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Abstract. For a large collection of random variables in an ideal
setting, pairwise independence is shown to be almost equivalent to
mutual independence. An asymptotic interpretation of this fact shows
the equivalence of asymptotic pairwise independence and asymptotic
mutual independence for a triangular array (or a sequence) of random
variables. Similar equivalence is also presented for uncorrelatedness
and orthogonality as well as for the constancy of joint moment
functions and exchangeability. General uni®cation of multiplicative
properties for random variables are obtained. The duality between
independence and exchangeability is established through the random
variables and sample functions in a process. Implications in other
areas are also discussed, which include a justi®cation for the use of
mutually independent random variables derived from sequential
draws where the underlying population only satis®es a version of
weak dependence. Macroscopic stability of some mass phenomena in
economics is also characterized via almost mutual independence. It is
also pointed out that the unit interval can be used to index random
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variables in the ideal setting, provided that it is endowed together with
some sample space a suitable larger measure structure.

Mathematics Subject Classi®cation (1991): Primary: 60G05, 60G09;
Secondary: 28E05, 60G07, 90A46.

1. Introduction

Independence has long been a primary focus of probability theory,
and is often considered the most important concept in the subject
which helped foster an independent development of the theory of
probability beyond its measure-theoretic context. The de®nition of
independence is the abstraction of a highly intuitive and empirical
notion, linking relevant mathematical theorems to experimentally
observable results in the real world.

There are several versions of independence in the probabilistic
literature, such as pairwise independence and various versions of in-
dependence involving a multiple number of random variables. For a
®nite collection of random variables, these notions are all very dif-
ferent. However, as demonstrated by the subject of probability theory
itself, distinctive new properties arise whenever mass phenomena are
studied. One might ask if a large number of random variables are
considered, how much di�erence is still there among those di�erent
notions of independence?

The ®rst aim of this paper is to show that all the notions of in-
dependence are, in fact, almost identical to their pairwise counterpart
in an ideal setting. An asymptotic interpretation shows that in the
usual sequential setting, these notions are asymptoticly equivalent
even though they are still di�erent. As a consequence of this type of
equivalence result, we are also able to unify multiple versions of
various, seemingly unrelated, multiplicative properties of random
variables, such as those involving generating functions, characteristic
functions, and maximum of random variables. To illustrate this gen-
eral uni®cation, consider a large collection of real-valued random
variables; if for essentially every pair of random variables in the col-
lection, the distribution function of the maximum of the pair is the
product of the individual distribution functions of the two random
variables, then for essentially every tuple of n random variables chosen
from the original collection, the characteristic function of the sum of
these n random variables is the product of the individual characteristic
functions of the random variables in the tuple. This shows that some
notions, though apparently having no relation at all in the ®nite case,
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are in fact essentially equivalent in the ideal setting. Note that the
possibility of deriving results involving multiple versions of some
notion from a pairwise counterpart is a major underlying theme of
this paper. In the sequel, such a general principle will often be sum-
marized as ``Two implies many''.

Another basic concept in probability theory is exchangeability. Our
second aim is to show that the notions of independence and ex-
changeability are dual to each other in the sense that almost mutual
independence (almost exchangeability) of the random variables in a
process in an ideal setting is equivalent to almost exchangeability
(almost mutual independence) of the sample functions of the process.
Such a duality result can also be interpreted in the asymptotic setting
by routine techniques. As another instance of the phenomenon ``Two
implies many'', pairwise and multiple versions of exchangeability are
also shown to be almost equivalent.

Since the continuum is commonly used to model a large number of
entities, it is natural to explore the possibility of studying the various
types of independence in the setting of a continuum of random vari-
ables. However, it is well known that the usual mathematical frame-
work does not permit a meaningful study of a continuum of random
variables with low intercorrelation (see [D], [FG]). In particular, it was
pointed out by Doob (see [D], p.67) that if the random variables of a
continuous parameter process are independent and have a common
distribution (not concentrated at a single point), then the process is
not jointly measurable and even has no measurable standard modi-
®cation with respect to the relevant product measure. The following
proposition provides a more general result in the same spirit.

Proposition 1.1. Let �I;I;l� and �X ;X; m� be any two probability
spaces with a complete product probability space �I � X ;I
X; l
 m�,
and f a function from I � X to a separable metric space. If f is jointly
measurable on the product probability space, and for l
 l-almost all
�i1; i2� 2 I � I, fi1 and fi2 are independent (this condition is called almost
sure pairwise independence), then, for l-almost all i 2 I, fi is a constant
random variable, where fi is the function on X de®ned by f �i; ��.
Proof. We only prove the case that f is real-valued and bounded. As in
the proof of Theorem 6.5 in [S2], the general case can be proven by using
the compositions of the indicator functions of some open sets with f
which still satisfy the condition of almost sure pairwise independence.

Assume that f is real-valued and bounded. Let A be any measur-
able set in I. By the Fubini Theorem, it is easy to establish the fol-
lowing identities:
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which is zero by the condition of almost sure pairwise independence.
Hence, for m-almost all x 2 X ,

R
A�f �i; x� ÿ Efi� dl�i� � 0.

