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Abstract. We have obtained the following limit theorem: if a sequence
of RCLL supersolutions of a backward stochastic differential equations
(BSDE) converges monotonically up to (yt ) with E[supt |yt |2] < ∞, then
(yt ) itself is a RCLL supersolution of the same BSDE (Theorem 2.4 and
3.6).

We apply this result to the following two problems: 1) nonlinear Doob–
Meyer Decomposition Theorem. 2) the smallest supersolution of a BSDE
with constraints on the solution (y, z). The constraints may be non convex
with respect to (y, z) and may be only measurable with respect to the time
variable t . this result may be applied to the pricing of hedging contingent
claims with constrained portfolios and/or wealth processes.
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Introduction

Consider a backward stochastic differential equation (BSDE) of type (all
processes mentioned below are σ {Ws; s ≤ t} -adapted, where W is a fixed
Brownian motion)

yt = yT +
∫ T

t

g(ys, zs) ds + (AT −At)−
∫ T

t

zs dWs, t ∈ [0, T ] , (1)
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where g is assumed to be a Lipschitz function of (y, z). Here A is an RCLL
increasing process with A0 = 0 and E(AT )2 < ∞. If (y, z) solves (1)
then we call (yt ) to be a supersolution of BSDE with generator g, or, more
simply, a g-supersolution on [0, T ]. In particular, when A ≡ 0, y is called
a g-solution on [0, T ].

Since the original work of [EQ], where a penalization method of BSDE
is introduced to solve the problem of option pricing for incomplete financial
market (more specific explanation was given in [EPQ]), the following limit
theorem of g-supersolutions begin to be considered as an essentially impor-
tant problem: if a sequence of RCLL g-supersolutions converges monoton-
ically up to a process (yt ), with E[supt |yt |2] < ∞, can one prove that (yt )

itself is also a RCLL g-supersolution?
In the case where g = 0, since a g-supersolution is a classical super-

martingale, the answer is affirmative. Other typical case is when g is a linear
function. e.g., the Merton’s model of an investor’s wealth process. In this
case, by applying the Girsanov transformation, one can still treat the prob-
lem as a classical limit problem of supermartingales (see [CK], [EQ], [FS]
and their references).

The first result to treat the case where g is nonlinear was given in [ELal].
Roughly speaking, if {yi

t } and the limit process (yt ) is continuous, then it is
a g-supermartingale. But in many useful cases, even {yi

t } are continuous in
time, the limit process (yt ) is just a RCLL process (see [EQ], [CK]).

This paper will give a positive answer to this problem: if a sequence
of RCLL g-supersolutions converges monotonically up to a process (yt )

with E[supt |yt |2] < ∞, then (yt ) itself is also a RCLL g-supersolution
(see Theorem 3.6). Furthermore, if {yi} is continuous g-supersolution, then
the corresponding martingale parts {zi} converges strongly in Lp sense for
1 ≤ p < 2 (Theorem 2.1 and 2.4).

To explain clearly our idea, we consider the case where {yi
t } are contin-

uous but the limit {yt} is RCLL. A main difficulty in this case is that, even
in the classical case where g = 0, it is known that the strong convergence
of the supermartingales (g-supersolution) does not imply the strong conver-
gence of their martingale parts. This seems very serious for the case where
g(y, z) is nonlinear since we obviously need a result of strong convergence
to pass to the limit. This difficulty is overcome in Theorem 2.1 and Theorem
2.4. Although we are not sure to have any kind of strong convergence for
the ‘martingale parts’

∫ T

0 zi
s dWs, of the g-supersolutions, but one can still

prove the strong convergence of {zi
t } in Lp sense for 1 ≤ p < 2 (Theorem

2.1). This convergence is enough for us to pass to the limit.
An application of this limit theorem is to prove a generalization of Doob–

Meyer Decomposition Theorem for ag-supermartingale. Roughly speaking,
a process (Xt) is a g-supermartingale on [0, T ], if it dominates from above
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each g-solutions (yt ) on [0, t0] with the same terminal condition yt0 = Xt0

for any t0 ≤ T .
If (Xt) is ag-supersolution on [0, T ], then it follows from the comparison

theorem that (Xt) is also a g-supermartingale. A trivial example is when
g ≡ 0 (linear case): it just tells us that Xt = X0−At +Mt (Mt = ∫ t

0 zs dWs)
is a classical supermartingale.

But it is known that the inverse problem is not at all trivial. It is in
fact a nonlinear version of Doob–Meyer Decomposition Theorem: can
one prove that a g-supermartingale is also a g-supersolution? In other
words, does the nonlinear Doob–Meyer Decomposition Theorem hold for
g-supermartingales?

Since the classical demonstrations of Doob–Meyer decomposition the-
orem are essentially based on the fact that the expectation E[·] is a linear
operator, they does not work for this new problem.

This paper will give an affirmative answer to this conjecture. The method
of proof is significantly different from the classical proof of Doob–Meyer
Decomposition Theorem (se e.g. [DM]): no discretization of time was in-
volved. The main idea is to apply the penalization approach introduced in
[ELal] to ‘push up’ a sequence of g-supersolutions to be above this given
g-supermartingale, i.e., the parts of the penalized g-supersolution that are
strictly bellow the given g-supermartingale will be heavyly pushed up. An
interesting observation is: it happens that these g-supersolutions can never
be strictly above this supermartingale (see Lemma 3.4). Thus the limit co-
incides with the given supermartingale. From the above limit theorem, this
limit is also a supersolution.

We also give a notion of nonlinear expectations (called g-expectations)
and related g-expectations. Under this notion the corresponding g-martin-
gale as well as g-supermartingales will be defined in the same way as the
classical definitions. We would like to show readers that, here, everything
works classically except the linearity. The motivation of such new notions is
the concept of the “certainty equivalent” in economic theory (see e.g. [DE]).
An application of such notion to the study of stochastic geometry was dis-
cussed in [Da]. We will see that the option valuation process with constrained
wealth process and/or portfolios is in fact such g-supermartingale.

The second application is the existence of the smallest g-supersolution
of (or, in other words, the smallest g-supermartingle) subject to a given con-
straint. This problem was motivated from the pricing of contingent claim
with constrained portfolios and/or wealth processes. Since the celebrated
papers of Black & Scholes ([BS]) and Merton ([M]), many important pro-
gresses have been made for the pricing of contingent claims, see references
provided in [K] for complete security markets. For the incomplete markets
see e.g. [FS] and recent remarkable works of [EQ], [CK]. This problem may
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be formulated as to find the smallest g-supersolution of BSDE with con-
straints imposed on the solution. The results of [EQ] and [CK] are improved:
the constraint may be imposed at the same time on the portfolios and/or the
wealth processes. We do not need to suppose that the constraint is a convex
set. The main argument is to construct a sequence of g-supersolutions that
monotonically converges up to a limit which is, due to the above monotonic
limit theorem, still a g-supersolution. It is then easy to prove, by our spe-
cial construction, that this limit g-supersolution is in fact the smallest one
subject to the constraint.

