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Abstract. An evaluation of a stochastic oscillatory integral with quadratic
phase function and analytic amplitude function is given by using solutions
of Jacobi equations. The evaluation will be obtained as an application of
real change of variable formulas and holomorphic prolongations of analytic
functions on a real Wiener space. On the way we shall see how a Jacobi
equation appears in the evaluation by using the Malliavin calculus.
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Introduction

In [8], an explicit evaluation of stochastic oscillatory integrals with quadratic
phase function and analytic amplitude function was established with the help
of eigenfunction expansion of the associated Hilbert-Schmidt operator. The
evaluation was used in [10] to study a principle of stationary phase on a
real abstract Wiener space. In both cases the eigenfunction expansion is
indispensable, but such an expansion is a kind of detour when we have
a concrete quadratic Wiener functional like Lévy’s stochastic area. In this
paper, we shall establish another explicit evaluation of stochastic oscillatory
integrals with quadratic phase function and analytic amplitude function on
a standard Wiener space.

Let d ∈ N, τ > 0, Wτ be a d-dimensional classical Wiener space on
[0, τ ],
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Wτ = {
w : [0, τ ] → Rd : continuous and w(0) = 0

}
,

and µτ be the standard Wiener measure on it. The stochastic oscillatory
integral dealt with in the present paper is of the form∫

Wτ

exp

[
ζ

2

∫ τ

0
{〈γ (t)w(t), dw(t)〉Rd + 〈δ(t)w(t), w(t)〉Rd dt}

]
× ψ(w)µτ (dw) (0.1)

where ζ ∈ C, γ, δ ∈ C0([0, τ ]; Rd⊗Rd), dw(t) stands for the Itô integral,
and ψ : Wτ → R is an analytic Wiener functional. For the definition
of analytic Wiener functionals, see Sect. 1 In the section, the evaluation
of the above integral will be given without proofs (Theorem 1.1). As an
application, we shall extend the evaluation of the integral (0.1) to the case
when

ψ(w) = δξ (w(τ)) ,

where the right hand side of the identity stands for Watanabe’s pullback of
Dirac’s delta function δξ concentrating at ξ ∈ Rd through the nondegenerate
mapping Wτ 3 w 7→ w(τ) ∈ Rd . See Corollary 1.1. The proofs will be
given in Sect. 3.

It will be seen that a linear transformation on Wτ determined by a Jacobi
equation and a holomoprhic prolongation play a key role in the evaluation
of such an oscillatory integral. The idea of using Jacobi (or Sturm-Liouville,
or Riccati) equations to evaluate Wiener integrals goes back to Cameron-
Martin’s work in 1945 [1], and was used by several authors (e.g. [4, 6, 9]).
We shall come to a Jacobi equation by revisiting Cameron-Martin’s idea
with recently developed change of variable formulas on Wτ . For details,
see Sect. 2. It should be remarked that the quadratic functionals investigated
by the above mentioned authors were of harmonic oscillator type, that is,
ones with γ ≡ 0.

Some remarks on ζ ’s for which the evaluation of the integral given in
(0.1) is possible will be given in Sect. 4.

1. Statements of results

Throughout the paper, Rm ⊗ Rn, n,m ∈ N, (resp. Cm ⊗ Cn) denotes the
space of m × n-matrices A = (Aij )1≤i≤m,1≤j≤n with Aij ∈ R (resp.
C). The adjoint matrix of A = (Aij ) is denoted by A∗; (A∗)ij = Aji
(for A ∈ Rm ⊗ Rn, A∗ is just a transporsed matrix). As usual, Rm ⊗
Rn ⊂ Cm ⊗ Cn, Rm ⊗ R1 = Rm, and Cm ⊗ C1 = Cm. For f =
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(fij )1≤i≤m,1≤j≤n ∈ C2([0, τ ]; Cm ⊗ Cn), f ′ and f ′′ are used to denote
the first and second derivatives of f ; f ′(t) = (

(dfij /dt)(t)
)

1≤i≤m,≤j≤n, and
f ′′(t) = (

(d2fij /dt
2)(t)

)
1≤i≤m,1≤j≤n.

To state our results, we review briefly on analytic functions on Wτ . Let
Hτ the Cameron-Martin subspace of Wτ ;

Hτ =
{
h ∈ Wτ :

h is absolutely continuous and has
a derivative h′ in L2([0, τ ]; Rd)

}

Hτ is a real separable Hilbert space with inner product

〈h, k〉 =
∫ τ

0
〈h′(t), k′(t)〉Rd dt, h, k ∈ Hτ ,

where 〈·, ·〉Rd stands for the inner product on Rd . For a real separable
Hilbert space G, Dk,p(G) denotes the space of G-valued k-times differen-
tiable Wiener functionals F : Wτ → G with p-th integrable derivatives of
orders up to k in the sense of the Malliavin calculus. Set D∞,∞−(G) =⋂
k∈N,p∈(1,∞) D

k,p(G). We shall use ∇ and ∇∗ to denote the Malliavin gra-
dient and its adjoint operator, respectively; for F ∈ D∞,∞−(G), ∇F is an
element of D∞,∞−(G ⊗ Hτ), G ⊗ Hτ being the Hilbert space of Hilbert-
Schmidt operators ofG toHτ . The n-th Malliavin derivative ∇nF is defined
successively. For details, see [12].