Thus, for any measurable set B in X ,
RR

A�B�f �i; x� ÿ Efi� dl 
m � 0.
This means that the singed measure s de®ned on �I � X ;I
X� by
integrating f �i; x� ÿ Efi on sets in I
X agrees with the zero measure
on the rectangles. Note that the product algebra I
X is generated
by all the rectangles A� B, and the collection of rectangles is also
closed under ®nite intersections, i.e., a p-system. By applying Dynkin's
pÿ k theorem (see [C], p. 44 and [Du], p. 404), we obtain that the
singed measure s is equal to the zero measure. Thus, both f �i; x� ÿ Efi

and 0 are Radon-Nikodym derivatives of the same measure. By the
uniqueness of the Radon-Nikodym derivatives, we have f �i; x� � Efi

for l
 m-almost all �i; x� 2 I � X . Therefore, for l-almost all i 2 I, fi

is the constant random variable Efi. (

Note that if l is atomless and the process f has mutually inde-
pendent random variables, then the condition of almost sure pairwise
independence is obviously satis®ed. The previous result is still valid
when l has an atom A; one can simply observe that the almost sure
pairwise independence condition implies the essential constancy of the
random variables fi for almost all i 2 A. The above proposition simply
says that no matter what kind of measure spaces are taken, inde-
pendence and joint measurability with respect to the usual measure-
theoretic product are never compatible with each other except for the
trivial case. Thus, to study independence in a continuum setting, one
has to go beyond the usual measure-theoretic framework.

The essential idea in the approach used here as well as in the earlier
papers [S1] and [S2] (further results are in [S3]) is to use a larger
measure-theoretic framework to conduct various simple measure-
theoretic and probabilistic operations which are not applicable in the
traditional framework due to the incompatibility of joint measur-
ability and independence. Except for trivial cases, the processes con-
sidered here are measurable with respect to a r-algebra (called Loeb
product algebra) but not measurable with respect to the strictly
smaller product r-algebra in the usual sense. A key feature is the
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Fubini property, as ®rst shown by Keisler in [K1] (see also [AFHL],
[Cu] and [L2]), for the bigger Loeb product algebra based on a type of
measure spaces introduced by Loeb in [L1]. As shown in the appendix
of [S2], there is no hope of developing a similar framework when
Lebesgue spaces are used to index random variables in a process. On
the other hand, the universality result in Theorem 6.2 of [S2] shows
that one can construct processes on the relevant Loeb product algebra
of any two atomless Loeb spaces whose random variables are almost
surely pairwise independent and may take any variety of distributions
in a well-de®ned sense. These processes are not jointly measurable in
the usual sense as guaranteed by Proposition 1.1. As argued in [S1]
and [S2], another signi®cant advantage of using this larger framework
is that the study of processes in the ideal setting is simply a way of
studying general triangular arrays or sequences of random variables
through the systematic applications of existing measure-theoretic
techniques to a new setting. As demonstrated in this paper and in [S1]
and [S2], distinctive new phenomena do arise naturally in this context.

The rest of the paper is organized as follows. Section 2 contains the
main mathematical results of this paper. Some consequences and im-
plications of the main results are discussed in Section 3. Based on some
additional general results which are in a certain sense the best possible,
the proofs of all the theorems as stated in Section 2 are given in Section
4. Section 5 concerns with asymptotic interpretation of the results in
the ideal setting. Before moving to the next section, we note that if one
prefers to use the unit interval I � �0; 1� to index random variables in a
process, then one can work with ameasure l on I induced by a bijection
between I and a hyper®nite set in an ultrapower construction based on
N (see [AFHL]). This new measure l on I cannot be the Lebesgue
measure. In fact, based on Theorem 7.16 in [S2] and Proposition 4.9
below it is easy to show that for a nontrival almost iid process, almost
all the sample functions are l-measurable but not Lebesgue measurable
(for details, see [S5]). All the results and proofs in this paper can be
reproduced in terms of the new measure l, provided that the unit
interval I with measure l is to be endowed together with some sample
space a suitable larger product measure structure as above. The point is
that the particular choice of a parameter space itself is not an issue;
what is really relevant is the associated measure structure.

2. The main results

In this section, we present four di�erent instances of the phenomenon
``Two implies many'' through the notions of uncorrelatedness, constancy
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of joint moment functions, independence and exchangeability. In ad-
dition, we show that exchangeability is, in fact, the dual notion of
independence. The proofs of these results are given in Section 4.

We shall now ®x some notation. Let T be a hyper®nite set, T the
internal algebra of all internal subsets of T , and k an internal ®nitely
additive probability measure on �T ;T�. Let �T ;L�T�;L�k�� be the
standardization, i.e., the Loeb space, formed from �T ;T; k�; this
standard probability space will be the hyper®nite parameter space for
the processes to be considered here. Starting with another internal
probability space �X;A; P �, we let the Loeb space �X;L�A�;L�P �� be
our sample probability space. For basic properties of Loeb spaces, see
[L1], [AFHL] and [HL].