This paper is organized as follows: Section 1 provides a comparison
theorem which is necessary for the sections followed. The limit theorem
of g-supersolutions for the case where the sequence of {yi} is continuous
is given in Section 2. Nonlinear Doob–Meyer Decomposition Theorem is
introduced and is proved in Section 3.1. We also give the limit theorem
of RCLL g-supersolutions in this subsection (Theorem 3.6). We will give a
more clear sense of this result, i.e. under the notion of g-expectations in Sec-
tion 3.2. Section 4 is devoted to the problem of the smallest g-supersolution
subject to a given constraint on (y, z). The pricing of contingent claims with
constrained portfolios and/or constrained wealth process may be regarded
as one of applications of the results of this section.

1. Preliminaries: backward stochastic differential equations

In this section we briefly present the results we need about BSDE.
Let (�,F, P ) be a probability space endowed with a filtration {Ft ; 0, ≤

t ≤ ∞} and let (Ws)s≥0 be a d-dimensional Brownian motion defined in this
space. In order to clarify our interests, we shall not discuss the most general
case we only discuss the case where Ft is the natural filtration generated
by the Brownian motion (Wt):

Ft = σ {Ws; s ≤ t} .

All processes mentioned in this paper are supposed to be Ft -adapted. In
this section we are interested in the behavior of processes on a given interval
[0, T ]. We use | · | to denote the norm of a Euclidean space Rn. For p ≥ 1,

we denote by L
p
F(0, T ; Rm) the set of all Rm-valued Ft -adapted processes

satisfying

E
∫ T

0
|φs |p ds < ∞ .

A process (φt ) is said to be RCLL if it a.s. has sample path which are right
continuous with left limit. A process (At) is said to be increasing if its path
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A : t → At(ω) are a.s. non decreasing with A0(ω) = 0. A is called a finite
variation process if the path are of a.s. finite variation on [0, T ].

We now consider the following problem: to find a pair of processes
(y, z) ∈ L2

F(0, T ; R1+d) satisfying

yt = yT +
∫ T

t

g(ys, zs, s) ds + (VT − Vt) −
∫ T

t

zs dWs . (1.1)

(1.1) is called backward stochastic differential equation (short for BSDE).
By “backward” we mean the condition is given at the final time T . Here the
function g, (Vt ) and ξ are given such that

(i) g(y, z, ·) ∈ L2
F(0, T ; R), for each (y, z) ∈ R1+d;

(ii) yT ∈ L2(�,FT , P ; R); (H1.1)

(iii) (Vt ) ∈ L2
F(0, T ; R) RCLL with E sup

t≤T

|Vt |2 < ∞ .

g is assumed to be Lipschitz in (y, z), i.e., there exists a constant µ such
that

|g(y1, z1, s) − g(y2, z2, s)| ≤ µ(|y1 − y2| + |z1 − z2|) . (H1.2)

We have the following existence and uniqueness theorem.

Proposition 1.1. We assume(H1.1) and(H1.2). Then there exists a unique
pair of processes(yt , zt ) ∈ L2

F(0, T ; R1+d) of solution BSDE(1.1) such
that (yt + Vt) is continuous and that

E sup
0≤t≤T

|yt |2 < ∞ . (1.2)

Proof. In the case where Vt ≡ 0, the proof can be found in [PP1]. Otherwise
we can make the change of variable ȳt := yt + Vt and treat the equivalent
BSDE

ȳt = yT + VT +
∫ T

t

g(ȳs − Vs, zs, s) ds −
∫ T

t

zs dWs .

The estimate (1.2) is easy to obtain since we have (H1.1) and

E sup
0≤t≤T

∣∣∣∣
∫ t

0
zs dWs

∣∣∣∣
2

< ∞, E
∫ T

0
|g(ys, zs, s)|2 ds < ∞ .

ut
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Let

y ′
T ∈ L2(�,FT , P ; R), (H1.3)

be given and let (y ′, z′) ∈ L2
F(0, T ; R1+d) be the solution of

y ′
t = y ′

T +
∫ T

t

g(y ′
s, z

′
s, s) ds + (VT − Vt) −

∫ T

t

z′
s dWs . (1.3)

We have the following estimate of the difference of the above two solutions.
The proof is essentially the same as the one for the uniqueness.

Proposition 1.2. We suppose(H1.1), (H1.2) and(H1.3). Then we have the
following “continuous dependence property”

E sup
0≤t≤T

|yt − y ′
t |2 + E

∫ T

0
|zs − z′

s |2 ds ≤ CE|yT − y ′
T |2 . (1.4)

The following comparison theorem is very useful. It was introduced
in [P1]. Two improved versions were given in [EPQ]. The result of strict
comparison was established in [P2]. The following formulation is taken
from [EPQ].

Comparison Theorem 1.3.We suppose the assumptions in Proposition1.1.
Let (ȳ, z̄) be the solution of the BSDE

ȳt = ȳT +
∫ T

t

ḡs ds + V̄T − V̄t −
∫ T

t

z̄s dWs ,

where(ḡt ), (V̄t ) ∈ L2
F(0, T ; R) andȳT ∈ L2(�,FT , P ; R) are given such

that {
ŷT := yT − ȳT ≥ 0, ĝt := g(ȳt , z̄t , t) − ḡt ≥ 0, a.s., a.e,
V̂t := Vt − V̄t is an RCLL increasing process .

(1.5)

Then we have

yt ≥ ȳt , a.e., a.s.. (1.6)

If, in addition of(1.5), we assumeP(ŷT > 0) > 0, thenP(yt > ȳt ) > 0.
In particular, y0 > ȳ0.

See [EPQ] for the proof.

Remark 1.4.If we replace the deterministic terminal time T by a Ft -
stopping time τ ≤ T , then the above results still hold true.
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For a given stopping time, we now consider the following BSDE

yt = ξ +
∫ τ

t∧τ

g(ys, zs, s) ds + (Aτ − At∧τ ) −
∫ τ

t∧τ

zs dWs . (1.7)

where ξ ∈ L2(�,Fτ , P ) and A is a given RCLL increasing process with
A0 = 0 and E(Aτ )

2 < ∞. The following terms will be frequently used in
this paper.

Definition 1.5. If (yt ) is a solution of BSDE of form (1.7) then we call(yt ) a
g-supersolution on[0, τ ]. If At ≡ 0 in [0, τ ], then we call(yt ) a g-solution
on [0, τ ].

We recall that a g-solution (yt ) on [0, τ ] is uniquely determined if its
terminal condition yτ = ξ is given, a g-supersolution (yt ) on [0, τ ] is
uniquely determined if yτ and (At)0≤t≤τ are given. If (yt ) is a g-solution on
[0, τ ] and (y ′

t ) is a g-supersolution on [0, τ ] such that yτ ≤ y ′
τ a.s., then for

all stopping time σ ≤ τ we have also yσ ≤ y ′
σ .

Proposition 1.6. Given(yt ) a g-supersolution on[0, τ ], there is a unique
(zt ) ∈ L2(0, τ ; Rd) and a unique increasing RCLL process(At) on [0, τ ]
with A0 = 0 and E[(Aτ )

2] < ∞ such that the triple(yt , zt , At) satisfies
(1.7).