As was seen in [10], if F ∈ D∞,∞−(R) admits a p ∈ (1,∞) such that
∞∑
n=0

sn

n!
‖∇nF‖Lp(µτ ) < ∞ for every s > 0, (1.1)

then, choosing suitable µ-versions of ∇nF , n = 0, 1, . . ., we arrive at

∞∑
n=0

sn

n!
‖∇nF (w)‖H⊗n

τ
< ∞ and F(w + h) =

∞∑
n=0

1

n!
〈∇nF (w), h⊗n〉

for any s ∈ (0,∞), w ∈ Wτ , h ∈ Hτ . (1.2)

We shall callF ∈ D∞,∞−(R) analytic if it satisfies Eq. (1.1) (F ∈ Cω(Wτ )

in notation). In what follows, we always choose ∇nF ’s appropriately so that
every F ∈ Cω(Wτ ) enjoys the property stated in (1.2).

Write Wτ ⊕ √−1Hτ for Wτ × Hτ , and w + √−1h for (w, h) ∈
Wτ × Hτ , and think of Wτ ⊕ √−1Hτ as a complexification of Wτ . A
standard complexificationHτ ×Hτ ofHτ is denoted byHτ ⊕√−1Hτ . For
analytic F : Wτ → R, its holomorphic prolongationto Wτ ⊕ √−1Hτ ,
say F again, is defined by
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F(w + √−1h) =
∞∑
n=0

√−1 n

n!
〈∇nF (w), h⊗n〉

for w + √−1h ∈ Wτ ⊕ √−1Hτ .

For F ∈ Cω(Wτ ), by Eq. (1.2) and the definition of holomorphic prolon-
gation of F , it holds that

F
(
(w + h)+ √−1 k

)
=

∞∑
n=0

1

n!
〈∇nF (w), (h+ √−1 k)⊗n〉

for every w ∈ Wτ , h, k ∈ Hτ, (1.3)

where ∇nF (w) is extended to (Hτ ⊕√−1Hτ)⊗n as a complex multi-linear
mapping (cf. [8, 10]).

We set

AC = {
A ∈ C2([0, τ ]; Cd ⊗ Cd) : detA(t) 6= 0 for any t ∈ [0, τ ]

}
For A ∈ AC, a transformation TA : Wτ → Hτ ⊕ √−1Hτ is defined by

(TAw) (t) = −A(t)
∫ t

0
(A−1)′(s)w(s) ds, (1.4)

where A−1(t) = A(t)−1, t ∈ [0, τ ].
Fix α ∈ C1([0, τ ]; Rd ⊗ Rd) and β ∈ C0([0, τ ]; Rd ⊗ Rd), and, for

ζ ∈ C, let Aζ ∈ C2([0, τ ]; Cd ⊗ Cd) be a unique solution to a Jacobi
equation;

{
A′′
ζ (t)− ζ(α(t)− α(t)∗)A′

ζ (t)+ ζ(β(t)− α′(t))Aζ (t) = 0,
Aζ (τ ) = I, A′

ζ (τ ) = ζα(τ).
(1.5)

It should be emphasized that α(t), β(t) are real matrices. Define Ω(α, β) ={
ζ ∈ C : Aζ ∈ AC

}
. It is easily seen that Ω(α, β) is open and contains the

origin 0 ∈ C (cf. Lemma 3.4). For ω ∈ C0([0, τ ] : Rd ⊗ Rd), define the
uniform norm of ω by

‖ω‖∞ = sup
{|ω(t)ξ | : t ∈ [0, τ ], ξ ∈ Rd, |ξ | ≤ 1

}
We denote by �0(α, β) the connected component containing 0 of an open
set consisting of ζ ∈ �(α, β) satisfying that

(<ζ )2‖α − α∗‖2
∞ + 2|<ζ |‖β − α′‖∞ <

1

τ 2
(1.6)

We are now ready to state our results.
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Theorem 1.1. Letα ∈ C1([0, τ ]; Rd⊗Rd) andβ ∈ C0([0, τ ]; Rd⊗Rd).
Suppose thatα(τ)∗ = −α(τ) andβ(t)∗ = β(t) for everyt ∈ [0, τ ]. Take
ψ ∈ Cω(Wτ ) such that

m[ψ, s] ≡
∞∑
n=0

sn

n!
‖∇nψ‖2

H⊗n
τ

∈ L1(µτ ) for anys > 0 . (1.7)

Then, for everyζ ∈ Ω0(α, β), it holds that∫
Wτ

exp

[
ζ

2

∫ τ

0

{〈γ (t)w(t), dw(t)〉Rd + 〈δ(t)w(t), w(t)〉Rd dt
}]
ψ(w)µτ (dw)

= exp

[
1

2

∫ τ

0
tr
{
A′
ζ (t)A

−1
ζ (t)

}
dt

] ∫
Wτ

ψ(w + TAζw)µτ (dw) , (1.8)

whereγ (t) = α(t)− α(t)∗ andδ(t) = β(t)− α′(t).

