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Asymptotic distribution of the empirical spatial
cumulative distribution function predictor
and prediction bands based on a subsampling method?

S.N. Lahiri

Department of Statistics, Iowa State University, Ames, IA 50011, USA

Received: 14 July 1997 / Revised version: 2 June 1998

Abstract. A spatial cumulative distribution function F̂∞ (say) is a random
distribution function that provides a statistical summary of random field over
a given region. This paper considers the empirical predictor of F̂∞ based on
a finite set of observations from a region in Rd under a uniform sampling
design. A functional central limit theorem is proved for the predictor as a
random element of the space D[−∞, ∞]. A striking feature of the result is
that the rate of convergence of the predictor to the predictand F̂∞ depends
on the location of the data-sites specified by the sampling design. A precise
description of the dependence is given. Furthermore, a subsampling method
is proposed for integral-based functionals of random fields, which is then
used to construct large sample prediction bands for F̂∞.
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1. Introduction

Let Z(·) be a measurable random field (r.f.) on Rd, d ≥ 1, that serves as a
model for a spatially distributed univariate quantity of interest. For a given
region R in Rd ,
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F̂∞(z; R) = |R|−1
∫

R

I (Z(s) ≤ z) ds, z ∈ R (1.1)

is called the spatial cumulative distribution function (CDF) of the process
Z(·) over the region R. Here, |R| denotes the volume of R and I (·) de-
notes the indicator function. Note that F̂∞(·; R) given by (1.1) is a random
CDF in the sense that it is a nondecreasing, right continuous function with
limz→∞ F̂∞(z; R) = 1 and limz→∞ F̂∞(−z; R) = 0 for every realiza-
tion of {Z(s), s ∈ R}. Thus, just as a probability distribution summarizes
important characteristics of a population, the spatial CDF F̂∞(z; R) quite
effectively summarizes the statistical information on the process Z(·) over
the region R. For example, if Z(s) represents the concentration of a pollu-
tant at site s in the geographical region of interest R, one of the statistical
summaries that one might be interested in is the average concentration of
the pollutant over the region R, given by Z(R) ≡ ∫

R
Z(s) ds/|R|. This can

be very easily recovered from the knowledge of the spatial CDF F̂∞(z; R),
since Z(R) = ∫

R z dF̂∞(z; R). If, on the other hand, one is interested in
the proportion of area within the region R where the concentration level of
the pollutant exceeds a prescribed safety level z0, say, the relevant quan-
tity is given by

∫
R

I (Z(s) > z0) ds/|R| = 1 − F̂∞(z0; R), which is again
summarized by the spatial CDF F̂∞(·; R). Because of its summarization
capability and visual appeal (cf. Majure, Cook, Cressie, Kaiser, Lahiri, and
Syamanzik, 1995), the spatial CDF F̂∞(·; R) is a basic functional of the
underlying process Z(·) that is of interest in many applications involving
spatially distributed random processes. For an example of an application of
the spatial CDF in the context of ecological resource monitoring, see Lahiri,
Kaiser, Hsu, and Cressie (1999).

Note that the spatial CDF F̂∞(·; R), as defined above, depends on the
entire collection of random variables (r.v.s) Z(s), s ∈ R and hence remains
unknown to the statistician. Typically, observations on the process Z(s) are
taken at finitely many data-sites in R and F̂∞ is to be predicted from the
observed values. Suppose {Z(s1), . . . , Z(sN)} denote the available data, ob-
served at sampling sites s1, . . . , sN ∈ R. The most commonly used predictor
of F̂∞ is the empirical spatial CDF predictor given by

F̂N(z; R) = N−1
N∑

i=1

I (Z(si) ≤ z), z ∈ R . (1.2)

In this paper, we address the problems of determining the asymptotic dis-
tribution of the centered spatial predictor F̂N − F̂∞ (with a suitable scaling
sequence) and of constructing large sample prediction bands for the under-
lying random CDF F̂∞ based on F̂N . For both the problems, the structure
of the sampling design plays a crucial role. The sampling structure we are
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going to assume is a combination of what are known as the “increasing do-
main” and the “infill” asymptotic structures (see Section 2 for more details
on these notions). The increasing domain component of it involves letting
the sampling region R ≡ Rn grow as the sample size N ≡ Nn increases,
while the other part requires “filling in” any given bounded subregion of
Rn with an increasingly densely placed points from a uniform sampling
design. A similar formulation has been used by Hall and Patil (1994) in the
context of estimating the autocovariance function of a r.f. However, here
we work under a fixed design framework as compared to their stochastic
design formulation.

We allow the sampling region Rn to have a fairly irregular shape. Es-
sentially, any subset of Rd that can be obtained by magnifying a member
of a large class of Borel subsets of (−1/2, 1/2]d (that contain the origin)
can serve as a sampling region (see Section 2 for details). This, in particu-
lar, covers polyhedrons, spheres, and many non-convex regions in Rd . The
magnification is achieved through scaling up the subset of (−1/2, 1/2]d by
a factor λn that tends to infinity with n and thus, makes the sampling region
grow with the sample size.

One of the main results of the paper is a Functional Central Limit The-
orem for the normalized predictor process

ξn ≡ bn(F̂n(·; Rn) − F̂∞(·; Rn))

where bn is a scaling constant and where, for notational simplicity, we write
F̂n(·; Rn) ≡ FNn

(·; Rn). In deriving the asymptotic distributional result for
F̂n(·; Rn), one of the issues that require some nontrivial consideration is the
determination of the right sequence {bn} of scaling constants that ensure
weak convergence of the process ξn to a nondegenerate limit. To appreciate
why, consider the following analogous situation involving a deterministic
function f on an interval [a, b]. Let ti = a + i(b − a)/m, i = 0, 1, . . . , m

denote a partition of [a, b] by (m + 1) equispaced points, and let νi =
a+ [i(b−a)+c]/m be a point in the interval [ti , ti+1], i = 0, 1, . . . , m−1,
where c ∈ (0, b−a). Then, the rate at which the partial sum

∑m−1
i=0 f (νi)(b−

a)/m approximates
∫ b

a
f (t) dt depends on c. Indeed, if the function f is

sufficiently “well-behaved”, then using Taylor’s expansion, one can show
that the difference

m−1∑
i=0

f (νi)(b − a)/m −
∫ b

a

f (t) dt

goes to zero at the rate 0(m−1) if c 6= (b − a)/2, and it decays much faster,
viz., at the rate 0(m−2) when c = (b − a)/2.
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A similar phenomenon occurs when we consider the rate of convergence
of the difference F̂n(·; Rn) − F̂∞(·; Rn). However, unlike the simplistic
situation of a smoothand deterministicfunction f over a fixedfinite interval
[a, b], for establishing weak convergence of the process ξn, we have to deal
with some additional complications arising from

(i) the nonsmoothcharacter of the indicator function defining F̂n(·; Rn)−
F̂∞(·; Rn);

(ii) the randomnessof the function I (Z(s) ≤ z) involved;
and

(iii) the relative growthrate of the sampling region, compared to the rate of
‘infilling’ by the sampling design.

In Section 2, we show that depending on the starting point c, say, of the
cubic sampling grid (that determines our sampling design), the right choice
of the normalizing constant bn can be

bn = λd/2
n h−1

n

or

bn = λd/2
n h−2

n ,

where hn → 0 is a sequence of constants specified by sampling design. The
larger normalizing constant, given by the second equation, is appropriate
only for a specific value of c that enjoys certain symmetry properties (like,
c = (b−a)/2 in the deterministic case). An important implication of this is
that the accuracy of the empirical spatial CDF predictor can be significantly
enhanced simply by choosing a single design parameter c suitably.

The second problem considered in this paper is the construction of pre-
diction regions for the underlying spatial CDF F̂∞(·; Rn). Though, in prin-
ciple, the large sample distribution of the normalized predictor can be used
to get a prediction region, it may not be very convenient for practical ap-
plications. As follows from Theorem 2.1 below, the asymptotic covariance
function of ξn is an integral of certain higher order partial derivatives of the
bivariate joint probability distribution functions of the Z(s)s, and is rather
awkward for direct estimation. Furthermore, that approach would call for
additional smoothness assumptions if the integrals of the derivatives are
estimated nonparametrically. Instead, we propose a generalization of the
standard subsampling method, used in the context of time-series and lat-
tice processes (cf. Possolo, 1991; Politis and Romano, 1994; Hall and Jing,
1996; and Sherman and Carlstein, 1994), to r.f.s with a continuous spatial
index. The basic idea is to construct smaller subregions within the given
sampling region Rn that have similar shape as Rn (cf. Sherman and Carl-
stein, 1994) and, then, use the sampling design to recreate the effects of a
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“sample” and the “population” at the level of the subregions. In Section 3, we
construct a large sample prediction band for F̂∞(·; Rn) using the proposed
subsampling method and show that it attains the desired confidence level
asymptotically. This form of subsampling can also be used effectively in in-
ference problems concerning other integral-based functionals of r.f.s. Some
related recent works in this direction include Lahiri, Kaiser, Cressie, and
Hsu (1999), Bertail, Politis, and Rhomari (1996), and Politis, Paparoditis,
and Romano (1996).

