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Abstract. Consider a realization of a Poisson process inR2 with intensity 1 and take a
maximal up/right path from the origin to(N, N) consisting of line segments between the
points, where maximal means that it contains as many points as possible. The number of
points in such a path has fluctuations of orderNχ , whereχ = 1/3, [BDJ]. Here we show that
typical deviations of a maximal path from the diagonalx = y is of orderNξ with ξ = 2/3.
This is consistent with the scaling identityχ = 2ξ − 1 which is believed to hold in many
random growth models.

1. Introduction and results

The fluctuations in many random growth models, for example in first-passage per-
colation, are described by two exponents,χ andξ , see e.g. [KS] and [LNP]. The
exponentχ describes the longitudinal whereasξ describes the transversal fluctua-
tions. In first-passage percolation the length of a minimizing path from the origin
to (N, N) has fluctuations of orderNχ , and the minimizing path has typical devia-
tions from the diagonalx = y of orderNξ . General heuristic arguments (see [KS])
suggest that the scaling identityχ = 2ξ − 1 is valid in any dimension, compare
the heuristic argument below. In two dimensions it is predicted thatχ = 1/3 and
hence we should haveξ = 2/3. Sinceξ > 1/2 one says that the minimizing path
is superdiffusive.

We will consider a related model where it is known thatχ = 1/3 and prove that
in this model we actually haveξ = 2/3. The model is a Poissonized version of the
problem of the longest increasing subsequence in a random permutation introduced
in [Ha], see also [AD]. In this model one considers a Poisson process with intensity
1 in R2+ and looks at a maximal up/right path from the origin to(N, N) consisting
of line segments between the Poisson points, where maximal means that it contains
as many points as possible. The length of a path is the number of Poisson points
in the path, and the length of a maximal path has fluctuations of orderN1/3, see
[BDJ]. In this paper we will prove that the typical deviations of the maximal paths
from x = y are of orderN2/3.
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The proof uses the line of argument, for first-passage percolation models, ini-
tiated in [NP], to proveχ ′ ≥ 2ξ − 1 (whereχ ′ is closely related toχ ), and [LNP]
to prove lower (superdiffusive) bounds on a suitably definedξ . A related argument
was used to analyze the corresponding problem for crossing Brownian motion in a
Poissonian potential in [Ẅu], and the present paper follows the arguments in [Wü].
A heuristic argument goes as follows. The length of a typical maximal path from
the origin to(x, y) is ∼2

√
xy, see [AD]. Hence, a maximal path from the origin to

(N, N) that passes through(N(t − δ), N(t + δ)), 0 < t < 1, δ small, is shorter by
the amount

2
√

N(t − δ)N(t + δ) + 2
√

N(1 − t + δ)N(1 − t − δ) − 2
√

N2 .

This should be of the same order as the length fluctuations, i.e.O(Nχ), which
givesδ2 = O(Nχ−1). Thus,Nξ ∼ Nδ ∼ Nχ/2+1/2, that is 2ξ − 1 = χ and hence
ξ = 2/3 sinceχ = 1/3. The argument used below essentially makes this rigorous.

We will now give the precise definitions. LetP denote the Poissonian law with
fixed intensity 1 on the space� of locally finite, simple, pure point measures on
R2; ω = ∑

i δζi
∈ �, ζi = (xi, yi) are the points inω. Write (x, y) ≺ (x′, y′) if

x < x′ it andy < y′. Givenω and two pointsw ≺ w′ in R2 anup/right pathπ

from w to w′ is a subsequence{ζik }Mk=1 of points inω such that

w ≺ ζi1 ≺ · · · ≺ ζiM ≺ w′ .

The length,|π |, of π is M, the number of Poisson points in the path. Let5(w,

w′; ω) denote the set of all up/right paths fromw tow′ in ω. If K is a convex subset
of R2 we let5K(w, w′; ω) denote all up/right pathsπ from w to w′ insideK, i.e.
π ⊆ K andw, w′ ∈ K. Let

d(w, w′; ω) = max{|π | ; π ∈ 5(w, w′; ω)} ,

and
dK(w, w′; ω) = max{|π | ; π ∈ 5K(w, w′; ω)} .

