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Abstract. We have obtained the following limit theorem: if a sequence
of RCLL supersolutions of a backward stochastic differential equations
(BSDE) converges monotonically up to (y;) with E[sup, | y:|?1 < o0, then
(yy) itself is a RCLL supersolution of the same BSDE (Theorem 2.4 and
3.6).

We apply this result to the following two problems: 1) nonlinear Doob—
Meyer Decomposition Theorem. 2) the smallest supersolution of a BSDE
with constraints on the solution (y, z). The constraints may be non convex
with respect to (y, z) and may be only measurable with respect to the time
variable . this result may be applied to the pricing of hedging contingent
claims with constrained portfolios and/or wealth processes.
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Introduction

Consider a backward stochastic differential equation (BSDE) of type (all
processes mentioned below are o {W; s < ¢t} -adapted, where W is a fixed
Brownian motion)

T T
Vi =yT+/ g(ys,zs)ds+(AT—Ar)—/ zsdWs, 1€[0,T], (D
t t
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where g is assumed to be a Lipschitz function of (y, z). Here A is an RCLL
increasing process with Ag = 0 and E(A7)?> < oo. If (y, z) solves (1)
then we call (y;) to be a supersolution of BSDE with generator g, or, more
simply, a g-supersolution on [0, T']. In particular, when A = 0, y is called
a g-solution on [0, T].

Since the original work of [EQ], where a penalization method of BSDE
is introduced to solve the problem of option pricing for incomplete financial
market (more specific explanation was given in [EPQ]), the following limit
theorem of g-supersolutions begin to be considered as an essentially impor-
tant problem: if a sequence of RCLL g-supersolutions converges monoton-
ically up to a process (y;), with E[sup, |y:]?] < oo, can one prove that (y,)
itself is also a RCLL g-supersolution?

In the case where g = 0, since a g-supersolution is a classical super-
martingale, the answer is affirmative. Other typical case is when g is a linear
function. e.g., the Merton’s model of an investor’s wealth process. In this
case, by applying the Girsanov transformation, one can still treat the prob-
lem as a classical limit problem of supermartingales (see [CK], [EQ], [FS]
and their references).

The first result to treat the case where g is nonlinear was given in [ELal].
Roughly speaking, if {y'} and the limit process (y;) is continuous, then it is
a g-supermartingale. But in many useful cases, even {y/} are continuous in
time, the limit process (y,) is just a RCLL process (see [EQ], [CK]).

This paper will give a positive answer to this problem: if a sequence
of RCLL g-supersolutions converges monotonically up to a process (y;)
with E[sup, | y:|?] < oo, then (y,) itself is also a RCLL g-supersolution
(see Theorem 3.6). Furthermore, if {y'} is continuous g-supersolution, then
the corresponding martingale parts {z'} converges strongly in L? sense for
1 < p <2 (Theorem 2.1 and 2.4).

To explain clearly our idea, we consider the case where {y!} are contin-
uous but the limit {y,} is RCLL. A main difficulty in this case is that, even
in the classical case where g = 0, it is known that the strong convergence
of the supermartingales (g-supersolution) does not imply the strong conver-
gence of their martingale parts. This seems very serious for the case where
g(y, z) is nonlinear since we obviously need a result of strong convergence
to pass to the limit. This difficulty is overcome in Theorem 2.1 and Theorem
2.4. Although we are not sure to have any kind of strong convergence for
the ‘martingale parts’ fOT 7L dW, of the g-supersolutions, but one can still
prove the strong convergence of {z;} in L? sense for 1 < p < 2 (Theorem
2.1). This convergence is enough for us to pass to the limit.

An application of this limit theorem is to prove a generalization of Doob—
Meyer Decomposition Theorem for a g-supermartingale. Roughly speaking,
a process (X,) is a g-supermartingale on [0, T'], if it dominates from above
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each g-solutions (y;) on [0, #o] with the same terminal condition y,, = X,
forany o < T.

If (X;) is a g-supersolution on [0, T'], then it follows from the comparison
theorem that (X,) is also a g-supermartingale. A trivial example is when
g = 0 (linear case): it just tells us that X; = Xo— A, +M; (M; = fot zs dWy)
is a classical supermartingale.

But it is known that the inverse problem is not at all trivial. It is in
fact a nonlinear version of Doob—Meyer Decomposition Theorem: can
one prove that a g-supermartingale is also a g-supersolution? In other
words, does the nonlinear Doob—Meyer Decomposition Theorem hold for
g-supermartingales?

Since the classical demonstrations of Doob—Meyer decomposition the-
orem are essentially based on the fact that the expectation E[-] is a linear
operator, they does not work for this new problem.

This paper will give an affirmative answer to this conjecture. The method
of proof is significantly different from the classical proof of Doob—Meyer
Decomposition Theorem (se e.g. [DM]): no discretization of time was in-
volved. The main idea is to apply the penalization approach introduced in
[ELal] to ‘push up’ a sequence of g-supersolutions to be above this given
g-supermartingale, i.e., the parts of the penalized g-supersolution that are
strictly bellow the given g-supermartingale will be heavyly pushed up. An
interesting observation is: it happens that these g-supersolutions can never
be strictly above this supermartingale (see Lemma 3.4). Thus the limit co-
incides with the given supermartingale. From the above limit theorem, this
limit is also a supersolution.

We also give a notion of nonlinear expectations (called g-expectations)
and related g-expectations. Under this notion the corresponding g-martin-
gale as well as g-supermartingales will be defined in the same way as the
classical definitions. We would like to show readers that, here, everything
works classically except the linearity. The motivation of such new notions is
the concept of the “certainty equivalent” in economic theory (see e.g. [DE]).
An application of such notion to the study of stochastic geometry was dis-
cussed in [Da]. We will see that the option valuation process with constrained
wealth process and/or portfolios is in fact such g-supermartingale.

