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Abstract. For linear partial differential equations, some inverse source
problems are treated statistically based on nonparametric estimation ideas.
By observing the solution in a small Gaussian white noise, the kernel type
of estimators is used to estimate the unknown source function and its partial
derivatives.. It is proved that such estimators are consistent as the noise
intensity tends to zero. Depending on the principal part of the differential
operator, the optimal asymptotic rate of convergence is ascertained within
a wide class of risk functions in a minimax sense.
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1. Introduction

According to Hadamard [9], an initial-boundary value problem for partial
differential equations is said to be well-posed if the equation has a unique
solution which depends continuously on its coefficients and the initial-
boundary data. As a reasonable physical model, the well-posedness reflects
the desired robustness of the direct problem. However, in many engineering
and physical applications, it is of paramount importance to consider the
so called inverse problem. Given the usually imprecise information about
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Grant DMS9600245.



422 P.-L. Chow et al.

the solution, one is required to determine the unknown coefficients and/or
the initial-boundary data. Such problems are usually not well posed or ill
posed, since a small error in the solutions may result in a large deviation
from the true values of the unknown functions to be determined. This lack
of continuous dependence is the major source of difficulties for most inverse
problems. To alleviate these difficulties, there exist many deterministic ap-
proaches to this sort of problems. For instance, the method of quasi-solutions
[13] and the Tikhonov regularization method [19]. Alternatively, a statisti-
cal approach to such problems by introducing data noise has been proposed
by a number of authors, including Sudakov and Khaflin [18], Franklin [5],
Wahba [20], O’Sullivan [14], and Ermakov [4]. Some modern nonparamet-
ric approach to the inverse problems of deconvolution type can be found in
the monographs [1], [8].

The paper is concerned with a statistical approach to the source determi-
nation problems governed by general linear partial differential equations.
As an example, consider the wave equation for the vibration of an elastic
medium in domain D ∈ R3:

∂2u

∂t2
= c21u + 2 (t, x) , t > 0, x ∈ D (1.1)

subject to some given initial-boundary conditions, in which c > 0 is a
constant, 1 = ∑3

i=1
∂2

∂x2
i

is the Laplacian and 2 is the unknown source
function. The problem consists of determining the source 2 by observing
the solution u in D over a time interval 0 ≤ t ≤ T . Even with very accurate
solution data, the determination of 2 from (1.1) faces the well known diffi-
culty in numerical differentiation, which is extremely unstable. In this paper
we shall present a statistical approach which generalizes the nonparametric
estimation procedure as proposed in [2] for the case of ordinary differential
equations. In general, for convenience, we will not distinguish the space
and time variables. Consider the problem of estimating the source function
2(x), x ∈ D ⊂ Rd , which is the inhomogeneous term of the equation:

L(x)u = 2(x) , (1.2)

where L(x) is a linear partial differential operator and u satisfies some ap-
propriate side conditions. As to be seen, in our approach, the knowledge of
such conditions is not essential in the estimation of 2(x) for x ∈ D being
away from the boundary ∂D. Even the uniqueness of a solution is essential
only for the lower bounds. In fact, for given 2, we assume only that the
equation (1.2) has a weak solution u which is observed in the presence of
a Gaussian white noise of small intensity ε. The problem is to find a best
estimator 2̂ε for 2 in some sense and to examine its performance. More
precisely the main goal here is to construct a certain type of estimators with
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the best rate of convergence, as ε → 0, for the risks in a minimax sense under
various conditions on the operator L(x) and the a priori known smoothness
of 2. In our statistical approach, the nonparametric estimation based on
the kernel smoothing technique is adopted. This technique was proposed
by Parzen [15] and Rosenblatt [16] for density and regression estimation.
It was applied to the estimation of a signal and its derivatives with white
noise in one dimension [10], [11]. We shall consider two classes of linear
differential operators of order n, depending on whether the principal part
Ln(x) of L(x) is deficient (for definition, see section 3) or otherwise. In
either case we obtain the upper and lower bounds for the risks and prove that
the proposed kernel smoothing estimators for 2 and its derivatives converge
respectively, as ε → 0, to their true values at each interior point of D with
an optimal rate in the minimax sense. The main results are summarized in
Theorems 4.1, 4.2 and 5.1. It will also be shown by several examples that
our results can be applied to many well-known equations in mathematical
physics of elliptic, hyperbolic and parabolic types to ascertain their respec-
tive optimal rates of convergence. To be specific, the paper is organized as
follows. In section two, the estimation problem is formulated and stated
precisely. Section three contains some technical lemmas and two basic the-
orems which are essential for proving the main theorems to follow. The
source estimation problem for the nondeficient case is treated in section
four, where the main results on the upper and lower bounds for estimators
are proved in Theorem 4.1 and Theorem 4.2, respectively. Some improved
results and examples are also presented there. The analogous results for the
deficient case are summarized as Theorem 5.1 in section five with some ex-
amples and remarks. In conclusion, several general remarks on the source
estimation problems are provided in section six.

