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Abstract. Inthe present paper, we study conditions under which the solutions of a backward
stochastic differential equation remains in a given set of constraints. This property is the so-
called “viability property”. In a separate section, this condition is translated to a class of

partial differential equations.

1. Introduction

The aim of this paper is to state necessary and sufficient conditions under which
the solution of a given backward stochastic differential equation (in short: BSDE)

T T
Y, = YT—i—f Fs, YS,ZS)ds—/ Z,dWs, tel[0,T],
t t

remainsinagiven sé&f of constraints. We apply our results to a system of semilinear
parabolic partial differential equations whose solution can be expressed through the
solution of a system of suitable — Forward and backward — stochastic differential
equations. This enables us to state an existence result for the above PDE’s with
constraints.

BSDE have been studied first by Pardoux and Peng [13] in 1990. They have
turned out to describe the solution of systems of parabolic PDE by the related
Feynman-Kac formula introduced in [15] and [14]. The thus described solutions
of PDE’s are viscosity solutions, a notion introduced by Crandall and P.L. Lions in
the early 80’s: we refer to [8] and its bibliography.

The strategy we adopt here to study nonsmooth solutions of PDE’s by the
mean of viability property — introduced by Aubin [2] — for differential equation
has already been extensively used for some first order PDE’s: the Hamilton Jacobi
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equations. For this approach using viability property for control systems to study
solutions of Hamilton-Jacobi equations, the reader can be referred to [2] and its
bibliography.

To our knowledge viability properties for stochastic differential equations and
inclusions have been introduced and studied by Aubin and Da Prato in [3], [4]
and [5]. The key point of their work consists in the introduction of a “stochastic
tangent cone” which generalizes the well-known Bouligand’s contingent cone used
for deterministic systems. Our approach differs from their methods and bases on the
convexity of the distance function &f (whenk is a closed convex set). This enables
usto deduce some condition in differential form on the distance functigrvafich
is necessary as well as sufficient, and which generalizes the well-known Nagumo
condition for first order differential equations with constraints (cf [10], [2]).

Let us now explain how this paper is organized. In the first section, we recall the
basic statement of [13] on BSDE’s and deduce some basic estimates for BSDE'’s.
Then, in the second section, we state and prove the main result of the paper con-
cerning the viability for BSDE. Finally, in the last section, we apply our main result
to a class of systems of semilinear parabolic PDE’s.

2. Backward stochastic viability in closed sets

Let (2, #, P,{Z,,t > 0}) be a complete stochastic basis such thatcontains

all P-null elements o7, 7+ = (),.0Z i+, t = 0, and7 = # r, and suppose
that the filtration is generated bydadimensional standard Wiener procégs=
(Wio<t<r- By T > 0 we denote the finite real time horizon. We consider the
following Backward stochastic differential equation — or shorter BSDE

T T
Y, =1Yr +/ F(s, Y, Zg) ds _/ ZgdWs, te [0, T] s (1)
t t

Y7 = g s (2)

wheret € L%(Q, Zr, P, RV) is a given random variable arfd: Q x [0, T] x
RN x Z(R?, RN) — R" a measurable function; the assumptionfwill be
specified below.

Throughout this paper, for any Euclidian spa£ewe denote b)Lﬁd(Q, C (o,
T], H)) the closed linear subspace of adapted processed o, 7, P, C([0, T],
H)), andLgd(Q x]0, T[, H)) is the Hilbert space of adapted measurable stochastic
processey : Q x [0, T] — H such that

T
I fllz = (E/O If I dn)E < oo .

We suppose that there are some nonnegative real congtahis M such that
i) F(,- vy, z)Iis progressively measurable,
F(w, -, y, z)is continuous 3)
ii) |Ft,y,2) = F@, Y, ) <LAy—=YI+l1z-=21
iii) SUR_7 [ F(1,0,0)l € L*(Q, F1, P)

forall (1, y, z, y', 7/), P-almost everywhere of®.
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Let us recall the existence and uniqueness result for BSDE (cf [14] or [6] for
generalization to integral-partial differential equations):

Proposition 2.1. Let (3) holds true.
Then for any give§ € L2(Q, 7, P, RY), there exists an unique solution to

D @)

(Y, Z) e L2,(Q,C(0,T], RY)) x L2,(2x]0, T[, Z(R?, RY)) .