The second application is the existence of the smallest g-supersolution
of (or, in other words, the smallest g-supermartingle) subject to a given con-
straint. This problem was motivated from the pricing of contingent claim
with constrained portfolios and/or wealth processes. Since the celebrated
papers of Black & Scholes ([BS]) and Merton ([M]), many important pro-
gresses have been made for the pricing of contingent claims, see references
provided in [K] for complete security markets. For the incomplete markets
see e.g. [FS] and recent remarkable works of [EQ], [CK]. This problem may
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be formulated as to find the smallest g-supersolution of BSDE with con-
straints imposed on the solution. The results of [EQ] and [CK] are improved:
the constraint may be imposed at the same time on the portfolios and/or the
wealth processes. We do not need to suppose that the constraint is a convex
set. The main argument is to construct a sequence of g-supersolutions that
monotonically converges up to a limit which is, due to the above monotonic
limit theorem, still a g-supersolution. It is then easy to prove, by our spe-
cial construction, that this limit g-supersolution is in fact the smallest one
subject to the constraint.

This paper is organized as follows: Section 1 provides a comparison
theorem which is necessary for the sections followed. The limit theorem
of g-supersolutions for the case where the sequence of {y'} is continuous
is given in Section 2. Nonlinear Doob—Meyer Decomposition Theorem is
introduced and is proved in Section 3.1. We also give the limit theorem
of RCLL g-supersolutions in this subsection (Theorem 3.6). We will give a
more clear sense of this result, i.e. under the notion of g-expectations in Sec-
tion 3.2. Section 4 is devoted to the problem of the smallest g-supersolution
subject to a given constraint on (y, z). The pricing of contingent claims with
constrained portfolios and/or constrained wealth process may be regarded
as one of applications of the results of this section.

1. Preliminaries: backward stochastic differential equations

In this section we briefly present the results we need about BSDE.

Let (2, #, P) be aprobability space endowed with a filtration {#; 0, <
t < oo} and let (Wy);>0 be a d-dimensional Brownian motion defined in this
space. In order to clarify our interests, we shall not discuss the most general
case we only discuss the case where 7, is the natural filtration generated
by the Brownian motion (W, ):

T =0{Ws s <t} .

All processes mentioned in this paper are supposed to be #,-adapted. In
this section we are interested in the behavior of processes on a given interval
[0, T]. We use | - | to denote the norm of a Euclidean space R”. For p > 1,
we denote by L2.(0, T; R™) the set of all R™-valued % ;-adapted processes
satisfying

T
E/ |ps|? ds < o0 .
0

A process (¢;) is said to be RCLL if it a.s. has sample path which are right
continuous with left limit. A process (A;) is said to be increasing if its path
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A :t — A,(w) are a.s. non decreasing with Ag(w) = 0. A is called a finite
variation process if the path are of a.s. finite variation on [0, T].

We now consider the following problem: to find a pair of processes
(y,z) € L%(0, T; R'*9) satisfying

T T
Yt =yT+/ g(ys, Zs»s)dS‘f’(VT_sz)_/ s dWy . (LD
t t

(1.1) is called backward stochastic differential equation (short for BSDE).
By “backward” we mean the condition is given at the final time 7". Here the
function g, (V;) and & are given such that

() g(y,z,9) € L5(0,T;R), foreach (y,z) € R'"™;
(i) yr € L*(Q, Z7, P; R); (H1.1)
(iii) (V;) € L%(0, T; R) RCLL with Esup |V;|> < 0o .

t<T

g is assumed to be Lipschitz in (y, z), i.e., there exists a constant x such
that

lg(y1,z1,8) — g(y2, 22, )| < |y — y2l +1z1 — 220) - (H1.2)

We have the following existence and uniqueness theorem.

Proposition 1.1. We assuméH1.1) and(H1.2). Then there exists a unique
pair of processesy;, z;) € L% (0, T; R'*9) of solution BSDE1.1) such
that (y; + V;) is continuous and that

E sup |y|*> < oo . (1.2)
0<t<T
Proof. Inthe case where V, = 0, the proof can be found in [PP1]. Otherwise
we can make the change of variable y, := y, + V, and treat the equivalent
BSDE

T T
)_}t:yT+VT+/ g(f’s—Vs,Zs,S)dS—/ stWs .
t t

The estimate (1.2) is easy to obtain since we have (H1.1) and

t
/ 25 dW;
0

2
E sup

0<t<T

T
< 00, E/ lg(ys, 25, ) > ds < oo .
0
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Let
vy € LX(Q, Zr, P;R), (H1.3)

be given and let (y', z') € L%(0, T; R!*4) be the solution of

T T
Yi=Yr +/ 8(ys, 2y, 8)ds + (Ve — Vp) —/ z.dW; . (1.3)
t t

We have the following estimate of the difference of the above two solutions.
The proof is essentially the same as the one for the uniqueness.

Proposition 1.2. We supposéil.1), (H1.2) and(H1.3). Then we have the
following “continuous dependence propérty

T

E sup [y =3P+ E [ Ja -zl ds < CEpr—)iP . (1)
0<t<T 0

The following comparison theorem is very useful. It was introduced

in [P1]. Two improved versions were given in [EPQ]. The result of strict

comparison was established in [P2]. The following formulation is taken
from [EPQ)].

Comparison Theorem 1.3We suppose the assumptions in Propositidn
Let(y, z) be the solution of the BSDE

T T
)_/t=yT+/ gsds+VT_Vt_f zdes’
t t

where(g,), (V,) € L%(0, T; R) andy; € L*(Q, Zr, P; R) are given such
that

yro=yr—yr=0 &=g0,20-220 asae
V; := V; — V; is an RCLL increasing process . '
Then we have
Y. >y, a.e.,a.s.. (1.6)

If, in addition of(1.5), we assume’ (37 > 0) > 0, thenP(y; > j;) > O.
In particular, yo > .
See [EPQ] for the proof.

Remark 1.4.If we replace the deterministic terminal time 7 by a #,-
stopping time t < T, then the above results still hold true.
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For a given stopping time, we now consider the following BSDE

T

=8 +/ g(ys, 25, 8)ds + (Ar — Ajar) _f 2 dWs . (L.7)
t

AT INT

where & € L*(Q, #., P) and A is a given RCLL increasing process with
Ao = 0and E(A,)? < co. The following terms will be frequently used in
this paper.

