
Probab. Theory Relat. Fields 114, 85–96 (1999)

Limiting angles of Γ-martingales

Huiling Le

Department of Mathematics, University of Nottingham,
University Park, Nottingham NG7 2RD, UK. e-mail: lhl@maths.nott.ac.uk

Received: 19 September 1997

Abstract. Suppose that M is a complete, simply connected Riemannian
manifold of non-positive sectional curvature with dimension m ≥ 3 and
that, outside a fixed compact set, the sectional curvatures are bounded above
by −c1/{r2 ln r} and below by −c2r

2, where c1 and c2 are two positive
constants and r is the geodesic distance from a fixed point. We show that,
when κ ≥ 1 satisfies certain conditions, the angular part of a κ-quasi-
conformal 0-martingale on M tends to a limit as time tends to infinity and
the closure of the support of the distribution of this limit is the entire sphere
at infinity. This improves both a result of Le for Brownian motion and also
results concerning the non-existence of κ-quasi-conformal harmonic maps
from certain types of Riemannian manifolds into M .
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1. Introduction

Probabilistic methods have been used in the study of the existence of non-
constant bounded harmonic functions on general Riemannian manifolds
and the non-existence of non-constant bounded harmonic maps between
Riemannian manifolds. Those for the former mainly show the existence of
random limiting directions for Brownian motions on the given manifolds
and then non-trivial bounded harmonic functions can be constructed in terms
of the angular components of Brownian motions. The results obtained are
generally for two overlapping classes of Riemannian manifolds, the class of
simply connected manifolds of negative curvature and the class of manifolds
satisfying Gromov’s hyperbolicity criterion. In this paper we shall consider
only the former class. For the latter see [2] and the references therein. Some
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of these probability results have also been generalised to certain classes
of 0-martingales and various generalisations of Picard’s little theorem for
harmonic maps then follow.

In the case of simply connected manifolds of negative curvature, a
common condition is that the curvature bounds vary with distance r from
a reference point. In the case of an m-dimensional manifold of negative
curvature which is rotationally symmetric with respect to that point, March
showed in [13] that there exist non-constant bounded harmonic functions
on the manifold if the radial curvatures at any point x are bounded above
by −c/{r(x)2 ln r(x)} for c > cm, where c2 = 1, cm = 1/2 for m ≥ 3.
If, instead, the above bound is the lower bound of the radial curvatures,
then there exist no non-constant bounded harmonic functions. On the other
hand, the known results for general manifolds of negative curvature are rel-
atively weaker. For instance, for a 2-dimensional manifold, Hsu & Kendall
in [6] proved that, if the sectional curvatures are bounded above by −cr−2

off a compact set, for some c > 0, the angular component of Brownian
motion converges to a limit as time tends to infinity and the closure of the
support of the distribution of this limit is the entire circle of possible di-
rections. For a manifold with dimension at least 3, Hsu & March proved in
[5] a similar result if, off a given compact set, the sectional curvatures are
bounded above by −c1r

−2 for c1 > 2 and below by −c2r
2β for c2 > 0 and

0 < β < 1 − 4/(1 + √
1 + 4c1). Note that this requires β to approach zero

as c1 approaches 2. Hsu & March’s result has been improved in [11] under
more satisfyingly symmetric constraints: we may take β = 1 irrespective of
c1 and, except in dimension 3, c1 itself may be an arbitrary positive number.

In this paper, we improve the constraints in [11] further along the line
of those in [13] in order to consider the existence of non-constant bounded
harmonic functions on, and the non-existence of non-constant bounded har-
monic maps to, a complete, simply connected manifold of negative curvature
for which, off a compact set, the sectional curvatures have an upper bound
of −c1/{r2 ln r} and a lower bound of −c2r

2. Note that, if a manifold with
dimension at least 3 has uncontrolled negative sectional curvatures then
Brownian motion upon it may have a non-random limiting direction or no
limiting direction at all (c.f. [6]).

2. Preminary definitions and results

A 0-martingale X on an m-dimensional Riemannian manifold (M , g) is a
semimartingale on M which can be constructed from a local martingale X̂
on Rm via the Stratonovich stochastic differential equations
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∂4t = H4t ∂Xt

∂Xt = 4t ∂X̂t .