Let `N(σ ) denote the length of a longest increasing subsequence in a random
permutationσ ∈ SN (uniform distribution). Ifi1 < · · · < in andσ(i1) < · · · <

σ(in) we have an increasing subsequence of lengthn and`N(σ ) is the length of
the longest such sequence. We define the Poissonized distribution function by

φn(λ) = e−λ
∞∑

N=0

λN

N !
P [`N(σ ) ≤ n] ,

[`0(σ ) ≡ 0]. Let a(w, w′) denote the area of the rectangle [w, w′] with corners at
w andw′. Now,

P[d(w, w′) ≤ n] =
∞∑

N=0

P[d(w, w′) ≤ n
∣∣ ω([w, w′]) = N ]P[ω([w, w′]) = N ] ,

and, see [Ha] or [AD],P[d(w, w′) ≤ n
∣∣ ω([w, w′]) = N ] = P [`N(σ ) ≤ n].

Hence
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P[d(w, w′) ≤ n] = φn(a(w, w′)) . (1.1)

By Lemma 7.1 in [BDJ] we have a very good control of the functionφn(λ). Let

t = 21/3(n + 1)−1/3(n + 1 − 2
√

λ) . (1.2)

Then for any fixedt in R,

lim
λ→∞

φn(λ) = F(t) , (1.3)

whereF(t) is the Tracy-Widom largest eigenvalue distribution for GUE, see [TW]
and [BDJ]. The distribution functionF(t) is given by

F(t) = exp
(−

∫ ∞

t

(x − t)u(x)2dx
)

,

whereu(x) is the solution of the Painlevé II equation

u′′(x) = 2u(x)3 + xu(x), and u(x) ∼ Ai (x) asx → ∞ ,

where Ai(x) is the Airy function. From this formula and the asymptotics ofu(x),
see [BDJ], it follows that 0< F(0) < 1, which will be used below. Furthermore
we have the following estimates. There are positive constantsδ, T0, c1, c2 so that
if T0 ≤ t ≤ 2−2/3(n + 1)2/3, then

| logφn(λ)| ≤ c1 exp(−c2t
3/2) , (1.4)

and if−δ(n + 1)2/3 ≤ t ≤ −T0, then

φn(λ) ≤ c1 exp(c2t
3) , (1.5)

for all sufficiently largen. The estimate (1.4) also follows from the results in [Se].
These estimates will be important in the proof of our theorem.

Let C(γ, N) be the cylinder of widthNγ from 0 towN = (N, N):

C(γ, N) = {(x, y) ; 0 ≤ x + y ≤ 2N , −
√

2Nγ ≤ −x + y ≤
√

2Nγ } .

Denote by

5max(w, w′; ω) = {π ∈ 5(w, w′; ω) ; |π | = d(w, w′; ω)} ,

the set of maximal paths fromw tow′. We are interested in the size of the fluctuations
of maximal paths around the diagonalx = y, the transversal fluctuations. Let Aγ

N

be the event that all maximal paths from 0 towN are contained in the cylinder
C(γ, N),

A
γ

N = {ω ∈ � ; for all π ∈ 5max(0, wN ; ω) we haveπ ⊆ C(γ, N)} .

Theexponent of transversal fluctuations, ξ , is then defined by

ξ = inf {γ > 0 ; lim inf
N→∞

P[Aγ

N ] = 1} . (1.6)

We can now state the main result of the paper.
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Theorem 1.1. For the model defined above the exponent of transversal fluctuations
ξ = 2/3.

The proof of the theorem occupies the next sections.

Remark 1.2. We can consider the analogous problem for the growth model intro-
duced in [Jo]. Letw(i, j), (i, j) ∈ Z2+, be independent geometrically (or exponen-
tially) distributed random variables and consider

G(N) = max{
∑

(i,j)∈π

w(i, j); π an up/right path from(1, 1) to (N, N)} .