Definition 1.5. If (y,) is a solution of BSDE of form (1.7) then we c@ll) a
g-supersolution o0, t]. If A, = 0in [0, =], then we cally,) a g-solution
on[o0, 7].

We recall that a g-solution (y;) on [0, t] is uniquely determined if its
terminal condition y, = £ is given, a g-supersolution (y,) on [0, 7] is
uniquely determined if y; and (A;)o</<. are given. If (y,) is a g-solution on
[0, ] and (y;) is a g-supersolution on [0, t] such that y, < y! a.s., then for
all stopping time o < v we have also y, < y,.

Proposition 1.6. Given(y,) a g-supersolution or0, 7], there is a unique
(z,) € L?*(0, r; RY) and a unique increasing RCLL process;) on [0, 7]
with Ag = 0 andE[(A,)?] < oo such that the triplgy,, z,, A,) satisfies
(L.7).

Proof. If both (y/, z;, A;) and (yr, z;, A}) satisfy (1.7), then we apply Ito’s
formula to (y, — y,)Z(E 0) on [0, 7] and take expectation:

T
E/ |z —z;|2ds +E Z (A(A; — A;))2 =0.
0 1€(0,7]
Thus z; = z;. From this it follows that A, = A]. i
Thus we can define
Definition 1.7. Let (y,) be a supersolution of0, t] and let(y,, A;, z;) be

the related unique triple in the sense of BSDE (1.7). Then we 4allz,)
the (unique) decomposition 6f;).

2. Basic estimates: limit theorem ofy-supersolutions
In this section, we first prove a “convergence theorem” by weak convergence

method. Then, using this convergence theorem, we study the limit theorem
of g-supersolution.
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We first consider the following a family of semi-martingales:

t t
y;=y6+/g§.ds—A;+/z§dW5, i=1,2,.... (2.1)
0 0

Here, for each i, the adapted process g' € L% (0, T, R) are given, we also
assume that, for each i,

(Ai) is a continuous and increasing process with E(A"T)2 < o0, (H2.1)

We further assume that

(i) (g!) and (z})are bounded in L2.(0, T): E [ [1g! > + |z/|*1ds < C;

(ii) (y!) increasingly converges to (y,) with E sup [y,|> < oo;
0<t<T
(H2.2)
It is clear that
(nE[mm|ﬂF]sc;
0<t<T
(2.2)

T
GO [ Iy = yfds 0.
0
where the constant C is independent of .

Remark. It is not hard to prove that the limit y, has the following form

t t
y,=yo+/g?ds—A,+/zde5 : (2.3)

0 0
where (g?), (z;) and (A,) are respectively the L2-weak limit of (gh, (@)
and (A,) is an increasing process. In general, we cannot prove the strong
convergence of { fOT zi dW,}?2 . Ournew observationis: foreach p € [1, 2),
{z'} converges strongly in L?”. This observation is crucially important in this

paper, since we will treat nonlinear cases.

Theorem 2.1. Assum&H2.1) and (H2.2) hold. Then the limity,) of (/)
has a form(2.3), where(g?) € L% (0, T; R), (z,) is the weak limit ofz}),
(A;) is an RCLL square-integrable increasing process. Furthermore, for
anyp € [0, 2), (z))o<,<r strongly converges t&!) in L7.(0, T, R%), i.e,,

T
lim E/ Izt —z5|Pds =0, ¥Vp €0,2) . (2.4)
0

i—00
The following lemma will be applied to prove that the limit processes (y;)
is RCLL.
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Lemma 2.2. Let {x'(-)} be a sequence of (deterministic) RCLL processes
defined o0, T'] that increasingly converges tq(-): for eacht € [0, T1,
xi(t) 1 x(t), with x () = b(t) — a(t), whereb(-) is an RCLL process and
a(-) is an increasing process with(0) = 0 anda(T') < co. Thenx(-) and

a(-) are also RCLL processes.

Proof. Since, for each ¢, b(-), a(-) and thus x(-) have left and right limits
at ¢, thus we only need to check that x (-) is right-continuous.
Since, foreachr € [0, T), a(t+) > a(t), thus

x(t+)=b@t) —alt+) <x@) . (2.5)

On the other hand, for any § > 0, there exists a positive integer j =
j(8,1) such that x(¢) < x/(t) + 8. Since x/(-) is RCLL, thus there exists
a positive number €y = €y(J, t, §) such that x/ (1) < x/(t + €) + 8, Ve €
(0, €0]. These imply that, for any € € (0, €],

x() <x/(t+e)+28 <xH(t4+e)+28 1 x(t+€)+265 .

Particularly x(¢) < x(t+) + 26 and thus x(¢) < x(¢+). This with (2.5)
implies the right continuity of x(-). O

The following lemma tells that, for any given RCLL increasing process,
the contribution of the jumps of (A,) is mainly concentrated within a fi-
nite number of left-open right-closed intervals with “sufficiently small total
length”. Specifically, we have

Lemma 2.3. Let(A,) be anincreasing RCLL process defined@ri"] with
Ap = 0andEA? < co.Then, forany, e > 0, there exists afinite number of
pairs of stopping time&oy, 7}, k =0,1,2,..., NwithO <oy, < <T
such that

@) (oj, ;1N (or, w]l =0 foreachj # k;

N
() ED [t —old@) = T —e;

k=0
N

(iii) ZE Z (AA)E<S .
k=0 ox<t<7

The proof will be given in the Appendix. We now give the

Proof of Theorem 2. Bince (g') (resp. (z')) is weakly conpactin Lé(O, T;R)
(resp. L%](O, T; R%)), there is a subsequence, still denoted by (g) (resp. (z'))
which converges weakly to (g?) (resp. (z¢)).
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Thus, for each stopping time t < 7, the following weak convergence
holds in L*(Q2, #,, P: R).