Proof. If both (yt , zt , At) and (yt , z
′
t , A

′
t ) satisfy (1.7), then we apply Itô’s

formula to (yt − yt )
2(≡ 0) on [0, τ ] and take expectation:

E
∫ τ

0
|zt − z′

t |2 ds + E


 ∑

t∈(0,τ ]

(1(At − A′
t ))

2


 = 0 .

Thus zt ≡ z′
t . From this it follows that At ≡ A′

t . ut
Thus we can define

Definition 1.7. Let (yt ) be a supersolution on[0, τ ] and let(yt , At , zt ) be
the related unique triple in the sense of BSDE (1.7). Then we call(At , zt )

the (unique) decomposition of(yt ).

2. Basic estimates: limit theorem ofg-supersolutions

In this section, we first prove a “convergence theorem” by weak convergence
method. Then, using this convergence theorem, we study the limit theorem
of g-supersolution.
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We first consider the following a family of semi-martingales:

yi
t = yi

0 +
∫ t

0
gi

s ds − Ai
t +

∫ t

0
zi
s dWs, i = 1, 2, . . . . (2.1)

Here, for each i, the adapted process gi ∈ L2
F(0, T , R) are given, we also

assume that, for each i,

(Ai
t ) is a continuous and increasing process with E(Ai

T )2 < ∞, (H2.1)

We further assume that


(i) (gi
t ) and (zi

t )are bounded in L2
F(0, T ): E

∫ T

0 [|gi
s |2 + |zi

s |2] ds ≤ C;
(ii) (yi

t ) increasingly converges to (yt ) with E sup
0≤t≤T

|yt |2 < ∞;
(H2.2)

It is clear that

(i) E
[

sup
0≤t≤T

|yi
t |2

]
≤ C;

(ii) E
∫ T

0
|yi

t − yt |2 ds → 0 ,

(2.2)

where the constant C is independent of i.

Remark. It is not hard to prove that the limit yt has the following form

yt = y0 +
∫ t

0
g0

s ds − At +
∫ t

0
zs dWs , (2.3)

where (g0
t ), (zt ) and (At) are respectively the L2-weak limit of (gi

t ), (zi
t )

and (At) is an increasing process. In general, we cannot prove the strong
convergence of {∫ T

0 zi
s dWs}∞i=1. Our new observation is: for each p ∈ [1, 2),

{zi} converges strongly in Lp. This observation is crucially important in this
paper, since we will treat nonlinear cases.

Theorem 2.1. Assume(H2.1) and (H2.2) hold. Then the limit(yt ) of (yi
t )

has a form(2.3), where(g0
t ) ∈ L2

F(0, T ; R), (zt ) is the weak limit of(zi
t ),

(At) is an RCLL square-integrable increasing process. Furthermore, for
anyp ∈ [0, 2), (zi

t )0≤t≤T strongly converges to(zi
t ) in L

p
F(0, T , Rd), i.e.,

lim
i→∞

E
∫ T

0
|zi

s − zs |p ds = 0, ∀p ∈ [0, 2) . (2.4)

The following lemma will be applied to prove that the limit processes (yt )

is RCLL.
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Lemma 2.2. Let {xi(·)} be a sequence of (deterministic) RCLL processes
defined on[0, T ] that increasingly converges tox(·): for eacht ∈ [0, T ],
xi(t) ↑ x(t), with x(t) = b(t) − a(t), whereb(·) is an RCLL process and
a(·) is an increasing process witha(0) = 0 anda(T ) < ∞. Thenx(·) and
a(·) are also RCLL processes.

Proof. Since, for each t, b(·), a(·) and thus x(·) have left and right limits
at t, thus we only need to check that x(·) is right-continuous.

Since, for each t ∈ [0, T ), a(t+) ≥ a(t), thus

x(t+) = b(t) − a(t+) ≤ x(t) . (2.5)

On the other hand, for any δ > 0, there exists a positive integer j =
j (δ, t) such that x(t) ≤ xj (t) + δ. Since xj (·) is RCLL, thus there exists
a positive number ε0 = ε0(j, t, δ) such that xj (t) ≤ xj (t + ε) + δ, ∀ε ∈
(0, ε0]. These imply that, for any ε ∈ (0, ε0],

x(t) ≤ xj (t + ε) + 2δ ≤ xi+j (t + ε) + 2δ ↑↑ x(t + ε) + 2δ .

Particularly x(t) ≤ x(t+) + 2δ and thus x(t) ≤ x(t+). This with (2.5)
implies the right continuity of x(·). ut

The following lemma tells that, for any given RCLL increasing process,
the contribution of the jumps of (At) is mainly concentrated within a fi-
nite number of left-open right-closed intervals with “sufficiently small total
length”. Specifically, we have

Lemma 2.3. Let(At) be an increasing RCLL process defined on[0, T ] with
A0 = 0 andEA2

T < ∞. Then, for anyδ, ε > 0, there exists a finite number of
pairs of stopping times{σk, τk}, k = 0, 1, 2, . . . , N with 0 < σk ≤ τk ≤ T

such that

(i) (σj , τj ] ∩ (σk, τk] = ∅ for eachj 6= k;

(ii) E
N∑

k=0

[τk − σk](ω) ≥ T − ε;

(iii)
N∑

k=0

E
∑

σk<t≤τk

(1At)
2 ≤ δ .

The proof will be given in the Appendix. We now give the

Proof of Theorem 2.1.Since (gi) (resp. (zi)) is weakly conpact inL2
F(0, T ; R)

(resp.L2
F(0, T ; Rd)), there is a subsequence, still denoted by (gi) (resp. (zi))

which converges weakly to (g0
t ) (resp. (zt )).
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Thus, for each stopping time τ ≤ T , the following weak convergence
holds in L2(�,Fτ , P ; R).∫ τ

0
zi
s dWs ⇀

∫ τ

0
zs dWs,

∫ τ

0
gi

s ds ⇀

∫ τ

0
g0

s ds .

Since

Ai
τ = −yi

τ + yi
0 +

∫ τ

0
gi

s ds +
∫ τ

0
zi
s dWs

thus we also have the weak convergence

Ai
τ ⇀ Aτ := −yτ + y0 +

∫ τ

0
g0

s ds +
∫ τ

0
zs dWs. (2.6)

Obviously, EA2
T < ∞. For any two stopping times σ ≤ τ ≤ T , we have

Aσ ≤ Aτ since Ai
σ ≤ Ai

τ . From this it follows that (At) is an increasing
process. Moreover, from Lemma 2.2, both (At) and (yt ) are RCLL. Thus
(yt ) has a form of (2.3). Since (yt ) is given, it is clear that (zt ) is uniquely
determined. Thus not only a subsequence of (zi) but also the sequence itself
converges weakly to (z).

