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Abstract. Chaos decomposition of multiple integrals with respect to
fractional Brownian motion (with H > 1/2)is given. Conversely the chaos
components are expressed in terms of the multiple fractional integrals. Ten-
sor product integrals are introduced and series expansions in those are con-
sidered. Strong laws for fractional Brownian motion are proved as an ap-
plication of multiple fractional integrals.
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1. Introduction

In Dasgupta and Kallianpur [2] multiple integrals w.r.t fractional Brownian
motion (multiple fractional integrals from now on) are constructed in the
mean square sense when the index H of fractional Brownian motion lies
between 1/2 and 1. In this paper we consider the chaos decomposition of the
multiple fractional integrals which gives information about their structure.

It is known that L? functionals of certain Gaussian processes admit a
chaos expansion in terms of Hermite polynomials. For a detailed discussion
on chaos expansion of an L2-functional of a Gaussian process we refer
the reader to chapter 6 of Kallianpur [8]. The discussion there is of great
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generality. We shall state the main result in a form suitable for our purpose.
For X (¢),t € [0, T] a real Gaussian process, one starts with a fixed but
arbitrary complete orthonormal set {e;}{° in the reproducing kernel Hilbert
space (RKHS) of the process. Using the isometric isomorphism between the
RKHS and the linear space of the process one chooses i.i.d. normal random
variables {§;}{° from the linear space of the process corresponding to {e; }{°.
Then theorem 6.6.1 of Kallianpur [8] states that

LXQ. 7%, P)=) &G, ey
p=0

where G p is the closure of the linear subspace spanned by products of
Hermite polynomials of total degree p in {§;}7°, and is called the p-th
homogeneous chaos. It is also proved that the p-th homogeneous chaos
is isometrically isomorphic to the p-fold symmetric tensor product of the
linear space of the process.

For us the process X (t) is fractional Brownian motion By (¢), ¢ € [0, T],
H > 1/2. The multiple fractional integrals in Dasgupta and Kallianpur [2]
are L? functionals of fractional Brownian motion. In this paper we consider
their chaos decomposition, that is we identify the elements in (_;m, m<p
which correspond to a multiple fractional integral of order p. These elements
are called the chaos components of the multiple fractional integral. This is
done in sections 2 and 3. Conversely the chaos components are expressed
in terms of multiple fractional integrals of successively lower orders. This
is done in sections 4 and 5. In section 6 we consider infinite series in tensor
product integrals. Finally in section 7 we extend a strong law due to Glady-
shev for fractional Brownian motion as an application of multiple fractional
integrals.

2. Chaos components of multiple fractional integrals
of elementary functions

For the sake of notational simplicity we shall first consider the double in-
tegral in detail. Let a;;,i, j = 1,2,...,n, be real numbers and A; =
[#,ti+1),1 = 1,2,...,n, be a partition of a finite interval [0, T]. A func-
tion of the form

D aijla ()1a, ()

i,j

will be called an elementary function. We define the double integral of
Zi’j aijla,(x) x 14;(y) with respect to {By(¢),1 € [0, T} as
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> aijABu(t) ABy(t)) 2)
i,j
where ABpy (t;) = By (ti+1) — By (t;). Without loss of generality we assume

a;, j to be symmetric. The main tool in considering the structure of (2) is the
following expansion in the notation of Dasgupta and Kallianpur [2]

ABp(t) =Y &(w)ei () as.

i=1

where the &; (w)’s are i.i.d. normal random variables corresponding to a com-
plete orthonormal set ¢; from the RKHS of fractional Brownian motion and
ci(ty) = e;i(ty+1) — e; (). Consider a finite sum from the above expansion
and call it

’

AB(6) =) E(@)ei(t) 3)

i=1

Do the same for all ABy(#),k = 1,2,...,n and denote the image of
AB? (1) in the RKHS by

’