Note that the internal product space �T � X;T
A; k
 P � is also
an internal probability space. The corresponding Loeb space is denoted
by �T � X;L�T
A�; L�k
 P ��; it will be referred to as the Loeb
product space. Similarly, for a positive integer n, let �T n;Tn; kn� and
�Xn;An; P n� be the n-fold internal product spaces of �T ;T; k� and
�X;A; P � respectively; the associated n-fold Loeb product spaces are
denoted by �T n; L�Tn�; L�kn�� and �Xn;L�An�; L�P n��. Other types of
product spaces for Loeb spaces will appear in Section 4. As usual, a
measurable function of two variables is called a process.Given a process
f , for each t 2 T , and x 2 X, ft denotes the function f �t; �� on X and fx

denotes the function f ��;x� on T . Since the Fubuni type property is
satis®ed by internal processes on the internal product space
�T � X;T
A; k
 P�, one can also obtain the same type of property
for processes on the corresponding Loeb product space. The latter
Fubini Theorem is often called the Fubini Theorem for Loeb measures
or Keisler's Fubini Theorem (see [AFHL], [Cu], [K1] and [L2]). The
functions ft are usually called the random variables of the process f ,
while the fx form the sample functions of the process. Note that the
measurability of ft and fx is guaranteedby the relevantFubiniTheorem.

The following theorem shows that the usual notion of uncorre-
latedness can be used to deduce its multiple versions for a hyper®nite
collection of random variables. The result becomes trivial in the usual
®nite setting since the almost sure uncorrelatedness condition implies
the relevant random variables to be essentially constant.

Theorem 1. Let f be a real-valued process on �T � X;L�T
A�; L�k

P �� with a ®nite m-th moment for some m � 2, i.e., jf jm is L�k
 P�-
integrable. If the random variables ft are almost surely uncorrelated,
i.e., for L�k
 k�-almost all �t1; t2� 2 T � T , ft1 and ft2 are uncorrelated,
then for each 2 � n � m, the random variables ft are almost surely
uncorrelated in n-tuple, i.e., for L�kn�-almost all �t1; t2; . . . ; tn� 2 T n,
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E ft1ft2 . . . ftn� � � Eft1Eft2 . . . Eftn :

A classical example of Bernstein shows that there are three events
which are pairwise independent but not mutually independent (see [F],
p. 126). It is also well known that there are m non-independent events
among which any mÿ 1 of them are mutually independent (see, for
example, [WSS]). The above theorem shows that if one considers a
hyper®nite collection fCt : t 2 Tg of events, then almost sure pairwise
independence implies mutual independence for almost all n- tuples of
events Ct1 ;Ct2 ; . . . ;Ctn , where C 2 L�T
A� and n is any positive
integer greater than two. One can simply take f to be the indicator
function vC of C and observe that E ft1ft2 . . . ftn� � � L�P � Ct1 \ Ct2\�
. . . \ Ctn� and E fti� � � L�P � Cti� �.

For a real-valued process f , one often calls the second joint mo-
ment function Eft1ft2 the autocorrelation function of the process. The
next theorem says that the essential constancy of the second joint
moment function implies that of higher order joint moment functions.

Theorem 2. Let f be a real-valued process on �T � X; L�T
A�;L�k

P�� with a ®nite m-th moment for some m � 2. If the autocorrelation
function of the random variables ft is essentially constant, then for each
1 � n � m, the n-th joint moment of random variables ft are essentially
the constant

R
X Efx� �n dL�P ��x�, i.e., for L�kn�-almost all �t1; t2; . . . ; tn�

2 T n, Eft1ft2 . . . ftn �
R
X Efx� �n dL�P ��x�: In particular, the covariance

function cov�ft1 ; ft2� is essentially equal to the nonnegative constantR
X Efx� �2 dL�P ��x� ÿ R

X Efx dL�P ��x�ÿ �2
.

Theorem 1 covers the almost equivalence of pairwise and multiple
versions of independence for events. We shall now move to the case of
random variables. Note that pairwise independence is also weaker
than mutual independence for a ®nite collection of random variables
(see [F], p. 220).

Theorem 3. Let f be a process from �T � X; L�T
A�; L�k
 P�� to a
separable metric space X and n be an integer greater than or equal to
two. Then the following are equivalent:

(1) the random variables ft are almost surely pairwise independent, i.e.,
for L�k
 k�-almost all �t1; t2� 2 T � T , ft1 and ft2 are independent;

(2) the random variables ft are almost surely independent in n-tuple, i.e.,
ft1 ; ft2 ; . . . ; ftn are mutually independent for L�kn�-almost all
�t1; t2; . . . ; tn� 2 T n.

The idea of exchangeability has a wide range of applications in
both pure and applied probability (see, for example, [A], [Bi], [CT] and
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[K]), which is commonly studied in the sequential setting. A sequence
C of random variables is said to be exchangeable if for any n � 1, the
joint distribution of any n random variables from C depends only on n
but not on the particular choice and order of these n random vari-
ables. As for the case of independence, here we also consider the
almost equivalence of pairwise and multiple versions of exchange-
ability in the ideal setting.