Our key point is to show that {zi} converges to z in the strong sense of
(2.4). In order to prove this we use Itô’s formula applied to (yi

t − yt )
2 on

a given subinterval (σ, τ ]. Here 0 ≤ σ ≤ τ ≤ T are two stopping times.
Observe that 1yt ≡ 1At and the fact that yi and then Ai are continuous.
We have

E|yi
σ − yσ |2 + E

∫ τ

σ

|zi
s − zs |2 ds

= E|yi
τ − yτ |2 − E

∑
t∈(σ,τ ]

(1At)
2 − 2E

∫ τ

σ

(yi
s − ys)(g

i
s − g0

s ) ds

+ 2E
∫

(σ,τ ]
(yi

s − ys) dAi
s − 2E

∫
(σ,τ ]

(yi
s − ys−) dAs

= E|yi
τ − yτ |2 + E

∑
t∈(σ,τ ]

(1At)
2 − 2E

∫ τ

σ

(yi
s − ys)(g

i
s − g0

s ) ds

+ 2E
∫

(σ,τ ]
(yi

s − ys) dAi
s − 2E

∫
(σ,τ ]

(yi
s − ys) dAs

Since (yi
t − yt ) dAi

t ≤ 0,
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E
∫ τ

σ

|zi
s − zs |2 ds

≤ E|yi
τ − yτ |2 + E

∑
t∈(σ,τ ]

(1At)
2 + 2E

∫ τ

σ

|yi
s − ys ||gi

s − g0
s | ds

+2E
∫

(σ,τ ]
|yi

s − ys | dAs . (2.7)

The third term on the right side tends to zero since

E
∫ T

0
|yi

s − ys ||gi
s − g0

s | ds ≤ C

[
E

∫ T

0
|yi

s − ys |2 ds

] 1
2

→ 0 . (2.8)

For the last term, we have, P -almost surely,

|y1
s − ys | ≥ |yi

s − ys | → 0, ∀s ∈ [0, T ] .

Since

E
∫ T

0
|y1

s − ys | dAs ≤
(

E
[

sup
s

(|y1
s − ys |2

)]) 1
2

(E(AT )2)
1
2 < ∞ ,

it then follows from Lebesgue’s dominated convergence theorem that

E
∫

(0,T ]
|yi

s − ys | dAs → 0. (2.9)

By convergence (2.8) and (2.9), it is clear from the estimate (2.7) that, once
At is continuous (thus1At ≡ 0), then zi tends to z strongly inL2

F(0, T ; Rd).
But for the general case, the situation becomes complicated.

Thanks to Lemma 2.3, for any δ, ε > 0, there exist a finite number of
disjoint intervals (σk, τk], k = 0, 1, . . . , N, such that σk ≤ τk ≤ T are all
stopping times satisfying

(i) E
N∑

k=0

[τk − σk](ω) ≥ T − ε

2
;

(2.10)

(ii)
N∑

k=0

∑
σk<t≤τk

E(1At)
2 ≤ δε

3
.

Now, for each σ = σk and τ = τk, we apply estimate (2.7) and then take
the sum. It follows that
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N∑
k=0

E
∫ τk

σk

|zi
s − zs |2 ds ≤

N∑
k=0

E|yi
τk

− yτk
|2 +

N∑
k=0

E
∑

t∈(σk,τk]

(1At)
2

+2E
∫ T

0
|yi

s − ys ||gi
s − g0

s | ds

+2E
∫

(0,T ]
|yi

s − ys | dAs .

By using the convergence results (2.8) and (2.9) and taking in consideration
of (2.10)–(ii), it follows that

lim
i→∞

N∑
k=0

E
∫ τk

σk

|zi
s − zs |2 ds ≤

N∑
k=0

E
∑

t∈(σk,τk]

(1At)
2 ≤ εδ

3

Thus there exists an integer lεδ > 0 such that, whenever i ≥ l εδ, we have
N∑

k=0

E
∫ τk

σk

|zi
s − zs |2 ds ≤ εδ

2

Thus, in the product space ([0, T ] × �,B([0, T ]) × F, m × P) (here m

stands for the Lebesgue measure on [0, T ]), we have

m × P

{
(s, ω) ∈

N⋃
k=0

(σk(ω), τk(ω)] × �; |zi
s(ω) − zs(ω)|2 ≥ δ

}
≤ ε

2

This with (2.10)–(i) implies

m × P
{
(s, ω) ∈ [0, T ] × �; |zi

s(ω) − zs(ω)|2 ≥ δ
} ≤ ε, ∀ i ≥ lεδ .

From this it follows that, for any δ > 0,

lim
i→∞

m × P
{
(s, ω) ∈ [0, T ] × �; |zi

s(ω) − zs(ω)|2 ≥ δ
} = 0 .

Thus, on [0, T ]×�, the sequence {(zi)} converges in measure to (zt ). Since
(zi

t ) is also bounded in L2
F(0, T ; Rd), then for each p ∈ [1, 2), it converges

strongly in L
p
F(0, T ; Rd). ut

Let us now consider the following sequence of g-supersolution (yi
t ) on

[0, T ] i.e.,

yi
t = yi

T +
∫ T

t

g(yi
s, z

i
s, s) ds + (Ai

T − Ai
t ) −

∫ T

t

zi
s dWs, i = 1, 2, . . . .

(2.11)
Here the function g and the increasing process (Ai

t ) are given in (H1.1),
(H1.2) and (H2.1). From Proposition 1.1, there exists a unique pair (yi, zi) ∈
L2

F(0, T ; R1+d) satisfying (2.11).
The following theorem prove that the limit of (yi

t ) is still ag-supersolution.
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Theorem 2.4. We assume thatg satisfies(H1.1) and (H1.2). and (Ai)

satisfies(H2.1). Let(yi, zi) be the solution of BSDE(2.11), withE sup0≤t≤T

|yi
t |2 < ∞. If (yi

t ) increasingly converges to(yt )withE sup0≤t≤T |yt |2 < ∞.

Then(yt ) is ag-supersolution. i.e., there exist a(zt ) ∈ L2
F(0, T ; Rd) and an

RCLL square-integrable increasing process(At) such that the pair(yt , zt )

is the solution of the BSDE

yt = yT +
∫ T

t

g(ys, zs, s) ds + (AT − At) −
∫ T

t

zs dWs, t ∈ [0, T ] ,

(2.12)

where(zt )0≤t≤T is the weak(resp. strong) limit of {(zi
t )} in L2

F(0, T ; Rd)

(resp. inL
p
F(0, T ; Rd), for p < 2) and, for eacht, At is the weak limit of

{Ai
t} in L2(�,Ft , P ).

Remark. Observe that (2.11) can be rewritten in the ‘forward formulation’:

yi
t = yi

0 −
∫ t

0
g(yi

s, z
i
s, s) ds − Ai

t −
∫ t

0
zi
s dWs . (2.11)

Similarly, the limit equation (2.12) is

yt = y0 −
∫ t

0
g(ys, zs, s) ds − At +

∫ t

0
zs dWs . (2.12)

To prove this theorem, we need following lemma. The lemma says that
both {zi} and {(Ai

T )2} are uniformly bounded in L2:

Lemma 2.5. Under the assumptions of Theorem 2.4, there exists a constant
C that is independent ofi such that

(i) E
∫ T

0
|zi

s |2 ds ≤ C,
(2.13)

(ii) E[(Ai
T )2] ≤ C .