Remark that the notion of BSDE generalizes the well-known martingale represen-
tation property. Indeed, in the particular casefof= 0 we have the following
Lemma (cf for instance [17])

Lemma 2.2. For any¢ € L2(Q, Z1, P, RY), there is a uniquer (¢) belonging
to L2,(2x]0, T[, Z(RY, RY)) such that

T

- E(€)+/O Ry(E)dW, . @)

After this recall we give now the definition of stochastic viability.

Definition 2.3. Let K be a nonnempty closed subseirY .
a)- A stochastic procesg;, t € [0, T]} is viable in K if and only if for
P-almostw € Q,

Y/(wye K, Vre[0,T].

b)- The closed seX enjoys the Backward Stochastic Viability Property — de-
noted BSVP — for the equation (1) if and only if:

Vrel0,T],VEe LA, 7., P, K), there exists a solutiot¥, Z) to BSDE
(1) (2) over the time intervdD, 1],

T T
Y, =g:+/ F(r, Yr,Zr)dr—/ Z, dW,, s € [0, 1],
’ * 5)

(Y, Z2) e L2,(Q,C([0, 7], RV)) x L2,(2x]0, [, Z(R?, RM))
such thatf{Yy, s € [0, ]} is viable inK .

Let us define for any closed s&t c R" the — multivalued — projection of a point
aontok:

k(@) :={beK||a—D>|= ?2'2 la —cll =dk(@)} .

Recall thatllx (@) is a singletoh whenevew is differentiable at the point.
According to Motzkin’s Theorenil x is single-valued if and only iK is convex.

1 WhenIlIk (a) is a singleton, we also denote Bl (a) the unique element dfix (a).
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Let us recall thaﬂ,% (+) is convex wherX is convex, and thus, due to Alexan-
drov’s Theorem [1]d,2((-) is almost everywhere twice differentiaBle
After this preparation, we can state our first main result.

Theorem 2.4. Suppose thaf : 2 x[0, T]x RN x RV*? — R" isameasurable
function which satisfies condition (3). LEtbe a nonempty closed set.
If K enjoys the BSVP property for (1), then the Keils convex.

Proof of Theorem 2.4Assume thak is not convex. We have to prove that some
£ € L%Q, Zr, P, K) exists such that the solutiqi, Z) to BSDE (1) satisfies

P{Y; ¢ K} > 0, forsomer € [0, T] . (6)

If K is not convex, we can find andb belonging tod K such that

a#b and KNla,b[=0 ,
where b, b[i={a+t(b—a)|0<t <1}.

Fix ¢ > 0 such that
b
dK (a—; ) > 28 .

Let us denote b)th the first coordinate of thé-dimensional Wiener procegdg;
and define

&= a]{W%<%} +bI{W%Z%} .

Then
E[§|9",]=a+(b—a)d>(iwltl), t<T, @)
(T —1)2
where
1 ! 22
O(r) ::E _ooe_de, re R .

Let (Y, Z) be the solution to BSDE (1).
Then, thanks to (3-i)-ii)M := E[ [ [IF(s, Yy, Zs)I2|lds] < +oo.
A standard argument yields

T
E(Y, — E[e|711D) + E/ 12, — Ro(&))12dr

t

T
<(T - r)E/ IF(s, Yy, Zs)2lds < (T — )M .
t

2 By twice differentiable, we mean that the function admits a second order Taylor expan-
sion. We underline that this may hold true even if the first derivative is not continuous.
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Consequently,
a+b a+b _
PY: — ——II = 2¢} > P{IIE[§]17:] — — Ih=el¥i = E[§|7]Il < ¢}
a+b
= PUEEIF ] - ——l <¢)

b
~PUEEIF] ~ 521 < e, 1Y, — EEI7]1 > e)

v

b
PUIELELF ] — 520 < e} = PUIY, - E[E1711 > ¢)

. a+b 1
> P{|E[§|7] - — == ZEY: - E[£|7]1%) .
The last estimation comes from the Chebychev inequality. Thus

a+b a+b (T —t)M
P{IY; — T” <2} > P{|E[¢|7:] - TII <ée}— Yz

Note that by (7).P{I|E[§|7,] — 32|l <&} > O, t € (0, 7).
Let us choose € (T — %P{HE[EWE] - %II <eht, T). Then

_M(T—t)

a+b a+b
P{IIYz—TIISZS}EP{IIE[EI??]—TIISQ 2 >0.

But this is a contradiction to the BSVP, and hedtenust be convex.

Q.E.D.

Since the previous results means that only convex sets could have the BSVP,
we restrict our attention to closed convex sets.