Remark 1.1.As we shall see in Sect. 3, both integrands in Eq. (1.8) are
integrable.

Corollary 1.1. Letα, β, γ, δ be as in Theorem1.1. Then there exists anε >
0 such that (i)U(ε) ≡ {ζ ∈ C : |ζ | < ε} ⊂ Ω0(α, β), (ii) <(detCζ ) > 0
for anyζ ∈ U(ε), and (iii) it holds that, for for everyξ ∈ Rd andζ ∈ U(ε),∫
Wτ

exp

[
ζ

2

∫ τ

0

{〈γ (t)w(t), dw(t)〉Rd + 〈δ(t)w(t), w(t)〉Rd dt
}]

×δξ (w(τ)) µτ (dw)

= exp

[
1

2

∫ τ

0
tr
{
A′
ζ (t)A

−1
ζ (t)

}
dt

]
1

√
2π

d√
detCζ

exp

[
−1

2
〈C−1

ζ ξ, ξ〉Rd

]
,

(1.9)

where
∫
Wτ
(. . .)δξ (w(τ))µτ (dw) stands for the pairing ofD∞,∞− Wiener

functionals and Watanabe’s pullback of the Dirac measureδξ via the non-
degenerate mappingWτ 3 w 7→ w(τ) ∈ Rd (cf. [7, 12]), and

Cζ =
∫ τ

0

(
A−1
ζ (s)

)T
A−1
ζ (s) ds,

MT being the transposed matrix ofM ∈ Cn × Cn.

Remark 1.2.As we shall see in Sect. 3,

exp

[
ζ

2

∫ τ

0
{〈γ (t)w(t), dw(t)〉Rd +〈δ(t)w(t), w(t)〉Rd dt}

]
∈
⋂
k∈N

⋃
p∈(1,∞)

Dk,p(C)

for ζ as stated in the assertion. Hence the first generalized integration in the
left hand side of Eq. (1.9) is well-defined (cf. [12]).

Due to (ii), C−1
ζ and (detCζ )−1/2 are both well-defined.
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2. How one comes to a Jacobi equation

In this section, we see how one comes to Jacobi equations to evaluate
stochastic oscillatory integrals with quadratic phase function. Throughout
this section, we fix α ∈ C1([0, τ ]; Rd⊗Rd) and β ∈ C0([0, τ ]; Rd⊗Rd),
and assume that α(τ)∗ = −α(τ) and β(t)∗ = β(t), t ∈ [0, τ ]. Let λ ∈ R.
We shall see how a Jacobi equation is involved in the evaluation of the
Wiener integral in Eq. (1.8) with ζ = λ.

Consider a continuous linear transformation Kλ: Wτ → Hτ , and apply
a change of variable formula on Wτ (cf. [1, 11]) to w + Kλw. Under an
integrability condition that e−∇∗Kλ ∈ ⋃p∈(1,∞) L

p(µτ ), where, to apply ∇∗,
Kλ was thought of as an Hτ -valued Wiener functional, we obtain that∫

Wτ

f dµ =
∫
Wτ

f (w +Kλw) det 2
(
I + (Kλ|Hτ )

)
× e−∇∗Kλ(w)−(〈Kλw,Kλw〉/2)µ(dw)

for any f ∈ L∞−(µτ ).
Assuming in addition that (Kλw)′(t) is adapted with respect to the stan-

dard filtering onWτ and that exp[‖Kλw‖2
Hτ
/2] ∈ L1(µτ ), and applying Gir-

sanov’s and Novikov’s theorem, we can conclude that det2(I +Kλ|Hτ ) = 1
(cf. Lemma 3.3 or [13]). Thus our identity (1.8) will be verified once we
have found a Kλ so that

−∇∗Kλ(w)− 1
2 〈Kλw,Kλw〉 = λ

2

∫ τ

0

{〈
(α(t)− α(t)∗)w(t), dw(t)

〉
Rd

+ 〈(β(t)− α′(t))w(t), w(t)
〉
Rd
dt
}

(2.1)

To find such a Kλ, we compare the second Malliavin gradients of the both
sides of Eq. (2.1). We then have that

〈(−(Kλ +K∗
λ)−K∗

λKλ
)
h, h

〉 = λ

∫ τ

0

{〈
(α(t)− α(t)∗)h(t), h′(t)

〉
Rd

+ 〈(β(t)− α′(t))h(t), h(t)
〉
Rd

}
dt. (2.2)

Suppose that there exists an X ∈ C1([0, τ ]; Rd ⊗ Rd) such that

(Kλw)(t) = −
∫ t

0
X(s)w(s) ds.

Notice that, for anyG ∈ C0([0, τ ]; Rd⊗Rd)withG(t) = G(t)∗, t ∈ [0, τ ],
and h ∈ Hτ ,
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∫ τ

0
〈G(t)h(t), h(t)〉Rd dt = 2

∫ τ

0

〈(∫ τ

t

G(s) ds

)
h(t), h′(t)

〉
Rd

dt .