Here, for an orthonormal frame ξ in the tangent space τπ(ξ)(M ), Hξ is the
horizontal lifting isomorphism, supplied by the Levi-Civita connection, of
τπ(ξ)(M ) onto the horizontal subspace of the tangent space τξ (O(M )) at ξ
to the orthonormal frame bundle O(M ). Usually X̂ is called the stochastic
developmentofX and4 on O(M ) is called the stochastic parallel transport
of X. In particular, a Brownian motion on M is a 0-martingale whose
stochastic development is Brownian motion on Rm.

Definition. (Bounded quasi-conformality) A 0-martingaleX is said to
be κ-quasi-conformal, for a fixedκ ≥ 1, if its stochastic development̂X
satisfies the condition

[V t1 dX̂, V
t

1 dX̂] ≤ κ [V t2 dX̂, V
t

2 dX̂]

for all predictable unit vector-valued processesV1 andV2.

If X̂t = ∑m
i=1 X̂

i
t ui , where {ui : 1 ≤ i ≤ m} is a fixed basis for Rm

orthonormal with respect to the standard Euclidean metric and X̂i , 1 ≤
i ≤ m, are continuous local martingales on R, then the above definition of
bounded quasi-conformality is equivalent to the following requirement (c.f.
[9]): writing [X] for the intrinsic timeof X defined by

[X]t =
∫ t

0
g(Xs)(dXs, dXs) =

m∑
i=1

[X̂i, X̂i]t

then, with probability one, the largest and smallest eigenvalues λ(1) and λ(m)

of the matrix process (d[X̂i, X̂j ]/d[X]) satisfy the condition that

λ
(1)
1 ≤ κ λ

(m)
t for [X]-almost all t.

In particular, if X is a Brownian motion, then it is κ-quasi-conformal for
κ = 1 and κ > 1 is required if there are to be any such 0-martingales apart
from Brownian motions.

We shall need the following two results concerning the behaviour of the
distance of a 0-martingale on M from a fixed point x0 ∈ M .

Lemma 1. Suppose thatM is a complete Riemannian manifold, thatX is
a0-martingale onM and thatx0 is an arbitrarily fixed point inM such that
the cut locus ofx0 is empty. Thenρ(X) = dist(X, x0) is a semimartingale
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on R and its stochastic differential equation is given by the following full
Itô formula

dρ(Xt) = 〈grad ρ(Xt), dXt〉 + 1
2 Hessρ(∂Xt , ∂Xt)+ dL0

t (ρ(X)),

whereL0(ρ(X)) is the local time ofρ(X) at zero.

Lemma 2. Suppose thatM is a complete, simply connected Riemannian
manifold of non-positive sectional curvature whose sectional curvatures at
x are bounded below by−cr(x)2, wherec > 0 is a constant andr(x) is
distance ofx from a given pole ofM . If X is a0-martingale onM such that
[X]t = t then there are positive constantsc̃1, c̃2 andr0 such that, for r > r0
and for anyx0 ∈ M ,

P

[
sup

0≤s≤t
dist(Xs, x0) ≥ r

]
≤ c̃1 exp

{
− ln r(x0)+ r

c̃2t

}
.

Lemma 1 was first obtained by Kendall in [9], later generalised in [10]
and [12]. Lemma 2 was obtained in [11]: although the result of Lemma 4
there is stated for Brownian motion it is valid for any 0-martingale.

Throughout this paper we assume thatX has infinite total intrinsic time,
that is, [X]∞ = ∞ so that, in the next section, we may compare its radial
part with a Bessel process.

3. The radial part of a κ-quasi-conformal0-martingale

Throughout the remainder of this paper we shall make the following assump-
tions on the Riemannian manifold M . We require that dim(M ) = m > 2
and that M be complete, simply connected and of non-positive sectional
curvature. We fix any o ∈ M as a pole and denote by (r, θ) the global
geodesic polar coordinates with respect to o. We further assume that there
exist positive constants r0 > 1, c1 > 1/2 and c2 such that the sectional
curvatures of M at x are bounded above by −c1/{r(x)2 ln r(x)} and below
by −c2r(x)

2 for all x such that r(x) ≥ r0. Without loss of generality, we
may assume that r0 here is at least as large as that which occurs in Lemma
2 so that the result of that lemma also holds.