2. Statement of problem

Let L = L(x) be a linear partial differential operator of order n for x =(
x1, . . . , xd

)
in domain D ∈ Rd with smooth boundary ∂D. We assume

that the function u(x), x ∈ D, satisfies the equation (1.2) in a weak sense
so that, for any ϕ ∈ C∞

K (D),(
u,L∗ϕ

) = (2, ϕ) (2.1)

where C∞
K (D) denotes the space of infinite-time continuously differentiable

functions with compact support K ⊂ D, L∗ = L∗(x) the formal adjoint
operator of L [6] and (·, ·) is the inner product in L2 (D).

For a fixed x0 in D, let O(x0) ⊂ D be a ball centered at x0 of some radius
ρ > 0. Denote by

∑
(β, L, O(x0)) = ∑

(β1, . . . , βd, L, O(x0)) the class
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of functions g on D having ki derivatives with respect to the component xi

of x in O(x0), for i = 1, . . . , d, and satisfying∣∣∣∂ki

i g
(
xi

h

)− ∂
ki

i g(x)

∣∣∣ ≤ L |h|αi, 0 < αi ≤ 1, βi = ki + αi ,

for all x, xi
h ∈ O(x0) with i = 1, . . . , d and some constant L > 0, where

∂
ki

i = (∂/∂xi)ki , xi
h = x + hei , with h ∈ R and ei being the unit vector in

the xi− direction.
We suppose that the solution u of (1.2) (or (2.1)) is observed in the

presence of a Gaussian white noise of intensity ε. This means specifically
that the observed field Vε is a random measure taking the form

Vε(dx) = u(x) dx + εW(dx) , (2.2)

or, for any Borel set 0 ⊂ D,

Vε(0) =
∫

0

u(x) dx + εW(0) (2.3)

where W (·) is a Gaussian white noise in Rd : a Gaussian orthogonal random
measure on Rd (see [17], [21]) with EW (0) = 0 and

EW(0)W(0′) = m(0 ∩ 0′)

for any Borel sets 0 and 0′, where m denotes the Lebesgue measure. It is
known that for any f ∈ L2(R

d) the stochastic integral

I (f ) =
∫

Rd

f (x)W(dx) (2.4)

is well defined and has the properties

EI (f ) = 0 ,

EI (f )I (g) = (f, g), for f, g ∈ L2(R
d) . (2.5)

Here and henceforth (., .) and ‖·‖ denote the inner product and the L2 norm
in Rd or in D, as the case may be.

Suppose that, for any ϕ ∈ L2 (D) a statistician can observe∫
D

ϕ(x)Vε(dx) =
∫

D

ϕ(x)u(x) dx + ε

∫
D

ϕ(x)W(dx) (2.6)

which is, of course, equivalent to the observation equation (2.3).
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Now we state the problem: Given the prior information:

2 ∈
∑

(β1, . . . , βd, L, O (x0)) ,

find the best estimator for 2 (x0), in some sense to be made precise later,
based on the observation (2.2) or (2.3). This problem will be studied in
steps. The first step is to consider in section three, the simplest problem of
estimating u(x) and its derivatives in equation (2.2). Then we shall take up
the general problem for two distinct cases in section four and section five
separately, corresponding to the different type of L being considered.

3. Preliminary results

Before proceeding to the general problem, let us consider the problem of
estimating u(x0) and its derivatives on the basis of the observation equation
(2.2). The preliminary results for this simple problem are essential for the
subsequent analysis. This signal-plus-noise model is very close to the one
considered in [11], which dealt with the estimation of u(·) and its derivatives
in different metrics for the one dimensional case. Here, in contrast, we
are interested in the estimation of the functional u(x0) and its derivatives
only.

Clearly the observation (2.2) generates a Gaussian measure P ε
u (·) on the

space of linear functionals

` (Vε) (ϕ) =
∫

D

ϕ(x)Vε(dx), ϕ ∈ L2(D) , (3.1)

as defined by (2.6). In view of (2.5) the measure P ε
u has the mean E` (Vε) (ϕ)

= (ϕ, u) and the identity covariance operator. So the measures P ε
u and P ε

0
are absolutely continuous (see e.g. Chap. 7 in [7]) if and only if u ∈ L2 (D)

and the Radon-Nikodym derivative is given by

dP ε
u

dP ε
0

(Vε) = exp

{
1

ε

∫
D

u(x)W(dx) − 1

2ε2
‖u‖2

}
, (3.2)

where P ε
0 is the Wiener measure for εW (·) . Therefore the family of mea-

sures P ε
u on L2 (D) satisfies the local asymptotic normality (LAN) condi-

tion in L2 in the sense of [12] with normalizing factor ε.

To estimate u(x0) and its derivatives, it is assumed that u is locally
smooth such that

∂m
x u(x) = ∂

m1
1 ∂

m2
2 . . . ∂

md

d u(x) ∈
∑

(β, L, O (x0)) (3.3)
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Denote by G` the set of (` + 1)-time continuously differentiable kernels g

on R with compact support such that the following properties hold:∫
R

g(r) dr = 1 and
∫

R

rig(r) dr = 0, i = 1, . . . , ` . (3.4)

Let δ = (δ1, . . . , δd) with δi > 0 for each i and gi ∈ Gki
. Define the kernel

gδ(x) =
d∏

i=1

δ−1
i gi

(
xi

δi

)
, (3.5)

and introduce the following kernel estimator of ∂mu (x) = ∂m
x u(x):

ûε
m(x) =

∫
D

∂m
x gδ (x − y) Vε (dy) . (3.6)

Then, noting (2.6) and (3.5), the estimation error can be written as

4ûε
m(x)=̇ûε

m(x) − ∂mu(x) = (3.7)∫
D

gδ (x − y)
[
∂m
y u (y) − ∂m

x u(x)
]
dy + ε

∫
D

∂m
x gδ (x − y) W (dy) .