T T T T
/ 2, dWs — / Zs dWs, / gyds — / g?ds :
0 0 0 0

Since
. . . T . T .
A, = -y, +y(’)+/0 g;ds—i-/o z, dW;
thus we also have the weak convergence

T T
AL~ A, = —yt+yo+/ g?ds+/ 7, dW. (2.6)
0 0

Obviously, EA2T < 00. For any two stopping times o < t < T, we have
A, < A, since AL < A’. From this it follows that (A,) is an increasing
process. Moreover, from Lemma 2.2, both (A;) and (y,) are RCLL. Thus
(y;) has a form of (2.3). Since (y;) is given, it is clear that (z;) is uniquely
determined. Thus not only a subsequence of (z') but also the sequence itself
converges weakly to (z).

Our key point is to show that {z'} converges to z in the strong sense of
(2.4). In order to prove this we use It0’s formula applied to (y' — y,)> on
a given subinterval (o, t]. Here 0 < o0 < 7 < T are two stopping times.
Observe that Ay, = AA, and the fact that y’ and then A’ are continuous.
We have

Ely — yol + E/ 12— 22 ds

—Epi - P —E Y (A -2 [ 0= - s

te(o,t]
+2E / (v — ) dA - 2E f O — v ) dA,
(0,7] (0,7]
. f . .
=Epi -y +E Y (AA)*—2E f (i = ¥s) (gt — &) ds
te(o, 7] o
+2E / (v — ;) dAi —2E / O — ) dA,
(o,7] (o,7]

Since (y! — y;)dA! <0,
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T
E/|4—mﬁw
o

T
saﬂ—yf+f52:mAf+aEfI%—ymg—gﬁw
o

te(o,t]

+2E/‘ Iyl — ys|dAy . 2.7)
(0,7]

The third term on the right side tends to zero since

1

T T
Efl%—w%&w%thFflﬂ—m%q-»0-Q&
0 0

For the last term, we have, P-almost surely,
e =yl = lyi =yl > 0, Vse[0,T] .

Since
T 3 ,
Ef lyy = ysldA; < (E [sup(|yj - ys|2)]) (E(A7)?)? <00,
0 K
it then follows from Lebesgue’s dominated convergence theorem that
e[ bi-nlda o (2.9)
0.7]

By convergence (2.8) and (2.9), it is clear from the estimate (2.7) that, once
A, is continuous (thus AA, = 0), then z’ tends to z strongly in L2.(0, T'; RY).
But for the general case, the situation becomes complicated.

Thanks to Lemma 2.3, for any §, € > 0, there exist a finite number of
disjoint intervals (o, 7], Kk = 0,1,..., N, such that oy, < 7 < T are all
stopping times satisfying

al €
HEY [~ ol =T -2
k=0 (2.10)

N
G Y Y E@a=

k=0 o <t<7;

Now, for each 0 = o} and T = 1, we apply estimate (2.7) and then take
the sum. It follows that
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N Tk N N
SE[ l-alds <Y Ebl -xPHYE Y @A)
k=0 k k=0

o = k=0 te(og, 7]

T
+2E/ Y~ yllg — &0l ds
0

2B [ i ylda,
0,T]

By using the convergence results (2.8) and (2.9) and taking in consideration
of (2.10)—(i1), it follows that

N Tk N 3
R i 2 2 €
T Zk=OE / 7 — 2, ds < §_O:E > @aar=S

k k= te(oy, ]

Thus there exists an integer /.5 > 0 such that, whenever i > /s, we have

N w P
ZE/ 7 —zPds < <
k=0 YO :

Thus, in the product space ([0, T'] x 2, Z([0, T]) x &, m x P) (here m
stands for the Lebesgue measure on [0, T']), we have

N ™

k=0
This with (2.10)-(i) implies

mx P{(s,») €[0,T] x Q; |zj(w) —z(@)|> =8} <e, V i>ls .

N
mx P {(s, ) € | Jow(), w(@)] x @ [2h(0) — z;(@)]* = 81 <

From this it follows that, for any § > O,
limmx P{(s,0) €[0,T1x Q2 |Z(0) —z,(@)|* =8} =0 .
1—> 00

Thus, on [0, T] x £2, the sequence {(z’)} converges in measure to (z,). Since
(z!) is also bounded in L2 (0, T; R?), then for each p € [1, 2), it converges
strongly in L% (0, T; RY). ]

Let us now consider the following sequence of g-supersolution (y!) on
[0, T]i.e.,

T T
y,'=y'T+/ g(y;,zi,s)ds+(A’T—A;)—f 2dWs, i=1,2,... .
' ' 2.11)

Here the function g and the increasing process (A!) are given in (H1.1),
(H1.2) and (H2.1). From Proposition 1.1, there exists a unique pair (', z') €
L%(0, T; R'™) satisfying (2.11).

The following theorem prove that the limit of (y/) is still a g-supersolution.
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Theorem 2.4. We assume thag satisfies(H1.1) and (H1.2). and (A?)
satisfiegH2.1). Let(y, z) be the solution of BSD@.11), with E sup,_, .7
|yi|> < oo.If (') increasingly converges tg;) With E sup,_, . |y,|> < oo.
Then(y,) is ag-supersolution. i.e., there exista) € L;(Oi T;R% andan
RCLL square-integrable increasing process) such that the pai(y;, z;)
is the solution of the BSDE

T T
y,zyT+/ g(ys,zs,s)dsﬂAT—A,)—/ sdW,, 1e[0,T]
' ' (2.12)

where(z,)o< <7 is the weakiresp. strong limit of {(z})} in L%.(0, T; RY)
(resp. inL?.(0, T; RY), for p < 2) and, for each, A, is the weak limit of
{Al}in LX(Q, #,, P).
Remark. Observe that (2.11) can be rewritten in the ‘forward formulation’:
t 1
Y=Y —/ g(yi, zo, 8)ds — A, —/ 2L dWs . (2.11)
0 0
Similarly, the limit equation (2.12) is

t t
Ye = Yo _f 8g(ys, s, s)ds — A, +/ 2o dWs . (2.12)
0 0

To prove this theorem, we need following lemma. The lemma says that
both {7} and {(AiT)z} are uniformly bounded in L?:

Lemma 2.5. Under the assumptions of Theorem 2.4, there exists a constant
C that is independent agfsuch that

T
(i) Ef 1Zl|*ds < C,
0

(i) E[(AD 1 < C .