Theorem 2.5. Suppose thaF : @ x [0, T] x RN x Z(R?, RN) — R" isa
measurable function which satisfies condition (3). Kebe a nonempty closed
convex set.

The setK enjoys the BSVP property for (1) if and only if

V(t.z) € [0.T] x Z(R?, R")
and for ally e R" such thati,z(() is twice differentiable ay,

8
My =TIk ), F(t, v, 2) < (D*d ()2, 2) + Cd2(y), P-ae. O
where C > 0 is a constant which does not depend @ny, z) .

Let us notice that, under assumption (3-ii), condition (8) takes form:

My — Mg (y), F(t, Tk (), 2)) — (D?d% (y)z,2) < (C + 4L)d% (y)
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On the other hand, for son@® > 0, the condition

My — Mg (y), Ft, Mg (y), 2)) — (D?d2(y)z, 2) < C'd2(y) )

implies (8) with constanf€’ + 4L insteadC.
This shows that (8) is a condition only on the value$'df, -, z) ond K. Recall
also that the behaviour afy on R" is completely determined by that 8K .

Remark. BecauseDZ[dI%] is almost everywhere positive semidefinite, a sufficient
condition for the BSVP property ok is that there exists some constanht> 0
such that

(y =Tix (), F(t,y,2)) < Cdz(y), forall(s,y,z) . (10)

A very similar condition
(n(y), F(t,y.2)) <0, ¥ (t,y,2) € [0, T] x 3K x Z(R?, R")

(wheren(x) is a normal vector — in the sense of convex analysisxtatK) can
be found in [11]. O

Example.Let K be a convex closed subset®f’ such thatits boundary is& —1)
— submanifold of clas€2. Let us write the condition (8) at a poift, y, z). Denote
by «1, ..., kny—1 the principal curvatures af K at pointIlg (y) along Vdg ().
Then (8) becomes

N-1
1 (ki . 2
4y — I1 VF(t,y, < = — |7
(y k(y), F(t,y,2) 2 2 T id () ;||

1. 2
+2||ZN|| + Cdx (y)

where(z1, ..., zy) are the coordinates afin the relative basis (tangential plane,
normal) toK atIlg (y).

From this expression, one can easily check that the following example with
K = B(0,1) c R?andd = 1 satisfies (8) but not (10):

1 Z Azl [1Z2]]
F(s,y,2) = ¢ + (y =Tk )
POT A a2 T 1 T Y
where
22 = (z, ﬁ)
, O
L=z Zopy

Before proving the preceeding theorem, we give an application to PDE'’s.
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3. Viability for viscosity solutions to semilinear parabolic PDE’s

In this section, we show that in the Markovian framework the BSVP provides new
results for suitable systems of semilinear parabolic PDE's.
Let us consider the following PDE

D ui(t, x) + Aui(t, x) + fi(x, u(t, ), (Vuio)(t, x)) = 0
u(T, x) = H(x) (11)
for(t,x) € [0,T] x RY, 1<i <N ,

whereH € C(R?, RV) is given and

N

A= 5 D (00" ) 5 —— +Zb (x)—

ljl

We assume thdt: R — R? ando: R? — Z(R?, R?) are Lipschitz andf =
(fi,..., fxn) € €0, T] x R? x RN x #(R%, R") is a bounded function with

fitt,x,y,2) = fi(t,x,y,zi), (t,x,y) €[0, T] x R? x RV,
z=(@z1.....2v) € LR, RY) .

Suppose that there exist some> 2 and somd. > 0 such that

a) [Hx)| < LA+ [x]I”)

by Ift, x,y, DI < LA+ IxI” + Iyl + lIzID

o lf@x,y,2)— ft,x, 5,90 =Ly -yl + llz—zl)

d) |l fit,x, v, zi) = fit, x', v, z))| < mip(lx — 2"+ 1z (1))
forallz € [0, T], x|, Ix"Il, Iyl < R,
where lim_ o+ miz(s) =0, 1<i <NandR>1.

(12)

In [14], Pardoux and Peng have studied the correlation between PDE (11) and
the BSDE.