In the next two sections, we often need the following two elementary lem-
mas. The proof of the first one uses the Taylor formula in each variable and
(3.4). The proof of the second one is straightforward. Details are therefore
omitted (for one-dimensional case see in [11]).

Lemma 3.1. Let gδ(x) be defined by(3.4) with gi ∈ Gki
, and letf ∈∑

(β, L, O (x0)), with δi ∈ (0, 1] andβi = ki + δi, for i = 1, . . . , d. Then
there existsC > 0 such that∣∣∣∣∫

D

gδ (x − y) [f (y) − f (x)] dy

∣∣∣∣ ≤ C

d∑
i=1

δ
βi

i , x ∈ O (xo) , (3.8)

for some sufficiently small|δ|, where, for any closed setU ⊂ O(x0), the
constantC can be chosen independent ofx ∈ U .

Lemma 3.2. For the kernel functiongδ(x) defined by(3.5), the following
holds

E

[∫
∂m
x gδ(x − y)W(dy)

]2

= ∥∥∂m
x gδ(x − ·)∥∥2

≤ C

d∏
i=1

δ
−(2mi+1)
i (3.9)

for someC > 0.
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With the aid of the basic lemmas, the following theorem can be proved
easily.

Theorem 3.1. Suppose that, for the observation scheme(2.2) (or (2.3)),
the function∂mu is from the class

∑
(β, L, O(x0)) with O (x0) ⊂ D. Then

the linear estimator̂uε
m defined by(3.6) with δi = Ciε

γ/βi has the property

sup
x∈O(x0)

E
∣∣ûε

m(x) − ∂m
x u (x)

∣∣2 ≤ Cε2γ (3.10)

where

γ = 2

(
2 +

d∑
i=1

2mi + 1

βi

)−1

(3.11)

andC is independent ofε.

Proof.By (3.7), we have

E
∣∣ûε

m(x) − ∂m
x u (x)

∣∣2 = ∣∣E4ûε
m (x)

∣∣2 + Var
{4ûε

m (x)
}

. (3.12)

By assumption, ∂m
x u ∈ ∑ (β, L, O (x0)), apply Lemma 3.1 to get

∣∣E1ûε
m(x)

∣∣2 =
∣∣∣∣∫

D

gδ (x − y)
[
∂m
y u (y) − ∂m

x u(x)
]
dy

∣∣∣∣2 ≤ C1

d∑
i=1

δ
2βi

i

(3.13)
for some C1 > 0 independent of δ and x ∈ U. In view of Lemma 3.2,

Var
{4ûε

m(x)
} = ε2E

[∫
∂m
x gδ (x − y) W (dy)

]2

≤ C2ε
2

d∏
i=1

δ
−(2mi+1)
i ,

(3.14)
with C2 > 0 independent of x, ε and δ. Making use of the inequalities (3.13)
and (3.14), equation (3.12) yields

E
∣∣ûε

m(x) − ∂m
x u (x)

∣∣2 ≤ C1

d∑
i=1

δ
2βi

i + C2ε
2

d∏
i=1

δ
−(2mi+1)
i

≤ Cε2γ

as asserted, if we choose δ
βi

i = C3ε
γ for some C3 > 0 with γ defined by

(3.11).
ut
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Remark 3.1.For m = 0, the result (3.10) gives E
∣∣ûε(x) − u(x)

∣∣2 ≤ C

ε4β0/(2β0+1), where β−1
0 = ∑d

i=1
1
βi

. ut
Remark 3.2.Since the estimator ûε

m(x) is a Gaussian random variable, it
follows from (3.10) that, for any loss function ` (r) ≤ C exp(λr2), λ ≤ λ0,

the following inequality holds

sup
ε>0

sup
x∈O(x0)

E`
([

ûε
m(x) − ∂mu(x)

]
/εγ

)
< ∞ ,

if ∂mu(x) ∈ ∑(β, L, O(x0)). ut

In dealing with the lower bounds, consider the estimation of θ ⊂ R1

given the observation

Vε(dx) = (20(x) + θϕε(x)) dx + εW(dx) (3.15)

where both ϕε and 20 are known functions in L2(R
d). Let T denote the set

of all estimators for θ based on the observation Vε(·). Also introduce the
class 3 (µ) of loss functions ` : R → R+ which are even, increasing over
R+ with ` (0) = 0 and satisfy ` (r) ≤ Ceµr2

, for some C > 0 and µ > 0.

The following lemma will be useful for studying lower bounds.

Lemma 3.3. Consider the estimation ofθ ∈ A ⊂ R1 based on the obser-
vation(3.15). Assume that the set{θ : |θ | ≤ bε ‖ϕε‖−1} ⊂ A. Then, for any
` ∈ 3 (µ)

lim inf
ε→0

inf
θε∈T

sup
θ∈A

E`
(
ε−1 ‖ϕε‖ (θε − θ)

) ≥ 1

2
√

2π

∫
|r|<b/2

` (r) e−r2/2 dr

(3.16)

Proof. This follows from the fact that (see (3.2)) the family of measures
P ε

θ (·) for Vε given by (3.15) satisfies the LAN property with the norming
factor ε ‖ϕε‖−1 . The corresponding Fisher information is Iε = ε−2 ‖ϕε‖2 .