- “4)
Then

Y am ABR)AB (1) =YY (D amci(t)cj(tn))EE

I,m i=1 j=1 Im
n

=Y bk )

i=1 j=I

where b,‘j = Z[,m a;m Ci (tl)Cj ().
In Johnson and Kallianpur [7] the authors represent a p-form

on the Wiener space as a sum of multiple Wiener integrals. These multiple
Wiener integrals can be represented in terms of Hermite polynomials in
&, ..., &, for example a multiple Wiener integral of order m there will
consist of sums of products of Hermite polynomials of total degree m. We
will make explicit use of these ideas and so restate their lemma 4.2 here. Let
(¢;) be a CONS for L?(R,) so that (¢, ®---®¢;,) is a CONS for Lz(Ri).
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Leta;, .. ;, be symmetric and (§;) be the element in the linear space of the
Wiener process corresponding to (¢;). Let

n
= Y @i e ®h) ©
i1eip=1
Then
n [p/2]
Z aiy....i,&iy iy = Z Cpadp-2(Tr f) 7
iyeensip=1 k=0
where
C S L 8
PR (p = 2k)12kk! ®

and for f, defined in (6) one defines

n

n
k
Tr P = Z ( Z ajlvjlv---vjk»jk,iZk-;-l,---,i,,>(¢i2k+1 ® - ® (/)ip) .
=1

Dkt 1semlp=1 " Jiseos jik=
)

and /,_; is a multiple Wiener integral of order p — 2k. For simplicity we
discuss the case p = 2 in detail. We have

Z b; &&= Zbi,i + Iz(z bi i @ pj) . (10)
=1

i,j=1 i,j=1

From theorem 6.6.4 of Kallianpur [8] we know that the double Wiener
integral in the above equation can be written in terms of symmetric tensor
products of &;. This gives

Z b; &&= Zbi,i + Z b j(&:RE;) , (11)
i,j=1 i=1 ij=1
where ® denotes a symmetric tensor product of two elements from the linear
space of fractional Brownian motion. We are going to use the expression
(11) for (5). It does not make any difference that our §;’s are from the linear
space of fractional Brownian motion, because by definition the (§®%;)’s
are just Hermite polynomials in i.i.d. normal random variables. Our main
problem is in making n" go to co. For this we put the expressions for b; ;’s
back and get from (5) and (11) after interchange of summation
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> amAB (i) AB} (i)

I,m

= Zbu + Z by j (€:®E))

l]l

= Zalm Zcz )i (tn) + Zalm Z (ci (n)él@cj (tm)sj

i,j=1

= Za;m , m +Zalm(zcl(tl)$l®zcj(tm)g)

—Zalm /) +ZalmAB" (1)&AB) ) | (12)

I,m
where one has to remember that the components with different orders of
symmetric tensor products are orthogonal. Making n’ go to co we get

Theorem 2.1.

Z am ABy (t) ABy (tn)
= am{fir fu) + Y amABu()@ABu (1) . (13)

where f; is the image ofA By (1) in the RKHS. O

The moments of theorem 3.1 of Dasgupta and Kallianpur [2] follow from
this theorem.
The argument for multiple integrals is similar and gives us

Theorem 2.2.

Z aj,..i,ABu (i) - -- ABy (1)

ST

[p/2]
- Zcpk Z ( Z Qiy,ip,...,iz, [2k+15-
Dkt 1seenslp T1yeesi2k N
(.fip .flz) . <\f12k71’ ﬁ2k>)ABH(ti2k+1)® e ®ABH(tlp) . (14)

O

The formulas for the moments in theorem 5.1 of Dasgupta and Kallianpur
[2] follow from the above theorem.

From theorem 2.2 it is seen that multiple integrals of even or odd orders
consist of only even or odd chaos components respectively. This shows mul-
tiple integrals of even order are orthogonal to multiple integrals of odd order,
but even (resp. odd) order multiple integrals are not in general orthogonal
to one another.



532 A. Dasgupta, G. Kallianpur

Theorem 2.2 can be stated for a finite number of elements from the linear
space of fractional Brownian motion instead of the increments of fractional

Brownian motion. Suppose X1, ..., X, are n elements from the linear space
of By(t),0 <t < T and let g; be the RKHS image of X;,i = 1,...,n.
For symmetric a;, ... ;, we have the following decomposition
Z aj,..i, Xiy -+ Xi,
il ,,,,, il’
[p/2]
= Z Cpui Z (Z i g, i 1,esip (8ins 8in) = (&iny> i)
k=0 D1yl B0y
X Xip @ ®X;, (15)

If we consider a complete orthonormal system of g;’s from the RKHS then
this would lead to an analogue of theorem 5.1 of Johnson and Kallianpur [7]
if we replace L?(RY) of their consideration by a p-fold symmetric tensor
product of the RKHS of fractional Brownian motion.