In [Jo] it is proved that there are positive constantsa and b so that(G(N) −
aN)/bN1/3 converges in distribution to a random variable with distribution func-
tion F(t). In analogy with above we can consider the transversal deviations of a
maximal path and define the exponentξ . If we had large deviation estimates for
P[G(N) ≤ n] analogous to (1.4) and (1.5) we could copy the proof given in the
next section and show thatξ = 2/3 in this case also. In [Jo] an estimate like (1.4)
is proved, but (1.5) is open. It follows from [BR] thatP[G(N) ≤ n] is given by a
certainn × n Toeplitz determinant just asφn(λ), and it might be possible to prove
the analogue of (1.5) using Riemann-Hilbert techniques as in [BDJ].

2. Proof of ξ ≥ 2/3

We will first prove thatξ ≥ 2/3. Pickγ ∈ (ξ, 1) andε > 0 (small). Thatξ < 1
follows from the proof in sect. 3 thatξ ≤ 2/3, which is independent of the present
section. By the definition ofξ there is anN0 such that

P[Aγ

N ] ≥ 1 − ε (2.1)

for all N ≥ N0. If ω ∈ A
γ

N , then every maximal path from 0 towN is contained
in the cylinderC(γ, N), so writingC1 = C(γ, N), we see thatdC1(0, wN ; ω) =
d(0, wN ; ω). Hence, by (2.1),

P[dC1(0, wN) = d(0, wN)] ≥ 1 − ε , (2.2)

if N ≥ N0.
Setv1 = (1/

√
2, 1/

√
2) andv2 = (−1/

√
2, 1/

√
2). Let mN = 3Nγ v2 and let

C2 be the cylinderC2 = C1 + mN . Pick ab such thatγ < b < 1, and assume that
N is so large thatNb − 4Nγ > 0. Define the pointsA, B, C on the sides ofC2 by

OA = (Nb + 2Nγ )v1 + 2Nγ v2,

OB = (Nb + 4Nγ )v1 + 4Nγ v2,

OC = Nbv1 + 4Nγ v2 .

ABC is a right angle triangle with the right angle atA, the sideAB is vertical with
A on the lower side ofC2 andB on the upper side. Divide the vertical sideAB

into K = K(N) segmentszi−1zi , i = 1, . . . , K, wherez0 = A andzK = B. Let
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Li be the part of the straight line throughzi , parallel to thex-axis, lying inC2.
The parallelogram betweenLi−1 andLi in C2 is denoted byFi , i = 1, . . . , K.
We also define the analogous geometrical objects at the other end of the cylinder,
close tomN + wN , by translating the whole picure bytN = √

2N − 6Nγ − 2Nb,
z′
i = zi + tNv1, F ′

i = Fi + tNv1, OA
′ = OA + tNv1 andOB

′ = OB + tNv1.
Given a Borel setF , ω(F) is the number of Poisson points inF . Let π =

{ζ1, . . . , ζM}, ζ1 ≺ · · · ≺ ζM , be a maximal path in5C2(mN, mN + wN ; ω) and
let π∗ be the curve obtained by joiningζi andζi+1, i = 0, . . . , K, by straight line
segments,ζ0 = mN andζK+1 = mN + wN . The curveπ∗ intersectsAB at some
pointP andA′B ′ at some pointQ. The pointP belongs toF̄i andQ to F̄ ′

j for some
i, j . We will write z(ω) = zi andz′(ω) = z′

j . (If P = zi for somei we letz(ω) = zi

and analogously forQ.) If we setDN(ω) = maxi ω(F̄i) + maxj ω(F̄ ′
j ), then

dC2(mN, mN + wN) ≤ dC2(mN, z(ω)) + dC2(z(ω), z′(ω))

+ dC2(z′(ω), mN + wN) + DN(ω) . (2.3)

Note thatz(ω) ∈ A
.= {z0, . . . , zK} andz′(ω) ∈ A′ .= {z′

0, . . . , z
′
K}.

Lemma 2.1. LetK = [8N2γ ] + 1. Then

P[DN(ω) ≥ d] ≤ C(8N2γ + 1)e−d/2 , (2.4)

for all d ≥ 1, whereC is a numerical constant.