Therefore we can apply the inequality (2.12.19) from [9] to obtain the lower
bound (3.16). ut
Theorem 3.2. Consider the observation(2.3) and letUm,β denote the set
of functionsu ∈ L2(D) such that

∂mu ∈
∑

(β, L, O (x0)) . (3.17)

Then, for any` ∈ 3(u),

lim inf
ε→0

inf
Tε∈T

sup
u∈Um,β

E`
(
ε−γ

(
Tε − ∂mu(x0)

))
> 0 , (3.18)

whereT is the set of all estimators based on(2.3), and γ is defined by
(3.11).
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Proof.As in [9] and [10], to prove the lower bound, it is sufficient to restrict
the functions u to a one-parameter family linear in θ ∈ (−1, 1) . We find
the family in the form:

uε (x, θ) = θεa

d∏
i=1

ϕ

(
xi − xi

0

εbi

)
.= θϕε (x − x0) , (3.19)

where ϕ is a sufficiently smooth function with a compact support and

ϕ(mi)(0) 6= 0, i = 1, 2, . . . , d .

For the choice of uε by (3.19), the Fisher information for θ given the obser-
vation (2.2), can be calculated by noting (3.2) and (3.19) as follows:

Iε = ε−2 ‖ϕε‖2 = ε2(a−1)+∑d
i=1 bi ‖ϕε‖2d . (3.20)

It is clear from (3.19) that the condition (3.17) is valid if

a −
d∑

j=1

mjbj ≥ βibi, i = 1, 2, . . . d . (3.21)

Let

β1b1 = β2b2 = · · · = βdbd = κ , (3.22)

and choose bi to satisfy the equations

d∑
i=1

bi = 2 (1 − a) , a −
d∑

i=1

mibi = κ . (3.23)

Then, from (3.22) and (3.23), we obtain

a = κ

(
d∑

i=1

miβ
−1
i + 1

)
; bi = κβ−1

i , i = 1, 2, . . . d , (3.24)

with

κ = γ = 2

[
2 +

d∑
i=1

(2mi + 1) β−1
i

]−1

.
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For the choice (3.24) of a and bi, uε ∈ Um for any ε > 0 and Fisher’s
information Iε = I beingindependent of ε. For any ` ∈ 3(µ), noting
(3.20) and (3.24), we have

inf
Tε∈T

sup
u∈Um,β

E`
(
(Tε − ∂mu (x0)) ε−γ

)
≥ inf

Tε∈T
sup

θ∈(−1,1)

E`
((

Tε − ∂m
xo

uε (x0, θ)
)
ε−γ

)
= inf

Tε∈T
sup

θ∈(−1,1)

E`

((
Tε − θεγ

d∏
i=1

ϕ(mi)(0)

)
ε−γ

)
≥ inf

Tε∈T
sup

θ∈(−1,1)

E`
(
ηε−1 ‖ϕε‖ (θε − θ)

)
,

(3.25)

where

η =
[
|ϕ|d

d∏
i=1

ϕ(mi)(0)

]−1

(3.26)

and |ϕ| denotes the L2 - norm of ϕ in R1. Recall : ϕ(mi)(0) 6= 0, for each i,

so that |η| < ∞. Let us choose b > 0 and b < ε−1 ‖ϕε‖ = |ϕ|d , so that
|θ | < 1. Then we can apply Lemma 3.3 to (3.25) to yield the desired result:

lim inf
ε→0

inf
Tε∈T

sup
u∈Um,β

E`
((

Tε − ∂mu(x0)
)
ε−γ

)
≥ 1

2
√

2π

∫
|r|<b/2

` (ηr) e−r2/2dr > 0 ,

where γ and η are defined by (3.11) and (3.26), respectively. ut
In what follows, we say that two real functions a (ε) � b (ε) for ε → 0

if there exist constants C1 and C2 such that

0 < C1 < a(ε)/b(ε) < C2 < ∞
for any ε ∈ (0, ε0), ε0 > 0.

Remark 3.3.Theorems 3.1 and 3.2 show that, among the class 3 (µ) of loss
functions `, the optimal rate of convergence for the estimator Tε to ∂mu in∑

(β, L, O (x0)) is of the order of εγ , which cannot be improved. So for
ε → 0

lim inf
ε→0

inf
Tε∈T

sup
u∈Um,β

E`
((

Tε − ∂mu(x0)
)
ε−γ

) � 1 (3.27)

ut
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Remark 3.4.Let ∂m20 ∈ ∑ (β, L1, O(x0)) with L1 < L and consider the
family

uε (x, θ) = 20(x) + θϕε (x − x0) . (3.28)

Introduce a metric on
∑

(β, L, O (x0))

ρm,β (f1, f2) = sup
x∈O(x0)

d∑
j=1

kj∑
rj =0

∑
`≤m

∣∣∂rj

j

(
∂`f1(x) − ∂`f2(x)

)∣∣ (3.29)

where ` and m are multi-indices and ` ≤ m means 0 ≤ `i ≤ mi, i =
1, 2, . . . d.