T T
vt = HOXH +/ FXE YL Zpdr _f ZYdw, . (13)
s K
whereX* = {X/*, t <s < T} is the unique solution of the forward SDE
S s
Xgt=x +/ b(X;)dr +/ o(Xp)dW,, t <s<T .
t t

In [6], a generalization to integral-partial differential equations is provided.
In both papers it is shown thaiz, x) = Y;"* is a viscosity solutiohto PDE
(11) and uniqueness results are presented. We refer to the following one:

3 The reader can refer to [8] and its bibliography, for a definition of viscosity solutions
and a detailed study.



492 R. Buckdahn et al.

Theorem 3.1. [6] Under the above assumptions, there exists at most one viscosity
solutionu such that

lim  |u(r, x)le"AToslxD?* — g | (14)

x| —+o0

uniformely in € [0, T, for someA > 0.
In particular, the function(z, x) = ¥/** is the unique viscosity solution to (11)
in the class of solutions which satisfy (14) for some réat 0.

Let us now define the viability for PDE (11).

Definition 3.2. The PDE (11) enjoys the viability property with respect to the
closed seiX if and only if for anyH € C,,(Rd, RV) taking its values inK the
viscosity solution to (11) satisfies

Y(t,x) € [0,T] x R, u(r,x) € K. (15)
This enables us to state the main theorem of this section:

Theorem 3.3. Suppose thatando are Lipschitzandf € C([0, T] x RY x RN x
(R, RV)) is a bounded function. Let us assume furthermore khat R” is a
closed convex nonempty set and that (12) holds true.

Under these assumptions, we have

(a)If the PDE (11) enjoys the viability property with respectiothen

there exists a constart > 0 such that, for all(z, x, y, z) € [0, T] x R? x
RY x #(R?, RV) such thau2 is twice differentiable ap,

(y = g (), f(t,x,y,20(x))) < 2(D?(dZ(y))(z0 (x)), z0 (x)) + Cd2 (y) .

(b) Conversely, the above necessary condition is sufficient when, moreover,
is of classC?.

Proof (necessity)Let (, x, y,z) € [0, T] x R x RN x Z(R*, RY),0<¢ <1,
and let

Hx)=y+z(x'—x), x' € R? .

We set
F(w,s,y,2) = f(o, X\ (), y,2), t—e<s<t

E=HX; ") =y+z(X; " —x) .
Then using the argument used for the proof of Theorem 2.5, we get the necessity
of the above condition.

Proof (sufficiency)A standard approximation procedure applied to BSDE (13)
gives

Zy" e span{zo(Xy¥) |z € Z(RY, RV)}
dsdP-a.e.on [,T], 0<r<T .
This allows to proceed exactely as in the proof of the sufficiency for Theorem 2.5.
Q.E.D.
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4. Appendix: Proofs of main theorem

For the proof of theorem 2.5, we need an auxiliary result on BSDEs. Given any
£ e L%, Zr, P, RV) we denote byY¢, Z&) the unique solution to BSDE (1)
and by R (&) the process associated&dy Lemma 2.2. With these notations we
can state

Proposition 4.1. Suppose that (3) holds true. Then there exists a real constant
Co > Osuch thatforalls € L%(Q, Z 7, P, RY),

T
E[ sup ||Y5|%17,] +E[/ I1Z511% ds| 7]
s€lt,T] t

T
< ColE[|§11%17] +E[(f IF(s,0,0)llds)?| 7], t€[0,T], (16)
t
and for alle € [0, T1],

EC sup |[Yf — EEIF NPT 1)

se[T—Ts,T]
+EJ fT I1Z5 — Ry(&)|1? ds|F 1—e] (17)
e
< CosE| o IFG, EE|F ), RyENNP ds|Fr—e] .

Proof . Lett e LA, Z7, P, RY)andY = ¥¢, Z = Z¢. It0's formula applied
to ¢*||Y;||? yields fors € [0, T],

T
MNYII2+ [ Y2+ 121D dr
=TNEI2 + 2] & (F(r, Yy, Z,), Yyydr =2 [[ & (Y,, Z, dW,) .

But,

2(F(”’y’z),y)=Z(F("ayvz)—F(r,yvo)’Y)+2(F(r’y,O)—F("vo,o)’)’)
+2(F(r, 0,0), y)

lIzlI2 + 2(L2 + L) IylI? + 2(y, F(r,0,0)) ,

NI =

=

and then

T 1
Y12 + / 0~ 202 = 2L) |, P + 12, Pldr
N

T T (18)
< ATIE2 4 2 / (Y, F(r,0,0))dr — 2 / (Y, 2, dW,) |

S
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for 0 <s < T. By replacingx by 2L2 + 2L, inequality (18) yields