Lemma 3. Suppose thatX is a κ-quasi-conformal0-martingale onM .
If we expressRt = r(Xt) in terms of its Doob-Meyer decomposition as
dRt = dNt + d3t then, for any constantα satisfying the condition that
1
2 < α < c1, there is a constantr1 ≥ r0, depending onα, such that

dRt ≥
{
dNt + 1

2
m−1
κ

1
Rt
d[N ]t if 0 ≤ Rt ≤ r1

dNt + 1
2
m−1
κ

{
1
Rt

+ α
Rt lnRt

}
d[N ]t if Rt ≥ r1 .
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Proof. Define the smooth function ϕ : R+ −→ R by

ϕ(r) = r (ln r)α

and consider anm-dimensional rotationally symmetric manifold (M̃ , g̃) of
non-positive sectional curvatures with pole õ, global geodesic polar coor-
dinates (r̃, θ̃ ) with respect to õ and with Riemannian metric given by

ds̃2 = dr̃2 + f (r̃)2 dθ̃2 ,

where f is a suitably chosen smooth function on R. Writing Kr for the
supremum of the sectional curvatures of M at x with r(x) = r , we shall
require f to satisfy the following conditions:

1. f (0) = 0 and f ′(0) = 1;
2. for r < r1, −f ′′(r)/f (r) ≥ Kr ;
3. for r ≥ r1, f (r) = ϕ(r),

where the constant r1 ≥ r0 is chosen sufficiently large that, for r > r1,

α

r2 ln r
+ α(α − 1)

r2(ln r)2
<

c1

r2 ln r
.

For r̃(x̃) = r > r1, the left hand side of this inequality is equal to f ′′(r̃(x̃))/
f (r̃(x̃)) which is the negative of the radial curvature of M̃ at x̃ (c.f. [4]).
It follows that, when r̃(x̃) > r1, the radial curvature of M̃ at x̃ is bounded
below by

− c1

r̃(x̃)2 ln r̃(x̃)
,

which is an upper bound of the sectional curvatures of M at points x such
that r(x) = r̃(x̃).

The radial curvature is one particular value of the sectional curvature
and hence the radial curvature of M̃ at any point x̃ with r̃(x̃) = r is greater
than or equal to that of M at any point x with r(x) = r . We may thus apply
the Hessian Comparison Theorem (c.f. [4]) to M and M̃ . Since the Hessian
of r̃ on M̃ \ {õ} is given (c.f. [4]) by

Hessr̃ : (ν̃1, ν̃2) 7→ f ′(r̃)
f (r̃)

{g̃(ν̃1, ν̃2)− dr̃(ν̃1)⊗ dr̃(ν̃2)}

we have, for any vector field ν on M ,

Hessr (ν, ν) ≥ f ′(r)
f (r)

{g(ν, ν)− dr(ν)⊗ dr(ν)} r > 0 . (1)
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On the other hand, since the sectional curvature, and hence also the Ricci
curvature, of M̃ is non-positive we may also apply the Laplacian Comparison
Theorem to Rm and M̃ (c.f. [4]). However the Laplacian of r̃ on M̃ \ {õ} is
given by

1 r̃ = m− 1

2

f ′(r̃)
f (r̃)

and so

f ′(r̃)
f (r̃)

≥ 1

r̃
r̃ > 0 . (2)

Finally, noting that

ϕ′(r)
ϕ(r)

= 1

r
+ α

r ln r
, (3)

we have from (1), (2) and (3) that, for any vector field ν on M ,

Hessr (ν, ν) ≥
{ 1
r
{g(ν, ν)− dr(ν)⊗ dr(ν)} if 0 < r ≤ r1{
1
r

+ α
r ln r

} {g(ν, ν)− dr(ν)⊗ dr(ν)} if r ≥ r1 .