Theorem 4. Let f be a process from �T � X; L�T
A�; L�k
 P�� to a
separable metric space X and n be an integer greater than or equal to
two. Then the following are equivalent:

(1) the random variables ft are almost surely pairwise exchangeable,
i.e., there is a distribution m on X � X such that for L�k
 k�-almost
all �t1; t2� 2 T � T , ft1 and ft2 have a joint distribution m;

(2) the random variables ft are almost surely exchangeable in n-tuple,
i.e., there is a distribution mn on X n such that the joint distribution of
ft1 ; ft2 ; . . . ; ftn is mn for L�kn�-almost all �t1; t2; . . . ; tn� 2 T n. In addi-
tion, the mn must have the form

mn�C1 � C2 � � � � � Cn� �
Z

X
sx�C1� � sx�C2� � � � � � sx�Cn� dL�P ��x�

for all Borel sets C1;C2; . . . ;Cn in X , where sx is the distribution on
X induced by fx. Moreover, for L�k�-almost all t 2 T , the distribu-
tion of ft is simply the distribution induced by f viewed as a random
variable on the Loeb product space.

The notion of exchangeability has already been linked to condi-
tional independence through the classical de Finetti theorem (see [CT],
p. 222, and [K]). The ®nal result of this section relates exchangeability
to unconditional independence. It shows that the two notions are in
fact dual to each other in the sense that almost exchangeability of the
random variables in a hyper®nite process is equivalent to almost in-
dependence of the sample functions of the process in corresponding
settings. One can also view this type of duality the other way around
by interchanging the index and sample variables.

Theorem 5. Let f be a process from �T � X; L�T
A�;L�k
 P�� to a
separable metric space X and n be an integer greater than or equal to
two. Then the following are equivalent:

(1) the random variables ft are almost surely exchangeable in n-tuple;
(2) the sample functions fx, as random variables on �T ;L�T�;L�k��, are

almost surely independent in n-tuple.
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We say a collection of random variables almost mutually indepen-
dent (almost exchangeable) if they are almost surely independent (ex-
changeable) in n-tuple for all n � 2. Thus, Theorem 3 shows the
equivalence of almost mutual independence and almost sure pairwise
independence, while Theorem 5 reveals the duality of mutual inde-
pendence and exchangeability in the almost sense.

3. Some implications of the main results

We ®rst observe that some additional characterizations can be easily
obtained for those processes satisfying various versions of consistent
law of large numbers (or simply the consistency law) as studied in [S1]
and [S2]. This law can be viewed as a formal version of the intuitive
observation, as characterized with the aphorism ``No betting system
can beat the house'', which simply means that a gambler cannot
change the expectation of his return by betting at a particular sub-
sequence. It is also documented in [FG] that if the special case of a
continuum of iid random variables is used to model individual risks,
then one should require sample averages of any nonnegligible sub-
collection of the random variables to be constant, though this is
shown in [FG] to be impossible in the usual setting. Such type of
condition which requires stability not only for a whole system but also
for the large subsystems will be referred to as macroscopic stability.

For a formal de®nition of the consistency law in the setting of
sample means, see De®nition 1 in [S1]. Theorem 2 in [S1] (see also
Theorem 4.6 in [S2]) characterizes those square integrable processes
satisfying the consistency law by almost sure uncorrelatedness. Thus,
by that characterization and Theorem 1 here, it is easy to see that
multiple versions of uncorrelatedness are not only su�cient but also
necessary for the satis®ability of the consistency law.

Theorem 4 in [S1] (see also Theorem 7.6 in [S2]) says that almost
sure pairwise independence is necessary and su�cient for the satis®-
ability of the consistency law in distribution. It also includes the un-
expected result that the almost sure versions of various multiplicative
properties in the pairwise setting are all equivalent to almost sure
pairwise independence. Since Theorem 3 here shows the almost
equivalence of pairwise and multiple versions of independence, it is
clear that the multiple versions of various multiplicative properties are
also equivalent to each other as well as to the satis®ability of the
consistency law in distribution (for a formal de®nition of this concept,
see De®nition 2 in [S1]) as indicated by the following proposition. This
proposition relies on the notion of a separating class for some
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distributions whose formal de®nition in our context can be found in
De®nition 3 in [S1].

Proposition 3.1. Let E be a class of real or complex valued Borel
functions on a separable metric space X , and f a process from
�T � X;L�T
A�; L�k
 P �� to X . Assume that E is a separating class
for all the distributions induced by the sample functions f A

x as well as the
distribution of the process f A viewed as a random variable on A� X,
where A 2T with L�k��A� > 0, and f A is the restriction of f to A� X
with the rescaled Loeb product measure. Let m be a positive integer
greater than or equal to two. Assume that u�f � is a process with a ®nite
m-th moment for each u 2 E. Then the following are equivalent:

(1) f satis®es the consistency law in distribution;
(2) the random variables ft are almost mutually independent;
(3) for each u 2 E, the �u�f ��t are almost surely uncorrelated, i.e., for