Since α(τ)∗ = −α(τ) and〈
(β(t)− α′(t))h(t), h(t)

〉
Rd =

〈(
β(t)− α′(t)+ α′(t)∗

2

)
h(t), h(t)

〉
Rd

,

Eq. ( 2.2) then implies that∫ τ

0

〈(
X(t)−

∫ τ

t

X(s)∗X(s) ds
)
h(t), h′(t)

〉
Rd

dt

= λ

∫ τ

0

〈(
α(t)+

∫ τ

t

β(s) ds

)
h(t), h′(t)

〉
Rd

dt .

By Lemma A.1, X satisfies that

X(t)−
∫ τ

t

X(s)∗X(s) ds = λα(t)+ λ

∫ τ

t

β(s) ds for any t ∈ [0, τ ] .

(2.3)
By virtue of Lemma A.2, the solution X(t) gives a rise of Jacobi equation;
if we denote byAλ ∈ C2([0, τ ]; Rd ⊗Rd) a unique solution to an ordinary
differential equatiaon (ODE)

A′
λ(t) = X(t)Aλ(t), Aλ(τ ) = I ,

then Aλ solves the Jacobi equation (1.5) with ζ = λ.

3. Proofs

We shall give proofs of Theorem 1.1 and Corollary 1.1. Throughout this
section, we fix α ∈ C1([0, τ ]; Rd ⊗ Rd) and β ∈ C0([0, τ ]; Rd ⊗ Rd)

such that α(τ)∗ = −α(τ) and β(t)∗ = β(t) for any t ∈ [0, τ ], and put
γ (t) = α(t) − α(t)∗ and δ(t) = β(t) − α′(t). We shall use the same
notation | · | to indicate any of Euclidean norms on Rd , Cd , Rm ⊗ Rn, and
Cm ⊗ Cn.

To emphasize that real matrices are dealt with, we introduce a family

AR = {A ∈ AC : A(t) ∈ Rd ⊗ Rd, t ∈ [0, τ ]}
On account of the observation in Sect. 2, forA ∈ AR, we define an operator
KA: Wτ → Hτ by

(KAw)(t) = −
∫ t

0
A′(s)A−1(s)w(s) ds, t ∈ [0, τ ] .
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Lemma 3.1. LetA ∈ AR. ThenTA defined in Eq. (1.4) and the aboveKA
are both continuous linear operators ofWτ into itself, and satisfy that

(I +KA) (I + TA)w = (I + TA) (I +KA)w = w for every w ∈ Wτ .

Proof. It is easily seen thatKA and TA are both continuous linear mappings
of Wτ to itself. Using integration by parts formulas, we can easily show that
the identity holds for h ∈ Hτ . SinceHτ is dense in Wτ , the desired identity
holds.

Lemma 3.2. Considerκ ∈ C0([0, τ ]; Rd⊗Rd)such thatκ(t) is symmetric
for anyt ∈ [0, τ ]. Then it holds that∫ τ

0
〈κ(t)w(t), w(t)〉Rd dt = 2

∫ τ

0

〈(∫ τ

t

κ(s) ds

)
w(t), dw(t)

〉
Rd

+
∫ τ

0

(∫ τ

t

tr κ(s) ds

)
dt .

Moreover, for ξ ∈ C1([0, τ ]; Rd ⊗ Rd) with ξ(τ )∗ = −ξ(τ ) and η ∈
C0([0, τ ]; Rd ⊗ Rd), it holds that∫ τ

0
〈ξ(t)w(t), dw(t)〉Rd +

∫ τ

0
〈η(t)w(t), w(t)〉Rd dt

= 1

2

∫ τ

0

〈
(ξ(t)− ξ(t)∗)w(t), dw(t)

〉
Rd

+1

2

∫ τ

0

〈
(η(t)+ η(t)∗ − ξ ′(t))w(t), w(t)

〉
Rd dt − 1

2

∫ τ

0
tr ξ(t) dt .

Proof. The first assertion can be seen easily by applying Itô’s formula to〈(∫ τ

t

κ(s) ds

)
w(t), w(t)

〉
Rd

The second one follows from the first by using a decomposition of
ξ(t) into symmetric and skew symmetric parts; ξ(t) = (ξ(t)+ ξ(t)∗)/2 +
(ξ(t)− ξ(t)∗)/2.

Lemma 3.3. Assume thatA ∈ AR solves the ODE (1.5) with ζ = 1 and
satisfies that

exp

[
1

2

∫ τ

0

∣∣A′(t)A−1(t)w(t)
∣∣2 dt] ∈ L1(µτ ) . (3.1)
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Then it holds that∫
Wτ

exp

[
1

2

∫ τ

0

{〈γ (t)w(t), dw(t)〉Rd + 〈δ(t)w(t), w(t)〉Rd dt
}]

×f (w)µτ (dw)

= exp

[
1

2

∫ τ

0
tr {A′(t)A−1(t)}dt

] ∫
Wτ

f (w + TAw)µτ (dw) (3.2)

for any bounded measurablef : Wτ → R.