3. Chaos components of general multiple fractional integrals

We now generalise (14) to multiple fractional integrals of more general
functions which are defined in section 5 of Dasgupta and Kallianpur [2].
Consider the elementary function

Fo(xioxp) = Y aii)la, () 1a, (xp)
ilyeeesip

The chaos components of the MFI of F are identified in theorem 2.2. For
notational convenience we introduce

cds dt
ds,dt) = ———— | 16
Vids.dn = (16)
where
c=HQRH-1), a=H-1/2 . 17

Noticing that (from formulas (14) and (17) of Dasgupta and Kallianpur [2])
T pT
ety = [ [ 1a s, @asan .
o Jo

the chaos component

XABH(ti2k+1)® tt ®ABH(ti,,)
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can be written as

T T
M2k+1—0 up:O
T T
/ / / / Fu(S1, b1y ooy Sk iy Uy s - vy Up)
s1=0 J 1= 5r=0 J =0

XY (dsidty) - - - W(dskdlk)}d(BH(uzk+1)® e ®BH(M,7)) ,

so that theorem 2.2 reads as

T T
/ f Fo(xi, ..., xp)dBy(x1) - -dBp(x)p)
0 0

[p/2] T

T
e
u2k+1_0 up_O
/ / / / F(Sl,t],.. Skatk’u2k+la'~'v )
s1=0 J ;=0 sr=0 J =0

Xy (dsidny) - Y (dsedt) |d(Bu ()@ @By (w,) . (18)

We introduce some notation to bring out the formal similarity of the above
result to the expansion of a multiple Stratonovich integral in terms of mul-
tiple Wiener integrals. Let us denote left hand side of (18) by §,(F') and the
tensor product integrals on the RHS are denoted by .# ,_o.(.) respectively.
For an elementary F, define the k-th trace of F, by

TVI/fF (Wans1s -+ -,

/ / / / Fu(S1, 1, oo oy Sky bk, Wdkg1s - oo Up)
s1=0 J £, =0 =0 J =

XY (dsrdty) - (dsidh) (19)
Then (18) reads as
[p/2]
8p(F) =Y Cpit pa(Tri Fy) (20)
k=0

Our object is to extend (20) to functions in Lz(u,,). From section 5 of
Dasgupta and Kallianpur [2] we know that if F, converges to F € L?(u )
with ., defined as in (24), in the L*(n p) norm then §,(F,) converges to
d,(F) in mean square. So we now have to show that if F, converges to
F € L*(11,) in the L?(11,,) norm then the chaos components on the right of
(20) individually converge in mean square. We proceed to show this.
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Repeated application of Cauchy-Schwarz inequality shows that (see for-
mulas (42) to (45) of Dasgupta and Kallianpur [2])

E{Cpxt p-2(Try F))

T T T T
_ 2
= C2 (p — 2k)! / f /
Uk+1=0 Jvy41=0 up=0Jv,=0
/ / / / Fu(S1,t, ooy Skt Ujgds - o5 Up)
s1=0 J £, =0 sp=0

XY (dsidnn) -y (dsido)

T T T T
X{/ / / / Fn(Sl,tl,...,Sk,tk,U2k+1,...,vp)
s1=0 J 1, =0 sp=0 J 1, =0

Xy (dsidty) - - W(dskdfk)}W(duzkﬂdvzkﬂ) <Y (dupdvy)

T T
< C2,(p — 20)1eP (1) Q)" ) -

uzg+1=0 »=0

T T T T
{f / / / Fn(slvtlv"'askvlkvvzk-‘r]""vvp)
51=0 J1;,=0 k=0 J 1, =0

<y dsidn) -y dsedip) | < 14+ (T — )™

x[ud! + (T — up)**1dusgsr - - - du,

T T
= =20 ajear [ [ arny

uop+1=0 »=0

x[uzf o+ (T =gy )™ 1 - w3+ (T —up)**Mduger - - - du,  (21)

T T
5/ / Fo(xty .o Xp) 20y op(dxy, ... dxy) (22)
0 0
where
vy_ox(dxy,dxy, ..., dxyg_1, dxox, dxopy1, . .., dx))

= P27/ Q) 2a + 1)}"(cp,k)2<p — 2k)!1(1/(2)P~2*)

|20{71 .

