Kurt Johansson

# Transversal fluctuations for increasing subsequences on the plane 

Received: 16 April 1999 / Revised version: 5 July 1999 /
Published online: 14 February 2000


#### Abstract

Consider a realization of a Poisson process in $\mathbb{R}^{2}$ with intensity 1 and take a maximal up/right path from the origin to ( $N, N$ ) consisting of line segments between the points, where maximal means that it contains as many points as possible. The number of points in such a path has fluctuations of order $N^{\chi}$, where $\chi=1 / 3,[$ [BDJ $]$. Here we show that typical deviations of a maximal path from the diagonal $x=y$ is of order $N^{\xi}$ with $\xi=2 / 3$. This is consistent with the scaling identity $\chi=2 \xi-1$ which is believed to hold in many random growth models.


## 1. Introduction and results

The fluctuations in many random growth models, for example in first-passage percolation, are described by two exponents, $\chi$ and $\xi$, see e.g. [KS] and [LNP]. The exponent $\chi$ describes the longitudinal whereas $\xi$ describes the transversal fluctuations. In first-passage percolation the length of a minimizing path from the origin to ( $N, N$ ) has fluctuations of order $N^{\chi}$, and the minimizing path has typical deviations from the diagonal $x=y$ of order $N^{\xi}$. General heuristic arguments (see [KS]) suggest that the scaling identity $\chi=2 \xi-1$ is valid in any dimension, compare the heuristic argument below. In two dimensions it is predicted that $\chi=1 / 3$ and hence we should have $\xi=2 / 3$. Since $\xi>1 / 2$ one says that the minimizing path is superdiffusive.

We will consider a related model where it is known that $\chi=1 / 3$ and prove that in this model we actually have $\xi=2 / 3$. The model is a Poissonized version of the problem of the longest increasing subsequence in a random permutation introduced in [Ha], see also [AD]. In this model one considers a Poisson process with intensity 1 in $\mathbb{R}_{+}^{2}$ and looks at a maximal up/right path from the origin to $(N, N)$ consisting of line segments between the Poisson points, where maximal means that it contains as many points as possible. The length of a path is the number of Poisson points in the path, and the length of a maximal path has fluctuations of order $N^{1 / 3}$, see [BDJ]. In this paper we will prove that the typical deviations of the maximal paths from $x=y$ are of order $N^{2 / 3}$.

[^0]The proof uses the line of argument, for first-passage percolation models, initiated in [NP], to prove $\chi^{\prime} \geq 2 \xi-1$ (where $\chi^{\prime}$ is closely related to $\chi$ ), and [LNP] to prove lower (superdiffusive) bounds on a suitably defined $\xi$. A related argument was used to analyze the corresponding problem for crossing Brownian motion in a Poissonian potential in [Wü], and the present paper follows the arguments in [Wü]. A heuristic argument goes as follows. The length of a typical maximal path from the origin to $(x, y)$ is $\sim 2 \sqrt{x y}$, see [AD]. Hence, a maximal path from the origin to $(N, N)$ that passes through $(N(t-\delta), N(t+\delta)), 0<t<1, \delta$ small, is shorter by the amount

$$
2 \sqrt{N(t-\delta) N(t+\delta)}+2 \sqrt{N(1-t+\delta) N(1-t-\delta)}-2 \sqrt{N^{2}}
$$

This should be of the same order as the length fluctuations, i.e. $O\left(N^{\chi}\right)$, which gives $\delta^{2}=O\left(N^{\chi-1}\right)$. Thus, $N^{\xi} \sim N \delta \sim N^{\chi / 2+1 / 2}$, that is $2 \xi-1=\chi$ and hence $\xi=2 / 3$ since $\chi=1 / 3$. The argument used below essentially makes this rigorous.

We will now give the precise definitions. Let $\mathbb{P}$ denote the Poissonian law with fixed intensity 1 on the space $\Omega$ of locally finite, simple, pure point measures on $\mathbb{R}^{2} ; \omega=\sum_{i} \delta_{\zeta_{i}} \in \Omega, \zeta_{i}=\left(x_{i}, y_{i}\right)$ are the points in $\omega$. Write $(x, y) \prec\left(x^{\prime}, y^{\prime}\right)$ if $x<x^{\prime}$ it and $y<y^{\prime}$. Given $\omega$ and two points $w \prec w^{\prime}$ in $\mathbb{R}^{2}$ an up/right path $\pi$ from $w$ to $w^{\prime}$ is a subsequence $\left\{\zeta_{i_{k}}\right\}_{k=1}^{M}$ of points in $\omega$ such that

$$
w \prec \zeta_{i_{1}} \prec \cdots \prec \zeta_{i_{M}} \prec w^{\prime}
$$

The length, $|\pi|$, of $\pi$ is $M$, the number of Poisson points in the path. Let $\Pi(w$, $w^{\prime} ; \omega$ ) denote the set of all up/right paths from $w$ to $w^{\prime}$ in $\omega$. If $K$ is a convex subset of $\mathbb{R}^{2}$ we let $\Pi^{K}\left(w, w^{\prime} ; \omega\right)$ denote all up/right paths $\pi$ from $w$ to $w^{\prime}$ inside $K$, i.e. $\pi \subseteq K$ and $w, w^{\prime} \in K$. Let

$$
d\left(w, w^{\prime} ; \omega\right)=\max \left\{|\pi| ; \pi \in \Pi\left(w, w^{\prime} ; \omega\right)\right\}
$$

and

$$
d^{K}\left(w, w^{\prime} ; \omega\right)=\max \left\{|\pi| ; \pi \in \Pi^{K}\left(w, w^{\prime} ; \omega\right)\right\}
$$

Let $\ell_{N}(\sigma)$ denote the length of a longest increasing subsequence in a random permutation $\sigma \in S_{N}$ (uniform distribution). If $i_{1}<\cdots<i_{n}$ and $\sigma\left(i_{1}\right)<\cdots<$ $\sigma\left(i_{n}\right)$ we have an increasing subsequence of length $n$ and $\ell_{N}(\sigma)$ is the length of the longest such sequence. We define the Poissonized distribution function by

$$
\phi_{n}(\lambda)=e^{-\lambda} \sum_{N=0}^{\infty} \frac{\lambda^{N}}{N!} P\left[\ell_{N}(\sigma) \leq n\right]
$$