L�k
 k�-almost all �t1; t2� 2 T � T , E��u�f ��t1�u�f ��t2� �
E�u�f ��t1E�u�f ��t2 ;

(4) if the functions in E are all real-valued, then for L�kn�-almost all
�t1; t2; . . . ; tn� 2 T n,

E u�ft1�u�ft2� . . . u�ftn�� � � Eu�ft1�Eu�ft2� . . . Eu�ftn�
holds for all u 2 E, where n is any integer between 2 and m;

(5) if the functions in E are complex-valued, then for L�kn�-almost all
�t1; t2; . . . ; tn� 2 T n,

E ui1�ft1�ui2�ft2� . . . uin�ftn�
ÿ � � Eui1�ft1�Eui2�ft2� . . . Euin�ftn�

holds for all u 2 E, where n is any integer between 2 and m,
i1; i2; . . . ; in � 0 or 1, and u0 � u;u1 � �u, the complex conjugate
of u.

To see the above general uni®cation of multiplicative properties in
more concrete situations, we note that both the complex exponentials
eiux and the indicator functions of the intervals �ÿ1; u� form sepa-
rating classes for all distributions on R, and the class of functions
fzx : z 2 �ÿ1; 1�g is separating for distributions of random variables
taking values in natural numbers (see Section 7.4 in [S2]). Applying
the above proposition to these separating classes leads to the general
equivalence of independence and the presence of multiplicative
properties involving characteristic functions, maximum of random
variables, and generating functions, which include the type of equiv-
alence involving maximum of random variables in pairs and product
of characteristic functions in n-tuples, as discussed in the third para-
graph of Section 1.
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Many economic models consider the case where individual agents
face idiosyncratic risks, i.e., risks of gains or losses that are non-
negligible on the individual level but can be exactly predicted in the
aggregate on the macroscopic level (see [A1], [FG] and [S2] for many
references). Then, a natural question arises: how to characterize un-
certainty or risks on the individual level so that there is no random-
ness from macroscopic point of view. Since the satis®ability of
consistency law, as a formalization of the concept of macroscopic
stability, is characterized by almost mutual independence or uncor-
relatedness, the answer to this question is thus obvious. Note that the
phenomenon of macroscopic stability is observable while the inde-
pendence condition is only a theoretical assumption based on intu-
ition. It is interesting that equivalence can still be established between
them. One may view from the fact that large scale insurance systems
usually do not fail to claim that the insured risks must satisfy a sort of
mutual independence or uncorrelatedness conditions.

Note that even though some models may only require the validity
of law of large numbers (in an ideal or a discrete setting) explicitly
for a whole system, the su�cient conditions used to imply the law
usually also apply to the subsystems, and thus the consistency law is,
in fact, satis®ed implicitly. For example, the usual mixing conditions
(see [Bi]) are such su�cient conditions. One can observe that the
indexes among the terms in a subsequence of a sequence of mixing
random variables are in some sense further away than those in the
original sequence, and thus the subsequence must also satisfy the
mixing conditions. Thus, almost mutual independence and almost
sure uncorrelatedness (or their equivalent notions) may remain to be
the best general conditions to ensure the stability of a whole system.
For some applications of the exact law to particular economic
contexts, see [KS] and [S4].

Proposition 3.1 shows how to characterize almost mutual inde-
pendence by using characteristic functions, maximum of random
variables, and generating functions. The following proposition pro-
vides an analog for the case of exchangeability.

Proposition 3.2. Let D be a collection of distributions on a separable
metric space X , E a separating class for D of real or complex valued
Borel functions, and f a process from �T � X; L�T
A�;L�k
 P�� to
X such that for all B 2A with L�P ��B� > 0, the distributions of the
random variables f B

t as well as the distribution of the process f B viewed
as a random variable on T � B are all in D, where f B is the restriction of
f to T � B with the rescaled Loeb product measure. Let m be a positive
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integer greater than or equal to two. Assume that u�f � has a ®nite m-th
moment for each u 2 E. Then the following are equivalent:

(1) the random variables ft are almost surely pairwise exchangeable;
(2) for any n � 2, the random variables ft are almost surely exchange-

able in n-tuple;
(3) for each u 2 E, E��u�f ��t1�u�f ��t2� � EjEu�fx�j2 for L�k
 k�-al-

most all �t1; t2� 2 T � T ;
(4) if the functions in E are all real-valued, then, for L�kn�-almost all
�t1; t2; . . . ; tn� 2 T n,

E u�ft1�u�ft2� . . . u�ftn�� � � E Eu�fx�� �n

holds for all u 2 E, where n is any integer between 2 and m;
(5) if the functions in E are complex-valued, then, for L�kn�-almost all
�t1; t2; . . . ; tn� 2 T n,

E ui1�ft1�ui1�ft2� . . . uin�ftn�
ÿ �
�
Z

X
Eui1�fx�Eui2�fx� . . . Euin�fx� dL�P ��x�

holds for all u 2 E, where n is any integer between 2 and m,
i1; . . . ; in � 0 or 1, and u0 � u;u1 � �u, the complex conjugate of u.