(2.13)

Proof. From BSDE (2.11), we have
. . . T . . T .
Ay =sh == [ g0lzodst [ daw,
0 0

T .
/ z, dW;
0

T
< |y5|+|y;|+/ [y |+ iz + 1900, 0, $)[1ds +
0
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We observe that |y!| is dominated by |y!'| + |y, |. Thus there exists a constant,
independent of i, such that

E[ sup [yf|2:| <C . (2.14)

0<t<T

It follows that, there exists a constant Cy, independent of i, such that

T
E|AL]? < Cy +2E/ 1z ds . (2.15)
0

On the other hand, we use 1t0’s formula applied to |y’ |*:

T
|y3|2+Ef 22 ds
0

T T
= Ely’T|2+2E/ yég(yé,z;,S)ds+2E/ vy dAj
0 0

T
<Elyi+ 2Ef Uy [(ely ] + elzi | + 180, 0, )] ds
0
T . .
+2E/ v dA!
0
. T ) 1 .
< ENGE 26 [ 1+ i+ 51el+ 190.0.5)1ds
0

+2E [A"T sup |y;'|]

0<s<T
! L 2" i 1241/2
=G+ SE |z5|“ds +2 | E sup |y [E|AL %]
2 Jo 0<s<T
Thus
T o 12 ‘
E/ |z’s|2ds §2C2+4|:E sup |y;|2:| [EIA’T|2]1/2
0

0<s<T

. 1 .
<2C, + 16E [ sup |y;|2i| + ZElA’T|2

0<s<T
1 .
=C;+ ZE|A’T|2 ,

where, from (2.14), the constants C, and C5 are independent of i. This with
(2.15) it follows that (2.13)—(i) and then (2.13)—(ii) hold true. The proof is
complete. |

Combining this Lemma with Theorem 2.1, we can easily prove
Theorem 2.4.
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Proof of Theorem 2.4In (2.11), we set g/ := —g(y!, 7}, 1); Since {z'}
is bounded in L;(O, T),. thanks to Theorem 2.1, there exists a {z;) €
L%](O, T; R) such that (z') strongly converges to (z) in L;(O, T);Vp €
[0, 2).

Asresult, {g'} = {—g(»', Z', -)} strongly converges in L_’;(O, T;R%) to
g% and

%) = —g(ys, 25, 8),  as., ae.

From this it follows immediately that (y;, z;) is the solution of the BSDE
(2.12). |

3. Nonlinear Doob—Meyer decomposition and limit theorem

In this section we introduce a notion of g-martingales. A special case of such
g-martingales, i.e. when g is a linear function and is independent of y, is the
classical notion of martingales. A typical example of such g-martingales is
the wealth process of an investor in a stocks market (Merton’s model). If his
consumption is negligible, then this process is a g-martingale. Otherwise, it
is a g-supermartingale. An important, and difficult, problem is whether the
corresponding Doob—Meyer Decomposition Theorem still holds true. The
difficulty is due to the nonlinearity: the classical method is fundamentally
based on the fact that the expectation E[-] is a linear operator. We have found
a new method to prove this nonlinear Decomposition Theorem. The idea is
to apply the penalization approach given in [ELal] to construct a sequence
of g-supersolutions. These g-supersolutions are ‘pushed’ to be above the
g-supermartingale. But an interesting observation is that this sequence can
never be above the g-supermartingale. These two effects force the sequence
converges to the given g-supermartingale itself. By the limit theorem it
follows that this limit is a supersolution.

This section is divided into two subsections. In subsection 3.1 we discuss
a general notion of g-martingales and obtain related nonlinear Doob—Meyer
Decomposition Theorem. In subsection 3.2, we consider a special but typical
case: when g(y, z)|,—o = 0. In this case a nonlinear version of expectation:
g-expectation is introduced and is related, in a very familiar way, to the
corresponding g-martingales. The corresponding nonlinear Doob—Meyer
Decomposition Theorem also has a more familiar formulation.

3.1. Nonlinear decomposition theorem and limit theorem

We now introduce the notion of g-martingales
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Definition 3.1. A g-martingale on[0, 7] is a g-solution on[0, T]. An
7 -progressively measurable real-valued procegs is called ag-super-
martingale (respg-submartingale) ori0, T'] in strong sense if, for each
stopping timer < T, E|Y,|*> < oo, and theg-solution(y,) on [0, T] with
terminal conditiony, = Y, satisfiesy, < Y, (resp.y, > Y,) for all
stopping timer < .

Definition 3.2. An #,-progressively measurable real-valued proc€ss
is called ag-supermartingale on (resgg-submartingale)0, 7] in weak
sense iffor each (deterministic time) < T, E|Y,|> < oo, and theg-
solution (y;) on [0, ¢] with terminal conditiony, = Y, satisfiesy, < Y;
(resp.ys > Y,) for all deterministic time < ¢.

Certainly, A g-supermartingale in strong sense is also a g-supermartingale
in weak sense. It is already shown that, under assumptions similar to the
classical case, a g-supermartingale in weak sense coincides with a g-super-
martingale in strong sense (see [CP]). This result corresponds the so-called
Optional Stopping Theorem in theory of martingales.

By Comparison Theorem 1.3, it is easy to prove that, a g-supersolution
on [0, T] is also a g-supermartingale in both strong and weak sense. In
this section we are concerned with the inverse problem: can we say that a
right-continuous g-supermartingale is also a g-supersolution? This prob-
lem is more difficult since it is in fact a nonlinear version of Doob-Meyer
Decomposition Theorem. We claim

Theorem 3.3. We assum@l1.1) and(H1.2). Let(Y,) be aright-continuous
g-supermartingale oifi0, T'] in strong sense with

E[ sup |Yt|2] <00 .

0<t<T

Then(Y;) is a g-supersolution ori0, T']: there exists a unique RCLL in-
creasing processA;) with Ap = 0 and E[(A7)?] < oo such that(Y;)
coincides with the unique solutigly,) of the BSDE
T T
ye=7Yr +/ 8(ys, 25, 8)ds + (Ar — Ay) —/ zgdWy, t€l[0,T],
t t
(3.1

In order to prove this theorem, we now consider the following family of
BSDE parameterized byi = 1,2, .. ..