The rest of the paper is organized as follows. Section 2 states the as-
sumptions and the main results on the asymptotic distribution of the spatial
CDF predictor. In Section 3, the subsampling method is introduced and is
applied to construct prediction bands for F̂∞(·; Rn). Proofs of the results in
Sections 2 and 3 are given in Section 4.

2. Asymptotic distribution

This section is divided into three parts. In Section 2.1, we describe the
sampling design and the structure of the sampling region and, in Section 2.2,
we state the assumptions used in the paper. Asymptotic distributional results
on the spatial CDF predictor F̂n are given in Section 2.3.

2.1. The sampling structure

There are essentially two basic sampling structures for studying asymptotic
properties of estimators and predictors based on spatial data. When all sam-
pling sites are separated by a fixed positive distance, and the sampling region
Rn becomes unbounded as the sample size increases, the resulting structure
leads to what is known as the ‘increasing domain asymptotics’ (cf. Cressie,
1993). This is the most common framework used for asymptotics for spatial
data, and often leads to results similar to those obtained in time series. The
other form, known as the ‘infill asymptotic structure’ (cf. Cressie, 1993),
is inherently different and is more suitable for inference for continuous pa-
rameter r.f.s. observed on bounded regions. When an increasing number
of samples are collected from within a sampling region Rn that does not
become unbounded with the sample size, we obtain the ‘infill’ structure.
However, for the purpose of our study, neither the ‘infill’ nor the ‘increas-
ing domain’ structure seems suitable. We assume a sampling scheme that
is a mixture of both in the sense that we let the sampling region Rn to grow,
and at the same time, allow ‘infilling’ of any fixed bounded subregion of
Rn. This structure appears to be the natural one for this problem, because
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of the following reasons. Since F̂∞ is defined in terms of an integralon Rn,
F̂∞ cannot be predicted consistently without infilling. On the other hand,
if the region Rn remains bounded, then there is not enough information to
allow consistent estimation of population quantiles for constructing predic-
tion bands for F̂∞ (cf. Lahiri, 1996). A similar “mixed” structure has been
used by Hall and Patil (1994) in the context of nonparametric estimation
of the auto-covariance function of an r.f. However, unlike their stochastic
design, here we will consider a fixed sampling design.

To describe the sampling structure used in this paper, suppose that Pn

denotes a partition of Rd by equal-volume cubes with sides hn, where hn ↓ 0
as n → ∞. We can identify Pn with the set:

Pn = {(i + 10)hn : i ∈ Zd}

where Z denotes the set of all integers and 10 ≡ (0, 1]d denotes the unit
cube in Rd . Note that just as it partitions Rd ,Pn also induces a simultaneous
partition of any given region Rn ⊂ Rd by cubes of volume hd

n. We assume
that the sampling sites are selected on a regulargrid such that there is exactly
one potential sampling site in each cube 0i ≡ (i + 10)hn. As mentioned in
the Introduction, the choice of starting point of the grid, or equivalently, the
choice of the sampling site within a 0i has a nontrivial effect on the rate of
convergence of the spatial CDF predictor F̂n. As a consequence, we need
to specify exactly how these sites are selected. Let c be an arbitrary point in
the interior of the unit cube 10. Then, the sampling sites within the region
Rn are given by the points on the grid {(i +c)hn : i ∈ Zd} that lie inside Rn.
To be more specific, let J (Rn) denote the set J (Rn) = {i ∈ Zd : si ∈ Rn},
where si = (i + c)hn. Then,

{si : i ∈ J (Rn)}

gives the collection of sampling sites in Rn. It is evident from the above
description that this yields a nonstochastic uniform sampling design where
the sampling sites are located on a grid whose “starting” point is an arbitrary
point in the cube (0, hn]d .

Next we specify the structure of the regions Rn, which quantifies the
“increasing domain” component of our sampling structure. Here we adopt
a formulation similar to that of Sherman and Carlstein (1994) (see also Hall
and Patil, 1994). Let R0 be a Borel subset of (−1/2, 1/2]d containing an
open neighbourhood of the origin such that for any sequence of positive
real numbers an → 0, the number of cubes of the integer lattice anZ

d that
intersect both R0 and Rc

0 is O((a−1
n )d−1) as n → ∞. Also, let {λn} be a

sequence of real numbers that goes to infinity with n. Then, the sampling



Spatial CDF prediction 61

region Rn is obtained by “inflating” the set R0 by the scaling sequence λn,
i.e.,

Rn = λnR0 .

Since the origin is assumed to lie inside R0, the shape of the sampling region
is preserved for different values of n. Furthermore, the requirements on R0

guarantee that the effect of the data points lying on the boundary of Rn is
negligible compared to the totality of data values.

The formulation given above allows the sampling region Rn to have a
fairly irregular shape. Some common examples of such regions are spheres,
ellipsoids, polyhedrons, and star-shaped regions (which can be non-convex
sets with irregular boundaries). Sherman and Carlstein (1994) considers
a rich subclass of such regions in the plane (i.e., for d = 2) where the
boundaries of the sets R0 are delineated by simple rectifiable curves with
finite lengths.

Note that in our formulation λn acts as a commonscaling factor in all
directions. As a consequence, under the uniform sampling design described
above, the number of sampling sites N(Rn), say, in Rn satisfies the growth
condition:

N(Rn) ∼ |R0| · λd
n/hd

n

as n → ∞, where |R0| denotes the volume of the set R0, and for any two
sequences {rn} and {tn} of positive real numbers, we write rn ∼ tn if rn/tn →
1 as n → ∞. Thus, with different choices of the factors λn, hn and the set
R0, the sampling structure adopted here provides a flexible framework for
handling varying degrees of “infilling” of “increasing domains” that may
have a wide variety of shapes.

Next we state the assumptions used in the paper.

2.2. Assumptions

For stating the assumptions, we need to introduce some notation. For a vector
x = (x1, . . . , xk)

′ ∈ Rk (k ≥ 1), let ‖x‖ = ∑k
i=1 x2

i and |x| = ∑k
i=1 |xi |

denote the (usual) Euclidean and the `1 norms of x, respectively. We shall
use the notation | · | also in two other cases: for a countable set J , |J | would
denote the cardinality of the set J , and for an uncountable set A ⊂ Rk, |A|
would refer to the volume (i.e., the Lebesgue measure) of A. Let Z+ be the
set of all nonnegative integers. If f is a function from Rk → R, and x ∈ Rq

(q < k), then f (x; ·) denotes the function from Rk−q → R that takes
the value f ((x′, y′)′) at y ∈ Rk−q . Let Djf denote the partial derivative
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of f with respect to its j th argument. For x = (x1, . . . , xk)
′ ∈ Rk and

α = (α1, . . . , αk)
′ ∈ Rk (k ≥ 1), write xα = ∏k

j=1 x
αj

j , α! = ∏k
j=1 αj !,

and Dα for the differential operator D
α1
1 · · ·Dαk

k .
Under the stationarity assumption on the random field {Z(s), s ∈ Rd},

let F0 denote the (common) marginal distribution of Z(s). Next define the
functions G and G1 based on the bivariate joint distribution of Z(0) and
Z(s) by

G(z1, z2; s) = P(Z(0) ≤ z1, Z(s) ≤ z2),

G1(z1, z2; s) = P(z1 < Z(0) ≤ z2, z1 < Z(s) ≤ z2) , (2.1)

z1, z2 ∈ R and s ∈ Rd .
Let L′

2(A) be the collection of all random variables with zero mean
and finite second moment that are measurable with respect to the σ -field
generated by {Z(s) : s ∈ A}, A ⊂ Rd . For A, B ⊂ Rd , write

ρ1(A, B) = sup{|Eξη|/(Eξ 2)1/2(Eη2)1/2 : ξ ∈ L
′
2(A), η ∈ L

′
2(B)} .