$\left[\ell_{0}(\sigma) \equiv 0\right]$. Let $a\left(w, w^{\prime}\right)$ denote the area of the rectangle $\left[w, w^{\prime}\right]$ with corners at $w$ and $w^{\prime}$. Now,
$\mathbb{P}\left[d\left(w, w^{\prime}\right) \leq n\right]=\sum_{N=0}^{\infty} \mathbb{P}\left[d\left(w, w^{\prime}\right) \leq n \mid \omega\left(\left[w, w^{\prime}\right]\right)=N\right] \mathbb{P}\left[\omega\left(\left[w, w^{\prime}\right]\right)=N\right]$,
and, see $[\mathrm{Ha}]$ or $[\mathrm{AD}], \mathbb{P}\left[d\left(w, w^{\prime}\right) \leq n \mid \omega\left(\left[w, w^{\prime}\right]\right)=N\right]=P\left[\ell_{N}(\sigma) \leq n\right]$. Hence

$$
\begin{equation*}
\mathbb{P}\left[d\left(w, w^{\prime}\right) \leq n\right]=\phi_{n}\left(a\left(w, w^{\prime}\right)\right) \tag{1.1}
\end{equation*}
$$

By Lemma 7.1 in [BDJ] we have a very good control of the function $\phi_{n}(\lambda)$. Let

$$
\begin{equation*}
t=2^{1 / 3}(n+1)^{-1 / 3}(n+1-2 \sqrt{\lambda}) . \tag{1.2}
\end{equation*}
$$

Then for any fixed $t$ in $\mathbb{R}$,

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \phi_{n}(\lambda)=F(t) \tag{1.3}
\end{equation*}
$$

where $F(t)$ is the Tracy-Widom largest eigenvalue distribution for GUE, see [TW] and [BDJ]. The distribution function $F(t)$ is given by

$$
F(t)=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right)
$$

where $u(x)$ is the solution of the Painlevé II equation

$$
u^{\prime \prime}(x)=2 u(x)^{3}+x u(x), \quad \text { and } \quad u(x) \sim \operatorname{Ai}(x) \text { as } x \rightarrow \infty,
$$

where $\operatorname{Ai}(x)$ is the Airy function. From this formula and the asymptotics of $u(x)$, see [BDJ], it follows that $0<F(0)<1$, which will be used below. Furthermore we have the following estimates. There are positive constants $\delta, T_{0}, c_{1}, c_{2}$ so that if $T_{0} \leq t \leq 2^{-2 / 3}(n+1)^{2 / 3}$, then

$$
\begin{equation*}
\left|\log \phi_{n}(\lambda)\right| \leq c_{1} \exp \left(-c_{2} t^{3 / 2}\right), \tag{1.4}
\end{equation*}
$$

and if $-\delta(n+1)^{2 / 3} \leq t \leq-T_{0}$, then

$$
\begin{equation*}
\phi_{n}(\lambda) \leq c_{1} \exp \left(c_{2} t^{3}\right) \tag{1.5}
\end{equation*}
$$

for all sufficiently large $n$. The estimate (1.4) also follows from the results in [Se]. These estimates will be important in the proof of our theorem.

Let $C(\gamma, N)$ be the cylinder of width $N^{\gamma}$ from 0 to $w_{N}=(N, N)$ :

$$
C(\gamma, N)=\left\{(x, y) ; 0 \leq x+y \leq 2 N,-\sqrt{2} N^{\gamma} \leq-x+y \leq \sqrt{2} N^{\gamma}\right\}
$$

Denote by

$$
\Pi_{\max }\left(w, w^{\prime} ; \omega\right)=\left\{\pi \in \Pi\left(w, w^{\prime} ; \omega\right) ;|\pi|=d\left(w, w^{\prime} ; \omega\right)\right\}
$$

the set of maximal paths from $w$ to $w^{\prime}$. We are interested in the size of the fluctuations of maximal paths around the diagonal $x=y$, the transversal fluctuations. Let $A_{N}^{\gamma}$ be the event that all maximal paths from 0 to $w_{N}$ are contained in the cylinder $C(\gamma, N)$,

$$
A_{N}^{\gamma}=\left\{\omega \in \Omega ; \text { for all } \pi \in \Pi_{\max }\left(0, w_{N} ; \omega\right) \text { we have } \pi \subseteq C(\gamma, N)\right\}
$$

The exponent of transversal fluctuations, $\xi$, is then defined by

$$
\begin{equation*}
\xi=\inf \left\{\gamma>0 ; \liminf _{N \rightarrow \infty} \mathbb{P}\left[A_{N}^{\gamma}\right]=1\right\} \tag{1.6}
\end{equation*}
$$

We can now state the main result of the paper.

Theorem 1.1. For the model defined above the exponent of transversal fluctuations $\xi=2 / 3$.

The proof of the theorem occupies the next sections.
Remark 1.2. We can consider the analogous problem for the growth model introduced in [Jo]. Let $w(i, j),(i, j) \in \mathbb{Z}_{+}^{2}$, be independent geometrically (or exponentially) distributed random variables and consider

$$
G(N)=\max \left\{\sum_{(i, j) \in \pi} w(i, j) ; \pi \text { an up/right path from }(1,1) \text { to }(N, N)\right\}
$$

In [Jo] it is proved that there are positive constants $a$ and $b$ so that $(G(N)-$ $a N) / b N^{1 / 3}$ converges in distribution to a random variable with distribution function $F(t)$. In analogy with above we can consider the transversal deviations of a maximal path and define the exponent $\xi$. If we had large deviation estimates for $\mathbb{P}[G(N) \leq n]$ analogous to (1.4) and (1.5) we could copy the proof given in the next section and show that $\xi=2 / 3$ in this case also. In [Jo] an estimate like (1.4) is proved, but (1.5) is open. It follows from $[\mathrm{BR}]$ that $\mathbb{P}[G(N) \leq n]$ is given by a certain $n \times n$ Toeplitz determinant just as $\phi_{n}(\lambda)$, and it might be possible to prove the analogue of (1.5) using Riemann-Hilbert techniques as in [BDJ].