T T T
yi =YT+/ g(y;,z;,s)ds+i/ (Yx—yé)ds—/ Zdw, . (32)
t t t
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An important observation is that, foreachi > 0, (yli ) is bounded from above
by (¥;). Thus (y') is a g-supersolution on [0, T']. Under this observation,
(3.2) becomes a penalization problem introduced in [ELal].

Lemma 3.4. We haveforeachi =1, 2, ...,

YtZy;i-

Proof. If it is not the case, then there exist § > 0 and a positive integer
i such that the measure of {(w,t);yf — Y, —6 > 0} C Q x [0,T] is
nonzero. We then can define the following stopping times

o :=min[T,inf{t; y! > Y, +6}],

T:=inf{t > 0; y/ <Y}

Itisseenthat 0 < 7 < T and P(t > o) > 0. Since Y, — yf is right-
continuous, we have
@ ¥ =Y, +35;
3.3)
(i) v, < Yo .

Now let (y;) (resp. (y;)) the g-solution on [0, t] with terminal condition
Ve = yi (resp. = y. = Y;). By Comparison Theorem (3.3)—(ii) implies
y. <y, < y..On the other hand since (Y;) is a g-submartingale. Thus

Yo =y,
This is in contrary with (3.3)—(i). The proof is complete. m|

Remark 3.5.This lemma means that (3.2) is in fact the penalization BSDE
introduced in [ELal]. The new observation in this section is the following
phenomenon: although the penalized g-supersolutions y’ are pushed up to
be above the supermartingale (Y;), butin fact they can never be strictly above
(Y;). From this fact it follows that, necessarily, this sequence converges to
the supermartingale (Y;) itself. Thus, by Limit Theorem 2.4 (Y) itself is
also a g-supersolution. Specifically, we have:

Proof of Theorem 3.3he uniqueness is due to the uniqueness of g-super-
solution i.e. Prop. 1.6. We now prove the existence. We can rewrite BSDE
(3.2) as
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T T
v =Yr+f g(y;,zg,s)ds+A’T—A;—/ z, dW;
t t
where we denote
t
Al ::if (Y, —yhds .
0

FromLemma3.3,Y,—y' = |Y, —y'|. It follows from the Comparison Theo-
remthat y! < yi™!. Thus {y'}is a sequence of continuous g-supermartingale
that is monotonically converges up to a process (y;). Moreover (y;) is
bounded from above by Y;. It is then easy to check that all conditions in The-
orem 2.4 are satisfied. (y;) is a g-supersolution on [0, T'] of the following

form.
T T

yl:YT+/ g(yS’ZSWS)dS—'l_(AT_AI‘)_'/\ ZSdWﬁ IE[O’T] 9
t t

where (A;) is a RCLL increasing process. It then remains to prove that
y = Y. From Lemma 2.5-(ii) we have

T 2
E|A"T|2=i2EU |Y,—y;'|dr] <C .
0

It then follows that Y; = y,. The proof is complete. O

The following result is a limit theorem for g-supermartingales or equiv-
alently, g-supersolution, for general (RCLL) situations.

Theorem 3.6. Let {Y'} be a sequence of RCLg-supersolutiongor g-

supermartingalg on [0, T'] that monotonically converges up (&) with

Esup, 0.1y 1Y:I°] < oo. Then(Y) itself is also an RCLIg-supersolution
(or g-supermartingali

Proof. Like in the proof of Theorem 3.3, we consider the following family
of BSDE, fori =1,2, ...,

T T T
=t [ soldds+i [C@iyhas - [ zaw, .
t t t

Since, foreach i, (Yf) is a g-supermartingale, by Lemma 3.4, yf < Yf (=Y.
By comparison theorem y’ < y*!. Thus this sequence of continuous g-
supersolutions converges monotonically to y, < Y;. It follows from Theo-
rem 2.4 that (y,) is an RCLL g-supersolution.

It remains to prove that (y,) coincides with (Y;). It suffices to prove that,
for each j, y, > Y/ . To this end we consider the BSDE



Monotonic limit theorem of BSDE 491

P . T .. .. T . P T P
vl =Y%+/ g(y&’”,z‘{”,s)deri/ ¥/ —ys’”)ds—/ AW .
t t t

From comparison theorem, y/ > y/"' whenever i > j. On the other hand,
we have shown in the proof of Theorem 3.3 that, for fixed j, the sequence
{y/} converges monotonically up to the g-supermartingale Y. It follows
that, for each j, ¥, > y, > Y/. Thus y, coincides with Y,. The proof is
complete. m|

3.2. g-expectation and related decomposition theorem

Since M. Allais’s famous paradox, economists begin to look for a nonlin-
ear version of the notion of mathematical expectations and/or non-additive
probability in order to improve the notion of ‘expected utility” introduced by
Von Neumann-Morgenstern, a fundamental concept in modern economic
theory. A typical example of such notion is ‘certainty equivalence’ (see
[DE]). But one important problem is: how to find a natural generalization of
the classical expectations, e.g., the one which preserves, as many as possible,
properties of the expectation except the linearity.

In this subsection we will make an additional assumption on the func-
tion g:

2(»,0,)=0, VyeR. (3.4)

Under this condition one can introduce a notion of g-expectation. This g-
expectation preserves all properties of the classical expectation except the
linearity. Similarly to the classical case, we can define the related con-
ditional g-expectation with respect to #,. It also preserves all properties
of the classical conditional expectation except the linearity. Thus it is a
very natural extension of the classical (or linear) expectations. The above
g-supermartingales and the related nonlinear Doob—Meyer decomposition
can be stated in a very natural way.

This notion of g-expectation was initially introduced in [P2] in a more
general framework. Here we will only state it in L*(Q, Zr, P) and give
some sketch of proofs of its basic properties. Our main objective in this paper
is to prove that the decomposition theorem of Doob—Meyer’s type still holds
true for g-supermartingale. We will also use the notion of g-solution (Def.
1.5) to simplify the statement.