Proof. Since

{DN(ω) ≥ d} ⊆ {max
i

ω(F̄i) ≥ d

2
} ∪ {max

j
ω(F̄ ′

j ) ≥ d

2
}

we have P[DN(ω) ≥ d] ≤ 2KP[ω(F̄1) ≥ d/2] . (2.5)

Here we have used the fact that all the random variablesω(F̄i),ω(F̄ ′
j )are identically

distributed. The area of̄F1 is 8N2γ /K = λ, and thus

P[ω(F̄1) ≥ d/2] ≤
∞∑

j=[d/2]

e−λ λj

j !
≤ C

∞∑
j=[d/2]

e−λf (j/λ) , (2.6)

whereC is a numerical constant andf (x) = x logx + 1 − x. Here we have used
Stirling’s formula. Note thatf (x) ≥ x if x ≥ 9 say. ChooseK = [8N2γ ] + 1, so
thatλ ≤ 1, and assume thatd ≥ 18. Then, by (2.6),

P[ω(F̄1) ≥ d/2] ≤ C

∞∑
j=[d/2]

e−j ≤ Ce−d/2

and introducing this estimate into (2.5) yields

P[ω(F̄1) ≥ d] ≤ C(1 + 8N2γ )e−d/2

for all N ≥ 1, d ≥ 1. Q.E.D.
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It follows from the estimate (2.4) that

P[DN(ω) ≤ 5 logN ] ≥ 1 − ε , (2.7)

for all sufficiently largeN .
Next, chooseκ1 andκ2 so that 0< κ1 < 1/3 < κ2 < 1.

Lemma 2.2. Assume that (2.1) holds. There is a numerical constantη ∈ (0, 1),
such that ifε ≤ η andN is sufficiently large, then

P[dC1(0, wN) − dC2(mN, mN + wN) ≤ −Nκ1] ≥ η . (2.8)

Furthermore, forN sufficiently large,

P[|d(0, z(ω)) − 2
√

a(0, z(ω))| ≤ Nbκ2] ≥ 1 − ε , (2.9)

P[|d(mN, z(ω)) − 2
√

a(mN, z(ω))| ≤ Nbκ2] ≥ 1 − ε , (2.10)

P[|d(z′(ω), wN) − 2
√

a(z′(ω), wN)| ≤ Nbκ2] ≥ 1 − ε , (2.11)

P[|d(z′(ω), wN + mN) − 2
√

a(z′(ω), wN + mN)| ≤ Nbκ2] ≥ 1 − ε , (2.12)

Proof. The random variablesdC1(0, wN) anddC2(mN, mN +wN) are independent.
Thus

P[dC1(0, wN) − dC2(mN, mN + wN) ≤ −Nκ1]

≥ P[dC1(0, wN) − 2N ≤ 0 anddC2(mN, mN + wN) − 2N ≥ Nκ1]

= P[dC1(0, wN) − 2N ≤ 0] · P[dC1(0, wN) − 2N ≥ Nκ1] . (2.13)

If ω ∈ A
γ

N , thendC1(0, wN) = d(0, wN), and consequently the last expression in
(2.13) is greater than or equal to

P[{d(0, wN) − 2N ≤ 0} ∩ A
γ

N ] · P[{d(0, wN) − 2N ≥ Nκ1} ∩ A
γ

N ]

≥ (P[d(0, wN) − 2N ≤ 0] + P[Aγ

N ] − 1)

×(P[d(0, wN) − 2N ≥ Nκ1] + P[Aγ

N ] − 1) . (2.14)

By (1.1),
P[d(0, wN) − 2N ≤ 0] = φ2N(N2) .

It follows from (1.3) thatφ2N(N2) → F(0) as N → ∞. Furthermore, since
κ1 < 1/3,

P[d(0, wN) − 2N ≥ Nκ1] = 1 − φ[2N+Nκ1](N
2) → 1 − F(0) ,
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asN → ∞, again by (1.3) and the fact thatφn(λ) is increasing inn. Let η =
1
3F(0)(1 − F(0)) > 0. If N is sufficiently large thenP[d(0, wN) − 2N ≤ 0] ≥
F(0)−η andP[d(0, wN)−2N ≥ Nκ1] ≥ 1−F(0)−η. SinceP[Aγ

N ] ≥ 1− ε by
(2.1) we see that the right hand side of (2.14) is≥(F (0)−2η)(1−F(0)−2η) ≥ η.
This proves (2.8).