## 2. Proof of $\xi \geq 2 / 3$

We will first prove that $\xi \geq 2 / 3$. Pick $\gamma \in(\xi, 1)$ and $\epsilon>0$ (small). That $\xi<1$ follows from the proof in sect. 3 that $\xi \leq 2 / 3$, which is independent of the present section. By the definition of $\xi$ there is an $N_{0}$ such that

$$
\begin{equation*}
\mathbb{P}\left[A_{N}^{\gamma}\right] \geq 1-\epsilon \tag{2.1}
\end{equation*}
$$

for all $N \geq N_{0}$. If $\omega \in A_{N}^{\gamma}$, then every maximal path from 0 to $w_{N}$ is contained in the cylinder $C(\gamma, N)$, so writing $C_{1}=C(\gamma, N)$, we see that $d^{C_{1}}\left(0, w_{N} ; \omega\right)=$ $d\left(0, w_{N} ; \omega\right)$. Hence, by (2.1),

$$
\begin{equation*}
\mathbb{P}\left[d^{C_{1}}\left(0, w_{N}\right)=d\left(0, w_{N}\right)\right] \geq 1-\epsilon \tag{2.2}
\end{equation*}
$$

if $N \geq N_{0}$.
Set $\mathbf{v}_{1}=(1 / \sqrt{2}, 1 / \sqrt{2})$ and $\mathbf{v}_{2}=(-1 / \sqrt{2}, 1 / \sqrt{2})$. Let $m_{N}=3 N^{\gamma} \mathbf{v}_{2}$ and let $C_{2}$ be the cylinder $C_{2}=C_{1}+m_{N}$. Pick a $b$ such that $\gamma<b<1$, and assume that $N$ is so large that $N^{b}-4 N^{\gamma}>0$. Define the points $A, B, C$ on the sides of $C_{2}$ by

$$
\begin{aligned}
& \overline{O A}=\left(N^{b}+2 N^{\gamma}\right) \mathbf{v}_{1}+2 N^{\gamma} \mathbf{v}_{2} \\
& \overline{O B}=\left(N^{b}+4 N^{\gamma}\right) \mathbf{v}_{1}+4 N^{\gamma} \mathbf{v}_{2} \\
& \overline{O C}=N^{b} \mathbf{v}_{1}+4 N^{\gamma} \mathbf{v}_{2}
\end{aligned}
$$

$A B C$ is a right angle triangle with the right angle at $A$, the side $A B$ is vertical with $A$ on the lower side of $C_{2}$ and $B$ on the upper side. Divide the vertical side $A B$ into $K=K(N)$ segments $z_{i-1} z_{i}, i=1, \ldots, K$, where $z_{0}=A$ and $z_{K}=B$. Let
$L_{i}$ be the part of the straight line through $z_{i}$, parallel to the $x$-axis, lying in $C_{2}$. The parallelogram between $L_{i-1}$ and $L_{i}$ in $C_{2}$ is denoted by $F_{i}, i=1, \ldots, K$. We also define the analogous geometrical objects at the other end of the cylinder, close to $m_{N}+w_{N}$, by translating the whole picure by $t_{N}=\sqrt{2} N-6 N^{\gamma}-2 N^{b}$, $z_{i}^{\prime}=z_{i}+t_{N} \mathbf{v}_{1}, F_{i}^{\prime}=F_{i}+t_{N} \mathbf{v}_{1}, \overline{O A}^{\prime}=\overline{O A}+t_{N} \mathbf{v}_{1}$ and $\overline{O B}^{\prime}=\overline{O B}+t_{N} \mathbf{v}_{1}$.

Given a Borel set $F, \omega(F)$ is the number of Poisson points in $F$. Let $\pi=$ $\left\{\zeta_{1}, \ldots, \zeta_{M}\right\}, \zeta_{1} \prec \cdots \prec \zeta_{M}$, be a maximal path in $\Pi^{C_{2}}\left(m_{N}, m_{N}+w_{N} ; \omega\right)$ and let $\pi^{*}$ be the curve obtained by joining $\zeta_{i}$ and $\zeta_{i+1}, i=0, \ldots, K$, by straight line segments, $\zeta_{0}=m_{N}$ and $\zeta_{K+1}=m_{N}+w_{N}$. The curve $\pi^{*}$ intersects $A B$ at some point $P$ and $A^{\prime} B^{\prime}$ at some point $Q$. The point $P$ belongs to $\bar{F}_{i}$ and $Q$ to $\bar{F}_{j}^{\prime}$ for some $i, j$. We will write $z(\omega)=z_{i}$ and $z^{\prime}(\omega)=z_{j}^{\prime}$. (If $P=z_{i}$ for some $i$ we let $z(\omega)=z_{i}$ and analogously for $Q$.) If we set $D_{N}(\omega)=\max _{i} \omega\left(\bar{F}_{i}\right)+\max _{j} \omega\left(\bar{F}_{j}^{\prime}\right)$, then

$$
\begin{align*}
d^{C_{2}}\left(m_{N}, m_{N}+w_{N}\right) \leq & d^{C_{2}}\left(m_{N}, z(\omega)\right)+d^{C_{2}}\left(z(\omega), z^{\prime}(\omega)\right) \\
& +d^{C_{2}}\left(z^{\prime}(\omega), m_{N}+w_{N}\right)+D_{N}(\omega) . \tag{2.3}
\end{align*}
$$