2 2
X |x1 — x2 e lxaket — xR + (T — xopg)*] -

[Xf,“ + (T — x,)*1dx1dxs - - - dxop—1dxpdxspsy - - - dx,
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—k 2041 k 2 —2k
= cPHRT* M/ 2a) 2 + DY (Cp ) (p — 2011/ 2a)"™)

X (dxidxs) - - - Y(dxok—1dxo) x [x38 + (T — x01)*] -+

x[0* + (T — xp)**ldxgirs - - dx (23)

Now if F, converges to F' in L*(n ») where (1), is the measure on [0, T']?
defined by
[p/2]

wp(@dxr, ... dxy) =Y vp_o(dxy, ..., dx,) (24)

then from (22) and (24) it is seen that .# p,2k(Tr1’Z F,) is Cauchy in mean
square for each k. This mean square limit is the p — 2k-th chaos component
of 6,(F). We shall briefly discuss what happens to Trf/‘, F,asn — oo.

For the existence of the limiting traces we need to show that
[|F, — F| |ip — 0 implies Tr,’/‘, F,(u2k41, . .., up)is Cauchy in the L? norm
of the measure (see (21))

D(dusgsr -+~ dup) = " (Cp1)*(p — 2k)1(1/Qa)?~ )
X 5y + (T — g )]+ [ + (T — up)™]

X du2k+1 . --dup .

An application of Cauchy-Schwarz inequality shows that

T T )
/ / TVII;F (u2k+1,... u,,)—Trf;E,(ung,... Mp)>
X F(dqu_H dl/tp) / / / / / (Fm - n)
s1= t1=0 s=0 lk
X (81,01, v Sk Ty Udkg 15+ 7 s

X Y (dsidty) - -- w(dskdtk)} C(duiyr - - - dup)
< 2T ) 2a) Qo + DI

/u2k+1_0 /u,,_()/yl_o/zl_o [k_oﬂ

X (Fy — F)(S1, 1, -0 Sy By Uy 1, - -
X W(dsldtl) . lﬂ(dskdtk)F(dMZkH - dup)

T T
:f / (Fpy — F)(x1, ..., xp)°
0 0

XV, o (dxy, ..., dxp)
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T T

f/ f (Fm_Fn)(xly---vxp)zﬂp(dxly---adxp)
0 0

—0 . (25)

Thus we see that Trf/‘/ F, is Cauchy in L*(I") and this limit is defined to
be Tr{‘bF. We have seen that || F,, — F||ip — 0 implies 8, (F,) — §,(F)
and fp_Zk(Trl’/‘/ F,) — JP_Zk(Tr{/‘/ F) for each k in mean square. Hence
generalising (20) we have the following generalization of theorem 2.2.

Theorem 3.1. For symmetricF € L*(u,) we have

[p/2]
8,(F) = Z Cpit p—2u(TT}F) . (26)
k=0
O
The formulas for the moments in theorem 5.2 of Dasgupta and Kallianpur
[2] follow from the above theorem. Further the remarks following theorem
2.2 about orthogonality also hold in the same way.

4. Representation of chaos components of multiple fractional integrals
of elementary functions

We want to write the p — 2kth chaos component on the right hand side of
(26) of theorem 3.1 in terms of multiple fractional integrals of orders less
than or equal to p — 2k. In this section we do this for the chaos components
on the right hand side of (14) of theorem 2.2. The general case needs a
limiting argument dealt with in the next section.

