk andMk. Furthermore,
we will see that one may take

Nk+1 ≤ Nk ∨ (Nk + N), Mk+1 ≤ N + e4/nMk .

Then by inductionNk+1 ≤ Nk+N andMk ≤ Nne5k/n, which allows us to replace
Mk andNk in (3.7) withNne5(T −s) andN(T − s + 1)n, respectively, and leads us
to (3.6).

It follows from (3.5) and (3.7) that, ifτn,k(n)−k+r ∈ 1(n, k(n)−k) andr ≤ h2,
then

vn(τn,k(n)−k, x) ≤ vn(τn,k(n)−k + r, x) + N0e
N0k/nhδ

≤ vh(τn,k(n)−k + r, x) + N0e
N0k/nhδ + Mke

Nk/nhδ1

=: vh(τn,k(n)−k + r, x) + qk . (3.8)
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Here, if k > 1, one can obviously take anyr ∈ [0, h2] due to the assumption
h2 ≤ 1/n. It turns out that fork = 1 the inequality between extreme terms in (3.8)
holds for anyr ∈ [0, h2] as well. Indeed, forT − τn,k(n)−1 ≤ r ≤ h2 (if there are
suchr at all), we have

vh(τn,k(n)−1 + r, x) = g(x) = vn(T , x) ≥ vn(τn,k(n)−1, x) − N0h
δ .

Hence owing to (3.3), (3.2), and Lemma 3.1 we get that, fors ∈ 1n,k(n)−k−1,

vn(s, x) ≤ vh(s, x) + e4/nqk + N(1 + N0)e
N/n+N0k/nhδ1 .

This yields (3.7) with

Nk+1 = (N + N0k) ∨ Nk, Mk+1 = N + e4/nMk

in place ofNk andMk. As explained above, the lemma is thus proved.

Proof of Theorem 1.11.By applying Theorem 2.9 of [7] and taking into account
thatδ0 ≤ δ, we have

v(0, x) ≤ vn(0, x) + NeNT n−δδ0/8 .

Combining this with (3.6) and choosing integern to be of orderh−q with q =
8δ1(8+ δδ0)

−1 (q < 2, so thatn ≤ h−2 as required in Lemma 3.2), we get (1.5) at
points(0, x). By the way, we have only considered the points(0, x) because in [7]
the intervals, on which the policies of typeAn are constant, are assumed to have the
same length 1/n. Other points(s, x) are considered by shifting the time variable.
The theorem is proved.

Appendix

We closely follow the arguments from Sections 3.2 and 3.3 of [4] and prove that

|v(s, x) − v(t, y)| ≤ NeNT N1(|t − s|δ/2 + |x − y|δ) , (A.1)

whereN1 = (1 + |c|,δ)(|f |,δ + |g|,δ) andN depends only on|σ |,1 and|b|,1.
First, according to Theorem 2.5.9 of [4], for anyα ∈ A, s ∈ [0, T ], and

x, y ∈ Rd , we have

E sup
t≤T −s

|xα,s,x
t − x

α,s,y
t |2 ≤ NeN(T −s)|x − y|2 ,

E sup
t≤T −s

|xα,s,x
t − x

α,s,y
t |δ ≤ NeN(T −s)|x − y|δ .

Hence, by remembering (2.7), we get

|vα(s, x) − vα(s, y)| ≤ N2E

∫ T −s

0
|cαt (s + t, x

α,s,x
t ) − cαt (s + t, x

α,s,y
t )| dt

+ E

∫ T −s

0
|f αt (s + t, x

α,s,x
t ) − f αt (s + t, x

α,s,y
t )| dt

+ E|g(x
α,s,x
T −s ) − g(x

α,s,y
T −s )| ,

|vα(s, x) − vα(s, y)| ≤ NeN(T −s)N1|x − y|δ ,
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whereN2 = 2T |f |0 + 2|g|0. This certainly implies (3.3) and

|v(s, x) − v(s, y)| ≤ NeNT N1|x − y|δ . (A.2)

Furthermore, by Bellman’s principle (Theorem 3.3.6 of [4]), fors ≤ t ≤ T ,

v(s, x) = sup
α∈A

Eα
s,x

[∫ t−s

0
f αr (s + r, xr )e

−ϕr dr + v(t, xt−s)e
−ϕt−s

]
.

Combining this with (A.2), fort − s ≤ 1, we conclude

|v(s, x) − v(t, x)| ≤ (|f |0 + 2|c|0 sup
[s,T ]×Rd

|v|)(t − s)

+ sup
α∈A

Eα
s,x |v(t, xt−s) − v(t, x)|

≤ NeNT N1{|t − s|δ/2 + sup
α∈A

Eα
s,x |xt−s − x|δ}

≤ NeNT N1|t − s|δ/2 ,

where in the last step we have used again Theorem 2.5.9 of [4]. The same inequality
trivially holds if |t − s| ≥ 1. This and (A.2) yield (A.1).

Applying this argument to the caseA = {β} and using (3.3) we also get (3.4).
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