Note that $z(\omega) \in \mathscr{A} \doteq\left\{z_{0}, \ldots, z_{K}\right\}$ and $z^{\prime}(\omega) \in \mathscr{A}^{\prime} \doteq\left\{z_{0}^{\prime}, \ldots, z_{K}^{\prime}\right\}$.
Lemma 2.1. Let $K=\left[8 N^{2 \gamma}\right]+1$. Then

$$
\begin{equation*}
\mathbb{P}\left[D_{N}(\omega) \geq d\right] \leq C\left(8 N^{2 \gamma}+1\right) e^{-d / 2} \tag{2.4}
\end{equation*}
$$

for all $d \geq 1$, where $C$ is a numerical constant.
Proof. Since

$$
\left\{D_{N}(\omega) \geq d\right\} \subseteq\left\{\max _{i} \omega\left(\bar{F}_{i}\right) \geq \frac{d}{2}\right\} \cup\left\{\max _{j} \omega\left(\bar{F}_{j}^{\prime}\right) \geq \frac{d}{2}\right\}
$$

we have

$$
\begin{equation*}
\mathbb{P}\left[D_{N}(\omega) \geq d\right] \leq 2 K \mathbb{P}\left[\omega\left(\bar{F}_{1}\right) \geq d / 2\right] \tag{2.5}
\end{equation*}
$$

Here we have used the fact that all the random variables $\omega\left(\bar{F}_{i}\right), \omega\left(\bar{F}_{j}^{\prime}\right)$ are identically distributed. The area of $\bar{F}_{1}$ is $8 N^{2 \gamma} / K=\lambda$, and thus

$$
\begin{equation*}
\mathbb{P}\left[\omega\left(\bar{F}_{1}\right) \geq d / 2\right] \leq \sum_{j=[d / 2]}^{\infty} e^{-\lambda} \frac{\lambda^{j}}{j!} \leq C \sum_{j=[d / 2]}^{\infty} e^{-\lambda f(j / \lambda)} \tag{2.6}
\end{equation*}
$$

where $C$ is a numerical constant and $f(x)=x \log x+1-x$. Here we have used Stirling's formula. Note that $f(x) \geq x$ if $x \geq 9$ say. Choose $K=\left[8 N^{2 \gamma}\right]+1$, so that $\lambda \leq 1$, and assume that $d \geq 18$. Then, by (2.6),

$$
\mathbb{P}\left[\omega\left(\bar{F}_{1}\right) \geq d / 2\right] \leq C \sum_{j=[d / 2]}^{\infty} e^{-j} \leq C e^{-d / 2}
$$

and introducing this estimate into (2.5) yields

$$
\mathbb{P}\left[\omega\left(\bar{F}_{1}\right) \geq d\right] \leq C\left(1+8 N^{2 \gamma}\right) e^{-d / 2}
$$

for all $N \geq 1, d \geq 1$.
Q.E.D.

It follows from the estimate (2.4) that

$$
\begin{equation*}
\mathbb{P}\left[D_{N}(\omega) \leq 5 \log N\right] \geq 1-\epsilon, \tag{2.7}
\end{equation*}
$$

for all sufficiently large $N$.
Next, choose $\kappa_{1}$ and $\kappa_{2}$ so that $0<\kappa_{1}<1 / 3<\kappa_{2}<1$.
Lemma 2.2. Assume that (2.1) holds. There is a numerical constant $\eta \in(0,1)$, such that if $\epsilon \leq \eta$ and $N$ is sufficiently large, then

$$
\begin{equation*}
\mathbb{P}\left[d^{C_{1}}\left(0, w_{N}\right)-d^{C_{2}}\left(m_{N}, m_{N}+w_{N}\right) \leq-N^{\kappa_{1}}\right] \geq \eta \tag{2.8}
\end{equation*}
$$

Furthermore, for $N$ sufficiently large,

$$
\begin{gather*}
\mathbb{P}\left[|d(0, z(\omega))-2 \sqrt{a(0, z(\omega))}| \leq N^{b \kappa_{2}}\right] \geq 1-\epsilon,  \tag{2.9}\\
\mathbb{P}\left[\left|d\left(m_{N}, z(\omega)\right)-2 \sqrt{a\left(m_{N}, z(\omega)\right)}\right| \leq N^{b \kappa_{2}}\right] \geq 1-\epsilon,  \tag{2.10}\\
\mathbb{P}\left[\left|d\left(z^{\prime}(\omega), w_{N}\right)-2 \sqrt{a\left(z^{\prime}(\omega), w_{N}\right)}\right| \leq N^{b \kappa_{2}}\right] \geq 1-\epsilon, \tag{2.11}
\end{gather*}
$$

$\mathbb{P}\left[\left|d\left(z^{\prime}(\omega), w_{N}+m_{N}\right)-2 \sqrt{a\left(z^{\prime}(\omega), w_{N}+m_{N}\right)}\right| \leq N^{b \kappa_{2}}\right] \geq 1-\epsilon$,
Proof. The random variables $d^{C_{1}}\left(0, w_{N}\right)$ and $d^{C_{2}}\left(m_{N}, m_{N}+w_{N}\right)$ are independent. Thus

$$
\begin{align*}
& \mathbb{P}\left[d^{C_{1}}\left(0, w_{N}\right)-d^{C_{2}}\left(m_{N}, m_{N}+w_{N}\right) \leq-N^{\kappa_{1}}\right] \\
& \quad \geq \mathbb{P}\left[d^{C_{1}}\left(0, w_{N}\right)-2 N \leq 0 \text { and } d^{C_{2}}\left(m_{N}, m_{N}+w_{N}\right)-2 N \geq N^{\kappa_{1}}\right] \\
& \quad=\mathbb{P}\left[d^{C_{1}}\left(0, w_{N}\right)-2 N \leq 0\right] \cdot \mathbb{P}\left[d^{C_{1}}\left(0, w_{N}\right)-2 N \geq N^{\kappa_{1}}\right] \tag{2.13}
\end{align*}
$$

If $\omega \in A_{N}^{\gamma}$, then $d^{C_{1}}\left(0, w_{N}\right)=d\left(0, w_{N}\right)$, and consequently the last expression in (2.13) is greater than or equal to

$$
\begin{align*}
& \mathbb{P}\left[\left\{d\left(0, w_{N}\right)-2 N \leq 0\right\} \cap A_{N}^{\gamma}\right] \cdot \mathbb{P}\left[\left\{d\left(0, w_{N}\right)-2 N \geq N^{\kappa_{1}}\right\} \cap A_{N}^{\gamma}\right] \\
& \geq\left(\mathbb{P}\left[d\left(0, w_{N}\right)-2 N \leq 0\right]+\mathbb{P}\left[A_{N}^{\gamma}\right]-1\right) \\
& \quad \times\left(\mathbb{P}\left[d\left(0, w_{N}\right)-2 N \geq N^{\kappa_{1}}\right]+\mathbb{P}\left[A_{N}^{\gamma}\right]-1\right) . \tag{2.14}
\end{align*}
$$