T T
f HMNZ N2 dr < 2T €))% + 4 / e (Y,, F(r,0,0))dr
oo * 19)
—4/ (Y, Z, dW,), for 0<s <T .
S
By the Burkholder-Davis-Gundy inequality, we have
T
E[ sup | [ €YYy, Z, dW,)||F ]

se[t,T] Js

N
<2E[ sup | | € (Y, Z, dW,)||F ]
selt,T] Jt

T
1
< 6E( / NP Z N2 drl 2|7
t
Lis T Ar 2 1
<BE([ sup (e2*||Y,ID(| € 1Z-11? dr)2]| 7))
set,T] t

1 T
< ZE[( sup €M |Y11%)|7,] + 36E[ f HMNZN? dr| 7]
4 se[t,T] t

Let us denote by > 0 a real constant depending only brand 7, and to which
we allow to change from one formula to the other. From (18) and (19) we obtain

1
SEL sup CANARIEA
se[t,T]

T
< CSTE[ENP1 7] + CE[f YN F(r, 0,0)|dr|Z ]
t

1 T 1
< CSTE[E%17,] + CE[( s[up]e?“uan / e ||F(r,0,0)|dr)|F,] .
relt, T t

Hence,

E[ s[up]<e“||Yx 1917,] < CeTELNYr1217,]
selt, T

T, (20)
+CE[{[ e2" || F(r,0,0)|dr?|7,] .
t
This, together with (19), gives
T
E[ f N Zs)1? ds| 7] < T E[)|E)121 7]
t (21)

T
+ CE( f HF(r.0,0)[dr27,] .
t

From (20) and (21) one can easily obtain (16).
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In order to prove (17), note that (1) is equivalent to

T T
it :f G(S, Yy, Zs)ds _/ ZSdWS‘7 t € [O, T] ’ (22)
t t

whereY, = Y, — EG|F)), Zi = Z, — R/(§) and G(s,7.2) = F(s,y +
E(E|F ), 7+ Rs(§)). Inequality (16) applied tgY;, Z,) implies (17).

Q.E.D.
Now we are ready to prove Theorem 2.5.
Proof of Theorem 2.5This proof is splitted into several steps.
(a) NecessityLetr € [0, T] ande > 0 be such that, for somé& > 0,7, =

t—e>t*>0.Fixye RN,z e Z(RY, RY) andg :=y + z(W, — W,,).
Denote by(Y, Z) the unique solution to the BSDE

t t
Y, =§+/ F(r, Yr,Zr)dr—/ Z, dW,, se [te.1] .
N N

Furthermore, we introduce the procesz: (Y;, s € [t, 1] } as follows:

Yy = &4 (t — 8)F(te, v, 2) — 2(W; — Wy)
:y+([—S)F(t5,y,Z)+Z(WS_ng)v t&‘SSSt .

From Proposition 4.1, we deduce that there exists a conStan0 which depends
only ony andz, and is such that

t
E[ sup 1Y% 7 ] + EJ / 1Z 12 dr|Fp] < C (23)
te

le=s=t

and

t
E[ sup |IYy — E[£|F|I2|Z ] + E[ / 1Z, — 21> dr|F ] < Ce? . (24)
te

te<s<t
Then
E[ sup Y, - YIPF ] <
2E[ sup Yy — E[£17, 1217 ] + 2E[ sup I12(Wy — W) |21 7]  (25)

le<s=t te<s<t

< C'(e° + |zl|I%) < Ce, fore €]0,t — '] .

Since fort, < s <t,

t t
Yo — Y Z/ (F(r, Y, Zy) — F(te, y,Z))dr_/ (Zy — 2)dW,
s s
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we deduce from (24) and (25),

t
E[ sup ||Ys — Y5 ||?|7 ] + E[/ 1Z, — 211 dr|F ]
te<s<t te

t

< C1eE[ | W(F(r, Yr, Zy) — F(te, y, 2)|1? dr|F ]
te
< 3C1e2(E[ sup |IF(r,y,2) — F(te, y, 2) 117 1]
te<r=<t (26)
+L2E[ sup |IYy — Y1217 ])

te<r=<t

t
+3clsE[f L2\ Z, — z)1? dr|F ]
te

< Ce?pl
where

C1 .
BL=6C1L% + 3—E[ sup ||F(s,y,2) — F(te, y, )27 1] .

C  r<s<t

Observe that by (3):
sup | F(s,y.z) — F(te, y, 2)|> — O whene — 0 ,
te<s=<t

and that

sup |F(s,y,2) — F(te, y, 2)1?