Then one can conclude from (3.19) that for any δ > 0, θ ∈ (−1, 1)

ρm,β (uε, 20) < δ and uε (x, θ) ∈ ∑ (β, L, O (x0))

if ε < ε0 sufficiently small and ϕ in (3.19) is chosen properly. ut
Therefore, by applying Lemma 3.3 again, we arrive at a generalized

version of Theorems 3.1, 3.2.

Theorem 3.3. Consider the observation scheme(2.2). Then for anỳ ∈
3 (µ) , ∂m20 ∈ ∑

(β, L1, O (x0)) with L1 < L, and for anyδ > 0, as
ε → 0,

inf
Tε∈T

sup
u∈Um,βρm,β (u,20)<δ

E`
((

Tε − ∂mu(x0)
)
ε−γ

) � 1 (3.30)

ut
Remark 3.5.From the preliminary results, it has become clear that, inside a
bounded domain D, the estimation problem can be localized by the kernel
gδ for small δ > 0. Therefore, in the subsequent analysis, the integration
with respect to gδ over D will often be replaced by that over Rd without
further explanation.

4. Source estimation problem

We consider now the estimation problem (1.2), based on the observation
(2.2), or more specifically, the estimation of 2(x), x ∈ D, in the equation

L(x)u(x) = 2(x) , (4.1)
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where

L(x) =
n∑

k=0

fk (x, ∂1, . . . , ∂d)
·=

n∑
k=0

fk (x, ∂x) ,

and, for x ∈ D, fk (x, ·) is a homogeneous polynomial of degree k in λ ∈
Rd :

fk(x, λ1, . . . , λd) =
∑
|j |=k

ak
j (x)λj =

∑
|j |=k

ak
j 1

, . . . , jd
(x)λ

j1
1 . . . λ

jd

d ,

(4.2)
with λ = (λ1, . . . , λd) ; j = (j1, . . . , jd) and |j | = ∑d

i=1 ji .

Let Ln(x) = fn(x, ∂x) be the principal part of L(x) with the cor-
responding principal polynomial fn (x, λ) . As we will show, the rate of
convergence for (4.1) depends on the form of Ln. By convention, we will
say that L (x) is nondeficientor regularat x0 w.r.t. x = (x1, . . . , xd) if all
of the coefficients of ∂n

i u, i = 1, . . . , d, are not equal to 0 at x0. In other
words L is regular at x0 if its principal polynomial fn (x0, λ) satisfies the
condition:

∂n
λi
fn (x0, λ) 6= 0 for i = 1, 2, . . . , d . (4.3)

Otherwise, L is said to be deficientat x0. In this section we first treat the
regular case. A class of problems with deficient L will be considered in the
next section.

To this end, as before, we assume that the solution of (4.1) is observed in
a Gaussian white noise, so only Vε(·) from (2.3) is available to a statistician.
We also assume that

2 ∈
∑

(β, L, O (x0)) =
∑

(β1, . . . , βd, L, O (x0)) , x0 ∈ D , (4.4)

and consider the estimation of 2 in (4.1) given the observation (2.3). Here
the questions are: How do we construct an estimator for 2 (x0) at any point
x0 ∈ D, with the optimal rate of convergence for certain risks and what
is the optimal rate of convergence as ε → 0? To answer these questions,
let us introduce again the formal adjoint operator L∗(x) of L(x). Assume
that in (4.2), the coefficients ak

j ∈ Ck
b (D), the set of all bounded k-times

continuously differentiable functions on D, for k = 0, 1, . . . , n. Then the
adjoint L∗(x) exists and is given by [6]

L∗(x)u(x) =
n∑

k=0

(−1)k ∂j
x

[
ak

j (x)u (x)
]
, u ∈ Cn

b (D) . (4.5)
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The following Green’s identity holds for u, v ∈ Cn
b (D):

∫
D

(
vLu − uL∗v

)
dx =

∫
∂D

B (u, v) dS , (4.6)

where B (u, v) is a bilinear expression in u(x) and v(x) and their derivatives
up to order (n − 1) and dS is the surface element on ∂D. In particular let
V (x) = gδ (x − x0) for x0 ∈ D, which is the kernel function as defined in
(3.4). Choose δ = δ (ε) → 0 as ε → 0. Then, for small enough ε, gδ(·−x0)

has a compact support in O (x0) ⊂ D, so that B(u, gδ(· − x0)) vanishes on
∂D and the identity (4.6) yields

∫
gδ (y − x0)L (y) u (y) dy =

∫
u (y)L∗ (y) gδ (y − x0) dy . (4.7)

Now we introduce the estimator

2̂ε (x0) =
∫

L∗ (y) gδ (y − x0) Vε (dy) , (4.8)

which is a generalization of (3.6). (Here, for convenience, the variable x and
y have been interchanged.) Similar to (3.7), by taking the equations (4.1),
(4.7) and (2.2) into account, equation (4.8) gives

2̂ε (x0) − 2 (x0) =
∫

gδ (y − x0) [2 (y) − 2 (x0)] dy

+ε

∫
L∗ (y) gδ (y − x0) W (dy) . (4.9)

Note that, by assumption ak
j ∈ Ck

b (D) , k ≤ n, we have

∥∥L∗gδ (· − x0)
∥∥2 ≤ C

δ1. . .δd

d∑
i=1

δ−2n
i (4.10)

for some C > 0.