The main tool is formula (4.9) of lemma 4.2 of Johnson and Kallianpur
[7]. There the authors have represented a multiple Wiener integral in terms
of p-forms in i.i.d. normal random variables. In our context we started with
a p-form (as in (5))

> by &, @7

and obtained its p — 2kth chaos component consisting of sums of products
of Hermite polynomials of total degree p — 2k, which is same as

L o (Tr* Z bi,...i,0i & - ® ¢i,)

n n

= p72k( Z Z bil,il,...ik,ik,i2k+] ..... i/7¢i2k+l ® e ® ¢i,,) (28)
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of Johnson and Kallianpur [7] where one has to remember that in our context
I,—>; has meaning only as a sum of products of Hermite polynomials of
total degree p — 2k. For us it is convenient to write (28) in terms of tensor
products following theorem 6.6.4 of Kallianpur [8]. This gives

n' n'
IP—2/<( Z Z bilsila---ik1ik1i2k+ls---xip¢i2k+l Q- ® (bip)

Uyeens k=1 I2kp15eensip=1
n' n'
= E E : bi1,ilwik,ik,izkﬂw.,ip%-izkﬂ® T ®$i,u . (29)
i1yees k=1 iogg150esip=1

Johnson and Kallianpur [7] also represent a multiple Wiener integral of the
above form as a sum of p-forms in their formula (4.7) of lemma 4.2. It
is this formula that will give us multiple fractional integrals for the chaos
components of (27). We do this now keeping n’ fixed and then we will make
n' — o0.

Formula (4.7) from Johnson and Kallianpur [7] reads as

[p/2] n n'
- (_1) Cp,k al]sl]s-~~vlkvlks12k+lym;lpéleJrl ."Slp .
k=0 D2kt 1seensip=111,...,7x =1

Following this we can write from (29)

ST I TSR PN ipéiZk-H Q- ®€l‘p

]
™

iy ik =1 iogi1,sip=1
[p—2k/2] n' n'
m
= E (_1) Cp72k,m E E
m=0 i2m+l;~~-aip=1 ik+]v~~»im=1
n/
X( E bil,il,m,ik,ik,ikﬁ,ik+|,m,ik+m,ik+m,i2(k+m)+1,m,ip)gizmﬂ e %_ip
ienip=1
k+[p—2k/2]
m—k
= E (_1) Cp—Zk,m—k
m=k

n n'
x Y D Divivipimisnn iy € iy - (30)

D1, ip=11i1, 0=
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,,,,

—Z Z{Z an....,Ciy (1) -+ i (0,))E, -+ &,

I] 1 l[,—l 11

Z bll ..... tpéu "'gip .

Now putting the expression for b;’s and interchanging order of summation
in (30) we get

E E biy iy, ipisizestromipSingn @+ - Q6

i ..... lk 1!21<+1 lp—l
k+[p—2k/2]

= Z (—1)"*Cpstm— kZazl ..... LT Y )
I

.....

x{ Z J’2m+1 ( sz+l)$j[2:n+l Z c/’p( ! )SJ’I)

‘/[2m+l 1 J]p_l
k+[p—2k/2]

= Z (—D’"*’fcp 2em—k

€2y

The right hand side of (31) a.s. goes to
k+[p—2k/2]

Z (—=D)"*Cprtm—t
x Z an...t,fivs £+ (Frss frn) ABr(t1,,,) - ABy(n,)

But we know from (14) of theorem 2.2 (as in the passage from (12) to (13))
that the left hand side of (31) goes to

Z ( Z iy in, . ing i2kg1semes ip<fi1’ fl2> e <ﬁ2k—l’ fi2k>)

ST PR PN 7

XABH(t12k+.)® - ®ABy(t;,) (32)

in mean square. So we have the following representation of the chaos com-
ponents of theorem 2.2
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Theorem 4.1.
Z ( Z ai],iz,‘..,iZk,iszr] ,,,,, i1;<ﬁ] ’ ﬁz) e (ﬁzk—l’ ﬁzk))
D2kt 1seemslp E1yeenslk N .
XABp(liy,,)® - - QABg(1;,)
k+[p—2k/2]
= > D" Cpmtmar Y @yt (frr fr)
m=k 11,...,1[,
X (ﬁZm—l > flzm>ABH(t12m+1) to ABH(tlp) (33)