Next, we will prove (2.9). The proofs of (2.10), (2.11) and (2.12) are completely
analogous. Note that

P[|d(0, z(ω))−2
√

a(0, z(ω))| ≤ Nbκ2] ≥ P[
K⋂

j=0

{|d(0, zj )−2
√

a(0, zj )| ≤ Nbκ2}]

so it suffices to show that

K∑
j=1

P[|d(0, zj ) − 2
√

a(0, zj )| ≥ Nbκ2] ≤ ε (2.15)

for all sufficiently largeN . We havezj = 1√
2
(Nb, Nb + rj ), where 4Nγ ≤ rj ≤

8Nγ , soa(0, zj ) = 1
2(N2b + Nbrj )

.= aj . Now,

P[d(0, zj ) − 2
√

aj ≤ −Nbκ2] = φ[2
√

aj −Nbκ2](aj ) .

In this caset defined by (1.2) is∼−21/6Nbκ2−b/3 and since 1/3 < κ2 < 1, the
condition for (1.5) is fulfilled ifN is sufficiently large and we get

P[d(0, zj ) − 2
√

aj ≤ −Nbκ2] ≤ c3 exp(−c4N
3b(κ2−1/3)) (2.16)

for some positive constantsc3, c4 and allj . Similarly we can use (1.4) to prove that

P[d(0, zj ) − 2
√

aj ≥ Nbκ2] ≤ c5 exp(−c6N
3
2b(κ2−1/3)) (2.17)

for some positive constantsc5, c6 if N is sufficiently large. Using (2.16) and (2.17)
we see that (2.15) holds ifN is sufficiently large sinceK = [8N2γ ] + 1. This
completes the proof of the lemma. Q.E.D.

Denote byBγ

N the set ofω that satisfy all the inequalities insideP[ ] in (2.7) –
(2.12). Then, by (2.7) and Lemma 2.2,

P[Bγ

N ] ≥ η − 5ε . (2.18)

Note that for anyω,

d(0, wN) ≥ d(0, z(ω)) + d(z(ω), z′(ω)) + d(z′(ω), wN) . (2.19)

The inequalities (2.3) and (2.19) give

dC2(mN, mN + wN) − d(0, wN) ≤ dC2(mN, z(ω)) + dC2(z′(ω), mN + wN)

−d(0, z(ω)) − d(z′(ω), wN) + DN(ω) .

(2.20)
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Now, using (2.20), we see that forω ∈ B
γ

N ,

dC1(0, wN) − d(0, wN) = dC1(0, wN) − dC2(mN, mN + wN)

+ dC2(mN, mN + wN) − d(0, wN)

≤ − Nκ1 + 4Nbκ2 + 2
√

a(mN, z(ω))

+ 2
√

a(z′(ω), mN + wN) − 2
√

a(0, z(ω))

− 2
√

a(z′(ω), wN) + 5 logN . (2.21)

To proceed we need the following purely geometric lemma.

Lemma 2.3. For all sufficiently largeN ,

√
a(mN, z) −

√
a(0, z) ≤ 10N2γ−b (2.22)

for anyz ∈ A and

√
a(z′, wN + mN) −

√
a(z′, wN) ≤ 10N2γ−b (2.23)

for anyz′ ∈ A′.

Proof. We will prove (2.22). The inequality (2.23) then follows by symmetry. Now,
a(mN, zj ) = (Nb + 3Nγ )(Nb − 3Nγ + rj )/2, a(0, zj ) = (N2b + rjN

b)/2 and
hence

√
a(mN, z) −

√
a(0, z) = a(mN, z) − a(0, z)√

a(mN, z) + √
a(0, z)

≤ 3rjN
γ

2
√

2Nb
≤ 10N2γ−b ,

sincerj ≤ 8Nγ . Q.E.D.