By (1.1),

$$
\mathbb{P}\left[d\left(0, w_{N}\right)-2 N \leq 0\right]=\phi_{2 N}\left(N^{2}\right)
$$

It follows from (1.3) that $\phi_{2 N}\left(N^{2}\right) \rightarrow F(0)$ as $N \rightarrow \infty$. Furthermore, since $\kappa_{1}<1 / 3$,

$$
\mathbb{P}\left[d\left(0, w_{N}\right)-2 N \geq N^{\kappa_{1}}\right]=1-\phi_{\left[2 N+N^{\kappa_{1}}\right]}\left(N^{2}\right) \rightarrow 1-F(0)
$$

as $N \rightarrow \infty$, again by (1.3) and the fact that $\phi_{n}(\lambda)$ is increasing in $n$. Let $\eta=$ $\frac{1}{3} F(0)(1-F(0))>0$. If $N$ is sufficiently large then $\mathbb{P}\left[d\left(0, w_{N}\right)-2 N \leq 0\right] \geq$ $F(0)-\eta$ and $\mathbb{P}\left[d\left(0, w_{N}\right)-2 N \geq N^{\kappa_{1}}\right] \geq 1-F(0)-\eta$. Since $\mathbb{P}\left[A_{N}^{\gamma}\right] \geq 1-\epsilon$ by (2.1) we see that the right hand side of $(2.14)$ is $\geq(F(0)-2 \eta)(1-F(0)-2 \eta) \geq \eta$. This proves (2.8).

Next, we will prove (2.9). The proofs of (2.10), (2.11) and (2.12) are completely analogous. Note that

$$
\mathbb{P}\left[|d(0, z(\omega))-2 \sqrt{a(0, z(\omega))}| \leq N^{b \kappa_{2}}\right] \geq \mathbb{P}\left[\bigcap_{j=0}^{K}\left\{\left|d\left(0, z_{j}\right)-2 \sqrt{a\left(0, z_{j}\right)}\right| \leq N^{b \kappa_{2}}\right\}\right]
$$

so it suffices to show that

$$
\begin{equation*}
\sum_{j=1}^{K} \mathbb{P}\left[\left|d\left(0, z_{j}\right)-2 \sqrt{a\left(0, z_{j}\right)}\right| \geq N^{b \kappa_{2}}\right] \leq \epsilon \tag{2.15}
\end{equation*}
$$

for all sufficiently large $N$. We have $z_{j}=\frac{1}{\sqrt{2}}\left(N^{b}, N^{b}+r_{j}\right)$, where $4 N^{\gamma} \leq r_{j} \leq$ $8 N^{\gamma}$, so $a\left(0, z_{j}\right)=\frac{1}{2}\left(N^{2 b}+N^{b} r_{j}\right) \doteq a_{j}$. Now,

$$
\mathbb{P}\left[d\left(0, z_{j}\right)-2 \sqrt{a_{j}} \leq-N^{b \kappa_{2}}\right]=\phi_{\left[2 \sqrt{a_{j}}-N^{b \kappa_{2}}\right]}\left(a_{j}\right) .
$$

In this case $t$ defined by (1.2) is $\sim-2^{1 / 6} N^{b \kappa_{2}-b / 3}$ and since $1 / 3<\kappa_{2}<1$, the condition for (1.5) is fulfilled if $N$ is sufficiently large and we get

$$
\begin{equation*}
\mathbb{P}\left[d\left(0, z_{j}\right)-2 \sqrt{a_{j}} \leq-N^{b \kappa_{2}}\right] \leq c_{3} \exp \left(-c_{4} N^{3 b\left(\kappa_{2}-1 / 3\right)}\right) \tag{2.16}
\end{equation*}
$$

for some positive constants $c_{3}, c_{4}$ and all $j$. Similarly we can use (1.4) to prove that

$$
\begin{equation*}
\mathbb{P}\left[d\left(0, z_{j}\right)-2 \sqrt{a_{j}} \geq N^{b \kappa_{2}}\right] \leq c_{5} \exp \left(-c_{6} N^{\frac{3}{2} b\left(\kappa_{2}-1 / 3\right)}\right) \tag{2.17}
\end{equation*}
$$

for some positive constants $c_{5}, c_{6}$ if $N$ is sufficiently large. Using (2.16) and (2.17) we see that (2.15) holds if $N$ is sufficiently large since $K=\left[8 N^{2 \gamma}\right]+1$. This completes the proof of the lemma.
Q.E.D.

Denote by $B_{N}^{\gamma}$ the set of $\omega$ that satisfy all the inequalities inside $\mathbb{P}[$ ] in (2.7) (2.12). Then, by (2.7) and Lemma 2.2,

$$
\begin{equation*}
\mathbb{P}\left[B_{N}^{\gamma}\right] \geq \eta-5 \epsilon . \tag{2.18}
\end{equation*}
$$

Note that for any $\omega$,

$$
\begin{equation*}
d\left(0, w_{N}\right) \geq d(0, z(\omega))+d\left(z(\omega), z^{\prime}(\omega)\right)+d\left(z^{\prime}(\omega), w_{N}\right) \tag{2.19}
\end{equation*}
$$

The inequalities (2.3) and (2.19) give

$$
\begin{align*}
d^{C_{2}}\left(m_{N}, m_{N}+w_{N}\right)-d\left(0, w_{N}\right) \leq & d^{C_{2}}\left(m_{N}, z(\omega)\right)+d^{C_{2}}\left(z^{\prime}(\omega), m_{N}+w_{N}\right) \\
& -d(0, z(\omega))-d\left(z^{\prime}(\omega), w_{N}\right)+D_{N}(\omega) . \tag{2.20}
\end{align*}
$$