Thus, Lemma 1 shows that

dRt ≥
{
dNt + 1

2
m−1
κ

1
Rt
d[N ]t + dL0

t (R) if 0 ≤ Rt ≤ r1

dNt + 1
2
m−1
κ

{
1
Rt

+ α
Rt lnRt

}
d[N ]t if Rt ≥ r1 ,

and the required result follows since the local timeL0(R) is non-decreasing.
�

Write γ = (m−1)/κ and BESar for the Bessel process of index a starting
from r and letψ(t) = √

t (ln t)−β , where β > 1/(γ −1) = κ/(m−1−κ).
Then since, for t0 > 1 and γ > 1,∫ ∞

t0

(ln t)−β(γ−1) dt

t
< ∞

we have (c.f. [14]) that, for γ > 1,

P [BESγ+1
0 (t) < ψ(t), infinitely often as t ↑ ∞] = 0 .

Then, comparing BESγ+1
r with BESγ+1

0 , we have

P [BESγ+1
r (t) > ψ(t) for sufficiently large t] = 1 . (4)

Lemma 4. Suppose thatX is a κ-quasi-conformal0-martingale onM ,
thatRt = r(Xt) and that the constantsα andr1 are as in the statement of
Lemma3. Then, for r > er1 ,



Limiting angles of 0-martingales 91

P [Rt ≥ max{ln r, ψ([R]t )}, ∀t |R0 = r] ≥ p(r)

where

lim
r→∞p(r) = − lim

r→∞
(ln ln r)αγ

rγ−1(ln r)γ (α−1)

+ lim
r→∞P [BESγ+1

1 (t) ≥ ψ(t), for all t s.t.ψ(t) ≥ ln r] .

Proof. Consider the 1-dimensional diffusion R̂ on R given by

dR̂t = dBt + 1

2
γµ(R̂t ) dt and R̂0 = r

where

µ(r) =
{

1/r if r ≤ r1

1/r + α/(r ln r) if r > r1 .

It follows from Lemma 3 that, if R0 = r(X0) = r , then Rt ≥ R̂[N]t .
However [R]t = [N ]t and hence we have

P [Rt ≥ max{ln r, ψ([R]t )}, ∀t |R0 = r]

≥ P [R̂t ≥ max{ln r, ψ(t)}, ∀t | R̂0 = r] .

It is obvious that R̂t ≥ BESγ+1
r (t) and hence that

P [R̂t ≥ max{ln r, ψ(t)}, ∀t | R̂0 = r]

≥ P [R̂t ≥ ψ(t), for t s.t. ψ(t) ≥ ln r | R̂0 = r]

−P [R̂ hits the level ln r for some t | R̂0 = r] . (5)

If r ≥ 1, then BESγ+1
r (t) ≥ BESγ+1

1 (t) so that

P [R̂t ≥ ψ(t), for t s.t. ψ(t) ≥ ln r | R̂0 = r]

≥P [BESγ+1
1 (t) ≥ ψ(t), for all t s.t. ψ(t) ≥ ln r] . (6)

To estimate the second term of the right hand side of (5) we first look at the
expression for the scale function of R̂
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S(r) =
∫ r

1
s(u) du

where

s(r) = exp

{
−γ

∫ r

1
µ(u) du

}
= 1

r
γ

1

exp

{
−γ

∫ r

r1

{
1

u
+ α

u ln u

}
du

}

= 1

r
γ

1

exp

{
−γ

∫ r

r1

ϕ′(u)
ϕ(u)

du

}
=

{
ϕ(r1)

r1ϕ(r)

}γ
,

that is

S(r) =
∫ r

1

{
ϕ(r1)

r1ϕ(u)

}γ
du .

This implies (c.f. [7]) that

P [R̂ hits the level ln r for some t | R̂0 = r]

= lim
r̂→∞

P [R̂ hits the level ln r before the level r̂ | R̂0 = r]

= lim
r̂→∞

S(r̂)− S(r)

S(r̂)− S(ln r)
=

∫ ∞
r
ϕ(u)−γ du∫ ∞

ln r ϕ(u)
−γ du

. (7)

Thus, using the equality

lim
r→∞

∫ ∞
r
ϕ(u)−γ du∫ ∞

ln r ϕ(u)
−γ du

= lim
r→∞

r ϕ(r)−γ

ϕ(ln r)−γ
= lim

r→∞
(ln ln r)αγ

rγ−1(ln r)γ (α−1)
,

the required result follows from (5), (6) and (7). �

4. Main result

Our main theorem in this paper concerns the limiting angle of0-martingales
on our manifold M . In order to prove it we shall need firstly to apply Lemma
4 to the angular part of such processes and for that purpose we require the
following result which is a direct consequence of the Rauch Comparison
Theorem (c.f. [1]) applied to M and M̃ (c.f. [11]). To state it we denote by
ω(θ1, θ2) the distance, measured on the unit tangent sphere at the pole o,
between two of its points θ1 and θ2.