Proof. �1� () �2� is shown in Theorem 4. By Theorem 5, (1) is
equivalent to the almost sure pairwise independence of the sample
functions fx. By interchanging the index and sample variables in (2)
and (4) of Theorem 7.6 in [S2], we know that the almost sure pairwise
independence of fx is equivalent to (3). Thus (1), (2) and (3) are all
equivalent.

The implications �4� �) �3� and �5� �) �3� are clear. �3� �) �4�
follows from Theorem 2 by regrouping countably many null sets to-
gether. Finally, if we assume (2), then the essential constancy of the n-
th order joint distributions implies the essential constancy of the
function E ui1�ft1�ui1�ft2� . . . uin�ftn�� �; by integrating the function with
respect to t1; t2; . . . ; tn and changing the relevant iterated integrals, (5)
can be obtained. One can also obtain (5) by using the formula for mn in
Theorem 4 (2). (

To understand the above proposition in a more speci®c setting,
consider a natural number valued process f on the Loeb product space.
Assume that the characteristic function of the di�erence ft1 ÿ ft2 is
essentially independent of the choices of t1 and t2. Then the generating
function of the sum ft1 � ft2 � � � � � ftn is also essentially unrelated to
particular choices of t1; t2; . . . ; tn, where n is any positive integer. This is
also a version of ``Two implies many'' relating di�erent notions.
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The notion of weak dependence is often used to mean that if any
random variable in a given collection (a sequence or a triangular
array) of random variables is approximately independent in some
sense to most other random variables in the collection, then this
collection is said to be weakly dependent. In our idealized setting, this
notion simply means that any random variable is independent of
others outside a negligible set, which is precisely the notion of almost
sure pairwise independence. It is easy to check that the transferred
version of the pervasive mixing conditions (see Section 20, [Bi]) does
lead to almost sure pairwise independence, which also means that
these mixing conditions are indeed stronger than the asymptotic ver-
sion of almost sure pairwise independence. Now consider a large
population modelled by a hyper®nite process with weakly dependent
random variables in the idealized sense. Then, by randomly drawing a
sequence of random variables from the underlying hyper®nite popu-
lation, one can certainly expect to obtain a pairwise independent se-
quence since the underlying population are almost so. However, it is
rather surprising that the resulting sequence is, in fact, mutually in-
dependent (see Proposition 3.4 below). That is, sequential draws derive
mutual independence from a version of weak dependence.

To give a rigorous formulation of the type of result in Proposition
3.4, we need a suitable r-algebra on the countable product T1 to-
gether with a measure. We use Tm to denote the collection of all
subsets of T1 in the form Am � T1, where Am is some internal set in
the internal product algebra Tm. De®ne a set function L�km� on Tm

by letting L�km��Am � T1� � L�km��Am�. Let T1 be the union of all
the Tm and L�k1� the set function on T1 such that
L�k1��C� � L�km��C� if C 2Tm. By the Fubini property, L�k1� is a
well de®ned ®nitely additive measure on the algebra T1.

The following proposition shows that �T1;T1;L�k1�� can be
extended to a countably additive complete measure space. Note that
T1 itself is not internal, and the usual result on Loeb extension (see
[L1] and [AFHL]) thus does not cover this case.

Proposition 3.3. The ®nitely additive measure space �T1;T1; L�k1��
can be extended to a countably additive complete measure space �T1;
L�T1�; L�k1��.

Proof. Let fCng1n�1 be a decreasing sequence of sets inT1 with empty
intersection. By the construction of T1, one can ®nd a sequence of
internal sets fAng1n�1 and a non-decreasing sequence fmng1n�1 of pos-
itive integers such that Cn � An � T1 and An 2Tmn . For ` � n, let pn

`

be the mapping from T mn to T m` by projecting a tuple in T mn to its ®rst
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m` coordinates; then pn
`�An� � A`. Take the transfer fmngn2�N of the

sequence fmng1n�1 and an internal extension fAngn2�N of the sequence
fAng1n�1 of internal sets. By spillover and @1-saturation, one can ob-
tain h 2 �N1 such that for all n � h, An 2Tmn and pn

`�An� � A` for all
` 2 N, where pn

` is de®ned in exactly the same way as in the case when
n is ®nite.

We claim that An � ; for all n 2 �N1 with n � h; if not, one can
®nd such an n with �t1; t2; . . . ; tmn� 2 An. Then �t1; t2; . . . ; tm`

� 2 A` for
any ` 2 N. If mn 2 �N1, then it is obvious that ftpg1p�1 is in C` for all
` 2 N, which contradicts the assumption that the intersection of all
the C` is empty. If mn 2 N, one can choose tp arbitrarily for any
p > mn to obtain the same contradiction. Hence the claim is proven.

By spillover, we know that for some n 2 N, An � ;, and so is Cn.
Thus, we obtain a trivial limit, limn!1 L�k1��Cn� � 0. This means
that L�k1� is indeed countably additive on T1. As in [L1], the
Caratheodory extension theorem implies that L�k1� can be extended
to the r-algebra r�T1� generated byT1. Let �T1; L�T1�;L�k1�� be
the measure space obtained by completing the measure space
�T1;r�T1�;L�k1��, and we are done. (

We are now ready to present Proposition 3.4.