Introducing the estimates (2.22) and (2.23) into (2.21) we obtain

dC1(0, wN) − d(0, wN) ≤ −Nκ1 + 5Nbκ2 + 40N2γ−b

for all ω ∈ B
γ

N if N is sufficiently large. Thus, by (2.18),

P[dC1(0, wN)−d(0, wN) ≤ −Nκ1 +5Nbκ2 +40N2γ−b] ≥ η−5ε ≥ η

2
, (2.24)

if ε < η/10 andN is sufficiently large. But we also have the estimate (2.2). These
estimates are consistent for largeN only if

κ1 ≤ max{bκ2, 2γ − b} . (2.25)

In this inequality we can letκ1 ↗ 1/3 andκ2 ↘ 1/3 to get 1/3 ≤ max{b/3, 2γ −b}
and sinceb < 1, we must have 1/3 ≤ 2γ − b. Here we can letγ ↘ ξ andb ↗ 1
to get 1/3 ≤ 2ξ − 1, i.e.ξ ≥ 2/3.
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3. Proof of ξ ≤ 2/3

We turn now to the proof of the opposite inequalityξ ≤ 2/3. By the definition (1.6)
of ξ we see that we have to show that ifγ > 2/3, then

lim
N→∞

P[� \ A
γ

N ] = 0 . (3.1)

If ω ∈ � \ A
γ

N , then there is a pathπ0 ∈ 5max(0, wN ; ω) such thatπ0 is not
contained inC(γ, N). We take one such path. Fixγ ∈ (2/3, 1). Letπ∗

0 be the curve
associated toπ0. Thenπ∗

0 intersects the upper and/or the lower sides ofC(γ, N).
Assume that it intersects the upper side. Define a sequence of points on the upper side
of C(γ, N), zj = (jM/K, jM/K +√

2Nγ ), 0 ≤ j ≤ K, whereM = N −√
2Nγ

andK = [2
√

2N1+γ ] + 1. LetDj be the parallelogram with corners atzj−1, zj ,
(jM/K, jM/K −√

2Nγ ) and((j −1)M/K, (j −1)M/K −√
2Nγ ), 1 ≤ j ≤ K.

The curveπ∗
0 intersects the upper side for the first time, going from 0 towN ,

in the line segmentzj−1zj for somej . We setz(ω) = zj−1. By the choice ofz(ω)

we have that

d(0, wN) ≤ d(0, z(ω)) + d(z(ω), wN) + max
1≤j≤K

ω(Dj ) . (3.2)

In the case whenπ∗
0 does not intersect the upper side but only the lower side,

there is a last time where it intersects the lower side and we can assign a point
z(ω) on the lower side so that (3.2) holds. This case is the image under the map
TN : (x, y) → (N − x, N − y) of the first case. LetC = {zj }Kj=0 and letC′ be the
image ofC underTN .

Lemma 3.1. Set

3N = {ω ; max
1≤j≤K

ω(Dj ) ≤ 2 logN} ,

and for eachz ∈ C ∪ C′, δ ∈ (1/3, 2γ − 1),

Ez = {ω ; d(0, z) ≤ 2
√

a(0, z) + a(0, z)δ/2 + Nδ

and d(z, wN) ≤ 2
√

a(z, wN) + a(z, wN)δ/2 + Nδ} .

For any givenε > 0, there is anN0 such that ifN ≥ N0, then

P

[ ⋃
z∈C∪C′

(� \ Ez) ∪ (� \ 3N)

]
≤ ε . (3.3)

Proof. An argument analogous to the one used in the proof of Lemma 2.1 shows
that there is a numerical constantC so that

P[� \ 3N ] ≤ CNγ−1 .

We considerz ∈ C, the casez ∈ C′ is analogous by symmetry. Recall that [z, w]
denotes the rectangle with corners atz andw. If a(0, z) ≤ Nδ/2, thenP[ω([0, z]) ≥
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Nδ] ≤ C exp(−Nδ/2) for some numerical constantC, by Chebyshev’s inequality.
Since we trivially haved(0, z; ω) ≤ ω([0, z]), we obtain

P[d(0, z) > 2
√

a(0, z) + a(0, z)δ/2 + Nδ] ≤ C exp(−Nδ/2) , (3.4)

provideda(0, z) ≤ Nδ/2. Now, witha = a(0, z),

P[d(0, z) > 2
√

a + aδ/2 + Nδ] ≤ 1 − φ[2
√

a+aδ/2](a) .