Lemma 5. For any constantε > 0, there exists a constantrε > r0 such
that, if r(x1) > rε anddist(x1, x2) ≤ (ln r(x1))

ε , then
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ω(θ(x1), θ(x2)) ≤ 1

2 r(x1) (ln r(x1))α−ε .

We shall also need the following sequence of stopping times {Tn : n ≥
0}. Writing τ for the inverse map of [X], that is, [X]τt = τ[X]t = t and
Yt = Xτt , we define T0 = 0 and

Tn+1 = inf{t > Tn : dist(Yt , YTn) = (ln r(YTn))
ε}

= inf{[X]t > Tn : dist(Xt , YTn) = (ln r(YTn))
ε} .

Then Y is a 0-martingale on M , [Y ]t = t and hence, by Lemma 2, when
RTn > r0,

P [Tn+1 − Tn ≥ 2 ln(r(YTn)+ (ln r(YTn))
ε) |FTn] ≥ c > 0

for some constant c > 0 independent of n andRTn . Thus, from the sequence
{Tn : n ≥ 0} and a sequence of iid [0, 1]-uniformly distributed random
variables which are independent of F∞ = ∨

nFn, we can construct a
sequence of iid {0, 1}-valued random variables {Un : n ≥ 1} such that, for
some constant δ̃ > 0, we have Tn+1 −Tn ≥ 2δ̃Un+1 with probability at least
p(r) (c.f. [11]). Then, by the Strong Law of Large Numbers, there exist a
constant δ > 0 and a natural number N such that, when n > N , Tn ≥ δn

with probability at least p(r).
We are now in a position to state and prove our main result. We re-

call the basic feature of our assumptions in section 3 that, for some con-
stant c1 > 1/2, the sectional curvatures of M at x are bounded above by
−c1/{r(x)2 ln r(x)} for r(x) > r0, where r is the distance of x from the
pole o.

Theorem. Suppose thatM satisfies the hypotheses given at the beginning
of section3 and thatX is a0-martingale onM with infinite life time. IfX is
κ-quasi-conformal, whereκ satisfies the conditions that(i) 1 ≤ κ < m− 1
and(ii) κ/(m−1−κ)+1/2 < c1, then the limiting angle ofX ast tends to
infinity exists and the closure of the support of the distribution of this limit
is the entire sphere at infinity.

Proof. Suppose that κ satisfies the given conditions. We choose positive
constants α and β such that κ/(m − 1 − κ) + 1/2 < α < c1 and β <

κ/(m− 1 − κ) and then choose ε sufficiently small that α − β − ε > 1/2.
Define, for each n ≥ 0, Sn = τTn . Then by Lemmas 4 and 5 there is a

constant rε ≥ r1 ≥ r0 such that, if (r, θ) = (r(X0), θ(X0)) with r > erε ,
we have that, with probabiliy at least p(r),
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4 sup
t≥0

ω2(θ, θ(Xt)) ≤ 4
∑
n≥0

sup
Sn≤t≤Sn+1

ω2(2Sn,2t)

≤
∑
n≥0

R−2
Sn
(lnRSn)

−2(α−ε)

≤
∑
n≥0

{
max{ln r, ψ([R]Sn)}

}−2

× {
ln(max{ln r, ψ(([R]Sn)})

}−2(α−ε)
.

However, X is κ-quasi-conformal and so

d[R]t ≥ 1

1 + (m− 1)κ
d[X]t .

In particular,

[R]Sn ≥ 1

1 + (m− 1)κ
[X]Sn = 1

1 + (m− 1)κ
Tn .