Then, define theρ-mixing co-efficient (cf. Doukhan, 1994) of the r.f. {Z(s), s
∈ Rd} by

ρ(k; m) = sup{ρ1(A, B) : |A| ≤ m, |B| ≤ m, d(A, B) ≥ k} (2.2)

where d(A, B) denotes the distance between the sets A, B ⊂ Rd in the
| · |-norm, given by d(A, B) = inf{|x − y| : x ∈ A, y ∈ B}. Let co =
( 1

2 , . . . , 1
2 )′ denote the midpoint of the unit cube 1o. Define

κ = 2 if c 6= co and κ = 4 if c = co . (2.3)

The following conditions will be assumed to be in effect in the rest of the
paper.

Assumptions:

(A.1) There exist positive real numbers C, τ, θ satisfying τ > 3d and
θd < τ such that

ρ(k; m) ≤ Ck−τmθ .

(A.2) {Z(s) : s ∈ Rd} is stationary and F0(·) is continuous on R.
(A.3) For each z1, z2 ∈ R, G(z1, z2; ·) has

(i) bounded and Lebesgue integrable partial derivatives of order κ

on Rd , and
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(ii) for |α| = κ , there exist nonnegative integrable functions Hα(z1,

z2; ·) such that for all s, t ∈ Rd, ‖t‖ ≤ 1,

|DαG(z1, z2; s+ t) − DαG(z1, z2; s)| ≤ ‖t‖ηHα(z1, z2, s)

for some η > 0 (which does not depend on z1, z2).
(A.4) There exist constants C > 0, 1/2 < γ ≤ 1 such that

κ∑
|α|=2

|DαG1(z1, z2; s)| ≤ C|F0(z2) − F0(z1)|γ

for all z1, z2 ∈ R and s ∈ Rd .

(A.5) (h
(2γ+1)κ
n λd

n)
−1 + (hnλn/ log λn)

−1 → 0 as n → ∞, where γ is
as in (A.4) and κ is given by (2.3).

Some comments about the assumptions are in order.
It is well known (cf. Bradley, 1989; Doukhan, 1994) that for a r.f. on

Rd with d > 1, if the sizes of the sets A and B in the definition of the
ρ-mixing co-efficient in (2.2) are unrestricted, a ρ-mixing condition requir-
ing ′ limk→∞ ρ(k; ∞) = 0′ forces the r.f. to be m-dependent. Thus, to
ensure validity of our results for a large class of r.f.s, we adopt the standard
convention (see, for example, Doukhan, 1994) that for any fixed distance
k between two sets A and B of indices, the ρ-mixing co-efficient becomes
unbounded as the sizes of these sets tend to infinity.

Assumption (A.5) is a condition on the sampling design parameters λn

and hn, which specifies a viable range of “infilling” and “increasing domain”
components of the spatial sampling design. Note that the growth condition
on both terms within parentheses in (A.5) restricts hn to take too small
values and thus rules out an arbitrary amount of infilling of the sampling
region.

Assumptions (A.3) (i) and (ii) are smoothness conditions on the bivariate
probability distribution functions P(Z(0) ≤ z1, Z(s) ≤ z2), considered
as a function of s ∈ Rd with (z1, z2) fixed. Note that these conditions are
almost minimal, since (cf. Theorem 2.1 below) the covariance function of the
asymptotic Gaussian process depends on the κ-th order partial derivatives
of G(z1, z2; ·). Assumption (A.3) (ii) can also be viewed as a Lipschitz
condition of order η > 0 for the functions DαG(z1, z2; ·), |α| = κ , in the
L1(Rd)-norm.

Assumption (A.4) is used exclusively in the context of proving tightness
of the process ξn considered as a random element of the space of functions
D[−∞, ∞]. Note that we can express the function G1(·, ·; s) in terms of
the function G(·, ·; s) as
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G1(z1, z2; s) = G(z2, z2; s) − G(z2, z1; s) − G(z1, z2; s) + G(z1, z1; s) ,

(2.4)
for z1, z2 ∈ R, and s ∈ Rd . Write G̃(t1, t2; s) = G(F−1

0 (t1), F
−1
0 (t2); s) for

t1, t2 ∈ (0, 1), where F−1
0 (·) denotes the inverse of the CDF F0(·), defined

by F−1
0 (t) = inf{z : F0(z) ≥ t}, t ∈ (0, 1). Then, it is easy to check

that (A.4) holds if the functions DαG̃(t1, t2; s), |α| = 2, . . . , κ satisfy a
Lipschitz condition of order γ in each of t1 and t2, for all s ∈ Rd .

For an example of a r.f., where the results of the paper are applicable,
consider the random process

Z(s) = g(ε(s)), s ∈ Rd ,

where g : R → R is a Borel measurable function and {ε(s) : s ∈ Rd} is a
stationary Gaussian r.f. with Eε(s) = 0, E(ε(s))2 = 1, and autocorrelation
function ρ(·). Then, the function G(·, ·; ·) can be written as

G(z1, z2; s)

=
∫

g−1(−∞,z1]

[∫
g−1(−∞,z2]

(1 − ρ(s)2)−1/2φ

(
v − ρ(s)u√

1 − ρ(s)2

)
dv

]
d8(u) ,

(2.5)

z1, z2 ∈ R, s ∈ Rd , where φ and 8 respectively denote the density and
the distribution function of a N(0, 1) random variable. Next, assume that
lim‖s‖→0 |ρ(s)| < 1 and that ρ(s) has bounded, Lebesgue integrable partial
derivatives of order κ + 1 on Rd\{0}. Then, by straight-forward algebra,
it follows that the inequality in Assumption (A.3) (ii) holds with η = 1
for any z1, z2 ∈ R and for s, s + t ∈ Rd\{0}, ‖t‖ ≤ 1. At the points
s, s+ t ∈ {0}, the function G(z1, z2; ·) is notnecessarily differentiable and
hence, the inequality in (A.3) (ii) can not be verified. However, the effect
of the violation of (A.3) (ii) at these points can be shown to be negligible
under (A.5), and hence, all the steps in the proofs of the results of the paper
go through under this weaker form of (A.3) (ii).

As for Assumption (A.4), in addition to the Conditions on ρ(·), suppose
further that the transformation g is piece-wise strictly monotone with a
piece-wise continuous derivative on R. Then, the marginal distribution F0

of the process Z(·) has a density. Using (2.4) and (2.5), and computing the
κ-th order partial derivatives of the function G(z1, z2; s) at s 6= 0, one can
readily establish the inequality in (A.4) with γ = 1, for all z1, z2 ∈ R and
for all s ∈ Rd\{0}. For s = 0, a comment similar to (A.3) (ii) applies. In



Spatial CDF prediction 65

summary, the results of the paper hold for the class of r.f.s Z(·) that are
instantaneous functions of a stationary Gaussian r.f., provided Assumption
(A.1), (A.5), and the conditions on ρ(·) and g(·) specified above are satisfied.

2.3. Asymptotic Distribution

The main result of this section is a Functional Central Limit Theorem for
the normalized CDF predictor:

ξn(z) ≡ bn(F̂n(z; Rn) − F̂∞(z; Rn)), z ∈ R . (2.6)

Note that for each n,

P

(
lim

|z|→∞
ξn(z) = 0

)
= 1 .

Hence, ξn(·)may be considered as a random element of the spaceD[−∞, ∞]
of all real valued functions on [−∞, ∞] that are right continuous with left
hand limits. We equip D[−∞, ∞] with the Skorohod metric and show that
under the assumptions of Section 2.2, ξn(·) converges weakly to a contin-
uous Gaussian process W(·) on [−∞, ∞] with W(∞) = 0 = W(−∞)

a.s.
The normalizing constant bn and the covariance function of the limiting

process W(·) depend on the choice of the vector c ∈ 10. Recall that c
determines the starting point of the sampling grid of our uniform sampling
design. It turns out that when c 6= co, the right choice of bn is given by
λ

d/2
n h−1

n while for c = co, bn should be taken as λ
d/2
n h−2

n . The covariance
functions of W(·) in these cases are, respectively, given by certain integrals
of the second and the fourth order partial derivatives of the functionG(·, ·; s),
defined in (2.1). To state the result formally, define

a(α) =
∫

10

∫
10

{(x − s)α − (x − c)α − (c − s)α} dx ds, α ∈ (Z+)d .

Then we have the following theorem.