Now, using (2.20), we see that for $\omega \in B_{N}^{\gamma}$,

$$
\begin{align*}
d^{C_{1}}\left(0, w_{N}\right)-d\left(0, w_{N}\right)= & d^{C_{1}}\left(0, w_{N}\right)-d^{C_{2}}\left(m_{N}, m_{N}+w_{N}\right) \\
& +d^{C_{2}}\left(m_{N}, m_{N}+w_{N}\right)-d\left(0, w_{N}\right) \\
\leq & -N^{\kappa_{1}}+4 N^{b \kappa_{2}}+2 \sqrt{a\left(m_{N}, z(\omega)\right)} \\
& +2 \sqrt{a\left(z^{\prime}(\omega), m_{N}+w_{N}\right)}-2 \sqrt{a(0, z(\omega))} \\
& -2 \sqrt{a\left(z^{\prime}(\omega), w_{N}\right)}+5 \log N . \tag{2.21}
\end{align*}
$$

To proceed we need the following purely geometric lemma.
Lemma 2.3. For all sufficiently large $N$,

$$
\begin{equation*}
\sqrt{a\left(m_{N}, z\right)}-\sqrt{a(0, z)} \leq 10 N^{2 \gamma-b} \tag{2.22}
\end{equation*}
$$

for any $z \in \mathscr{A}$ and

$$
\begin{equation*}
\sqrt{a\left(z^{\prime}, w_{N}+m_{N}\right)}-\sqrt{a\left(z^{\prime}, w_{N}\right)} \leq 10 N^{2 \gamma-b} \tag{2.23}
\end{equation*}
$$

for any $z^{\prime} \in \mathscr{A}^{\prime}$.
Proof. We will prove (2.22). The inequality (2.23) then follows by symmetry. Now, $a\left(m_{N}, z_{j}\right)=\left(N^{b}+3 N^{\gamma}\right)\left(N^{b}-3 N^{\gamma}+r_{j}\right) / 2, a\left(0, z_{j}\right)=\left(N^{2 b}+r_{j} N^{b}\right) / 2$ and hence

$$
\sqrt{a\left(m_{N}, z\right)}-\sqrt{a(0, z)}=\frac{a\left(m_{N}, z\right)-a(0, z)}{\sqrt{a\left(m_{N}, z\right)}+\sqrt{a(0, z)}} \leq \frac{3 r_{j} N^{\gamma}}{2 \sqrt{2} N^{b}} \leq 10 N^{2 \gamma-b}
$$

since $r_{j} \leq 8 N^{\gamma}$.
Q.E.D.

Introducing the estimates (2.22) and (2.23) into (2.21) we obtain

$$
d^{C_{1}}\left(0, w_{N}\right)-d\left(0, w_{N}\right) \leq-N^{\kappa_{1}}+5 N^{b \kappa_{2}}+40 N^{2 \gamma-b}
$$

for all $\omega \in B_{N}^{\gamma}$ if $N$ is sufficiently large. Thus, by (2.18),

$$
\begin{equation*}
\mathbb{P}\left[d^{C_{1}}\left(0, w_{N}\right)-d\left(0, w_{N}\right) \leq-N^{\kappa_{1}}+5 N^{b \kappa_{2}}+40 N^{2 \gamma-b}\right] \geq \eta-5 \epsilon \geq \frac{\eta}{2} \tag{2.24}
\end{equation*}
$$

if $\epsilon<\eta / 10$ and $N$ is sufficiently large. But we also have the estimate (2.2). These estimates are consistent for large $N$ only if

$$
\begin{equation*}
\kappa_{1} \leq \max \left\{b \kappa_{2}, 2 \gamma-b\right\} \tag{2.25}
\end{equation*}
$$

In this inequality we can let $\kappa_{1} \nearrow 1 / 3$ and $\kappa_{2} \searrow 1 / 3$ to get $1 / 3 \leq \max \{b / 3,2 \gamma-b\}$ and since $b<1$, we must have $1 / 3 \leq 2 \gamma-b$. Here we can let $\gamma \searrow \xi$ and $b \nearrow 1$ to get $1 / 3 \leq 2 \xi-1$, i.e. $\xi \geq 2 / 3$.

## 3. Proof of $\xi \leq 2 / 3$

We turn now to the proof of the opposite inequality $\xi \leq 2 / 3$. By the definition (1.6) of $\xi$ we see that we have to show that if $\gamma>2 / 3$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{P}\left[\Omega \backslash A_{N}^{\gamma}\right]=0 \tag{3.1}
\end{equation*}
$$

If $\omega \in \Omega \backslash A_{N}^{\gamma}$, then there is a path $\pi_{0} \in \Pi_{\max }\left(0, w_{N} ; \omega\right)$ such that $\pi_{0}$ is not contained in $C(\gamma, N)$. We take one such path. Fix $\gamma \in(2 / 3,1)$. Let $\pi_{0}^{*}$ be the curve associated to $\pi_{0}$. Then $\pi_{0}^{*}$ intersects the upper and/or the lower sides of $C(\gamma, N)$. Assume that it intersects the upper side. Define a sequence of points on the upper side of $C(\gamma, N), z_{j}=\left(j M / K, j M / K+\sqrt{2} N^{\gamma}\right), 0 \leq j \leq K$, where $M=N-\sqrt{2} N^{\gamma}$ and $K=\left[2 \sqrt{2} N^{1+\gamma}\right]+1$. Let $D_{j}$ be the parallelogram with corners at $z_{j-1}, z_{j}$, $\left(j M / K, j M / K-\sqrt{2} N^{\gamma}\right)$ and $\left((j-1) M / K,(j-1) M / K-\sqrt{2} N^{\gamma}\right), 1 \leq j \leq K$.