5. Representation of chaos components of general multiple fractional
integrals

For the elementary function

Fn(xlv"'axp) = Z ail...il,lAil(xl)"'lA

ll:---sip

(xp)

ip

theorem 4.1 reads as

T T T T
l/ m/ {&/ / .
M2k+|:0 Mp:O s1=0 J1{,=0

T T
X/ / Fu(siot, ooy Sky ti, Uokg 1y -2 Up)
s=0 J 1, =0

dsidy  dsid }d(B (Urs)® - - @By (u ))
s — 01720 g — g 12 JOATHEA .
k+[p—2k/2] r r
= Z (=D *C ki X/ /
U2m+1=0 u,=0

m=k
T T T T
m
X<C f f f / Fn(sl’tla---’Smatm’u2m+lv---7up)
s1=0 J ;=0 Sm=0 J 1,,=0

dsdt, dspdty,
Isi — 0172 s, — 1 |1—2a)dBH(”2m+‘) ~dBp(up) . (34)

We want to extend (34) to more general functions F. We know from section
3 thatif F, convergesto F in L?(u ») then the left hand side of (34) converges
to the corresponding tensor product integral of Trf/‘/ F. By applying Cauchy
Schwarz inequality in the manner of (25) it can be seen that if F, converges
to Fin L*(u p) then the functions
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T T
/ f f / Fn(slatlv""Smatm7u2m+1"-'7up)
51=0 Jt;= sm=0 Jt,=0

dsldl‘l ds,dt,,
|Sl—l1|l T2 sy — by |1

converge to

T T
[ / f / F(slvtl7"'7smvtmvuzm+lv"'vup)
s1=0 J 1= Sm=0 Jt,,=0

dsldtl ds,,dt,,
|S1—t1|1 Za."|sm_tm|1—2a
in the norm
m+{p—2m/2] o - T2+ iem
Y A2 Cpain) locess

T T
f / / f / -/ 2m {/ / o
M2m+l =0 U2m+l =0 ;=0 Jy= X21+1—0 xp=0 51=0 J ;=0

X/ / F(Sl,t],...,Sm,tm,uzm+1,l)2m+1,...,MZZ,'UQI,
sm=0 Jt,=0

) dsidn dspdt, 2
X R 4
21+1 P sy _t1|1—2a S _lm|1_20,
X[x21+1 + (T - x21+l)2a] T [XIZ’a + (T — Xp)za]dXQH_] e dxp
dumdvm du,dv
DY [ [ (35)
[ty — Um|l_2a lu; — U]|l_2°‘

By theorem 5.2 of Dasgupta and Kallianpur [2] this shows that the terms
on the right hand side of (34) converge to the corresponding multiple frac-
tional integrals. Thus adopting the notation introduced in section 3 for F
symmetric and in L?(u ») we have the following relation between the chaos
components and the multiple fractional integrals of lower orders
Theorem 5.1.
k-+[p—2k/2]
Ipau(TrpF) =Y (=" CpakmiSpom(TryF) . (36)

m=k

O

6. Series expansions

In sections 2 and 3 it was seen that multiple fractional integrals of different
orders are in general not orthogonal. In this section we consider tensor
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product integrals which are orthogonal and then consider infinite series in
those.

In theorem 3.1 we considered the relation between the two types of
integrals 6,(F) and . p,zk(Ter F). To define the first one it was found
necessary to restrict F to L(u »). However it can be seen from (22) that
for symmetric F € L*(v ») the integral .# ,(F) exists. These integrals have
nice properties and we summarise them below:

(i)Efp(F)fq(F):O, P #q,
(i) ES (F)=0

(iii)E p(F) / f / / F(si,---,sp)F(t, ..., 1)
s1= sp=0 t,=0

x ¥ (dsy,dty) - -- ¥ (ds,, dt,)
= (F, F)y . (37)

Now if F, € L*(v,), p = 1,2, ... are such that

o0
D NFIE < oo, (38)
then the sum
o
> I (F) (39)
converges in mean square, has mean zero, and second moment
0 2 (o)
E[Y 7 ED) =D (F By (40)
p=1 p=1

Suppose f € L%(v;). Then f(x;) f(x3)--- f(x,) denoted simply by f®?
belongs to L?(v ») and the following series
(o) )\‘P ®

Y I (41)

p:
p=0
converges in mean square where A is a scalar. We are considering this series
to show that

[e¢)
- 1
JHOH=A/2D(f Fly — _ ®p
e P= (42)
p=0
This is done with the help of the following two lemmas.
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Lemma 6.1.