Theorem 2.1. Suppose that Assumptions(A.1)–(A.5) hold. Letbn = λ
d/2
n

h
−κ/2
n , whereκ is given by(2.3). Then,

ξn(·) →d W(·)

where→d denotes weak convergence and whereW(·) is a zero mean Gaus-
sian process with the covariance function
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σ(z1, z2) = |R0|−1
∑
|α|=κ

a(α)(α!)−1
∫

Rd

DαG(z1, z2; s) ds , (2.7)

z1, z2 ∈ R. Moreover, W(+∞) = W(−∞) = 0 a.s. andW(·) has contin-
uous sample paths with probability one.

Thus, Theorem 2.1 shows that with the proper choice of bn, the centered
spatial CDF predictor F̂n does indeed have a nondegenerate limit distribu-
tion on D[−∞, ∞]. For sums of random variables from r.f.s on the integer
latticeZd , Central Limit Theorems (CLTs) have been proved by Bolthausen
(1982), Bulinskii and Zhurbenko (1976), and Guyon and Richardson (1984)
under different sets of moment and mixing conditions. For r.f.s with a con-
tinuous spatial index, Ivanov and Leonenko (1989) obtains a CLT for certain
weighted integrals of the field, assuming a strong-mixing condition. Theo-
rem 2.1 takes a step towards proving functional CLTs for triangular arrays
of D[−∞, ∞]-valued random elements generated by r.f.s. One of the main
technical problems that arise in proving Theorem 2.1 is to establish tight-
ness of the process ξn in D[−∞, ∞]. In Section 4, we obtain some auxiliary
results in this context, which can be useful also for establishing similar func-
tional and finite dimensional limit theorems for estimators and predictors
based on finite samples from continuous parameter r.f.s.

Although Theorem 2.1 provides a very precise description of the right
normalizing constant bn, in practice, however, it may not always be clear
as to which of the two different rates should be used. This is because in
an application, given the locations of the sampling sites {s1, . . . , sNn

} on a
regular grid and the sampling region Rn, there may not be a unique reference
point that can be identified as the origin, and hence, one may not be able
to discriminate between the cases c = co and c 6= co from this informa-
tion. An exceptional situation, where one can discriminate between these
two possibilities solely from the knowledge of the sampling sites and the
sampling region Rn, occurs when the sampling region can be tessellatedby
cubes of side hn with centers either at the given sampling sites (leading to
the case c = co) or at points other than the sampling sites (corresponding to
c 6= co). In the following, we exploit this observation to formulate a variant
of Theorem 2.1 that can be used in practice for sampling regions that are
not tessellated exactly.

Suppose that {s1, . . . , sNn
} are the sampling sites within the sampling

region Rn, coming from a regular grid Pn for somec ∈ 10. For s ∈ Rd and
c1 ∈ 10, let 0n(s; c1) denote the cube with sides of length hn and with center
at s+ (c1 − co)hn. Then, it follows that 0n(si; c1) is a cube of volume hd

n

containing the sampling site si , and has its center at si if and only if c1 = co.
Next define the region Rn(c1) = ∪Nn

i=10n(si; c1). (cf. Figure 1 below).
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Fig. 1. (Left) Sampling region Rn with the sampling sites sis denoted by solid circles;
(Right) The augmented region Rn(co) with its boundary shown in boldface dashed line, and
the squares 0n(si; co) centered at the sampling sites si with their boundaries in dashed lines.

Since the sampling sites {s1, . . . , sNn
} lie on the regular grid Pn which

has an increment hn in eachdirection, the cubes {0n(si; c1), i = 1, . . . , Nn}
tessellateRn(c1). Furthermore, since it is obtained from Rn by an augmen-
tation of the cubes only at the boundarysampling sites, the region Rn(c1)

differs from the original sampling region Rn by a volume that is negligible
compared to the total volumes of both Rn and Rn(c1). As a result, one can
use the empirical predictor F̂n(·; Rn) based on observations on the process
Z(·) at the sampling sites {si : i = 1, . . . , Nn} ⊂ Rn(c1) also as a predictor
of the spatial CDF F̂∞(·; Rn(c1)) over the augmented region Rn(c1). Then,
the following version of Theorem 2.1 holds.

Theorem 2.1′. Assume that assumptions(A.1)–(A.5) hold and thatb1n =
λ

d/2
n h−2

n if c1 = co, andb1n = λ
d/2
n h−1

n if c1 6= co. Then,

b1n(F̂n(·; Rn) − F̂∞(·; Rn(c1))) →d W(·; c1)

whereW(·; c1) is a zero mean Gaussian process having the covariance
function (2.7) with κ = 4 if c1 = co, and κ = 2 if c1 6= co. Moreover,
W(+∞; c1) = W(−∞; c1) = 0 a.s. andW(·; c1) has continuous sample
paths with probability one.

Thus, given the sampling sites {s1, . . . , sNn
} from a regular grid, one

can choosea desired value for c1 and apply Theorem 2.1′ with the corres-
pondingscaling constant b1n. Hence, unlike the choice of bn, one can al-
waysdetermine the right scaling constant b1n for predicting the spatial CDF
F̂∞(·; Rn(c1)) over the region Rn(c1).
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Secondly, Theorem 2.1′ also shows that under Assumptions (A.1)–(A.5),
the empirical predictor F̂n achieves the higher level of accuracy for predict-
ing the spatial CDF F̂∞(·; Rn(co)) over the region Rn(co), irrespectiveof its
rate of convergence to the spatial CDF F̂∞(·; Rn) over the original region
Rn. Consequently, inference procedures based on the empirical predictor F̂n

would be most accurate for the region Rn(c1) if one chooses c1 = co. In par-
ticular, prediction bands based on F̂n would be narrower for F̂∞(·; Rn(co))

than for F̂∞(·; Rn(c1)) with c1 6= co.
Finally, it should be noted that for a sampling region Rn that is not

tessellated by the cubes from the grid Pn, Theorem 2.1′ yields a large sam-
ple result for the spatial CDFs only over the regions Rn(c1), c1 ∈ 10,
which are differentfrom the original sampling region Rn. Though the vol-
ume of the symmetric difference Rn1Rn(c1) is negligible compared to
the total volumes of Rn and Rn(c1) in Rd , in general, we can not replace
F̂∞(·; Rn(c1)) by F̂∞(·; Rn) in Theorem 2.1′. This is because the scaleddif-
ference b1n(F̂∞(·; Rn(c1)) − F̂∞(·; Rn)) is not necessarily negligible when
the dimension d of the sampling region Rn is 2 or more.

We conclude this section with a result that will be used in the context of
obtaining large sample prediction bands for F̂∞ in Section 3. Let w(·) be a
nonnegative integrable function on R. Define the weighted Lp-norm of an
element x ∈ D[−∞, ∞] by

‖x‖p =
(∫ ∞

−∞
|x(z)|pw(z) dz

)1/p

for p ∈ [1, ∞). Also, corresponding p = ∞, let

‖x‖∞ = sup{|x(z)| : z ∈ [−∞, ∞]} .

Then, the following result holds.

Theorem 2.2. Assume that the conditions of Theorem2.1 hold. Then, as
n → ∞,

‖ξn‖p →d ‖W‖p

and
‖b1n(F̂n(·; Rn) − F̂∞(·; Rn(c1)))‖p →d ‖W(·; c1)‖p ,

for all p ∈ [1, ∞].

3. Subsampling prediction band

In this section we consider the problem of constructing valid large sample
prediction bands for the underlying spatial CDF F̂∞. For simplicity of ex-
position, we restrict attention to the spatial CDF F̂∞(·; Rn) corresponding
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to the sampling region Rn. Prediction bands for F̂∞(·; Rn(c1)) can be con-
structed by straightforward modifications (cf. Remark 3.1 below). Hence,
unless explicitly mentioned, we write F̂∞ to denote the spatial CDF F̂∞(·; Rn)

over Rn.
For 0 < α < 1, let qα denote the α quantile of ‖W‖p. Then, by

Theorem 2.2 it follows that

Iα = {F : bn‖F̂n − F‖p < qα} (3.1)

is a prediction band for F̂∞ that attains the nominal coverage level α

asymptotically. However, the difficulty with using (3.1) is that the quan-
tity qα depends on the bivariate population CDF G, and hence is unknown
in practice. In principle, it is possible to estimate the covariance func-
tion of the process W and use orthogonal decomposition (cf. Anderson,
1993) to obtain an estimator of qα. However, given the complex struc-
ture of the covariance function, this approach does not seem very con-
venient for practical applications. Instead, here we propose an extension
of the standard subsampling method, used in the context of purely “in-
creasing domain asymptotics” for time-series and lattice processes (cf. Pos-
solo, 1991; Politis and Romano, 1994; Hall and Jing, 1996; and Sher-
man and Carlstein, 1994), to allow “infill sampling” of continuous pa-
rameter r.f.s and apply it to construct valid large sample prediction sets
for F̂∞.