The curve $\pi_{0}^{*}$ intersects the upper side for the first time, going from 0 to $w_{N}$, in the line segment $z_{j-1} z_{j}$ for some $j$. We set $z(\omega)=z_{j-1}$. By the choice of $z(\omega)$ we have that

$$
\begin{equation*}
d\left(0, w_{N}\right) \leq d(0, z(\omega))+d\left(z(\omega), w_{N}\right)+\max _{1 \leq j \leq K} \omega\left(D_{j}\right) \tag{3.2}
\end{equation*}
$$

In the case when $\pi_{0}^{*}$ does not intersect the upper side but only the lower side, there is a last time where it intersects the lower side and we can assign a point $z(\omega)$ on the lower side so that (3.2) holds. This case is the image under the map $T_{N}:(x, y) \rightarrow(N-x, N-y)$ of the first case. Let $\mathscr{C}=\left\{z_{j}\right\}_{j=0}^{K}$ and let $\mathscr{C} \mathscr{C}^{\prime}$ be the image of $\mathscr{C}$ under $T_{N}$.

Lemma 3.1. Set

$$
\Lambda_{N}=\left\{\omega ; \max _{1 \leq j \leq K} \omega\left(D_{j}\right) \leq 2 \log N\right\}
$$

and for each $z \in \mathscr{C} \cup \mathscr{C}^{\prime}, \delta \in(1 / 3,2 \gamma-1)$,

$$
\begin{aligned}
E_{z}= & \left\{\omega ; d(0, z) \leq 2 \sqrt{a(0, z)}+a(0, z)^{\delta / 2}+N^{\delta}\right. \\
& \text { and } \left.\quad d\left(z, w_{N}\right) \leq 2 \sqrt{a\left(z, w_{N}\right)}+a\left(z, w_{N}\right)^{\delta / 2}+N^{\delta}\right\}
\end{aligned}
$$

For any given $\epsilon>0$, there is an $N_{0}$ such that if $N \geq N_{0}$, then

$$
\begin{equation*}
\mathbb{P}\left[\bigcup_{z \in \mathscr{C} \cup \mathscr{C}^{\prime}}\left(\Omega \backslash E_{z}\right) \cup\left(\Omega \backslash \Lambda_{N}\right)\right] \leq \epsilon \tag{3.3}
\end{equation*}
$$

Proof. An argument analogous to the one used in the proof of Lemma 2.1 shows that there is a numerical constant $C$ so that

$$
\mathbb{P}\left[\Omega \backslash \Lambda_{N}\right] \leq C N^{\gamma-1}
$$

We consider $z \in \mathscr{C}$, the case $z \in \mathscr{C}^{\prime}$ is analogous by symmetry. Recall that $[z, w]$ denotes the rectangle with corners at $z$ and $w$. If $a(0, z) \leq N^{\delta / 2}$, then $\mathbb{P}[\omega([0, z]) \geq$
$\left.N^{\delta}\right] \leq C \exp \left(-N^{\delta} / 2\right)$ for some numerical constant $C$, by Chebyshev's inequality. Since we trivially have $d(0, z ; \omega) \leq \omega([0, z])$, we obtain

$$
\begin{equation*}
\mathbb{P}\left[d(0, z)>2 \sqrt{a(0, z)}+a(0, z)^{\delta / 2}+N^{\delta}\right] \leq C \exp \left(-N^{\delta} / 2\right) \tag{3.4}
\end{equation*}
$$

provided $a(0, z) \leq N^{\delta / 2}$. Now, with $a=a(0, z)$,

$$
\mathbb{P}\left[d(0, z)>2 \sqrt{a}+a^{\delta / 2}+N^{\delta}\right] \leq 1-\phi_{\left[2 \sqrt{a}+a^{\delta / 2}\right]}(a)
$$

This last expression can be estimated using (1.4), which gives

$$
1-\phi_{\left[2 \sqrt{a}+a^{\delta / 2}\right]}(a) \leq c_{1}^{\prime} \exp \left(-c_{2}^{\prime} a^{(\delta-1 / 3) / 2}\right) .
$$

If $a \geq N^{\delta / 2}$, the right hand side is $\leq c_{1}^{\prime} \exp \left(-c_{2}^{\prime} N^{\delta(\delta-1 / 3) / 4}\right)$ and thus

$$
\begin{equation*}
\mathbb{P}\left[d(0, z)>2 \sqrt{a}+a^{\delta / 2}+N^{\delta}\right] \leq c_{1}^{\prime} \exp \left(-c_{2}^{\prime} N^{\delta(\delta-1 / 3) / 4}\right) \tag{3.5}
\end{equation*}
$$

We can prove estimates analogous to (3.4) and (3.5) with $d(0, z)$ replaced by $d\left(z, w_{N}\right)$ in the same way. Bringing everything together we see that (3.3) holds if $N$ is sufficiently large. The lemma is proved.
Q.E.D.

Set

$$
B_{N}^{\gamma}=\left(\Omega \backslash A_{N}^{\gamma}\right) \cap\left(\bigcap_{z \in \mathscr{C} \cup \mathscr{C}^{\prime}} E_{z}\right) \cap \Lambda_{N}
$$

By Lemma 3.1, for $N \geq N_{0}$,

$$
\begin{equation*}
\mathbb{P}\left[\Omega \backslash A_{N}^{\gamma}\right] \leq \epsilon+\mathbb{P}\left[B_{N}^{\gamma}\right] . \tag{3.6}
\end{equation*}
$$

Since $a(0, z) \leq N^{2}$ and $a\left(z, w_{N}\right) \leq N^{2}$ for any $z \in \mathscr{C} \cup \mathscr{C}^{\prime}$, we see from (3.2) that for $\omega \in B_{N}^{\gamma}$,

$$
\begin{equation*}
d\left(0, w_{N}\right) \leq 2 \log N+4 N^{\delta}+2 \sqrt{a(0, z(\omega))}+\sqrt{a\left(z(\omega), w_{N}\right)} \tag{3.7}
\end{equation*}
$$