434 P.-L. Chow et al.

In view of (4.4) and (4.7), we apply Lemmas 3.1 and 3.2 to get

E

∣∣∣2̂ε (x0) − 2 (x0)

∣∣∣2 ≤ C

(
d∑

i=1

δ
2βi

i + ε2

δ1 . . . δd

d∑
i=1

δ−2n
i

)
(4.11)

It is easy to see that the right hand side of (4.11) is minimal in the order of
convergence to 0, as ε → 0, when

δi = Ciε
µi with µi = 2β−1

i

2 + ρ + 2nβ−1
min

, (4.12)

where ρ = ∑d
i=1 β−1

i and βmin = min {β1, β2, . . . , βd} .

Upon substituting (4.12) into (4.11), we arrive at the following theorem.

Theorem 4.1. Let the solution of the equation(4.1) be observed in the
Gaussian white noiseW(·) with intensityε and letVε (·) be the observed
random measure defined by(2.2). Assume that the partial differential op-
erator L has its coefficientsak

j ∈ Ck
b (D) for k = 0, 1, . . . n; 2 ∈∑

(β, L, O (x0)) and the kernelgδ is defined by(3.4) and (3.5) with gi ∈
Gki

, i = 1, 2, . . . d. Then, by choosing the‘bandwidths’ δi in accordance
with (4.12), the estimator2̂ε (x0) , x0 ∈ D, has the property: for some
constantC > 0 independent ofε,

E|2̂ε(x0) − 2(x0)|2 ≤ Cε2κ; κ = 2(2 + ρ + 2nβ−1
min)

−1 . (4.13)

Remark 4.1.The estimator 2̂ε(x0) is a Gaussian random variable, so (see
Remark 3.2) for any loss function with `(r) ≤ C exp(λr2), λ ≤ λ0, the
following inequality is valid

lim sup
ε→0

E`((2̂ε(x0) − 2(x0))/ε
κ) < ∞ . ut (4.14)

Remark 4.2.As in the estimation of u, for 2 ∈ ∑
(β + m, L, O(x0)),

the mixed partial derivative ∂m2ε(x0) can be estimated by 2̂ε
m(x0) =

∂m2̂ε(x0) and a similar upper bound for E|2̂ε − ∂m2ε(x0)|2 can be ob-
tained. ut

In general the upper bound (4.13) and (4.14) are not tight, but, if the
condition (4.3) for L is valid, they turn out to be tight as we will now show.

Theorem 4.2. Assume that the equation(4.1) has the unique solution for
some specified initial/boundary conditions and the assumptions of Theorem
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4.1 are valid. In addition assume that the regularity condition(4.3) for L
holds. Then, for anỳ ∈ 3,

lim inf
ε→0

inf
Tε∈T

sup
2∈6

E`((Tε − 2(x0))/ε
κ) > 0, x0 ∈ D , (4.15)

whereT is the set of all estimators based onVε from (2.2),
∑ = ∑

(β, L,

O(x0)) andκ is defined in(4.13).

Proof. The ideas of proof are similar to that of Theorem 3.2. First of all
note that we can restrict ourselves, in the case of lower bound to the zero
initial/boundary conditions. This is so because in general the solution of
(4.1) can be written as the sum of u1 and u2 where u1 is the solution of (4.1)
with zero side conditions and u2 is the known solution of the homogeneous
equation Lu = 0 with the given side conditions. So we can consider again
the family of functions uε(x, θ) of the form (3.19) and define

2ε(x) =̇L(x)uε(x, θ) (4.16)

Now choose the parameters a, bi so that the Fisher’s information for the
parameter θ is of order one, and2ε(x)belongs to

∑
(β, L, O(x0)) as ε → 0.

Similar to the proof of Theorem 3.2, a proper choice of the parameters leads
to the following conditions

2a +
d∑

i=1

bi = 2; a − nbi ≥ biβi

(in comparison with (3.21) and (3.23)), which are sufficient for these pur-
poses. So, for κ given as in (4.13), the above conditions imply that

bi = κβ−1
i ; a = (1 + nβ−1

min)κ .

Therefore the family (4.16) of functions 2ε ∈ ∑(β, L, O(x0)) and Lemma
3.3 is applicable. Now notice that, for this choice of a and bi,

2ε(x0) = L(x0)uε(x0, θ) = C1θεκ(1 + o(1)) as ε → 0 ,

provided that condition (4.3) is met. So the estimation of θ for this family,
as ε → 0, is equivalent to the estimation of

ε−κL(x0)uε(x0, θ) = ε−κ2ε(x0) .