The main idea behind the proposed subsampling method is to use several
smaller regions within Rn of similar shape (cf. Sherman and Carlstein,
1994) and exploit the “infill” component of the sampling design to recreate
the effect of “sample” and “population” at the level of the subsamples.
The modification is required for defining the subsample versions of the
sample based predictor F̂n and the unobservable random predictand F̂∞
that depends on the “population” of the entire r.f. Z(z) over Rn.

First we define the subregions. Let l(≡ ln) be an integer such that
l/n → 0 as n → ∞. Here l determines the “window width” for the
subsamples. Let K1 ≡ K1n denote the largest integer not exceeding λn/λl .
Then, (−λn, λn]d contains (2K1)

d smaller cubes of the form (i + 10)λl

where i ∈ Zd . Let S1, . . . , SK denote the set of all such subcubes that lie
insidethe given region Rn. Then, define the subsampling regions

R∗1, . . . , R∗K

by inscribing the translate of the region λlR0 inside each one of the sub-
regions S1, . . . , SK such that the origin is mapped onto the midpoint of
the given subcube. (cf. Figure 2 below). Then, this gives us a collection
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Fig. 2. (Left) The sampling region Rn with the subregions R∗is; (Right) A given subregion
R∗i (magnified) with the finer and the coarser partitions, given respectively by the dotted
lines and the solid lines.

of nonoverlapping subregions that are of the same shape as the original
sampling region Rn, and are contained in Rn.

Next we define a copy of F̂n and F̂∞ on each R∗i . Note that corresponding
to l and n,Pl and Pn induce partitions of R∗is at two levels of resolution.
We use the partition Pl to define the subsample version of F̂n and Pn to
define that of F̂∞. Let {sj : j ∈ Ni} denote the (Pn-level) sampling sites in
R∗i , i = 1, . . . , K . Next for simplicity, assume that l is such that hl/hn is
an integer. Then, the sampling sites corresponding to Pl and Pn are nested.
Let {sj : j ∈ Li} denote the collection of Pl-level sampling sites in R∗i , i =
1, . . . , K . Then, define the versions of F̂n and F̂∞ on R∗i respectively by

F ∗i
n (z) = |Li |−1

∑
j∈Li

I (Z(sj ) ≤ z)

and

F ∗i
∞(z) = |Ni |−1

∑
j∈Ni

I (Z(sj ) ≤ z) ,

z ∈ R, i = 1, . . . , K . Thus, F ∗i
n plays the role of F̂n(·; Rn) and F ∗i

∞ plays
the role of F̂∞(·; Rn) at the level of the subregion R∗i . The version of the
process ξn on R∗i is given by

ξ ∗i
n (z) = bl(F

∗i
n (z) − F ∗i

∞(z)), z ∈ R .

Since the subregions R∗is are nonoverlapping, ξ ∗1
n , . . . , ξ∗K

n behave like
“approximately independent” copies of the process ξn. Hence, we define
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the subsampling estimator of the CDF Hn(·; p), say, of ‖ξn‖p by

Ĥn(z; p) = K−1
K∑

i=1

1(‖ξ ∗i
n ‖p ≤ z), z ∈ R .

The following theorem justifies the use of the proposed subsampling method
for constructing prediction bands for F̂∞.

Theorem 3.1. Suppose that conditions of Theorem2.1 hold and that the
weight functionw is such that‖W‖p has a continuous distribution onR.
Also, let l be such thathn/hl → 0 asn → ∞, and Assumption(A.5) holds
with λn replaced byλl. Then, for anyp ∈ [1, ∞],

sup
z∈R

|Ĥn(z; p) − Hn(z; p)| → 0 in probability, as n → ∞ .

Thus, under the conditions of Theorem 3.1, the subsampling estimator of the
sampling distribution of ‖ξn‖p provides a valid approximation. To construct
a 100α% (0 < α < 1) prediction region for F̂∞ based on the subsampling
method, let q̂α be the α quantile of Ĥn(·; p). Define

I S
α = {F : bn‖F̂n(·; Rn) − F‖p < q̂α} .

Then, I S
α gives the desired subsampling prediction band for the spatial CDF

F̂∞. Note that by Theorem 3.1,

P(F̂∞ ∈ I S
α ) → α as n → ∞ .

Hence, the prediction region I S
α attains the target coverage probability α

asymptotically. In practice, implementation of the subsampling procedure
is quite simple. To find the quantile q̂α, note it is given by the (Kα)-th order
statistic of the values ‖ξ ∗i

n ‖p, i = 1, . . . , K and hence, can be easily found
by arranging the ‖ξ ∗i

n ‖p’s in an increasing order. Finite sample performance
of the method and the choice of the subsampling parameters can be found
in Kaiser, Hsu, Cressie, and Lahiri (1997). Also, for an application of the
subsampling method to a real data set and for overlapping versions of the
subsampling method, see Lahiri, Kaiser, Cressie, and Hsu (1999).

Remark 3.1.A variant of Theorem 3.1 also holds for the process ξ1n ≡
b1n(F̂n(·; Rn) − F̂∞(·; Rn(c1))) considered in Theorem 2.1′, provided the
subsampling estimator is redefined appropriately. The main modification is
that on each subregion R∗i , a copy the process ξ1n is now defined as

ξ ∗i
1n ≡ b1l(F

∗i
n (·) − F ∗i

∞(·; R∗i(c1)))
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where F ∗i
∞(·; R∗i(c1))) is the empirical distribution function of the obser-

vations located on the finer grid Pn in the augmentedsubregion R∗i(c1) ≡
∪s∈R∗i∩Pl

0l(s; c1). Thus, to define the subsample “copy” of ξ1n on R∗i , we
replace F̂∞(·; Rn(c1)) by F ∗i

∞(·; R∗i(c1)), which is the right subsample ver-
sion of the spatial CDF F̂∞(·; Rn(c1)). The subsampling estimator of the
sampling distribution H1n(·; p), say, of ‖ξ1n‖p is then given by

K−1
K∑

i=1

1(‖ξ ∗i
1n‖p ≤ ·) ,

which provides a valid approximation to H1n(·; p) under the conditions of
Theorem 3.1. Hence, one can construct valid prediction bands for the spatial
CDF F̂∞(·; Rn(c1)) as above.

Recently, Bertail, Politis, and Romano (1995) and Sherman and Carlstein
(1997) have developed methods for constructing confidence intervals for
population parameters of time series data, when the rates of convergence
of the corresponding estimators are unknown. Hence, as an alternative, one
may adapt these methods to the present problem to construct prediction
bands for F̂∞(·; Rn) itself, if the choice of the scaling constant bn is not
obvious.

4. Proofs

For proving the theorems, we need a few lemmas. We will use C, C(·) to
denote generic positive constants that depend on their arguments (if any).
Also, unless otherwise specified, limits in order symbols are taken letting n

tend to infinity.

Lemma 4.1. LetBn = tnB0 andZ̃(i) = ∫
fi(Z(s))1(s ∈ (i+10) ∩ Bn) ds,

i ∈ Jn ≡ {i ∈ Zd : i + 10 ∩ Bn 6= φ} be random variables satisfying

EZ̃(i) = 0, |Z̃(i)| ≤ 1 and

E|Z̃(i)|2 ≤ δn for all i ∈ Jn ,

wheretn → ∞, B0 is a Borel subset of(−1/2, 1/2)d that satisfies the same
boundary condition as the setR0, andfi : R → R is a Borel measurable
function such thatEfi(Z(0))4 < ∞, i ∈ Jn. Then, under assumption(A.1),

E


∑

i∈Jn

Z̃(i)




4

≤ C(d, ρ(·)) [t2d
n δ2

n + tdn δn

]
.
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Proof . Clearly,

E


∑

i∈Jn

Z̃(i)




4

≤ C(d)



∑
i∈Jn

EZ̃(i)4 +
∑
i1 6=i2

|EZ̃(i1)3Z̃(i2)| +
∑
i1 6=i2

EZ̃(i1)2Z̃(i2)2

+
∑

i1 6=i2 6=i3

|EZ̃(i1)2Z̃(i2)Z̃(i3)| +
∑

i1 6=i2 6=i3 6=i4

|EZ̃(i1)Z̃(i2)Z̃(i3)Z̃(i4)|



≡ I1 + I2 + I3 + I4 + I5, say .