Condition (3.4) is equivalent to

g(ylAa ZlAa ) = lAg(y, Z, ')’ V(y5 Z) S R X Rn? VA S 97T‘ (35)

Observe that, for a g-solution (y;) on [0, T'], yy is a deterministic number
that is uniquely determined by its terminal condition yr. We then define
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Definition 3.5. For eachX e L*(Q2, #7, P; R), let (y,) be theg-solution
on [0, T'] with terminal conditiony; = X. We cally, the g-expectation of
X and denote it by, [X] := yo.

Remark 3.6.Since X is # r-measurable, then, for any 7' > T, X is also
Z p-measurable. By Def. 3.5, the g-expectation of X may be also defined by
&4[X] :=y,, where (y’) is the g-solution on [0, 7'] with terminal condition
vz = X.But, by (3.5), one can check that y, = X (z; = 0) on [T, T1]. Thus
y coincides with y’ on [0, T1].

Like classical expectations, the “g-expectation” has the following prop-
erties.

Lemma 3.7. &,[-] has the following properties:

(i) (preserving of constantsFor each constant, &,[c] = c;

(ii) (monotonicity: If X; > X,, a.s, thené,[X ] > &,[Xz];

(iii) (strict monotonicity: If X; > X,,a.s,and P(X; > X,) > 0, then
we haves,[X ] > &,[Xs].

Proof. By (3.5), the g-solution (y;) on [0, T'] with terminal condition y; = ¢
is identically equal to c. Thus (i) holds. (ii) and (iii) are a direct consequence
of the comparison theorem 1.3. O

For each + < T, we now introduce the notion of the conditional g-
expectation with respect to .#,. Similarly to the classical case, for a given
X € Lz(Q, Fr, P), we look for a random variable n € Lz(Q, T, P)
satisfying

Eo[14X] = &g[1an], forall A e 7, (3.6)
We have

Proposition 3.8. For eachX e L*(Q, Z, P), let (y,) be theg-solution
on [0, T'] with terminal conditiony; = X. Then, foreach < T, n =y, is
the unique element ih?(Q2, #,, P) such that(3.6) is satisfied.

It is then reasonable to defing as the conditionak-expectation with
respect toz,.

Definition 3.9. Let(y,) be theg-solution on0, 7] with terminal condition
yr = X € L*(Q, 77, P). For eacht < T, We call y, the conditional
g-expectation o with respect to7, and denote it by, [ X|Z,].

Remark 3.10For a stopping time 7 < T, we can similarly define the
conditional g-expectation of X with respect to 7, by &,[X|7 ;] =: y..
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Proof of Proposition 3.8.1) UniquenessIf both n; and n, satisfy (3.6),
then

Edmlal = &4lmalal, forallAe 7, .
Particularly, when A = {n; > n,}, we have

Eelnili =yl = Eelnalin >yl

Butni1y,>,) = 121(y,>4,}- Thus, by the strict monotonicity of g-expectation
(Lemma 3.7 (iii)) it follows that

Mlgzny = mlg=n), as.

Similarly,

Mgi<my = mlp<pmn  as.

These two relations implies 11 = 1;, a.s..
2) ExistenceSince (y;) is the g-solution on [0, T'] with terminal condi-
tion yr = X, then by (3.5), for each A € #,,

T T
Lays = 14X +f g ayr, 1az,, r)dr _f laz, dW,, selt,T].
s s

Thus the g-solution (y,) on [0, T'] with terminal condition y7 = 1,X7
satisfies y; = 14y;. It follows that () is also the g-solution on [0, ¢] with
terminal condition y; = 14y;. According to the definition of &,[-] (see
Remark 3.6) it follows immediately that

éag[lAX]:gg[lAyt], forall A € 7,.

The proof is complete. m|

The conditional g-expectation preserves essential properties (except lin-
earity) of the classical expectations.

Lemma 3.10. &,[-|#] has the following properties

() If X is 7,-measurable, the#,[X|7,] = X

(ii) For eachr andr, thené,[&,[X|7 1|7 ] = 6 X|F a1

i) If X, > X,, then &,[X|7:] > &,[X2|7,]. If, moreover
P(X, > X,) > 0, then we haveP (6,[ X117 ] > &,(X2|7]) > 0.

(iv) ForeachB € 7,, &,[1pX|7,] = 18, X|7,].
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The proof of these properties is similar to this of the classical case: We
omit it.

With the notion g-expectations, a g-martingale (M,)o<,;<r defined in
Def. 3.1 can be written in the form

M; = 648|171 . (3.7

The following property provides another, and more familiar definition
of g-supermartingales.

Proposition 3.11. We assumég3.4). Then a processY;)o<,<r satisfying
E[|Y,]?] < oo is a g-martingale(resp. g-supermartingalgin weak sense
iff

gg[YtLg/TS]:Ys’(resp-gg[yt|97s]EYs)» Vs <t<T .

They areg-martingale (respg-supermartingale) in strong sense iff, in the
above relationss < r are stopping times.

Corollary 3.12. We make the same assumptions as in ThedrémWe
assume furthermore thats independent of and that(3.4) hold. Let(X;) be
ag-submartingale o0, 7' in the strong sense satisfyifgsup, . | X,|*] <
oo. Then(X,) has the following decomposition -

X[:M[_A[ .

Here(M,) is ag-martingale of the forn@3.7) and(A,) isan RCLL increasing
process withdy = 0 andE[(A7)?] < oco. Moreover such decomposition is
unique.

Proof. By Theorem 3.3, this g-submartingale (X;) on [0, T'] has the follow-
ing form: there exists an RCLL increasing process (A;) € L;(O, T) such
that
T T
X, =Xr +/ g(zs,s)ds + Ar — A, —/ zsdWs, t€l0,T].
t t
We set M; = X; + A;, then
T T
M, = (Xr+ Ar) +/ g(zs,8)ds —f zgdW,, te€]0,T] .
t t
It follows from the above definitions that (M,) is a g-martingale and that
M, = 6,16 + Ar|7,], t€[0,T].