The validity of the theorem as asserted follows from this fact and Lemma
3.3 analogously as in the proof of Theorem 3.2. ut
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Remark 4.3.It follows from (4.14), (4.15) that for x0 ∈ D, ε → 0

inf
ûε(x0)∈T

sup
u∈∑(β,L,O(x0))

E`(ûε(x0) − u(x0)ε
−κ) � 1

for any ` ∈ 3(µ). In particular, for n = 0 we have again (3.27). ut

Remark 4.4.As mentioned before (see Remark 3.4), the lower bound can
be strengthened. That is, the sup taken in (4.15) over

∑
(β, L, O(x0)) can

be replaced by the sup over its intersection with an arbitrary small ρm,β-
neighborhood (see (3.29)) of a fixed function 20 ∈ ∑(β, L1, O(x0)) with
L1 < L, such that there exists a solution of the equation L(x)u(x) =
20(x), subject to suitable initial-boundary conditions. ut

Remark 4.5.In view of Theorems 4.1 and 4.2 and the previous remarks, we
can conclude that the optimal rate of convergence is εκ and for ` ∈ 3,

inf
Tε∈T

sup
2∈61

E`((Tε − 2(x0))/ε
κ) � 1 (4.17)

as ε → 0, where
∑

1 = ∑
(β, L, O(x0)) ∩ {u : ρm,β(u, 20) < δ}, x0 ∈ D

and κ is defined as in (4.13). ut
The theorems can be applied to source estimation problems for some

well-known equations in mathematical physics. In what follows, we shall
give a few examples as special cases of (4.1).

Example 4.1. For n = 1, consider the first-order linear equation

Lu =
d∑

i=1

ai(x)∂iu + a0u

where ai ∈ C
1

b(D) with ai(x0) 6= 0 for i = 1, 2, . . . d, a0 ∈ Cb(D), and
Ck

b(D) denotes the set of bouned, k-time continuously differential functions
on D with C0

b = Cb. Then

L∗u = −
d∑

i=1

∂i[ai(x)u] + a0(x)u ,

and the estimator 2̂ε(x0) in (4.5) has the convergence properties (4.17) with
the rate

κ = 2(2 + ρ + 2β−1
min)

−1; ρ =
d∑

i=1

β−1
i
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Example 4.2.For n = 2, consider

Lu =
d∑

i,j=1

aij (x)∂i∂ju +
d∑

i=1

ai(x)∂iu + a0(x)u (4.18)

where aij ∈ C2
b (D), ai ∈ C1

b(D) for i ≥ 1 and a0 ∈ Cb(D). Then we have

L∗u =
d∑

i,j=1

∂i∂j (aiju) −
d∑

i=1

∂i(aiu) + a0u .

Assume that aii(x0) 6= 0, i = 1, 2, . . . , d, so that the regularity condition
(4.3) is valid. Thus the estimator has the convergence property (4.17) with
the rate

κ = 2(2 + ρ + 4β−1
min)

−1 .

So we see that the rate of convergence to zero for the best estimator of 2(x)

is the same for the elliptic and hyperbolic equations of second order.

Example 4.3.For n = 4 and d = 2, consider the operatorL corresponding
the steady-state of a vibrating elastic plate [3],

Lu = 12u + cu

where 12 is the bi-harmonic operator 12u = ∂4
1u + 2∂2

1 ∂2
2 u + ∂4

2u and
c is a constant. Then L∗ = L and the condition (4.3) is met. The rate of
convergence for this case is given by

κ = 2(2 + ρ + 8β−1
min)

−1, where ρ = (β−1
1 + β−1

2 ).

5. Estimation problems with deficiency

When the differential operator L fails to satisfy the condition (4.3) or is
deficient at x0, the estimator 2̂ε will have a different rate of convergence as
to be shown. To be specific, let us consider a class of operatorsL deficient in
the x1this class can be easily generalized. We assume here that the operator
L has the form

L =
m∑

l=1

bl(x)∂l
1 +

n∑
k=0

∑
|j |=k

aj2,...,jd
(x)∂

j2
2 . . . ∂

jd

d = L1(x) + L2(x)

(5.1)

For the lower bound we will consider the following condition.
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Condition A. The operator L2(x) is nondeficient at x0 with respect to
variables x2, . . . , xd, m < n and bm(x0) 6= 0.

In this case we can proceed as before and use the same kernel type
of estimator (4.8) for the upper bounds, with suitably modified choices of
δi = δi(ε). For the lower bounds, the same type of one-parameter family of
functions in the form of (4.16), (3.19) can be adopted.

We assume again the coefficients ofL smooth enough so that the identity
(4.7) is valid and the source term 2 ∈ ∑

(β, L, O(x0)).Using (4.9) we
obtain analogously to (4.11)

E|2̂ε(x0) − 2(x0)|2 ≤ C

[
d∑

i=1

δ
2βi

i + ε2

δ1 . . . δd

(
δ−2m

1 +
d∑

i=2

δ−2n
i

)]
(5.2)

It follows from (5.2) that the rate of convergence for the risks depends on the
relative magnitudes of δi and α = min(β2, . . . , βd). In fact the following
theorem for both the upper and lower bounds holds (compared with Theo-
rems 4.1 and 4.2).

Theorem 5.1. Let the solution of equation(4.1) with the operatorL from
(5.1) be observed in the Gaussian white noiseW(.) with intensityε and let
Vε(.) be the observed random measure defined by(2.2). Assume that(4.4)
is valid and the smoothness conditions on the coefficients of the operatorL

from the Section 4 are fulfilled.Consider again the estimator2̂ε(x0) given
by (4.8) with δi = εκ/βi , i = 1, 2, . . . , d, gi ∈ Gki

, where

κ = 2

2 + ρ + 2(
β1

m

)
∧ (α

n

)
−1

(5.3)

ρ = ∑d
i=1 β−1

i andα = min(β2, . . . , βd).