By the ρ-mixing condition,

I1 + I2 + I3

≤ C(d)


(1 +

∞∑
k=1

kd−1ρ(k − 1; 1)

)
|Jn|δn +

∑
i1 6=i2

EZ̃(i1)2EZ̃(i2)2




≤ C(d, ρ)
[
tdn δn + t2d

n δ2
n

]
.

Next we obtain bounds on I4 and I5. In both cases, the key step in applying
the mixing condition involves counting the number of different indices (viz.,
i1, i2, i3 for I4 and i1, i2, i3, i4 for I5) that correspond to a given maximal gap.
We consider the case I5 first. For i1 6= i2 6= i3 6= i4, write J = {i1, i2, i3, i4}.
Next define

dj (J ) = max{d(I, J\I ) : I ⊂ J, |I | = j}, j = 1, 2 .

Thus, d2(J ) denotes the maximal distance between any two (out of six
possible) pairs of indices in J , while d1(J ) gives the maximum distance of
a single index in J from the rest of the indices. Depending on the elements
in J , d1(J ) can be larger or smaller than d2(J ). We claim that for given
integers 1 ≤ d01, d02 ≤ |Jn|,

|{J : d1(J ) = d01 and d2(J ) = d02}| ≤ C(d)[(d01 + d02)]
3d−1|Jn| .

(4.1)
To see this, fix any i1 ∈ Jn, say, i1 = 0 (for notational convenience), and
suppose that for J = {0, i, j , k}, dr(J ) = d0r , r = 1, 2. Then, there exists
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a set I ⊂ J, |I | = 2 such that d02 = d(I, J\I ). Without loss of generality
(w.l.g.), assume that I = {0, j}, I c = {i, k}, and d(I, I c) = |i|. This implies
|i| = d02, |k| ≥ d02, |j − i| ≥ d02. By virtue of its definition, a bound on
d2(J ) restricts the possible choices of at least one of j and k. Indeed,

if d02 = d(I, I c), then either |j | ≤ 2d02 or |k| ≤ 2d02 . (4.2)

To prove this, note that if |j | ≤ 2d02, then (4.2) is trivially true. Hence,
suppose that |j | > 2d02. Then, it is easy to check that if |k| is also bigger
than 2d02, then for the set I1 = {0, i} d(I1, J\I1) > d02, contradicting the
maximality of d02. Thus, d02 = d(I, I c) = |i| implies at least two of the
indices i, j , k do not exceed 2d02.

In general, for a given value d02 alone, there can be as many as O(tdn ) pos-
sible choices for the third index. (For example, take k = 2i =
(2d02, 0, . . . , 0)′, and let all components of j be less than −2d02.) But if
the value of d1(J ) is also specified, then the norm of the otherwise un-
controllable third index admits a bound in terms of d1(J ) and d2(J ). In-
deed, in the case when |j | > 2d02 and |k| ≤ 2d02 in (4.2), we must have
|j | ≤ 2d02+d01. This follows from the inequalities: d01 ≥ d({j}, {0, i, k}) =
min{|j |, |i − j |, |j − k|}, |j | ≤ |i − j | + d02 and |j | ≤ |k − j | + 2d02. In
the other case, i.e. when |j | ≤ 2d02, we get a similar bound for k. Since
|{i ∈ Zd : |i| ≤ a}| = O(ad) and |{i ∈ Zd : |i| = a}| = O(ad−1) as
a → ∞, this proves (4.1).

Now, writing
∑(1) (

∑(2)) for the summation over all J = {i1 6= i2 6=
i3 6= i4} with d2(J ) ≥ d1(J ) (d2(J ) < d1(J ), respectively), we get

I5 ≤ C(d)

(1)∑
{|EZ̃(I)EZ̃(I c)| + ρ(d2(J ) − 1; 2)δn}

+ C(d)

(2)∑
ρ(d1(J ) − 1; 3)δn

≤ C(d)


|Jn|2δ2

n

(
1 +

∞∑
k=1

ρ(k − 1; 1)

)2

+|Jn|δn

∞∑
k=1

k3d−1ρ(k − 1; 2)




+ C(d)|Jn|δn

∞∑
k=1

k3d−1ρ(k − 1; 3)

≤ C(d, ρ(·)) {t2d
n δ2

n + tdn δn

}
,

where for any index-set A, Z̃(A) = ∏
i∈A Z̃(i).

Next, we consider I4. Define d3(J ) = max{d({i2}, {i2}c), d({i3}, {i3}c)}
for any collection of indices J = {i1, i2, i3} in I4. By an argument similar
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to the above, it can be shown that |{J : d3(J ) = d03}| ≤ C(d) d2d−1
03 |Jn|.

Hence, it follows that

I4 ≤ C(d)

( ∞∑
k=1

k2d−1ρ(k − 1; 2)

)
|Jn|δn

≤ C(d, ρ(·))tdn δn .

Lemma 4.1 now follows combining the bounds for I1, . . . , I5.

Lemma 4.2. Suppose thatBn is a region inRn satisfying the conditions of
Lemma4.1 and that assumption(A.5) holds withλn replaced bytn. If, in
addition, assumptions(A.1) and(A.3) hold, then for anyz1, z2 ∈ R,

E


∑

i∈Jn

Y1(i)




∑

i∈Jn

Y2(i)




= |B0|−1tdn hκ
n


∑

|α|=κ

a(α)(α!)−1
∫

Rd

DαG(z1, z2; x) dx


 (1 + o(1))

whereJn ≡ {i ∈ Zd : 0i ∩ Bn 6= φ} (different from theJn of Lemma
4.1) andYj (i) = ∫

0(1,i)(1(Z(si) ≤ zj ) − 1(Z(s) ≤ zj )) ds, with 0(1, i) =
0i ∩ Bn, i ∈ Jn, andj = 1, 2.

Proof . We consider the case c = co only. For c 6= co, similar arguments
can be used to prove the conclusions of the lemma. By Taylor’s expansion,

In ≡ E

(∑
i∈Jn

Y1(i)

)(∑
i∈Jn

Y2(i)

)

=
∑

i

∑
j

∫
0(1,i)

∫
0(1,j)

[G(z1, z2; sj − si) − G(z1, z2; x − si)

− G(z1, z2; sj − s) + G(z1, z2; x − s)] ds dx

=
∑

i

∑
j

∫
0(1,i)

∫
0(1,j)

[
4∑

|α|=2

(DαG(z1, z2; sj − si)/α!)

×
{

− (x − sj )
α − (si − s)α + ((x − s) − (sj − si))

α
}

+rn(i, j ; x, s)

]
ds dx ,
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where |rn(i, j ; x, s)| ≤ C(d)(‖x − sj‖4+η + ‖s− si‖4+η)
∑

|α|=4 Hα(z1, z2;
x − s).

Next define an(i, j ; α) ≡ ∫
0(1,i)

∫
0(1,j){−(x − sj )

α − (si − s)α + ((x −
s) − (sj − si))

α} ds dx, J1n = {i ∈ Jn : 0i ∩ Bn 6= φ, 0i ∩ Bc
n 6= φ} and

J2n = Jn\J1n. Also, for |α| = 2, let β and γ ∈ Zd
+ be such that |β| =

|γ | = 1 and β + γ = α. Then it follows that for |α| = 2 and i, j ∈ J2n,

an(i, j ; α) =
∫

0i

∫
0j

{(x − sj )
β(si − s)γ + (x − sj )

γ (si − s)β} ds dx

= h2d+2
n [(1/2 − cβ)(cγ − 1/2) + (1/2 − cγ )(cβ − 1/2)]

= −2h2d+2
n (co − c)α .

Hence, for c = co, terms corresponding to |α| = 2 vanish for all i, j ∈ J2n.

Next we turn to the cases |α| = 3, 4. Note that for i, j ∈ J2n,

an(i, j ; α) = h2d+|α|
n

∫
10

∫
10

{−(x − co)
α − (co − s)α + (x − s)α} dx ds

≡ h2d+|α|
n a(α) .

It is easy to check that a(α) = 0 for all |α| = 3 and a(α) 6= 0 for |α| = 4.
Next write

∑(1) for summation over all i ∈ J1n and
∑(2) for all i ∈ J2n.