Proof. From BSDE (2.11), we have

Ai
T = yi

0 − yi
T −

∫ T

0
g(yi

s, z
i
s, s) ds +

∫ T

0
zi
s dWs

≤ |yi
0| + |yi

T | +
∫ T

0
[µ|yi

s | + µ|zi
s | + |g(0, 0, s)|] ds +

∣∣∣∣
∫ T

0
zi
s dWs

∣∣∣∣ .
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We observe that |yi
t | is dominated by |y1

t |+|yt |. Thus there exists a constant,
independent of i, such that

E
[

sup
0≤t≤T

[yi
t |2

]
≤ C . (2.14)

It follows that, there exists a constant C1, independent of i, such that

E|Ai
T |2 ≤ C1 + 2E

∫ T

0
|zi

s |2 ds . (2.15)

On the other hand, we use Itô’s formula applied to |yi
t |2:

|yi
0|2 + E

∫ T

0
|zi

s |2 ds

= E|yi
T |2 + 2E

∫ T

0
yi

sg(yi
s, z

i
s, s) ds + 2E

∫ T

0
yi

s dAi
s

≤ E|yi
T |2 + 2E

∫ T

0
[|yi

s |(µ|yi
s | + µ|zi

s | + |g(0, 0, s)|)] ds

+ 2E
∫ T

0
|yi

s | dAi
s

≤ E|yi
T |2 + 2E

∫ T

0
[(µ + µ2)|yi

s |2 + 1

2
|zi

s | + |g(0, 0, s)|)] ds

+ 2E
[
Ai

T sup
0≤s≤T

|yi
s |
]

≤ C2 + 1

2
E

∫ T

0
|zi

s |2 ds + 2

[
E sup

0≤s≤T

|yi
s |2

]1/2

[E|Ai
T |2]1/2

Thus

E
∫ T

0
|zi

s |2 ds ≤ 2C2 + 4

[
E sup

0≤s≤T

|yi
s |2

]1/2

[E|Ai
T |2]1/2

≤ 2C2 + 16E
[

sup
0≤s≤T

|yi
s |2

]
+ 1

4
E|Ai

T |2

= C3 + 1

4
E|Ai

T |2 ,

where, from (2.14), the constants C2 and C3 are independent of i. This with
(2.15) it follows that (2.13)–(i) and then (2.13)–(ii) hold true. The proof is
complete. ut

Combining this Lemma with Theorem 2.1, we can easily prove
Theorem 2.4.
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Proof of Theorem 2.4.In (2.11), we set gi
t := −g(yi

t , z
i
t , t); Since {zi}

is bounded in L2
F(0, T ), thanks to Theorem 2.1, there exists a {zt ) ∈

L2
F(0, T ; R) such that (zi) strongly converges to (z) in L

p
F(0, T ); ∀p ∈

[0, 2).

As result, {gi} = {−g(yi, zi, ·)} strongly converges in L
p
F(0, T ; Rd) to

g0 and

g0(s) = −g(ys, zs, s), a.s., a.e.

From this it follows immediately that (yt , zt ) is the solution of the BSDE
(2.12). ut

3. Nonlinear Doob–Meyer decomposition and limit theorem

In this section we introduce a notion of g-martingales. A special case of such
g-martingales, i.e. when g is a linear function and is independent of y, is the
classical notion of martingales. A typical example of such g-martingales is
the wealth process of an investor in a stocks market (Merton’s model). If his
consumption is negligible, then this process is a g-martingale. Otherwise, it
is a g-supermartingale. An important, and difficult, problem is whether the
corresponding Doob–Meyer Decomposition Theorem still holds true. The
difficulty is due to the nonlinearity: the classical method is fundamentally
based on the fact that the expectation E[·] is a linear operator. We have found
a new method to prove this nonlinear Decomposition Theorem. The idea is
to apply the penalization approach given in [ELal] to construct a sequence
of g-supersolutions. These g-supersolutions are ‘pushed’ to be above the
g-supermartingale. But an interesting observation is that this sequence can
never be above the g-supermartingale. These two effects force the sequence
converges to the given g-supermartingale itself. By the limit theorem it
follows that this limit is a supersolution.

This section is divided into two subsections. In subsection 3.1 we discuss
a general notion of g-martingales and obtain related nonlinear Doob–Meyer
Decomposition Theorem. In subsection 3.2, we consider a special but typical
case: when g(y, z)|z=0 ≡ 0. In this case a nonlinear version of expectation:
g-expectation is introduced and is related, in a very familiar way, to the
corresponding g-martingales. The corresponding nonlinear Doob–Meyer
Decomposition Theorem also has a more familiar formulation.

3.1. Nonlinear decomposition theorem and limit theorem

We now introduce the notion of g-martingales
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Definition 3.1. A g-martingale on[0, T ] is a g-solution on [0, T ]. An
Ft -progressively measurable real-valued process(Yt ) is called ag-super-
martingale (resp.g-submartingale) on[0, T ] in strong sense if, for each
stopping timeτ ≤ T , E|Yτ |2 < ∞, and theg-solution(yt ) on [0, τ ] with
terminal conditionyτ = Yτ satisfiesyσ ≤ Yσ (resp.yσ ≥ Yσ ) for all
stopping timeσ ≤ τ .

Definition 3.2. An Ft -progressively measurable real-valued process(Yt )

is called ag-supermartingale on (resp.g-submartingale)[0, T ] in weak
sense if, for each (deterministic time)t ≤ T , E|Yt |2 < ∞, and theg-
solution (yt ) on [0, t] with terminal conditionyt = Yt satisfiesys ≤ Ys

(resp.ys ≥ Ys) for all deterministic times ≤ t .

Certainly, Ag-supermartingale in strong sense is also ag-supermartingale
in weak sense. It is already shown that, under assumptions similar to the
classical case, a g-supermartingale in weak sense coincides with a g-super-
martingale in strong sense (see [CP]). This result corresponds the so-called
Optional Stopping Theorem in theory of martingales.

By Comparison Theorem 1.3, it is easy to prove that, a g-supersolution
on [0, T ] is also a g-supermartingale in both strong and weak sense. In
this section we are concerned with the inverse problem: can we say that a
right-continuous g-supermartingale is also a g-supersolution? This prob-
lem is more difficult since it is in fact a nonlinear version of Doob-Meyer
Decomposition Theorem. We claim

Theorem 3.3. We assume(H1.1) and(H1.2). Let(Yt ) be a right-continuous
g-supermartingale on[0, T ] in strong sense with

E
[

sup
0≤t≤T

|Yt |2
]

< ∞ .