1o <s=<t

<4 sup |IF(t,y, )
0<t<T

<8 sup |F(,0,0)|% +8L2(|y|l + llzID? € L3R, Z 1, P) .
0<r<T

Hence from Lebesgue’s dominated convergence theogdm;> 0, P-a.e., as
e — 0.

Let us now establish two auxilliary results on the processasdY which will
enable us to finish the proof of the necessity.

Lemma 4.2. Under the assumptions made above, there is some real coidstant
C(y, z) > Osuch that

E[ld2(Y,) —d2(Y)| | |F ] < Ce/BL .

foranye > Owithr — ¢ > 1*.
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Proof of Lemma 4.2Note thatV x, x’ € RY, Vp € TIx(x), V p’ € Mg (x'):

dg (x) —dg (<) < [lx = /|2 + 2(" = p. x = x'),
dg (x) —dg (x') = —|lx = x'||* = 2(x — p,x" — x)

Hence

d2 (x) — d%(x")| < llx —x"I12+ 2llx —x'[|(Ilx — pll + Ix" = p'll)
< llx — X112+ 2llx — x'[(dg (x) + dg (x)) .

SinceK # ¢, there exists an elemente K such that
VbeRY, dg®) < bl + lal .
Then, we have for some constant- 0 and for anyr, x’ € R,
|d2 (x) — d2 (x)] < CA+ x|l + XD llx — x|

Thus, from (23) and (26), for some constant again denoted byO,

E[ldg (Y,) — dg (V)| |7 =] < Ce\/BE .
This completes the proof of Lemma 4.2. ED.

Lemma 4.3. We can find somé& ;»-measurable random variablg. = y.(y, z)
with liminf,_ oy, > 0 such that

E[(d2(Y,) — d2(E)|F ]

(27)
> e{E[(VdZ(y), F(t, y, D)|Z 1] — (D [d2(0)]z, 2) + vs}

Proof . We know that the functioﬁ,z< () is twice differentiable almost everywhere.
Let us denote by ¢ the set of all points oY whered,z( is twice differentiable.
This set is of full Lebesgue measure. Let us fix npwe A and define the
following functiona : RV — R:

1
a(x) 1= dZ (x +y) — dZ(y) — (Vd%(y), x) — §<D2[d,% M]x, x) .

We shall prove two properties of(-) we shall need later on. The first one is an
obvious consequence of the definitionof :

i o(x)
lxll—0 [lx |2

(28)

The second property is the following

Ve RY, a() <|x?|Q+D%ZM]) . (29)
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In fact, Ik (y) is a singleton becau%d,% (y) exists, and

2Mk (y) = V[[IylI> — d2 ()] .

Then
d2(x +y) —d%(y) — Ix12 < I(x +y) = Oxg W% = Iy — eI — lIx]I?
= 2(y — Mg (y), x) = (VdZ(y), x) .

Hence

1
a(x) < ((Id — EDZd,%(y»x, x) < |xI2L+ ID%dZ (D) -

First we substitutee = Y/Z —y = ¢F(t,y, z) in the definition ofa(-). This
provides us

E[d2(Y)|F ] = d2(y) + eE[(VA2(y), F(te, y, D) F ] + ey,

where

1._ ¢ 2 2 1 pu
ys — 2E[<D d[(()’)F(te, y9 Z)9 F(t89 ys Z)) + ga(gF(té‘s y5 Z))I‘/fl*] .

SinceF is bounded inr, there is some consta@t > 0 which depends only on, z
such that

1
Iyl < Ce+ = sup a(ex), e € (0,1 —1*) .
€ |lxfl<C

Then in particulayt —> 0, P-almost everywhere, astends to 0.
We now substituter = € — y = z(W, — W,,) in the definition ofa(-). This
gives

1
E[d2(£) —d2(0)|F ] = 5E[<Dzd,%(y>z<wz —W.,), 2(Wy = W )| F 1]
+ E[az(Wt — W,)|F ]

1
= SeEUDZdR ()2 7] +ev?

where

1 1
y2 = CE(@@(W, = W)l F ) = EE[O‘(\/EZWQ]

is such that

limsupy2 <0 .

e—>0
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In fact, on one hand%a(\/Ezwl) —> 0, P-almost everywhere, as— 0, and
on the other hand, far > 0,

1

“a(/ezW) < L+ D% DI IWal? € LY P) .