Ip(f&7) = J(NHRI(f)--- &I (f) . (43)

Proof. Suppose f, is a sequence of elementary functions converging to f
in the L?(v;) norm. This gives

I (fu) = J(f) . (44)

Letus write f, = Y _ a;1,4,. Then equating the terms corresponding to k = 0
of formulas (14) and (20) we have

Io(fE) = D @i ...ai, ABy(t;)® - ®ABy(t;,)

= _a,ABy ()& &) a;, ABy(;,))
= I(fIQI(fp) - @I (f) . (45)

Now f,,®p converges to f®” in the Lz(v,,) norm showing that the LHS of
(45) converges to the LHS of (43). On the other hand (44) shows that the
RHS of (45) converges to the RHS of (43). O

Lemma 6.2.

I (fOP) = I, 1 (fEP NI = (f, [lo(p — DI pa(fEP72) . (46)

Proof. .#(f) being in the linear space of fractional Brownian motion can
be expanded as a series of the form ) ¢;&;. In the following argument
the interchange of summation is first performed for a truncated part of the
above series and then a limiting argument is applied as was done in section
2. We first restate the result of lemma 4.1 of Johnson and Kallianpur [7] in
a form suitable for our purpose. For a complete orthonormal system {¢;}
from L?(R) the following consequence of the Ito decomposition formula
holds:

n/
Z iy ip(di, ® - ® ¢i,)

ilsemip=1

n/
= Z aiy.iyIp—1(Pi, @ -+ - @ @i, )i,
i1

i,0ip=1
,

—(p=1 Y Giriiy 2@ ® @i, ) . (4T)

l],.‘.,l'p=1
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where I, denotes a multiple Wiener integral. Referring to the above formula
in terms of tensor products of &;’s (as we did in (11)) consider the LHS of
(46):
J(NHB---®I(f)
= a&)® & ai&,)
= Zail e 'aip§i1® s ®§i,,
= a, a5 &, )&, —(p—1)
X Zailailaiz e 'ai,,_l(fiz(g) cee ®§ip_2)
= mgre & a6 0| as)
~(p =D aa) | a@ & ai, &, )

={rné- 85D - -0 N INE &I

p—1 p—2
= I, 1 (fEPNIS) = ly(p — DI,o(f2P72) . (43)
O
We can now prove
Theorem 6.1. For f € L?(v;) we have
21
J=A/D e — ®
e ¢ = Zoﬁfp(f 7). (49)
p:

Proof. Consider
oo )\‘p
FOO =142+ ) = I,(f) .
— p!
p_

Differentiating the above and using (48) we get

1

/ _ 7 = )\’P— [
F'()=9(f)+ I; TSR

— ¢ S At ®p—1
=7+ ; T ALY
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— )Lpl
fwa(” O s

—F(/\)f(f) (f FrwFEQ) . (50)

From (50) it now easily follows that
FQO) = D=0y

Putting A = 1 gives the desired result. O

7. Strong laws

In this section we consider a strong law proved by Gladyshev [4]. Glady-
shev’s result is for a class of Gaussian processes that includes fractional
Brownian motion as a special case. For simplicity we restrict ourselves to
fractional Brownian motion only. In this case Gladyshev’s result can be re-
cast in our language of multiple fractional integrals and the second moments
of multiple fractional integrals play an important role in the proof. We shall
first discuss Gladyshev’s result using our formulas of section 2 and then use
the techniques to prove other strong laws. We should mention that the same
techniques apply in the same way to prove similar other strong laws for the
class of Gaussian processes considered by Gladyshev.

Let us consider a partition 0, 1/2",2/2*, ..., (2" — 1)/2", 1 of [0, 1].
Then Gladyshev’s result is that

on

(1/2m1-21 Z (B (k/2") — By ((k — 1)/2"))2 — la.s. (51)
k=1

In our notation the random variables in (51) are double integrals of the
functions

on

(e ) = 3 (1729 1, (014, (7) (52)

k=1

w.r.t. By(t),1i.e. 8,(g,). It can be checked that E6,(g,) = 1. The main idea
is to find Var(6,(g,)) and apply Borel-Cantelli lemma. From our theorem
2.1 we know

Var(x(g.)) =211 _(1/2)' " fi ® fill? (53)

where f; is the RKHS image of By (k/2") — By ((k — 1)/2"). Gladyshev
provides the following bounds for the various elements of (53):
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const.