Proof. Set X(t) = A′(t)A−1(t). Then, KA can be written as

KA(w)(t) = −
∫ t

0
X(s)w(s) ds.

By Lemmas 3.2 and A.2, we obtain that∫ τ

0
〈X(t)w(t), dw(t)〉Rd − 1

2

∫ τ

0
〈X(t)w(t), X(t)w(t)〉Rd dt

= 1

2

∫ τ

0
{〈γ (t)w(t), dw(t)〉Rd + 〈δ(t)w(t), w(t)〉Rd dt}

−1

2

∫ τ

0
trX(t) dt .

On account of Eq. (3.1), applying Girsanov’s and Novikov’s theorems, we
obtain from this that∫
Wτ

f (w)µτ (dw) =
∫
Wτ

f (w +KAw) exp

[
1

2

∫ τ

0
{〈γ (t)w(t), dw(t)〉Rd

+ 〈δ(t)w(t), w(t)〉Rd dt} − 1

2

∫ τ

0
trX(t) dt

]
µτ(dw)

for any bounded measurable f : Wτ → R. Substituting f ◦ (I + TA) for
f in this identity, by virtue of Lemma 3.1, we come to Eq. (3.2).

Lemma 3.4. Letζ ∈ C. Consider a unique solutionAζ ∈ C2([0, τ ]; Cd ⊗
Cd) to the ODE (1.5). Then the mapping(t, ζ ) 7→ Aζ (t) is continuous on
[0, τ ] × C, and ζ 7→ Aζ (t) is holomorphic onC. Moreover, there exists
an ε0 > 0 such that (a)Aζ ∈ AC for ζ ∈ U(ε0), whereU(r) = {ζ ∈ C :
|ζ | < r}, and (b) there exist0 < M0,M1 < ∞ such that

sup
ζ∈U(ε0)

sup
t∈[0,τ ]

max
{|Aζ (t)|, |A′

ζ (t)|, |A−1
ζ (t)|, |(A−1

ζ )
′(t)|} ≤ M0 , (3.3)

sup
ζ∈U(ε0)

sup
t∈[0,τ ]

∣∣∣∣1ζ A′
ζ (t)

∣∣∣∣ ≤ M1 . (3.4)

In particular, U(ε0) ⊂ Ω0(α, β).
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Proof. The continuity and the holomorphy are elementary facts in the theory
of ODE’s. Since A0(t) ≡ I , we can find an ε0 > 0 such that (a) and the
estimation (3.3) holds. By (3.3), it follows from Eq. (1.5) that there exists
an M3 < ∞ such that

sup
t∈[0,τ ]

∣∣A′′
ζ (t)

∣∣ ≤ M3|ζ | for any ζ ∈ U(ε0).

This implies that

∣∣A′
ζ (t)

∣∣ =
∣∣∣∣A′

ζ (τ )−
∫ τ

t

A′′
ζ (s) ds

∣∣∣∣ ≤ |ζ |(|α(τ)| +M3τ),

t ∈ [0, τ ], ζ ∈ U(ε0),

which yields the second estimation (3.4).

Lemma 3.5. Letψ ∈ Cω(Wτ ) satisfy(1.7). Thenψ(∗ + TA∗) ∈ L1(µτ )

for everyA ∈ AC.

Proof. By (1.3), we have that, for every N > 0,

|ψ(w)| ≤ m[ψ,N]1/2 exp

[
1

N
‖TAw‖2

]
.

It is easily seen that ‖TAw‖2 ≤ C supt∈[0,τ ] |w(t)|2 for some C > 0, and
hence ψ(w + TAw) is integrable.

Lemma 3.6. Let ε0,M0,M1 > 0 be as in Lemma3.4, and put

ε1 = {τM0M1}−1 ,

and takeλ ∈ R with |λ| < ε0 ∧ ε1. Then, Eq. (1.8) holds withλ instead
of ζ .

Proof. By definition, Aλ obeys Eq. (1.5) with ζ = λ. Due to Lemma 3.4,
Aλ ∈ AR. Moreover, it follows from Eqs. (3.3) and (3.4) that∫ τ

0

∣∣A′
λ(t)A

−1
λ (t)w(t)

∣∣2 dt ≤ |λ|2(M0M1)
2τ sup

t∈[0,τ ]
|w(t)|2.

Remembering that exp
[
p supt∈[0,τ ] |w(t)|2

] ∈ L1(µτ ) if p < 1/(2τ), we
see that the condition (3.1) is fulfilled with A = Aλ. As an application of
Lemma 3.3, we see that

exp

[
λ

2

∫ τ

0

{〈γ (t)w(t), dw(t)〉Rd + 〈δ(t)w(t), w(t)〉Rd dt
}] ∈ L1+(µτ ),
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where L1+(µτ ) = ⋃
p∈(1,∞) L

p(µτ ), and∫
Wτ

exp

[
λ

2

∫ τ

0

{〈γ (t)w(t), dw(t)〉Rd + 〈δ(t)w(t), w(t)〉Rd dt
}]

×ψN(w)µτ (dw)

= exp

[
1

2

∫ τ

0
tr
{
A′
λ(t)A

−1
λ (t)

}
dt

] ∫
Wτ

ψN(w + TAλw)µτ (dw),

where ψN = ((−N) ∨ ψ) ∧N . Since ψ ∈ L∞−(µτ ) ≡ ⋂
p∈(1,∞) L

p(µτ ),
by Lemma 3.5, applying the dominated convergence theorem, we obtain
the desired conclusion.