The proof is complete. O
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4. BSDE with constraints on §, z)

Let ¢ : R'™ x [0, T] x @ — R be a given nonnegative function such
that, for each (y, z) € R, ¢(y,z,-) € L%(0, T; R") and such that ¢ is
globally Lipschitz with respect to (y, z). In this section we consider BSDE
of type (2.12) with constraints imposed to the solution. i.e., the solution
(yr, z,) must be inside of the zone given by

Ki(w) :={(y,2) eR"™; ¢(y,2,t,0) =0} . (4.1)

The problem consists of finding the smallest g-supersolution on [0, T'],
1.e., a solution of BSDE of the form

T T
y,=s+/ g(ys,zs,s)ds+<AT—A,>—f LdW, (42
t t

such that

(v, z:,1) =0, ae.,as. (4.3)

Definition 4.1. A g-supersolution(y;) on [0, T'] with the decomposition
(zs, A;) is said to be the smallegtsupersolution, giveny = &, subject
to the constraint (4.3) if (4.3) is satisfied apd < y/, a.e., a.s., for any
g-supersolutiony;) on [0, T'] with y7. = & and the decompositiofz;, A;)
subject tap (y;, z;, t) = 0.

We need to introduce the following conditions to ensure the existence
of the upper bound.

(H4.1) We assume that there exists g-supersolution (3,) on [0, T'] with
terminal condition y7 = & such that the constraint (4.3) is satisfied: Let
(Zss A,) be the decomposition of (3,). We have

(s, 2, 1) =0, ae.,as. (4.4)

In order to construct the smallest solution of BSDE (4.2) with constraints
(4.3), we need to introduce the following BSDE

T T
t 1
where

t
Al :=i/ (i, s)ds . (4.6)
0

We can claim
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Theorem 4.2. We assume¢H]1.1), (H1.2) as well as(H4.1). Then the se-
guence og-supersolutiongy’} converges monotonically up te) with

E[ sup |yt|2i| < 0. 4.7)

0<t<T

{z'} and{A’} converges tgz) and (A) respectively in the sense of The-
orem2.4. Furthermore,(y, z, A) is the smallesg-supersolution of BSDE
(4.2) subject to constraintgt.3).

Proof. We first observe that, according to Proposition 1.2,
E [s1t1p |)7,|2:| < 00. 4.8)
From the Comparison Theorem 1.3, we have
Y <

The second relation is gue to the fact that, since the (y,) is a g-supersolution
with decomposition (A;, Z;) such that the constraint (4.4) is satisfied, it can
be regarded as the solution of the following BSDE

T T
fo=bt [ leGuin) +igGuBoolds +Ar = A - [ zaw,
’ ’ (4.9)

It follows from the Comparison Theorem that y/ < 3. But, always from
comparison theorem, we have y/ < y/*1. Thus y! 11 y, < 3.

We observe that the above argument implies that (y;) is dominated from
above by any g-supersolution subject to the constraint (4.3).

Clearly (y,) satisfies (4.7). It follows from Theorem 2.4 and 2.5 that (y,)
is a g-supersolution and that there exists a constant C such that

T 2
E(A"T)2=i2EU ¢(y§,z§,s)ds] <C. (4.10)
0

This theorem also tell us that z/ — zin L_{;(O, T) for p < 2. It then follows
that

¢y, 7, 8) = ¢(ys, 25,8) in L0, T) .

This with (4.10) implies that the constraint (4.3) is also satisfied.
The proof is complete. O
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Appendix

We now give the proof of Lemma 2.3. To this end we need the follow-
ing somewhat classical lemmas: for any given square-integrable increasing
RCLL process on [0,T], the principal contribution of its jumps can be limited
within a finite number of (random) points.

Lemma A.l. Let (A,) be an increasing RCLL process defined[6nT]
with A = 0 andE(A7)? < oco. Then, for any > 0, there exists a finite
number of stopping timeg, k =0,1,2,..., N+ 1withtg =0 < 1 <

- <1 < T = 1y, and with disjoint graphs o0, 7') such that

N
ZE Z (AA): <€ . (A.1)

k=0 te(t,ths1)

Sketch of Prooffor each v > 0, we denote

A) = A=) AATaa sy -

s<t

It has jumps smaller than v. Thus there is a sufficiently small v > 0 such
that

E [Z(Am(v»z} <>
s<T

Now let oy, k = 1,2, ... be the succesive times of jumps of A with size
bigger than v; they are stopping times, and there is N such that

€
B[ X @A) | =3
s€(on,T)
Then 7y = o AT for k < N, and Tty = T satisfies (A.1). O

For applying the formula of the integral by part to the process (y;) (with
jumps), the above open intervals (o, 0x+1) 1s not so convenient. Thus we
will cut a sufficiently small part and only work on the remaining subintervals
(0%, Tr]. This is possible since our filtration is continuous. In fact we have:

LemmaA.2.Let0 < o < T beastoppingtime. Thenthere exists asequence
of stopping timesgo;} with0 < 0; < o, a.s. foreach = 1,2, ..., such
thato; 1 o.

This lemma is quite classical. The proof is omitted.
We now give
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Proof of Lemma 2.3We first apply Lemma A.1 to construct a sequence of

non-decreasing stopping times {ok},iv;%l with op = 0 and oy = T such
that, o < op41 whenever o, < T and that

N
YE > (aA) <8

k=0  te(ox,0k+1)

Then for each 0 < k < N, we apply Lemma A.2 to construct a stopping
time 0 < 7; < oy41, such that

N
EZ(GkH —) <e€.

k=0

Finally we set
’ ’ ’
=Ty T1=01VT, ..., IN=0NVTy

It is clear that 7, € [o%, ox41) N [r,éH, ox+1]. We have also 1y < 041
whenever o, < T. Thus (oy, 7] € (0%, o+1). It follows that

N
EZ(Uk+1 —1) <€,

k=0
or
N
EY (m—o)>=T—¢,
k=0
and
N N
SE Y aar=YE Y aarss.
k=0 te(og, 1] k=0 [G(O’k,o'k+1)
Thus the above conditions (i)—(iii) are satisfied. O
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