_ n\1-2H . .
] = 11/ 5, i) = sy for J 2 k42
|di x| < const./2"
|dkt1.k| < const./2" . (54)

Notice that since

A2 @ fio /i © fo) = (127 (fi, ) =d . (55)

our second moment (53) can be expressed in terms of d; ;s and this gives

2’1
2121/29' " £ ® fil® < const. Y diy
Jj.k=1,j>k
< const. {1/2" + (1/2n)4_4H}

(proved in Gladyshev [4]) . (56)

After this Borel-Cantelli lemma can be applied to obtain the result.
Using the previous discussion we now prove the following strong law

Theorem 7.1.

on

(172144 Z (B (k/2") — By ((k — 1)/2”))4 — 3a.s. (57)
k=1

Proof. Using our notation of multiple fractional integrals of sections 2 and
3 we see that the random variables in (57) are multiple fractional integrals
of

o
8n (X1, X2, X3, X4) = Z(l/zn)l_4HlAk(xl)lAk(x2)1Ak(x3)1Ak(x4) (58)
k=1

i.e. 84(g,). We note that E84(g,) = 3. By theorem 2.2 we have for p = 4

Var(84(g)) = (Ca0)2411(1/2)"" 3" fi ® fi ® fi ® fill?

+ (Ca’11A/29" 7 (fies fi) e ® fil (59)

We now work towards finding bounds for the two terms in (59).
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Recall that ( fi, fi) = (1/2")*. This shows that the second term
(Ca)* 1117297 fies ) fi ® fill?
<const.|| Y _(1/2)' 7 fi ® Kl
< const. {1/2" + (1/2")**}
by (56) . (60)
Now the other term in (59) is

(Ca0)2401(1/2)' " i ® fi ® fi ® fill®

< const.2*"||(1/2™)> 41 Z (i ® i ® fi ® fil?

< const.22”{ D oA, fk>4}

.k
= const.22"{ Zd}"k] : (61)
ik
We need a precise estimate of (61). For this we use the bounds (54) and a
technique due to Gladyshev [4]. First of all we have

Y dfy < const. 272 < const.(1/2")° (62)
and
> di iy < const.(1/2") similarly | (63)
Now from the first inequality in (54) we get
2" 2" 1
Z d?’k < const.(1/2M)* Z TR
Jok=1,j>k+2 jk=1j=k42
-2t

= const.(1/2)* )

t=1
2"-2

1
n\4~n _
< const.(1/2")*2 ; (8—8H

1723 (1 o
< const.(1/2") + | [sA

< const.(1/2M)3(1/2m)"-34

= const.(1/2M)1078 (64)
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(62), (63) and (64) give from (61) that

(C20)?2411/2)" " i ® /i ® fi ® fill?
< const.2* {(1/2")* + (17270787}
= const. {(1/2") + (1/2")* 7} . (65)
Combining (59) with (60) and (65) we get
Var(84(gs)) < const. {1/2" + (1/2”)8_8H}

+const. {1/2" + (1/2")**} . (66)

Now we are ready to apply the Borel-Cantelli lemma. Consider 0 < 8 < 1
suchthat 8 — 1+ (4 —4H) > 0. Then

oo
D P (184(8n) — Eda(ga)| > 2"F7D/7)
n=1

=<

2"PVar(84(gn))

gt

2"0Peonst. {1/2" + (1/2")%1}

3
I
—

oo
+> 2" Peonst. {1/2" + (1/2")4)
n=1

<00 . (67)

By an application of Borel-Cantelli lemma the proof is complete. O

Remarks.From the proofiitis clear that similar strong laws can be proved for
higher powers of increments of fractional Brownian motion. The technique
of the proof will be the same, however the formulas get more involved. So
we merely state the form of the strong law:

z 2p)!
(17247201 3" By (k/2") — By ((k — /20 — (p%,a.s. (68)

k=1

where p is a positive integer.
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