Proposition 3.4. Let f be a process from �T � X; L�T
A�;L�k
 P��
to a separable metric space X . If the random variables ft are almost
surely pairwise independent, then for L�k1�-almost all �t1; t2; . . . ; tn; . . .�
2 T1, the sequence fftng1n�1 of random variables are mutually inde-
pendent.

Proof. For each n � 2, let An be the collection of all the �t1; t2; . . . ; tn�
2 T n such that ft1 ; ft2 ; . . . ; ftn are mutually independent. Then L�kn�
�An� � 1 by Theorem 3. Let Cn � An � T1 and C � \1n�1Cn. By the
fact that one can ®nd an internal set whose symmetric di�erence with
An is null, we can obtain that Cn 2 L�T1� with L�k1��Cn� � 1. Hence
C 2 L�T1� and L�k1��C� � 1. It is clear that for any
�t1; t2; . . . ; tn; . . .� 2 C, the random variables in the sequence fftng1n�1
are mutually independent. (

The following is an analog of Proposition 3.4 in the setting of
exchangeability.

Proposition 3.5. Let f be a process from �T � X; L�T
A�;L�k
 P��
to a separable metric space X . If the random variables ft are almost surely
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pairwise exchangeable, then for L�k1�-almost all �t1; t2; . . . ; tn; . . .�
2 T1, the sequence fftng1n�1 is exchangeable.

4. Proof of the theorems and additional results

First note that we allow both the index set and sample space of a
process to be possibly non-hyper®nite in this section. The main reason
for this is to work with the transfer of a common sample space (which
is usually not hyper®nite) of some triangular array of random vari-
ables in Section 5. Since the Fubini type result holds no matter the sets
are hyper®nite or not, there is no additional burden at all by relaxing
the hyper®niteness restriction on the index sets also. This allows us to
give the index and sample variables symmetric treatments in some
situations. We shall also consider processes with the same sample
space but possibly di�erent index sets or with the same index set but
possibly di�erent sample spaces. Corresponding Loeb product spaces
are also de®ned accordingly. In this section, we shall formulate and
prove some additional results which are then used to prove the the-
orems in Section 2.

To prove Proposition 4.2 below, we need the following technical
lemma on the integrability of some relevant functions. The proof is
based on the Tonelli theorem for Loeb measures (see [HL], p. 204).
Similar integrability problems will arise quite often in the proof of
other results. They can usually be solved by using the same idea and
the proof will be omitted. It is important to note that the f i in Lemma
4.1 and other places is a process itself, not the i-th power of a process
f .

Lemma 4.1. Let m be a positive integer greater than or equal to 2. For
each i � 1; 2; . . . ;m, let f i be a real-valued process on a Loeb product
space �Ti � X;L�Ti 
A�; L�ki 
 P�� with a ®nite m-th moment; that is,R

Ti�X jf i�t;x�jm dL�ki 
 P� <1. Then

(1) the function G on Pm
i�1Ti

ÿ �� Xm de®ned by G�t1; . . . ; tm;x1; . . . ;xm�
� Pm

i�1P
m
j�1f

i�ti;xj� is L Pm
i�1ki

ÿ �ÿ 
P m�-integrable;
(2) for L Pm

i�1ki
ÿ �

-almost all �t1; . . . ; tm� 2 Pm
i�1Ti, f 1

t1f
2
t2 . . . f m

tm is integr-
able over �X;L�A�;L�P ��;

(3) the function E�f 1
t1f

2
t2 . . . f m

tm � on Pm
i�1Ti has a ®nite m-th moment with

respect to the measure L Pm
i�1ki

ÿ �
.

Proof. The Tonelli theorem for Loeb measures implies the follow-
ing:
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Z
�Pm

i�1Ti��Xm
jG�t1; . . . ; tm;x1; . . . ;xm�j dL Pm

i�1ki
ÿ �
 P mÿ �

�
Z

Pm
i�1Ti

Pm
j�1

Z
X

Pm
i�1jf i�ti;xj�j dL�P ��xj� dL�Pm

i�1ki�

�
Z

Pm
i�1Ti

�Ejf 1
t1f

2
t2 . . . f m

tm j�m dL�Pm
i�1ki�

�
Z

Pm
i�1Ti

Pm
i�1

Z
X
jf i�ti;x�jm dL�P ��x� dL�Pm

i�1ki�

� Pm
i�1

Z
Ti�X
jf i�ti;x�jm dL�ki 
 P� <1 ;

where the inequality is obtained by applying the usual HoÈ lder in-
equality (see, for example, [Lo], p. 158) repeatedly. The rest of the
proof is clear. (

The following proposition shows that for a given ®nite collection of
processes with possibly di�erent index sets, if the second joint moment
function of the sample functions is essentially constant for each pro-
cess (except one of them), then the processes are uncorrelated in m-
tuple in the sense speci®ed below. Note that in order to work with the
multiple versions of independence in Theorem 3, one has to take the
inverse images of di�erent sets in the target space of a process. The
resulting processes are di�erent, even though they are constructed
from the same source process. Thus, it is necessary to work with a
®nite collection of di�erent processes.