Then(Yt ) is a g-supersolution on[0, T ]: there exists a unique RCLL in-
creasing process(At) with A0 = 0 and E[(AT )2] < ∞ such that(Yt )

coincides with the unique solution(yt ) of the BSDE

yt = YT +
∫ T

t

g(ys, zs, s) ds + (AT − At) −
∫ T

t

zs dWs, t ∈ [0, T ] ,

(3.1)

In order to prove this theorem, we now consider the following family of
BSDE parameterized by i = 1, 2, . . ..

yi
t = YT +

∫ T

t

g(yi
s, z

i
s, s) ds + i

∫ T

t

(Ys − yi
s) ds −

∫ T

t

zi
s dWs . (3.2)
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An important observation is that, for each i > 0, (yi
t ) is bounded from above

by (Yt ). Thus (yi) is a g-supersolution on [0, T ]. Under this observation,
(3.2) becomes a penalization problem introduced in [ELal].

Lemma 3.4. We have, for eachi = 1, 2, . . . ,

Yt ≥ yi
t .

Proof. If it is not the case, then there exist δ > 0 and a positive integer
i such that the measure of {(ω, t); yε

t − Yt − δ ≥ 0} ⊂ � × [0, T ] is
nonzero. We then can define the following stopping times

σ := min[T , inf{t; yi
t ≥ Yt + δ}],

τ := inf{t ≥ σ ; yi
t ≤ Yt}

It is seen that σ ≤ τ ≤ T and P(τ > σ) > 0. Since Yt − yi
t is right-

continuous, we have

(i) yi
σ ≥ Yσ + δ;

(3.3)
(ii) yi

τ ≤ Yτ .

Now let (yt ) (resp. (y ′
t )) the g-solution on [0, τ ] with terminal condition

yτ = yi
τ (resp. = y ′

τ = Yτ ). By Comparison Theorem (3.3)–(ii) implies
yi

σ ≤ yσ ≤ y ′
σ . On the other hand since (Yt ) is a g-submartingale. Thus

Yσ ≥ yi
σ .

This is in contrary with (3.3)–(i). The proof is complete. ut

Remark 3.5.This lemma means that (3.2) is in fact the penalization BSDE
introduced in [ELal]. The new observation in this section is the following
phenomenon: although the penalized g-supersolutions yi are pushed up to
be above the supermartingale (Yt ), but in fact they can never be strictly above
(Yt ). From this fact it follows that, necessarily, this sequence converges to
the supermartingale (Yt ) itself. Thus, by Limit Theorem 2.4 (Y ) itself is
also a g-supersolution. Specifically, we have:

Proof of Theorem 3.3.The uniqueness is due to the uniqueness of g-super-
solution i.e. Prop. 1.6. We now prove the existence. We can rewrite BSDE
(3.2) as
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yi
t = YT +

∫ T

t

g(yi
s, z

i
s, s) ds + Ai

T − Ai
t −

∫ T

t

zi
s dWs ,

where we denote

Ai
t := i

∫ t

0
(Ys − yi

s) ds .

From Lemma 3.3, Yt −yi
t = |Yt −yi

t |. It follows from the Comparison Theo-
rem that yi

t ≤ yi+1
t . Thus {yi} is a sequence of continuous g-supermartingale

that is monotonically converges up to a process (yt ). Moreover (yt ) is
bounded from above by Yt . It is then easy to check that all conditions in The-
orem 2.4 are satisfied. (yt ) is a g-supersolution on [0, T ] of the following
form.

yt = YT +
∫ T

t

g(ys, zs, s) ds + (AT − At) −
∫ T

t

zs dWs, t ∈ [0, T ] ,

where (At) is a RCLL increasing process. It then remains to prove that
y = Y . From Lemma 2.5–(ii) we have

E|Ai
T |2 = i2E

[∫ T

0
|Yt − yi

t | dt

]2

≤ C .

It then follows that Yt ≡ yt . The proof is complete. ut
The following result is a limit theorem for g-supermartingales or equiv-

alently, g-supersolution, for general (RCLL) situations.

Theorem 3.6. Let {Y i} be a sequence of RCLLg-supersolutions(or g-
supermartingale) on [0, T ] that monotonically converges up to(Y ) with
E supt∈[0,T ] |Yt |2] < ∞. Then(Y ) itself is also an RCLLg-supersolution
(or g-supermartingale).

Proof. Like in the proof of Theorem 3.3, we consider the following family
of BSDE, for i = 1, 2, . . . ,

yi
t = Y i

T +
∫ T

t

g(yi
s, z

i
s, s) ds + i

∫ T

t

(Y i
s − yi

s) ds −
∫ T

t

zi
s dWs .

Since, for each i, (Y i
t ) is a g-supermartingale, by Lemma 3.4, yi

t ≤ Y i
t (≤Yt).

By comparison theorem yi
t ≤ yi+1

t . Thus this sequence of continuous g-
supersolutions converges monotonically to yt ≤ Yt . It follows from Theo-
rem 2.4 that (yt ) is an RCLL g-supersolution.

It remains to prove that (yt ) coincides with (Yt ). It suffices to prove that,
for each j, yt ≥ Y

j
t . To this end we consider the BSDE
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y
j,i
t = Y

j

T +
∫ T

t

g(yj,i
s , zj,i

s , s) ds + i

∫ T

t

(Y j
s − yj,i

s ) ds −
∫ T

t

zj,i
s dWs .

From comparison theorem, yi
t ≥ y

j,i
t whenever i ≥ j . On the other hand,

we have shown in the proof of Theorem 3.3 that, for fixed j, the sequence
{yj,i} converges monotonically up to the g-supermartingale Y j . It follows
that, for each j, Yt ≥ yt ≥ Y

j
t . Thus yt coincides with Yt . The proof is

complete. ut

3.2. g-expectation and related decomposition theorem

Since M. Allais’s famous paradox, economists begin to look for a nonlin-
ear version of the notion of mathematical expectations and/or non-additive
probability in order to improve the notion of ‘expected utility’ introduced by
Von Neumann-Morgenstern, a fundamental concept in modern economic
theory. A typical example of such notion is ‘certainty equivalence’ (see
[DE]). But one important problem is: how to find a natural generalization of
the classical expectations, e.g., the one which preserves, as many as possible,
properties of the expectation except the linearity.

In this subsection we will make an additional assumption on the func-
tion g:

g(y, 0, ·) ≡ 0, ∀y ∈ R . (3.4)

Under this condition one can introduce a notion of g-expectation. This g-
expectation preserves all properties of the classical expectation except the
linearity. Similarly to the classical case, we can define the related con-
ditional g-expectation with respect to Ft . It also preserves all properties
of the classical conditional expectation except the linearity. Thus it is a
very natural extension of the classical (or linear) expectations. The above
g-supermartingales and the related nonlinear Doob–Meyer decomposition
can be stated in a very natural way.

This notion of g-expectation was initially introduced in [P2] in a more
general framework. Here we will only state it in L2(�,FT , P ) and give
some sketch of proofs of its basic properties. Our main objective in this paper
is to prove that the decomposition theorem of Doob–Meyer’s type still holds
true for g-supermartingale. We will also use the notion of g-solution (Def.
1.5) to simplify the statement.