Lemma 3.7. LetD be a domain inC consisting of allζ ∈ C satisfying
Eq. (1.6) and set

Φ(ζ ;w) = exp

[
ζ

2

∫ τ

0

{〈γ (t)w(t), dw(t)〉Rd + 〈δ(t)w(t), w(t)〉Rd dt
}]
.

ThenΦ, 8(ζ ; ∗) ∈ ⋂
k∈N

⋃
p∈(1,∞) D

k,p(C) for anyζ ∈ D, and the map-
pings

D 3 ζ 7→
∫
Wτ

Φ(ζ ;w)ψ(w)µτ (dw),
∫
Wτ

Φ(ζ ;w)δξ (w(τ))µτ (dw)

are holomorphic.

Proof. By a standard exponential martingale argument, for any ζ ∈ D and
ε > 0 such that (1 + ε)ζ ∈ D, we obtain that∫

Wτ

|Φ(ζ ;w)|(1+ε)µτ (dw)

≤
{∫

Wτ

exp

[(
(1 + ε)2(<ζ )2

2
‖γ ‖2

∞ + (1 + ε)|<ζ |‖δ‖∞

)
sup
t∈[0,τ ]

|w(t)|2
]

×µτ(dw)
}1/2

< ∞.

Hence, for any compact K ⊂ D and k ∈ N, we can find p ∈ (1,∞) such
that

sup
ζ∈K

‖Φ(ζ ; ∗)‖Dk,p(C) < ∞.

Now the assertions follows as an application of the dominated convergence
theorem and [12,Th. 2.1]
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Lemma 3.8. Let V be an open set inC satisfying thatAζ ∈ AC for any
ζ ∈ V and that

M(R) ≡ sup
ζ∈V∩U(R)

sup
t∈[0,τ ]

max
{|Aζ (t)|, |A′

ζ (t)|, |A−1
ζ (t)|, |(A−1

ζ )
′(t)|} < ∞

(3.5)
for anyR > 0. Then, for anyψ ∈ Cω(Wτ ) satisfying (1.7), the mappings

ζ 7→
∫
Wτ

ψ(w+TAζw)µτ (dw), exp

[
1

2

∫ τ

0
tr
{
A′
ζ (t)A

−1
ζ (t)

}
dt

]
, Cζ

(3.6)
are all holomorphic onV and continuous on the closureV .

In particular, the mappings

ζ 7→
∫
Wτ

ψ(w+TAζw)µτ (dw), exp

[
1

2

∫ τ

0
tr
{
A′
ζ (t)A

−1
ζ (t)

}
dt

]
, Cζ

are all holomorphic onΩ0(α, β).

Proof. Let R > 0. It suffices to show that the mappings given in (3.6) are
holomorphic on V ∩ U(R) and continuous on V ∩ U(R).

Due to Eq. (1.3), we have that

ψ
(
w + TAζw

) =
∞∑
n=0

1

n!
〈∇nψ(w),

(
TAζw

)⊗n〉.
By (3.5), we can easily see that a mapping V ∩ U(R) 3 ζ 7→ 〈∇nψ(w),(
TAζw

)⊗n〉 is holomorphic, and that

sup
ζ∈V∩U(R)

‖TAζw‖Hτ⊕√−1Hτ ≤ M(R)2τ sup
t∈[0,τ ]

|w(t)| for any w ∈ Wτ .

Hence a mapping ζ 7→ ψ
(
w + TAζw

)
is holomorphic on V ∩ U(R) and

continuous on V ∩ U(R), and

sup
ζ∈V∩U(R)

∣∣ψ (w + TAζw
)∣∣ ≤ m[ψ,N]1/2 exp

[
M(R)4τ 2

N
sup
t∈[0,τ ]

|w(t)|2
]

for any N ∈ (0,∞). Applying Lebesgue’s theorem, we obtain that a map-
ping

ζ 7→
∫
Wτ

ψ
(
w + TAζw

)
µτ(dw) ∈ C

is holomorphic on V ∩ U(R) and continuous on V ∩ U(R).
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By Lebesgue’s theorem, the mappings

ζ 7→
∫ τ

0
tr
(
A′
ζ (t)A

−1
ζ (t)

)
dt, Cζ

are holomorphic on V ∩ U(R) and continuous on V ∩ U(R).
Proof of Theorem 1.1The assertion is an immediate consequence of
Lemmas 3.6, 3.7, and 3.8

Proof of Corollary 1.1Let ξ, η ∈ Rd and set

ψξ,η(w) = exp
[√−1 〈η,w(τ)− ξ〉Rd

]
, w ∈ Wτ .

As is easily seen, ψξ,η ∈ Cω(Wτ ) and fulfills the condition (1.7). Then, by
Theorem 1.1, Eq. (1.8) holds with ζ = λ andψ = ψξ,η for λ ∈ R satisfying
the condition (1.6).