We need one more geometric lemma.
Lemma 3.2. For any $z \in \mathscr{C} \cup \mathscr{C}$,

$$
\begin{equation*}
\sqrt{a(0, z)}+\sqrt{a\left(z, w_{N}\right)}-\sqrt{a\left(0, w_{N}\right)} \leq-N^{2 \gamma-1} \tag{3.8}
\end{equation*}
$$

if $N$ is sufficiently large.
Proof. Again, by symmetry, it suffices to consider the case $z \in \mathscr{C}$. Now, $a\left(0, z_{j}\right)=$ $j \frac{M}{K}\left(j \frac{M}{K}+\sqrt{2} N^{\gamma}\right)$ and $a\left(z_{j}, w_{N}\right)=\left(N-j \frac{M}{K}\right)\left(N-j \frac{M}{K}-\sqrt{2} N^{\gamma}\right)$. where $1 \leq j \leq K=\left[2 \sqrt{2} N^{1+\gamma}\right]+1$ and $M=N-\sqrt{2} N^{\gamma}$. Write $x=j M / K N$ and $y=\sqrt{2} N^{\gamma-1}$, so that $0 \leq x \leq 1-y$. Then,

$$
\begin{equation*}
\sqrt{a(0, z)}+\sqrt{a\left(z, w_{N}\right)}-\sqrt{a\left(0, w_{N}\right)}=N f(x, y) \tag{3.9}
\end{equation*}
$$

where

$$
f(x, y)=\sqrt{x^{2}+x y}+\sqrt{(1-x)^{2}-(1-x) y}
$$

For a fixed $y \in(0,1)$ this function assumes its maximum in $[0,1-y]$ at $x=$ $(1-y) / 2$, which gives $f(x, y) \leq-y^{2} / 2$. Inserting this estimate into (3.9) and taking $y=\sqrt{2} N^{\gamma-1}<1$, which is true if $N$ is large enough, proves the lemma.
Q.E.D.

Combining the estimates (3.7) and (3.8), we see that

$$
\begin{equation*}
\mathbb{P}\left[B_{N}^{\gamma}\right] \leq \mathbb{P}\left[d\left(0, w_{N}\right)-2 \sqrt{a\left(0, w_{N}\right)} \leq 2 \log N+4 N^{\delta}-2 N^{2 \gamma-1}\right] \tag{3.10}
\end{equation*}
$$

To finish the proof we need

Lemma 3.3. If $\delta \in(1 / 3,2 \gamma-1), \gamma>2 / 3$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{P}\left[d\left(0, w_{N}\right)-2 \sqrt{a\left(0, w_{N}\right)} \leq 2 \log N+4 N^{\delta}-2 N^{2 \gamma-1}\right]=0 . \tag{3.11}
\end{equation*}
$$

Proof. Since $\delta<2 \gamma-1$, we have that $2 \log N+4 N^{\delta}-2 N^{2 \gamma-1} \leq-N^{2 \gamma-1}$ if $N$ is sufficiently large. Thus, by (1.1),

$$
\begin{aligned}
\mathbb{P}\left[d\left(0, w_{N}\right) \leq 2 N+2 \log N+4 N^{\delta}-2 N^{2 \gamma-1}\right] & \leq \mathbb{P}\left[d\left(0, w_{N}\right) \leq 2 N-N^{2 \gamma-1}\right] \\
& =\phi_{\left[2 N-N^{2 \gamma-1}\right]}\left(N^{2}\right)
\end{aligned}
$$

The identity (1.2) with $n=\left[2 N-N^{2 \gamma-1}\right]$ and $\lambda=N^{2}$ gives $t \sim-N^{2 \gamma-4 / 3}$, and hence (1.5) gives us the estimate

$$
\phi_{\left[2 N-N^{2 \gamma-1}\right]}\left(N^{2}\right) \leq c_{1} \exp \left(-c_{2}^{\prime} N^{6 \gamma-4}\right),
$$

where $c_{2}^{\prime}>0$. This proves the lemma.
Q.E.D.

Combining (3.11) with (3.6) and (3.10) we have proved (3.1). Thus $\xi \leq 2 / 3$ and we are done.

Acknowledgements. I thank M. Wüthrich for explaining his work on the exponents $\chi$ and $\xi$. I also thank A.-S. Sznitman for inviting me to the Forschungsinsitut für Mathematik at ETH, Zürich, where this work was begun, and E. Rains and J. Baik for keeping me informed about the work [BR]. This work was supported by the Swedish Natural Science Research Council (NFR).

## References

[AD] Aldous, D., Diaconis, P.: Hammersley's Interacting Particle Process and Longest Increasing Subsequences, Prob. Th. Rel. Fields, 103, 199-2130 (1995)
[BDJ] Baik, J., Deift, P.A., Johansson, K.: On the distribution of the longest increasing subsequence in a random permutation, J. Amer. Math. Soc., 12, 1119-1178 (1999)
[BR] Baik, J., Rains, E.: Algebraic aspects of increasing subsequences, math.CO/9905083
[Ha] Hammersley, J.M.: A few seedlings of research, In Proc. Sixth Berkeley Symp. Math. Statist. and Probability, Vol. 1, pp. 345-394, University of California Press, 1972
[Jo] Johansson, K.: Shape fluctuations and random matrices, to appear in Commun. Math. Phys.
[KS] Krug, J.: Spohn, H.: Kinetic Roughening of Growing Interfaces, in Solids far from Equilibrium: Growth, Morphology and Defects, ed. C. Godrèche, 479-582, Cambridge University Press, 1992
[LNP] Licea, C., Newman, C.M., Piza, M.S.T.: Superdiffusivity in first-passage percolation, Probab. Theory Relat. Fields, 106, 977-1005 (1996)
[NP] Newman, C.M., Piza, M.S.T.: Divergence of Shape Fluctuations in Two Dimensions, Ann. Prob., 23, 977-1005 (1995)
[Se] Seppäläinen, T.: Large Deviations for Increasing Sequences on the Plane, Probab. Theory Relat. Fields, 112, 221-244 (1998)
[TW] Tracy, C.A., Widom, H.: Level Spacing Distributions and the Airy Kernel, Commun. Math. Phys., 159, 151-174 (1994)
[Wü] Wüthrich, M.V.: Scaling identity for crossing Brownian motion in a Poissonian potential, Probab. Theory Relat. Fields, 112, 299-319 (1998)


[^0]:    K. Johansson: Department of Mathematics, Royal Institute of Technology, Lindstedtsvägen 25, S-100 44 Stockholm, Sweden. e-mail: kurt j@math.kth. se

    Mathematics Subject Classification (1991): Primary: 60K35,82C24; Secondary: 82B24, 82B44