Then, noting that |J1n| = O(td−1
n h1−d

n ), we have

I1n ≡
∑
|α|=4

(α!)−1
(2)∑
i

(2)∑
j

DαG(z1, z2; si − sj )an(i, j ; α)

= |B0|tdn h4
n

∑
|α|=4

a(α)(α!)−1

[∫
Rd

DαG(z1, z2; s) ds
]

(1 + o(1)) ,

(4.3)

and

I2n ≡
∑

i

∑
j

∫
0(1,i)

∫
0(1,j)

|rn(i, j ; x, s)| dx ds

≤ C(d)tdn h4+η
n

∑
|α|=4

∫
Hα(z1, z2; s) ds . (4.4)

Next note that for any i, j ∈ Jn,
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si − sj ∈ {x − y : x ∈ 0i, y ∈ 0j }
= {(i + x)hn − (j + y)hn : dx, y ∈ 10}
⊂ ((i − j) + 11)hn

where 11 = (−1, 1)d . Then, for any p, q ∈ {1, 2},
Jpqn ≡ {k ∈ Zd : k = i − j for some i ∈ Jpn, j ∈ Jqn}

⊂ {k ∈ Zd : ‖k‖ ≤ C(d)tdn h−d
n }

and for any k ∈ Jpqn,

|{(i, j) ∈ Jpn × Jqn : i − j = k}|
≤ min{|Jpn|, |Jqn|} .

Hence, by (4.3) and (4.4), it follows that

|In − I1n − I2n|

=
∣∣∣∣∣∣

4∑
|α|=2


 (1)∑

i

(1)∑
j

+
(1)∑
i

(2)∑
j

+
(2)∑
i

(1)∑
j


DαG(sj − si)an(i, j ; α)

∣∣∣∣∣∣
≤ C(d)

4∑
|α|=2

h2d+2
n


∑

k∈J11n

+
∑

k∈J12n

+
∑

k∈J21n




·|J1n| sup{|DαG(z1, z2; x)| : x ∈ (k + 11)hn}

≤ C(d, D(G))td−1
n h3

n .

Therefore, in view of condition (A.5) (with λn = tn), Lemma 4.2 is proved.

Lemma 4.3. Let R1n = (a1n, b1n) × · · · × (adn, bdn) be a rectangle with
|R1n| ≥ c > 0 for all n, and R1n ∩ Rn 6= φ. Also, let J3n = {i ∈ Zd :
0i ∩ R1n ∩ Rn 6= φ}. Then, under Assumptions(A.1), (A.2), and(A.3) (i),
for any−∞ ≤ z1 < z2 < ∞,

E


∑

i∈J3n

Y3(i)




2

≤ C(d, ρ(·), G1(z1, z2; ·))hκ
n|R1n|

whereY3(i) = ∫
0(2,i)(1(z1 < Z(si) ≤ z2) − 1(z1 < Z(s) ≤ z2)) ds, and

0(2, i) = 0i ∩ R1n ∩ Rn, for i ∈ J3n.
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Proof . Lemma 4.3 can be proved using arguments similar to the proof of
Lemma 4.2. We omit the details.

Lemma 4.4. Assume that the conditions of Theorem2.1 hold. Then for any
real numbersa1, . . . , ar andz1, . . . , zr (r ≥ 1),

r∑
i=1

aiξn(zi) →d N


0,

k∑
i=1

k∑
j=1

aiajσ (zi, zj )




whereσ(zi, zj ) is as in the statement of Theorem2.1.

Proof . Let {λ1n} and {λ2n} be two sequences of positive numbers (to be
specified later) such that λ1n/hn ∈ Z, λ2n/hn ∈ Z, and that

λ−1
1n + λ−1

2n + λ2n/λ1n + λ1n/λn → 0 as n → ∞ . (4.5)

Here we employ the “blocking” method of Bernstein (1944), with λ1n defin-
ing the “big” blocks (cubes) and λ2n defining the “little” blocks (paral-
lelepipeds). To define the blocks, we use a grid along each axis defined by the
points s1i = iλ3n, s2i = s1i +λ1n, i = 0, ±1, . . . where λ3n = λ1n +λ2n.
Let I (1, i) = [s1i , s2i), I (2, i) = [s2i , s1i+1) and I (i) = [s1i , s1i+1). Next
define the parallelepipeds in Rd using the points s1i , s2i as

1n(i; 0) = (i + 1o)λ3n

1n(i; ε) = I (ε1, i1) × · · · × I (εd, id)

for i ∈ Zd andε ∈ {1, 2}d ≡ 2. Note that for any i,1n(i; 0) = ∪ε∈21n(i; ε),
and that corresponding to the 2dε’s in 2, we get 2d “types” of parallelepipeds
1n(·; ε)s. Furthermore, the volume of a parallelepiped of type ε ∈ 2 is
given by |1n(i; ε)| = λ

q

1nλ
d−q

2n where q = q(ε) = |{1 ≤ j ≤ d : εj = 1}|.
Hence, for all ε 6= εo ≡ (1, . . . , 1)′, and for all i ∈ Zd ,

|1n(i; ε)| = o(|1n(i; εo)|) as n → ∞ . (4.6)

We shall consider the cubes 1n(i; εo) as defining our big “blocks” and
the rest as little “blocks”. Let

∑(1) denote summation over all i ∈ J6n ≡
{i ∈ Zd : 1n(i; 0) ⊂ Rn}, and

∑(2) extend over all i ∈ J7n ≡ {i ∈ Zd :
1n(i; 0)∩Rn 6= φ and 1n(i; 0)∩Rc

n 6= φ}. Next define the random variables

Yi = (Nnh
d
n)

−1bn

r∑
j=1

aj

∫
0i∩Rn

(1(Z(si) ≤ zj )−1(Z(s) ≤ zj )) ds, i ∈ Zd ,

Y (i; ε) =
∑

j :0j ⊂1n(i;ε)

Yj , i ∈ J6n, ε ∈ 2
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and

Y (i; 0) =
∑

j :0j ∩Rn∩1n(i;0)6=φ

Yj , i ∈ J7n .

Then it follows that

r∑
i=1

aiξn(zi) =
∑
ε∈2

(1)∑
i

Y (i; ε) +
(2)∑
i

Y (i; 0) +
r∑

i=1

ai((Nnh
d
n)

−1 − |Rn|−1)

×bn

∫
Rn

(I (Z(s) ≤ zi) − F0(zi)) ds . (4.7)

By Lemma 1.8.1 of Ivanov and Leonenko (1989) and the boundary condition
on R0, the third term goes to zero in L2. We now show that the second term
and the terms corresponding to ε 6= εo in the first summation also tend to
zero in L2. Using the ρ-mixing condition and Lemma 4.3, and noting that
K2 ≡ |J7n| ≤ C(d)(λn/λ3n)

d−1, we get

E

(
(2)∑
i

Y (i; 0)

)2

≤
K2−1∑
k=0

|{(i, j) : i, j ∈ J7n, |i − j | = k}|ρ((k − 1)+λ3n; λd
3n)

× max{EY(i; 0)2 : i ∈ J7n}

≤ C(d, ρ(·), r)(λn/λ3n)
d−1

(
1 +

K2∑
k=1

k(d−1)ρ(kλ3n; λd
3n)

)
λd

3nh
κ
nb

2
nλ

−2d
n

≤ C(d, ρ(·), r)(λdθ−τ
3n )(λ3n/λn) . (4.8)

By similar arguments, noting that the distance between 1(i; ε) and 1( j ; ε)
is (|i − j | − 1)λ3n + λ2n, we get

E


∑

ε 6=εo

(1)∑
i

Y (i; ε)




2

≤ 22d−2
∑
ε 6=εo

E

(
(1)∑
i

Y (i; ε)

)2

≤ C(d, ρ(·), r)
[

1 +
∑

1≤k<L

kd−1ρ(kλ3n + λ2n; λd−1
1n λ2n)

]
(λn/λ3n)

d

× (λd−1
1n λ2n)h

κ
nb

2
nλ

−2d
n

≤ C(d, ρ(·), r)(λn/λ3n)
dθλdθ−τ

3n (λ2n/λn)
θ (λ2n/λ3n) (4.9)
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where L = |J6n|. Next note that by the ρ-mixing condition

|E exp


it

(1)∑
j

Y (j ; εo)


−

∏
j∈J6n

E exp(itY (i; εo))|

≤ C(d)(λn/λ3n)
dρ(λ2n; |Rn|) ≤ C(d)(λn/λ3n)

d+dθλdθ
3nλ−τ

2n . (4.10)

Now choose {λ1n} and {λ2n} such that

λ1n ∼ λn(log λn)
−1, and

λ2n ∼ λdθ/τ
n log λn .