Condition (3.4) is equivalent to

g(y1A, z1A, ·) ≡ 1Ag(y, z, ·), ∀(y, z) ∈ R×Rn, ∀A ∈ FT . (3.5)

Observe that, for a g-solution (yt ) on [0, T ], y0 is a deterministic number
that is uniquely determined by its terminal condition yT . We then define
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Definition 3.5. For eachX ∈ L2(�,FT , P ; R), let (yt ) be theg-solution
on [0, T ] with terminal conditionyT = X. We cally0 theg-expectation of
X and denote it byEg[X] := y0.

Remark 3.6.Since X is FT -measurable, then, for any T ′ > T, X is also
FT ′-measurable. By Def. 3.5, the g-expectation of X may be also defined by
Eg[X] := y ′

0, where (y ′) is the g-solution on [0, T ′] with terminal condition
y ′

T ′ = X. But, by (3.5), one can check that y ′
t ≡ X (z′

t ≡ 0) on [T , T1]. Thus
y coincides with y ′ on [0, T ].

Like classical expectations, the “g-expectation” has the following prop-
erties.

Lemma 3.7. Eg[·] has the following properties:

(i) (preserving of constants): For each constantc, Eg[c] = c;
(ii) (monotonicity): If X1 ≥ X2, a.s., thenEg[X1] ≥ Eg[X2];
(iii) (strict monotonicity): If X1 ≥ X2, a.s., andP(X1 > X2) > 0, then
we haveEg[X1] > Eg[X2].

Proof. By (3.5), theg-solution (yt )on [0, T ] with terminal conditionyT = c

is identically equal to c. Thus (i) holds. (ii) and (iii) are a direct consequence
of the comparison theorem 1.3. ut

For each t ≤ T , we now introduce the notion of the conditional g-
expectation with respect to Ft . Similarly to the classical case, for a given
X ∈ L2(�,FT , P ), we look for a random variable η ∈ L2(�,Ft , P )

satisfying

Eg[1AX] = Eg[1Aη], for all A ∈ Ft (3.6)

We have

Proposition 3.8. For eachX ∈ L2(�,FT , P ), let (ys) be theg-solution
on [0, T ] with terminal conditionyT = X. Then, for eacht ≤ T , η = yt is
the unique element inL2(�,Ft , P ) such that(3.6) is satisfied.

It is then reasonable to defineyt as the conditionalg-expectation with
respect toFt .

Definition 3.9. Let(ys) be theg-solution on[0, T ] with terminal condition
yT = X ∈ L2(�,FT , P ). For eacht ≤ T , We callyt the conditional
g-expectation ofX with respect toFt and denote it byEg[X|Ft ].

Remark 3.10.For a stopping time τ ≤ T , we can similarly define the
conditional g-expectation of X with respect to Fτ by Eg[X|Fτ ] =: yτ .
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Proof of Proposition 3.8.1) Uniqueness: If both η1 and η2 satisfy (3.6),

then

Eg[η11A] = Eg[η21A], for all A ∈ Ft .

Particularly, when A = {η1 ≥ η2}, we have

Eg[η11{η1≥η2}] = Eg[η21{η1≥η2}]

Butη11{η1≥η2} ≥ η21{η1≥η2}. Thus, by the strict monotonicity ofg-expectation
(Lemma 3.7 (iii)) it follows that

η11{η1≥η2} = η21{η1≥η2}, a.s.

Similarly,

η11{η1≤η2} = η21{η1≤η2}η a.s.

These two relations implies η1 = η2, a.s..
2) Existence: Since (ys) is the g-solution on [0, T ] with terminal condi-

tion yT = X, then by (3.5), for each A ∈ Ft ,

1Ays = 1AX +
∫ T

s

g(1Ayr, 1Azr, r) dr −
∫ T

s

1Azr dWr, s ∈ [t, T ].

Thus the g-solution (ŷs) on [0, T ] with terminal condition ŷT = 1AXT

satisfies ŷt = 1Ayt . It follows that (ŷs) is also the g-solution on [0, t] with
terminal condition ŷt = 1Ayt . According to the definition of Eg[·] (see
Remark 3.6) it follows immediately that

Eg[1AX] = Eg[1Ayt ], for all A ∈ Ft .

The proof is complete. ut
The conditional g-expectation preserves essential properties (except lin-

earity) of the classical expectations.

Lemma 3.10. Eg[·|Ft ] has the following properties

(i) If X is Ft -measurable, thenEg[X|Ft ] ≡ X

(ii) For eacht andr, thenEg[Eg[X|Ft ]|Fr ] = Eg[X|Ft∧r ];
(iii) If X1 ≥ X2, then Eg[X1|Ft ] ≥ Eg[X2|Ft ]. If, moreover
P(X1 > X2) > 0, then we haveP(Eg[X1|Ft ] > Eg[X2|Ft ]) > 0.
(iv) For eachB ∈ Ft , Eg[1BX|Ft ] = 1BEg[X|Ft ].
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The proof of these properties is similar to this of the classical case: We
omit it.

With the notion g-expectations, a g-martingale (Mt)0≤t≤T defined in
Def. 3.1 can be written in the form

Mt = Eg[ξ |Ft ] . (3.7)

The following property provides another, and more familiar definition
of g-supermartingales.

Proposition 3.11. We assume(3.4). Then a process(Yt )0≤t≤T satisfying
E[|Yt |2] < ∞ is a g-martingale(resp.g-supermartingale) in weak sense
iff

Eg[Yt |Fs] = Ys, (resp.Eg[Yt |Fs] ≤ Ys), ∀s ≤ t ≤ T .

They areg-martingale (resp.g-supermartingale) in strong sense iff, in the
above relations,s ≤ t are stopping times.

Corollary 3.12. We make the same assumptions as in Theorem3.1. We
assume furthermore thatg is independent ofy and that(3.4) hold. Let(Xt)be
ag-submartingale on[0, T ] in the strong sense satisfyingE[supt≤T |Xt |2] <

∞. Then(Xt) has the following decomposition

Xt = Mt − At .

Here(Mt) is ag-martingale of the form(3.7) and(At) is an RCLL increasing
process withA0 = 0 andE[(AT )2] < ∞. Moreover such decomposition is
unique.

Proof. By Theorem 3.3, this g-submartingale (Xt) on [0, T ] has the follow-
ing form: there exists an RCLL increasing process (At) ∈ L2

F(0, T ) such
that

Xt = XT +
∫ T

t

g(zs, s) ds + AT − At −
∫ T

t

zs dWs, t ∈ [0, T ] .

We set Mt = Xt + At , then

Mt = (XT + AT ) +
∫ T

t

g(zs, s) ds −
∫ T

t

zs dWs, t ∈ [0, T ] .

It follows from the above definitions that (Mt) is a g-martingale and that

Mt = Eg[ξ + AT |Ft ], t ∈ [0, T ] .