Finally, we get from Fatou’s Lemma

lim supy?2 < E[lim sup a(\/_zW1)|/,*] =0, P-ae.

e—0 e—>0

Therefore
E[d}(Y,) — dZ©)|F ] =
e(E[(VdZ (), F(t, y, )T ] = 3(D?dg D]z, 2) + v = v2)
and the proof of Lemma 4.3 is complete by settipg= y* — y2.
Q.E.D.
Note that due to the Lemmata 4.2 and 4.3:
E[d}(Y,) — dg ()| 7]

1
> e{(VdZ(y), F(t,y,2)) — §<Dzld,%<y>]z, 2) + ¥e)

for somey, = y.(y, z) € R suchthatliminf_.oy. > O, P-almost everywhere.
Let us now return to the proof of the necessity. For this denotérhy) the
unique solution to the following BSDE

t t
Ys:r]+/ F(raYr’Zr)dV_/ZrdWr7 e <s=<t,
S N
wheren € L%(Q2, #, P) is a measurable selection of the set

{(w,x) € Qx RY |x e TIg(E(w)} e Z, @ B(RY) .

We assume thak enjoys the BSVP. Hencg e K, forz, <s <1, P-almost
everywhere. This implies

0> d2(,) - |V, — Y, |
_ 2 2 P 52 2\ 7
= E[dg(Y,) — d%(®|F ] — E[IY,, — Y I = IIE — 0?1 7] .
From It©’s formula,
ElY,, — Y, 112 — 1€ — nl?|7 ]

t
_ 2E[/ (Y, = ¥, F(s, Y. Zg) — F(s, Yo, Z))ds| 7 2]
Ie

t t
e[| 12, - Z.2ds| 7] < L f ELIY, — T2 2 1ds
Ie te
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whereL > 0 is some real constant which depends onlyForConsequently
1 ~
0> ~(g(¥y) — ¥, = Vi 1%

1.7 2 s L 502 g

> EE[dK(Y’S) —dg )| F ] - Z E[Y, = Y, |7 »]dr

e
1
> E(VAR (). F(t.y. )17 ] = 5 (DR (3)z.2)
1 ! ~ 2
+ve — Lg/ E[Y, = Y || 7 ]dr .
e

In order to estimate the integral term in the last estimate, note that

E[NYs — Y1217 ] = E[I(Ys — &) — (Ys — ) + & - REZY
< E[d%(&)|F ] + 2(E[IIYy — £121F ] + E[IYs — 0l 7 ]

+ 2(E[d2 &) F D E(ELNYs — EIAF D7 + (LT — A7 D)?) .
From (17) we conclude

sup E[IYs — &I+ Y5 — nI?# ] — O

te<s<t

ase tends to 0. On the other hand, the functitfhis continuous ay andd? is of
at most quadratic growth. Hence, according the Lebesgue theorem of dominated

convergence,

E[d%(€)|7 ] — d2(y), P-almost everywhere ,

ase — 0.
Consequently,

E[Ys — V|27 ] <d2(») + B te <s <1, >0,

where,Bg2 converges to OP-almost everywhere, astends to 0.
Therefore

1/ ~
Lg/ E[IY, — lelzlfr*]dr < L(d12<(y) +ﬂgz)
e
and

1
E[(VAZ (y). F(t, y. )7 ] = S{D?dg ()z.2)
— Ld%(y) + (v — LB?) <0, P-ae.

Finally, since liminf__o(y. + Lﬂf) >0, P-a.e., we get

1
E[(VdZ(y), F(t,y, )| F ] < §<D2d,%<y>z, 2) + Ld% () |
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P-almost everywhere, far € [0, T[. Passing to the limit* — ¢, we obtain the
wished result.

(b) SufficiencyLet K be a nonempty convex closed subseRdf. Suppose that (8)
holds true. Note that (cf [9]) i#2 € CL%, thenIlk is single-valued and

{ Vd2(y) =2(y — g(y)), Vye RV
Mg (y) — Og(x + I < lIxll, V(x,y) € RY x RN .

Recall that the measurable mapping(d2) : Ak +— S(RV) is defined by the
second order developmentdﬁ, iny € Ag:

2 2 2 12 2
dx (x4 y) = di (y) + (Vi (v), x) + 5(D™dg (), x) + ey, x)

with

Woz(y,x) —> 0, asx — 0 .
X

We claim that

{i) 0<3D2d2(y)] <1, Vye A,

i) (v, )] < I*I2 Y(x.y) € RN x Ag . (30)

For proving this, we fixy € Ag. On one hand, sinaéf( is convex we have

dz(x +y) —d%(y) — (Vd2(y),x) >0, Vx € RV |
on the other hand
dZ(x +y) —d%(y) — (Vd2(y),x) < [y +x) = x> = ly = Mg (M2
—2(x,y — Mg () = x]% .