This last expression can be estimated using (1.4), which gives

1 − φ[2
√

a+aδ/2](a) ≤ c′
1 exp(−c′

2a
(δ−1/3)/2) .

If a ≥ Nδ/2, the right hand side is≤ c′
1 exp(−c′

2N
δ(δ−1/3)/4) and thus

P[d(0, z) > 2
√

a + aδ/2 + Nδ] ≤ c′
1 exp(−c′

2N
δ(δ−1/3)/4) . (3.5)

We can prove estimates analogous to (3.4) and (3.5) withd(0, z) replaced by
d(z, wN) in the same way. Bringing everything together we see that (3.3) holds
if N is sufficiently large. The lemma is proved. Q.E.D.

Set

B
γ

N = (� \ A
γ

N) ∩ (
⋂

z∈C∪C′
Ez) ∩ 3N .

By Lemma 3.1, forN ≥ N0,

P[� \ A
γ

N ] ≤ ε + P[Bγ

N ] . (3.6)

Sincea(0, z) ≤ N2 anda(z, wN) ≤ N2 for anyz ∈ C∪C′, we see from (3.2) that
for ω ∈ B

γ

N ,

d(0, wN) ≤ 2 logN + 4Nδ + 2
√

a(0, z(ω)) +
√

a(z(ω), wN) . (3.7)

We need one more geometric lemma.

Lemma 3.2. For anyz ∈ C ∪ C′,
√

a(0, z) +
√

a(z, wN) −
√

a(0, wN) ≤ −N2γ−1 , (3.8)

if N is sufficiently large.

Proof. Again, by symmetry, it suffices to consider the casez ∈ C. Now,a(0, zj ) =
j M

K
(j M

K
+ √

2Nγ ) and a(zj , wN) = (N − j M
K

)(N − j M
K

− √
2Nγ ). where

1 ≤ j ≤ K = [2
√

2N1+γ ] + 1 andM = N − √
2Nγ . Write x = jM/KN and

y = √
2Nγ−1, so that 0≤ x ≤ 1 − y. Then,
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√
a(0, z) +

√
a(z, wN) −

√
a(0, wN) = Nf (x, y) , (3.9)

where

f (x, y) =
√

x2 + xy +
√

(1 − x)2 − (1 − x)y .

For a fixedy ∈ (0, 1) this function assumes its maximum in [0, 1 − y] at x =
(1 − y)/2, which givesf (x, y) ≤ −y2/2. Inserting this estimate into (3.9) and
takingy = √

2Nγ−1 < 1, which is true ifN is large enough, proves the lemma.

Q.E.D.

Combining the estimates (3.7) and (3.8), we see that

P[Bγ

N ] ≤ P[d(0, wN) − 2
√

a(0, wN) ≤ 2 logN + 4Nδ − 2N2γ−1] . (3.10)

To finish the proof we need

Lemma 3.3. If δ ∈ (1/3, 2γ − 1), γ > 2/3, then

lim
N→∞

P[d(0, wN) − 2
√

a(0, wN) ≤ 2 logN + 4Nδ − 2N2γ−1] = 0 . (3.11)

Proof. Sinceδ < 2γ − 1, we have that 2 logN + 4Nδ − 2N2γ−1 ≤ −N2γ−1 if N

is sufficiently large. Thus, by (1.1),

P[d(0, wN) ≤ 2N + 2 logN + 4Nδ − 2N2γ−1] ≤ P[d(0, wN) ≤ 2N − N2γ−1]

= φ[2N−N2γ−1](N
2) .

The identity (1.2) withn = [2N − N2γ−1] andλ = N2 givest ∼ −N2γ−4/3, and
hence (1.5) gives us the estimate

φ[2N−N2γ−1](N
2) ≤ c1 exp(−c′

2N
6γ−4) ,

wherec′
2 > 0. This proves the lemma. Q.E.D.

Combining (3.11) with (3.6) and (3.10) we have proved (3.1). Thusξ ≤ 2/3
and we are done.
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