Notice that

(w + TAλw)(τ) =
∫ τ

0
Aλ(s)

−1 dw(s) (Itô integral), (3.7)

and hence it is an Rd-valued Gaussian random variable with covariance
matrix

Cλ =
∫ τ

0

(
A−1
λ (s)

)T
A−1
λ (s) ds.

Since C0 = τI , for sufficiently small λ’s, detCλ > 0, and hence we have
that∫

Wτ

8(λ;w)δξ (w(τ))µτ (dw)

= lim
ε→0

1

(2π)d

∫
Rd

∫
Wτ

Φ(λ;w)ψξ,η(w)µτ (dw)e−ε|η|2/2 dη

= exp

[
1

2

∫ τ

0
tr
{
A′
λ(t)A

−1
λ (t)

}
dt

]
1

√
2π

d√
detCλ

exp

[
−1

2
〈C−1

λ ξ, ξ〉Rd

]
,

where Φ(λ;w) is the Wiener functional defined in Lemma 3.7. By virtue of
Lemmas 3.7 and 3.8, prolongating holomorphically, we obtain the desired
assertion.

4. X0(a, b)

It is interesting to see if Ω0(α, β) contains the complex axis
√−1 R. In this

section, we shall give three examples where
√−1 R ⊂ Ω0(α, β).
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Example 4.1.By a direct computation, we have that((
A√−1 λ

)∗
A√−1 λ

)′′
(t) = √−1 λ

((
A√−1 λ

)∗
(α − α∗)A√−1 λ

)′
(t)

+ 2A′√−1 λ
(t)∗A′√−1 λ

(t),

which, in conjunction with the terminal condition, implies that

A√−1 λ(t)
∗A√−1 λ(t)

= I − √−1 λ
∫ τ

t

ds A√−1 λ(s)
∗(α(s)− α(s)∗)A√−1 λ(s)

+ 2
∫ τ

t

ds

∫ τ

s

duA′√−1 λ
(u)∗A′√−1 λ

(u)

Suppose now that α ≡ 0. Then A√−1 λ(t)
∗A√−1 λ(t) − I is non-negative

definite, and hence
√−1 R ⊂ Ω0(α, β).

Example 4.2.Suppose thatβ ≡ 0 and thatα ≡ α0 for some skew-symmetric
α0 ∈ Rd ⊗ Rd . Then

A√−1 λ(t) = 1

2

{
I + Exp

[√−1 (2λ(t − τ))α0

]}
,

where Exp denotes the exponential mapping on Cd ⊗ Cd . Since the eigen-
values of α0 are all purely imaginary, those of

√−1α0 are real num-
bers. Hence Exp

[√−1 (2λ(t − τ))α0
]

is non-negative definite, and hence√−1 R ⊂ Ω0(α, β).

Example 4.3.Let d = 2, a ∈ C1([0, τ ]; R), b ∈ C0([0, τ ]; R), and put

α(t) =
(

0 −a(t)/2
a(t)/2 0

)
, β(t) =

(
b(t) 0

0 b(t)

)
.

Denote by rζ a unique solution to an ODE

r ′′
ζ +

(
ζ 2

4
a2 + ζb

)
rζ = 0, rζ (τ ) = 1, r ′

ζ (τ ) = 0.

It is straightforward to see that a unique solution to the ODE (1.5) is given
by

Aζ (t) = rζ (t)

(
cos θζ (t) − sin θζ (t)
sin θζ (t) cos θζ (t)

)
, where θζ (t) = −ζ

2

∫ τ

t

a(s) ds.
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By a direct computation, we have that

(|r√−1 λ|2
)′′ = λ2

2
a2|r√−1 λ|2 + 2|r ′√−1 λ

|2,

from which it follows that |r√−1 λ|2 ≥ 1 and hence that
√−1 R ⊂ Ω0(α, β).

In this case, it should be mentioned that

A′
λ(t)A

−1
λ (t) =

(
r ′
λ(t)/rλ(t) −λa(t)/2
λa(t)/2 r ′

λ(t)/rλ(t)

)
.

Hence we have that

exp

[
1

2

∫ τ

0
tr
(
A′
ζ (t)A

−1
ζ (t)

)
dt

]
= 1

rζ (0)
,

which, in conjunction with Eq. (1.8), leads us to an identity∫
Wτ

exp

[
ζ

2

∫ τ

0

{
a(t)

(
w1(t) dw2(t)− w2(t) dw1(t)

)+ b(t)|w(t)|2 dt}]

×ψ(w)µτ (dw) = 1

rζ (0)

∫
Wτ

ψ
(
w + TAζw

)
µτ(dw)

for ζ ∈ Ω0(α, β).

Remark 4.1.The Wiener space Wτ has another complexification (more
standard one than our Wτ ⊕ √−1Hτ ) given by

WC
τ = {

w : [0, τ ] → Cd : w is continuous and w(0) = 0
}
.