Check that with this choice of λ1n and λ2n, (4.5) holds and that, the expres-
sions in the final steps of the inequalities (4.8), (4.9) and (4.10) tend to zero
as n → ∞. Hence, from (4.8)–(4.10), it follows that

E


 r∑

j=1

ajξn(zj ) −
(1)∑
i

Y (i; εo)




2

→ 0 as n → ∞ . (4.11)

Thus,
∑r

i=1 aiξn(zi) has the same limiting distribution as
∑(1)

j X(j), where
X(j)’s are iid random variables with X(j) =d Y (j ; εo). Since by Lemmas
4.1–4.3, EX(j)4/(EX(j)2)2 = O(1), it now follows that X(j)’s satisfy the
Lyapounov’s Condition. Hence, in view of (4.11) and Lemma 4.2, Lemma
4.4 is proved.

Proof of Theorem 2.1.Since F0 is continuous, by standard arguments, it is
enough to show that the time-scaled process ξ̃n(t) ≡ ξn(F

−1
0 (t)), t ∈ [0, 1]

converges in distribution to W(F−1
0 (t)) as random elements of D[0, 1],

where D[0, 1] is the space of all right continuous functions on [0, 1] with
left hand limits, equipped with the Skorohod metric. Note that by Lemma
4.4, the finite dimensional distributions of ξ̃n(·) converge weakly to those
of W(F−1

0 (·)). Hence, it remains to establish the tightness of the sequence
{ξ̃n, n ≥ 1} and the almost sure continuity of the sample paths of W(F−1

0 (·)).
By Theorem 15.5 and the proof of Theorem 22.1 (cf. pages 198–199) of
Billingsley (1968), both assertions would follow if we showed that for every
ε > 0, η > 0, there exists a 0 < δ < 1 such that for all sufficiently large n,

P(sup{|ξ̃n(t) − ξ̃n(s)| : s ≤ t ≤ (s + δ) ∧ 1} ≥ ε) ≤ ηδ (4.12)

where 0 ≤ s ≤ 1, and for two real numbers a, b, a ∧ b denotes the minimum
of a and b. Fix s ∈ [0, 1], and 0 < ε, η < 1. Using the monotonicity
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of F̂n and F̂∞, it is easy to show that for any 0 ≤ t1 ≤ t ≤ t2 ≤ 1,
ξ̃n(t) ≤ ξ̃n(t2) + bn(F̃∞(t2) − F̃∞(t1)) and ξ̃n(t) ≥ ξ̃n(t1) + bn(F̃∞(t1) −
F̃∞(t2)) where F̃∞(u) = F̂∞(F−1

0 (u)), u ∈ [0, 1]. Let p ≡ p(n, ε, η) =
C(ε, η)(λd

nh
κ
n)

−1/γ , and for a positive integer m (to be determined later), let
δ = mp. Then, it follows that

P(sup{|ξ̃n(t) − ξ̃n(s)| : s ≤ t ≤ (s + δ) ∧ 1} > ε)

≤ P(max{|ξ̃n(s + ip) − ξ̃n(s)| : 1 ≤ i ≤ m} > ε/6)

+P(max{|bn(F̃∞(s + ip)−F̃∞(s + (i−1)p))| : 1≤ i ≤ m} > ε/2) ,

(4.13)

where we set s + ip = 1, if it exceeds 1. Next using Lemma 4.1 (with
Bn = Rn), Lemma 4.3 (with R1n = j + 10), assumption (A.4), and the fact
that EF̃∞(t) = t, 0 ≤ t ≤ 1, we get

E(ξ̃n(t2) − ξ̃n(t1))
4

≤ C(d, ρ(·), κ)λ−2d
n h−2κ

n [λ2d
n h2κ

n |t2 − t1|2γ + λd
nh

κ
n|t2 − t1|γ ]

≤ C(d, ρ(·), κ)|t2 − t1|2γ , if |t2 − t1| ≥ p (4.14)

and

E{bn[(F̃∞(t2) − F̃∞(t1)) − E(F̃∞(t2) − F̃∞(t1))]}4

≤ C(d, ρ(·), κ)λ−2d
n h−2κ

n [λ2d
n |t2 − t1|2 + λd

n|t2 − t1|] (4.15)

for 0 ≤ t1, t2 ≤ 1. Next by Assumption (A.5) and (4.15), it follows that
there exists n1 = n1(ε, η) ≥ 1 such that for all n ≥ n1,

bnp = (λd(γ−2)
n h−κ(2+γ )

n )1/2γ

= ((λd
nh

(2γ+1)κ
n )(λd

nh
κ
n)

1−γ )−1/2γ

≤ (λd
nh

(2γ+1)κ
n )−(2−γ )/2γ

< ε/4 , (4.16)

and
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P(max{|bn(F̃∞(s + ip) − F̃∞(s + (i − 1)p))| : 1 ≤ i ≤ m} > ε/2)

≤
m∑

i=1

P(bn|F̃∞(s + ip) − F̃∞(s + ip − p) − p| > ε/4)

≤ C(d, ρ(·), κ)ε−4mλ−2d
n h−2κ

n [λ2d
n p2 + λd

np]

≤ C(d, ρ(·), κ)ε−4(mp)
(
[λd

nh
(2γ+1)κ
n ]−1/γ + [λd

nh
2κ
n ]−1

)
≤ ηδ/2 . (4.17)

Next, using Theorem 12.2 of Billingsley (1968) and inequality (4.14) above,
we get

P(max{|ξ̃n(s + ip) − ξ̃n(s)| : 1 ≤ i ≤ m} > ε/6)

≤ C(d, ρ(·), κ)ε−4(mp)2γ . (4.18)

Now, let δ = δ(η, ε) > 0 be such that for the constant C(d, ρ(·), κ) ap-
pearing in the last inequality, C(d, ρ(·), κ)ε−4δ2γ−1 ≤ η/2, and δ/p is an
integer. (This is possible, since by assumption, 2γ −1 > 0.) Therefore, tak-
ing m = δ/p, (4.12) follows from (4.13)–(4.18). This completes the proof
of Theorem 2.1.

Proof of Theorem2.1′. Similar to the proof of Theorem 2.1.

Proof of Theorem 2.2.Use the Continuous Mapping Theorem (cf. Theorem
15.1, Billingsley (1968) and Theorem 4.2.12, Pollard (1984)).

Proof of Theorem 3.1.For i = 1, . . . , K , define

ξ̃ ∗i
n (z) = bl(F

∗i
n (z) − F̂∞(z; R∗i)), z ∈ R

and

H̃n(z, p) = K−1
K∑

i=1

1(‖ξ̃ ∗i
n ‖p ≤ z), z ∈ R .

Then, by the stationarity of Z(·)s and the ρ-mixing condition,

E(H̃n(z, p) − Hn(z, p))2

≤ C(d)K−2Kd
1

( ∑
k≤2dK1

kd−1ρ(kλl; λd
l )

)
→ 0 as n → ∞ . (4.19)
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Let ε > 0 be given. Since the CDF H(·; p), say, of ‖W‖p is (uniformly)
continuous on R, there exists a η > 0 such that sup{|H(z + η; p) − H(z −
η; p)| : z ∈ R} < ε. Hence, using (4.19) and the monotonicity of Ĥn and
H̃n, it can be shown that

lim
n→∞ P(|Ĥn(z, p) − H̃n(z, p)| > 4ε)

≤ lim
n→∞ P(|H̃n(z + η, p) − H̃n(z − η, p)| > 3ε)

+ lim
n→∞ P

(
K−1

K∑
i=1

1(|‖ξ ∗i
n ‖p − ‖ξ̃ ∗i

n ‖p| > η) > ε

)

≤ Cε−2 lim
n→∞[E(H̃n(z + η; p) − Hn(z + η; p))2

+ E(H̃n(z − η; p) − Hn(z − η; p))2]

+ lim
n→∞ P(bl‖F ∗1

∞ − F̂∞(·; R`)‖p > η)/ε

= 0 .

In the last step, we have used the fact that under the assumed conditions on l,
λ

d/2
l h

−κ/2
n · (F ∗1

∞ (·)− F̂∞(·; R`)) converges weakly to W(·) on D[−∞, ∞].
This follows from Theorem 2.1 by replacing the sequence {λn} by {λ`n

}.
Therefore, it follows that for all z ∈ R,

Ĥn(z, p) − Hn(z, p) →p 0

as n → ∞. Since ‖W‖p has a continuous distribution on R and Hn(z, p)

converges in distribution to it, an argument similar to (the proof of) Polyà’s
Theorem can now be used to complete the proof of Theorem 3.1.
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