Thus, by substituting = te, r > 0, wheree denotes an arbitrary unit vector of
R", we obtain from the previous inequalities and the definition ahat

1 1 ,
a0 10) = S0+ 10— d ()~ (VR ), e)) — T

1 1
= S(DHdR(]e.e) < 1= —a(y.te)

Passing to the limit — 0™, this gives (30-i). From (30-i), one can easily deduce
(30-ii).

Letn € C®(R") be a nonnegative function with support in the unit ball and
such thatfRN n(x)dx = 1.

For§ > 0, we put

11
ns(x) == S—Nn(gx)

¢s5(x) == d2 % 15(x) ::/ d2(x —x)ns(x"ydx', xe RV .
RN
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Obviously,ps € C*®(RN). The functiongs satisfies the following properties

i) 0<¢s(x) < (dg(x)+8)?

i) Vs(x) = [pn(Vd2)(x)ns(x — x")dx',
Vs (x) || < 2(dk (x) + ), (31)

iii) D?p5(x) = [pn D?[d2](x")ns(x — x)dx’,
0 < D%ps(x) < 21 ,

forall x € R". The property (31-i) is clear, let us focus on (31-ii)-iii). Sintg
is of full measure, we have for any x’ belonging toR",
3otx 40 = 950) = [ (a4 0~ dE s’ — )y
R
= / Vdg (s’ — y)dy, x)
RN

+2 D?[d% (»)]ns(x" — y)dy)x, x) + e(x', x)
2 o Ky 775)( y yx,x X, X

wheree(x’, x) 1= [pv a(y, x)ns(x" — y)dy. Obviously, from Lebesgue’s domi-
nated convergence Theorem (cf (30-ii)),

e(x’,x) (a(y,x)
112 RV lIx]12

ms(x’ — y)dy — 0, as|x|| — 0, Vx' € RN .

Considers € L%(Q,Z 7, P,K) and let(Y, Z) be the unique solution to the
following BSDE

T T
Y =§+/ F(s, Ys,Zs)ds—f Z,dW,, te[0,T] .
t t

Relation (31) enables us to applyp’k formula togs(Y;) and to deduce that, for
0<tr<T,§>0,

T
E¢s(Y,)) = E¢s(£) + E / (Veps)(Ys), F(s, Ys, Zg))ds
t
1 T
-ZE / ((D?¢s)(Ys) Zs, Zs)ds
27,
T
< 52+Ef / (Va2 (v), F(s. y. Zy)
t RN
1
—§<Dz<d% ) Zs, Z)ns(Ys — y)dy ds

T
_E/ /RN“WI%(”’ F(s,y. Zs) = F(s. Yy, Z))ns(Ys — y)}dy ds
t
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Then from (8) and (31), foé € [0, 1],
E¢s(Y;)

T
<824 CE / / A2 (Y — y)dy ds
t R

T
+E// 2dg(y) max |[F(s,y, Zs) — F(s, Yy, Zslins(Ys — y)dy ds
t JRN yilly=Ysl<8

T
<824 C / E[¢s(¥,)]ds
t

T
+Ef 1+ ¢5(¥s)) max SE( Y. Zs) = Fs. Y5, Zs|ds .
t YVAly—1Ls =<

Taking into account that the functidnis uniformely continuous in its second vari-
able, uniformely with respect to the other ones, we obtain that for some continuous
increasing functiory : R, — R, with g(0) =0,

{ E¢s(Yy) < 82+ g(5)
(32)

+HC+D) [ Elgs(Yo)lds
forO<r < T, 8 > 0 small enough. On the other hand, from (31-ii), we deduce
E[¢ps(Y1)] < +oo .

This allows to apply Gronwall’'s inequality to (32). So there is a @at 0 which
does not depend ane [0, T], § €]0, 1], such that

E¢s(Y)) <C(8%+g(8), O0<r<T .

Finally, sinceF is bounded, from Fatou’s Lemmma and the dominated convergence
Theorem, we conclude that

Ed2(Y,) < Iiam irbf E¢s(Y;) =0 forO0O<t<T ,
i.e.,Y; € K, foranyt € [0, T], P-almost everywhere. @.D.
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