The proof is complete. ut
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4. BSDE with constraints on (y, z)

Let φ : R1+d × [0, T ] × � → R+ be a given nonnegative function such
that, for each (y, z) ∈ R1+d, φ(y, z, ·) ∈ L2

F(0, T ; R+) and such that φ is
globally Lipschitz with respect to (y, z). In this section we consider BSDE
of type (2.12) with constraints imposed to the solution. i.e., the solution
(yt , zt ) must be inside of the zone given by

Kt(ω) := {(y, z) ∈ R1+d; φ(y, z, t, ω) = 0} . (4.1)

The problem consists of finding the smallest g-supersolution on [0, T ],
i.e., a solution of BSDE of the form

yt = ξ +
∫ T

t

g(ys, zs, s) ds + (AT − At) −
∫ T

t

zs dWs (4.2)

such that

φ(yt , zt , t) = 0, a.e., a.s. (4.3)

Definition 4.1. A g-supersolution(yt ) on [0, T ] with the decomposition
(zt , At) is said to be the smallestg-supersolution, givenyT = ξ , subject
to the constraint (4.3) if (4.3) is satisfied andyt ≤ y ′

t , a.e., a.s., for any
g-supersolution(y ′

t ) on [0, T ] with y ′
T = ξ and the decomposition(z′

t , A
′
t )

subject toφ(y ′
t , z

′
t , t) ≡ 0.

We need to introduce the following conditions to ensure the existence
of the upper bound.

(H4.1) We assume that there exists g-supersolution (ŷt ) on [0, T ] with
terminal condition ŷT = ξ such that the constraint (4.3) is satisfied: Let
(ẑt , Ât ) be the decomposition of (ŷt ). We have

φ(ŷt , ẑt , t) = 0, a.e., a.s. (4.4)

In order to construct the smallest solution of BSDE (4.2) with constraints
(4.3), we need to introduce the following BSDE

yi
t = ξ +

∫ T

t

g(yi
s, z

i
s, s) ds + Ai

T − Ai
t −

∫ T

t

zi
s dWs . (4.5)

where

Ai
t := i

∫ t

0
φ(yi

s, z
i
s, s) ds . (4.6)

We can claim
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Theorem 4.2. We assume(H1.1), (H1.2) as well as(H4.1). Then the se-
quence ofg-supersolutions{yi} converges monotonically up to(y) with

E
[

sup
0≤t≤T

|yt |2
]

< ∞. (4.7)

{zi} and{Ai} converges to(z) and(A) respectively in the sense of The-
orem2.4. Furthermore,(y, z, A) is the smallestg-supersolution of BSDE
(4.2) subject to constraints(4.3).

Proof. We first observe that, according to Proposition 1.2,

E
[

sup
t

|ŷt |2
]

< ∞. (4.8)

From the Comparison Theorem 1.3, we have

yi
t ≤ ŷt .

The second relation is due to the fact that, since the (ŷt ) is a g-supersolution
with decomposition (Ât , ẑt ) such that the constraint (4.4) is satisfied, it can
be regarded as the solution of the following BSDE

ŷt = ξ +
∫ T

t

[g(ŷs, ẑs, s) + iφ(ŷs, ẑs, s)] ds + ÂT − Ât −
∫ T

t

ẑs dWs .

(4.9)
It follows from the Comparison Theorem that yi

t ≤ ŷt . But, always from
comparison theorem, we have yi

t ≤ yi+1
t . Thus yi

t ↑↑ yt ≤ ŷt .
We observe that the above argument implies that (yt ) is dominated from

above by any g-supersolution subject to the constraint (4.3).
Clearly (yt ) satisfies (4.7). It follows from Theorem 2.4 and 2.5 that (yt )

is a g-supersolution and that there exists a constant C such that

E(Ai
T )2 = i2E

[∫ T

0
φ(yi

s, z
i
s, s) ds

]2

≤ C . (4.10)

This theorem also tell us that zi → z in L
p
F(0, T ) for p < 2. It then follows

that

φ(yi
s, z

i
s, s) → φ(ys, zs, s) in L

p
F(0, T ) .

This with (4.10) implies that the constraint (4.3) is also satisfied.
The proof is complete. ut
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Appendix

We now give the proof of Lemma 2.3. To this end we need the follow-
ing somewhat classical lemmas: for any given square-integrable increasing
RCLL process on [0,T], the principal contribution of its jumps can be limited
within a finite number of (random) points.

Lemma A.1. Let (At) be an increasing RCLL process defined on[0, T ]
with A0 = 0 andE(AT )2 < ∞. Then, for anyε > 0, there exists a finite
number of stopping timesτk, k = 0, 1, 2, . . . , N + 1 with τ0 = 0 < τ1 ≤
· · · ≤ τk ≤ T = τN+1 and with disjoint graphs on(0, T ) such that

N∑
k=0

E
∑

t∈(τk,τk+1)

(1At)
2 ≤ ε . (A.1)

Sketch of Proof.For each ν > 0, we denote

At(ν) = At −
∑
s≤t

1As1{1As>ν} .

It has jumps smaller than ν. Thus there is a sufficiently small ν > 0 such
that

E

[∑
s≤T

(1As(ν))2

]
≤ ε

2
.

Now let σk, k = 1, 2, . . . be the succesive times of jumps of A with size
bigger than ν; they are stopping times, and there is N such that

E


 ∑

s∈(σN ,T )

(1As)
2


 ≤ ε

2
.

Then τk = σk ∧ T for k ≤ N, and τN+1 = T satisfies (A.1). ut

For applying the formula of the integral by part to the process (yt ) (with
jumps), the above open intervals (σk, σk+1) is not so convenient. Thus we
will cut a sufficiently small part and only work on the remaining subintervals
(σk, τk]. This is possible since our filtration is continuous. In fact we have:

Lemma A.2.Let0 < σ ≤ T be a stopping time. Then there exists a sequence
of stopping times{σi} with 0 < σi < σ, a.s. for eachi = 1, 2, . . . , such
thatσi ↑ σ .

This lemma is quite classical. The proof is omitted.
We now give
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Proof of Lemma 2.3.We first apply Lemma A.1 to construct a sequence of
non-decreasing stopping times {σk}N+1

k=0 with σ0 = 0 and σN+1 = T such
that, σk < σk+1 whenever σk < T and that

N∑
k=0

E
∑

t∈(σk,σk+1)

(1At)
2 ≤ δ .

Then for each 0 ≤ k ≤ N, we apply Lemma A.2 to construct a stopping
time 0 < τ ′

k < σk+1, such that

E
N∑

k=0

(σk+1 − τ ′
k) ≤ ε .

Finally we set

τ0 = τ ′
0, τ1 = σ1 ∨ τ ′

1, . . . , τN = σN ∨ τ ′
N

It is clear that τk ∈ [σk, σk+1) ∩ [τ ′
k+1, σk+1]. We have also τk < σk+1

whenever σk < T . Thus (σk, τk] ∈ (σk, σk+1). It follows that

E
N∑

k=0

(σk+1 − τk) ≤ ε ,

or

E
N∑

k=0

(τk − σk) ≥ T − ε ,

and

N∑
k=0

E
∑

t∈(σk,τk]

(1At)
2 ≤

N∑
k=0

E
∑

t∈(σk,σk+1)

(1At)
2 ≤ δ .

Thus the above conditions (i)–(iii) are satisfied. ut
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