In the study of a principle of stationary phase on Wτ in [10], one of key
facts is that a Wiener functional (I − 2

√−1 λA)−1/2w with values in WC
τ

converges to 0 in probability in the space, where A is a Hilbert-Schmidt
operator onHτ uniquely determined from the considered quadratic Wiener
functional. For details, see [10]. (I−2

√−1 λA)−1/2w comes from a change
of coordinate system on Wτ based on the eigenfunction expansion. Thus
it is natural to ask if our change of coordinate w + TA√−1 λ

w has a similar
asymptotic as (I − 2

√−1 λA)−1/2w. The answer is negative in general.
Namely, as in the case of Example 4.3, let d = 2, and take a ≡ 1 and b ≡ 0.
Then, we have that

A√−1 λ(t)=cosh

(
λ(t − τ)

2

) cosh
(
λ(t−τ)

2

)
−√−1 sinh

(
λ(t−τ)

2

)
√−1 sinh

(
λ(t−τ)

2

)
cosh

(
λ(t−τ)

2

)

 .
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Hence

(
w + TA√−1 λ

w
)
(τ )

=
∫ τ

0


 1

√−1 tanh
(
λ(t−τ)

2

)
−√−1 tanh

(
λ(t−τ)

2

)
1


 dw(t)

(cf. Eq. (3.7)). This implies that

(
w + TA√−1 λ

w
)
(τ ) −→

(
w1(τ )∓ √−1w2(τ )

w2(τ )± √−1w1(τ )

)
as λ → ±∞ in law

Thus w + TA√−1 λ
w does not converge to 0 in law on WC

τ as λ → ±∞.
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A. Appendix

Lemma A.1. LetG ∈ C0([0, τ ]; Rd ⊗ Rd). If∫ τ

0
〈G(t)h(t), h′(t)〉Rd dt = 0 for everyh ∈ Hτ, (A.1)

thenG ≡ 0.

Proof. We shall show the assertion by induction on the dimension d of Wτ .
If d = 1, (A.1) implies that∫ τ

0

(∫ τ

t

G(s) ds

)
(h(t))2 dt = 0 for any h ∈ Hτ .

Thus the assertion holds for d = 1.
Suppose that the assertion holds for d − 1. By the hypothesis of in-

duction, we see that Gij (t) ≡ 0 if (i, j) /∈ {(1, d), (d, 1)}. Consider
g ∈ C1([0, τ ]; R) and h(t) of the form h(t) = (g(t), 0, . . . , 0, g(t)). Then,
Eq. (A.1) leads us to∫ τ

0

(∫ τ

t

{G1d(t)+Gd1(t)}
)
(g(t))2 dt = 0,

from which we can then conclude that

G1d(t)+Gd1(t) = 0 for every t ∈ [0, τ ]. (A.2)
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Now consider h of the form h(t) = (g(t), 0, . . . , 0, k(t)). By virtue of
Eq. (A.2), Eq. (A.1) reads as∫ τ

0
(gk′ − kg ′)(t) G1d(t) dt = 0.

Due to the arbitrariness of g , k , we see that

G1d(t) = 0, t ∈ [0, τ ],

which completes the proof.

Lemma A.2. Let α, β, γ, δ be as in Theorem1.1. Suppose thatA ∈ AR

obeys the Jacobi equation(1.5) with ζ = 1. SetX(t) = A′(t)A−1(t). Then
it holds that

X(t)−
∫ τ

t

X(s)∗X(s) ds = α(t)+
∫ τ

t

β(s) ds for any t ∈ [0, τ ]. (A.3)

Conversely, if X ∈ C1([0, τ ]; Rd ⊗ Rd) obeys Eq.(A.3), then a unique
solutionA to an ODE

A′(t) = X(t)A(t), A(τ) = I,

belongs toAR and enjoy Eq.(1.5) with ζ = 1.

Proof. It is easily seen that

X′(t) = γ (t)X(t)− δ(t)−X(t)2, t ∈ [0, τ ] and X(τ) = α(τ).

(A.4)

Putting S(t) = X(t)− (γ (t)/2), by a straightforward computation, we see
that S obeys the ODE



S ′(t) = 1

2 (γ (t)S(t)− S(t)γ (t))+ γ (t)2

4

−β(t)+ 1
2

(
α′(t)+ α′(t)∗

)− S(t)2, t ∈ [0, τ ],
S(τ ) = 0.

(A.5)

Since γ (t) is skew symmetric and β(t) is symmetric, it holds that S(t) =
S(t)∗, t ∈ [0, τ ], which implies that

X(t)−X(t)∗ = γ (t) for any t ∈ [0, τ ]. (A.6)
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In conjunction with Eq. (A.4), this implies that

X′(t)+X(t)∗X(t) = −δ(t) = α′(t)− β(t).

Integrating both side over [t, τ ] and substituting X(τ) = α(τ), we obtain
Eq. (A.3). Thus the first assertion has been verified.

In the second assertion, it is obvious that detA(t) 6= 0 for any t ∈ [0, τ ]
and that A′(τ ) = α(τ). Since Eq. (A.3) implies that X′ + X∗X = α′ − β

and X − X∗ = α − α∗, the Jacobi equation can be also derived easily by
noting that

A′′A−1 = (
A′A−1

)′ + (
A′A−1

)2
.
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