Thus, when r is sufficiently large,

4 sup
t≥0

ω2(θ, θ(Xt))

=
∑
n≥0

{
max

{
ln r, ψ

(
1

1 + (m− 1)κ
Tn

)}}−2

×
{

ln

(
max

{
ln r, ψ

(
1

1 + (m− 1)κ
Tn

)})}−2(α−ε)

≤
(
N + 1 + (m− 1)κ

δ

)
(ln ln r)−2(α−ε)

+42(α−ε)
∫ ∞

(ln r)2+1

(ln(x − 1))2(ε+β−α)

(x − 1)
dx

=
(
N + 1 + (m− 1)κ

δ

)
(ln ln r)−2(α−ε)

+ 22(α+β−ε)+1

2(α − β − ε)− 1
(ln ln r)2(ε+β−α)+1

≤ 4C2(ln ln r)−2λ
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where

C2 = 1

4

{
N + 1 + (m− 1)κ

δ
+ 22(α+β−ε)+1

2(α − β − ε)− 1

}

and λ = min{α − ε, α − β − ε − 1/2} > 0.
On the other hand, by (4), for any n > 0, there is a k such that

P [BESγ+1
1 (t) ≤ ψ(t), ∀t ≥ k] ≥ 1 − en .

For each r > 0 we define σr = inf{t : Rt = r} and for each n define

kn = max{n, min{k : for k which satisfy the above condition}}
and

En = {there are s, t > σkn such that ω(θ(Xs), θ(Xt)) > 2C(ln kn)
−λ} .

Then, by Lemma 4, when n is large enough,

P [En] ≤ 1 − P

[
sup
t≥σkn

ω(θ(Xt), θ(Xσkn )) ≤ C (ln kn)
−λ

]

≤ 1 − p(ekn) ≤ e−n + e−n(γ−1) ,

so that
∑
P [En] < ∞. The theorem then follows by the Borel-Cantelli

Lemma. �

Corollary 1. Suppose thatM satisfies the hypotheses given at the beginning
of section3 withc1 > 1/2+1/(m−2). Then the limiting angle of Brownian
motion onM always exists and the closure of the support of the distribution
of this limit is the entire sphere at infinity.

Corollary 2. Suppose thatM satisfies the hypotheses given at the beginning
of section3 with c1 > 1/2 + 1/(m − 2). ThenM supports non-constant
bounded harmonic functions.

Corollary 3. Suppose thatM satisfies the hypotheses given at the beginning
of section3 and thatM ∗ is a Riemannian manifold supporting no non-
constant bounded harmonic functions. Ifh : M ∗ −→ M is harmonic and
κ-quasi-conformal, whereκ satisfies the conditions in the Theorem, thenh
is constant.

Proof. Let B be a Brownian motion on M ∗ and define X = h(B). Then X
is a κ-quasi-conformal 0-martingale on M (c.f. [9]).

The condition that M ∗ supports no non-constant bounded harmonic func-
tions is equivalent to the fact that all time-invariant behaviour of Brownian
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motion on M ∗ satisfies the zero-one law. Since X∞ is measurable with re-
spect to the invariant σ -field of B, all time-invariant behaviour of X on M
also satisfies the zero-one law. In particular, this implies that X∞ is non-
random and that the total intrinsic time of X is infinite with probability one
or zero.

If [X]∞ = ∞ a.s. then h must be non-constant and the Theorem shows
that then the limiting angle of X would be random, contradicting the fact
thatX∞ is non-random. Thus we have [X]∞ < ∞ a.s. This implies thatX∞
is finite and constant a.s. Then we take x0 = X∞. By Lemma 3, dist(X, x0)

is a submartingale and so, ∀t > 0,

0 ≤ dist(Xt , x0) ≤ E[dist(X∞, x0) |Ft ] = 0 ,

that is, X = h(B) is constant a.s. so that h is constant. �
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Séminaire de Probabilités XVII, Springer Lecture Notes in Mathematics 1059, 70–76,
Springer-Verlag, Berlin Heidelberg New York. (1984)

9. Kendall, W.S.: Martingales on manifolds and harmonic maps. In The geometry of ran-
dom motion, eds. by R. Durrett & M. Pinsky, 121–157. Amer. Math. Soc., Providence,
RI. (1988)

10. Kendall, W.S.: The radial part of a 0-martingale and a non-implosion theorem. Ann.
Probab. 23,479–500 (1995)

11. Le, H.: Limiting angle of Brownian motion on certain manifolds. Probab. Theory Relat.
Fields, 106,137–149 (1996)
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