Then for anỳ ∈ 3,

sup
ε>0

E `((2̂ε(x0) − 2(x0))ε
−κ) < ∞ . (5.4)

If moreover the conditionA is valid, this rate is optimal in the minimax
sense: forε → 0

inf
Tε∈T

sup
2∈6(β,L,O(x0))

E`((Tε − 2(x0))/ε
κ) � 1 (5.5)

Proof. The proof is quite similar to that of Theorems 4.1 and 4.2. We set
δi = εκ/βi in (5.2) to get

E|2̂ε(x0)−2(x0)|2 ≤ C

{
ε2−κρ(ε−2κm/βi +

d∑
i=2

ε−2κn/βi ) + ε2κ

}
. (5.6)
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If κ is chosen as in (5.3) then we have from (5.6) that E|2̂ε(x0)−2(x0)|2 ≤
Cε2κ .Taking into account the fact that 2̂ε(x0) is a Gaussian random variable,
we can deduce that (referring to Remark 4.1) the upper bound (5.4) holds.

For the lower bound we introduce again the family (3.19) in which we
choose

a = ζ

ρ + ζ
bi = 2β−1

i

ρ + ζ
, ζ = 2 + [(β1/m) ∧ (α/n)]

−1 . (5.7)

It is an easy calculation to check that for this choice of parameters in (3.19),
we have 2̂ε(x) = L(x)uε(x, θ) ∈ ∑

(β, L, O(x0)) for all θ ∈ (−1, 1).

As in (3.19), the Fisher’s information for the estimation of θ is of order one
as ε → 0, because (compared with (5.7)) 2a + ∑d

i=1 bi = 2. Further, a
straightforward computation implies that for ε → 0

2(x0) = θL(x)ϕε(x − x0)|x=x0 = Cθεκ(1 + o(1)) (C 6= 0) .

Therefore the estimation of 2ε(x0) is equivalent to that of θεκ as ε → 0.
Now the lower bound in (5.5) follows from these facts in exactly the same
manner as in the proof of Theorem 3.2. ut

As an application of this theorem, we will give two examples which in-
volve two prominent equations in physical science. In each case, physically
speaking, x1 = t being the time and (x2, . . . , xd) is the space variable.

Example 5.1. For heat conduction or diffusion, consider the parabolic op-
erator L in G = (0, T ) × D with D ⊂ Rd−1 defined by

L(x)u = −∂1u +
d∑

i,j=2

aij (x)∂i∂ju +
d∑

i=2

ai(x)∂iu + a0(x)u ,

where aij ∈ C2
b (D) , ai ∈ C1

b(D) for i ≥ 2, a0 ∈ Cb(D) and
∑d

i,j=2 aijλiλj

> 0 for λ 6= 0.

Then

L∗(x)u = ∂1u +
d∑

i,j=2

∂i∂j (aiju) −
d∑

i=2

∂i(aiu) + a0u .

In this case: n = 2, m = 1, the rate of convergence in (5.4) and (5.5) is
given by

κ = 2[2 + ρ + 2

β1 ∧ (α/2)
]−1; ρ =

d∑
i=1

β−1
i , α = min(β2, . . . , βd)
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Example 5.2. For the vibration of an elastic plate [3], the operator L is of
the form

Lu = (∂2
1 − 12)u ,

where 12u = (∂4
2 + 2∂2

2 ∂2
3 + ∂4

3 )u.

Here clearly L = L∗ is formally self-adjoint, and the Condition (A)
holds with n = 4, m = 2. The assumptions in Theorem 5.1 are fulfilled so
that the optimal rate κ of convengence is equal to

2[2 + ρ + 4

β1 ∧ (α/2)
]−1, with ρ =

3∑
i=1

β−1
j .

6. Concluding remarks

In this paper a nonparametric estimation approach to inverse source prob-
lems for linear partial differential equations is introduced as a viable alter-
native to the deterministic method. By using the kernel smoothing type of
estimators, we proved that, with a proper choice of the kernel and the “band-
widths” δi, such estimators for the unknown source functions can achieve
the optimal rate of convergence in the minimax sense within a wide class of
risks as the noise intensity ε → 0. Interestingly the optimal rate of conver-
gence depends only on the principal part of the operator L(x) but not on
the type of L, such as elliptic or hyperbolic. The smoothness of solutions
turns out to have no effect at all on the convergence rate. In this sense the
kernel type of estimators is robust for linear problems. The same type of
kernel estimators is applicable to nonlinear inverse problems when either
some coefficients ak

j (x) of L are to be estimated or L(x) itself is nonlinear.
In contrast with linear problems, it is found that the rate of convergence for
a best estimator depends critically on the smoothness of the solution. Re-
sults on some nonlinear estimation problems will be discussed in a separate
paper, (see [2] for the case d = 1).

Although, for brevity, we have only proved theorems concerning the
upper and lower bounds for the estimation of the source 2, it is possi-
ble to estimate its derivatives ∂m2 as well. As was noticed in the Intro-
duction we have considered here only one class of inverse problems, the
source estimation problem fo PDE. We believe that other interesting and
important ill-posed problems can be treated with help of similar nonpara-
metric estimation approach. Note in conclusion that the proposed kernel
smoothing method provides a feasible numerical algorithm for implemen-
tation.
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