Proposition 4.2. Let m � 2 be a positive integer. For each
i � 1; 2; . . . ;m, let f i be a real-valued process on a Loeb product space
�Ti � X; L�Ti
 A�; L�ki 
 P�� with a ®nite m-th moment. If for each
1 � i � mÿ 1, the autocorrelation function of the sample functions f i

x is
essentially constant on X� X, then for L�Pm

i�1ki�-almost all

�t1; t2; . . . ; tm� 2 Pm
i�1Ti, f 1

t1 ; f
2
t2 ; . . . ; f m

tm are uncorrelated in m-tuple, i.e.,

E�f 1
t1f

2
t2 . . . f m

tm � � Ef 1
t1Ef 2

t2 . . . Ef m
tm .

Proof. Lemma 4.1 implies that the function Ef 1
t1f

2
t2 . . . f m

tm on Pm
i�1Ti has

a ®nite m-th moment, and hence a ®nite second moment with respect
to the measure L�Pm

i�1ki�. By Keisler's Fubini theorem for Loeb
measures, we can obtain
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I �
Z

Pm
i�1Ti

�Ef 1
t1f

2
t2 . . . f m

tm ÿ Ef 1
t1Ef 2

t2 . . . Ef m
tm�2 dL�Pm

i�1ki�

�
Z

Pm
i�1Ti

Z
X

Pm
i�1f

i�ti;x1� dL�P ��x1�

�
Z

X
Pm

i�1f
i�ti;x2� dL�P��x2� dL�Pm

i�1ki�

ÿ 2

Z
Pm

i�1Ti

Ef 1
t1Ef 2

t2 . . . Ef m
tmEf 1

t1f
2
t2 . . . f m

tm dL�Pm
i�1ki�

�
Z

Pm
i�1Ti

�Ef 1
t1Ef 2

t2 . . . Ef m
tm�2 dL�Pm

i�1ki�

�
Z

X�X
Pm

i�1

Z
Ti

f i�ti;x1�f i�ti;x2� dL�ki��ti� dL�P 
 P��x1;x2�

ÿ 2

Z
�x1;...;xm�2Xm

Z
x2X

Pm
i�1

Z
ti2Ti

f i�ti;x�f i�ti;xi� dL�ki��ti�
� �

� dL�P ��x� dL�P m��x1; . . . ;xm� �Pm
i�1

Z
ti2Ti

�Ef i
ti�2 dL�ki��ti� :

Now, for each 1 � i � mÿ 1, since the autocorrelation function of
f i
x is essentially constant, it is easy to check by the Fubini theorem
that Ef i

x1
f i
x2
� Rti2Ti

�Ef i
ti�2 dL�ki� for L�P 
 P �-almost all �x1;x2�

2 X� X (see Theorem 4.6 in [S2]). Hence, the Fubini theorem im-
plies thatZ

X�X
Pm

i�1

Z
Ti

f i�ti;x1�f i�ti;x2� dL�ki��ti� dL�P 
 P ��x1;x2�

�
Z

X�X

Z
Tm

f m�tm;x1�f m�tm;x2� dL�km�Pmÿ1
i�1 E

ÿ
Ef i

ti

�2
dL�P 
 P ��x1;x2�

� Pmÿ1
i�1 E

ÿ
Ef i

ti

�2 Z
X�X

Z
Tm

f m�tm;x1�f m�tm;x2� dL�km�

dL�P 
 P ��x1;x2�

� Pm
i�1

Z
ti2Ti

ÿ
Ef i

ti

�2
dL�ki��ti� :

Next, we note that for each 1 � i � mÿ 1,
R

ti2Ti
f i
x�ti�f i

xi
�ti� dL�ki��ti� is

also essentially equal to E�Ef i
ti�2. Therefore, by the Fubini theorem

again,
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Z
�x1;...;xm�2Xm

Z
x2X

Pm
i�1

Z
ti2Ti

f i�ti;x�f i�ti;xi� dL�ki��ti�
� �

� dL�P ��x� dL�P m��x1; . . . ;xm�

� Pmÿ1
i�1 E�Ef i

ti�2
Z

X�X

Z
Tm

f m�tm;x�f m�tm;xm� dL�km��tm�

� dL�P 
 P ��x;xm�
� Pm

i�1

Z
ti2Ti

�Ef i
ti�2 dL�ki��ti� :

Replacing the relevant formulas in the expansion of I by
Pm

i�1
R

ti2Ti
�Ef i

ti�2 dL�ki�, we obtain I � 0, and hence the proposition
follows. (

Next, we consider a converse of the previous proposition in the
following proposition. It shows that uncorrelatedness implies the
constancy of joint moment functions for the relevant sample functions.
Note that the case for m � 1 in this proposition is Theorem 3.8 in [S2].

Proposition 4.3. Let m be a positive integer. For each i � 1; 2; . . . ;m, let
f i be a real-valued process on a Loeb product space �T � Xi;L�T

Ai�; L�k
 Pi�� with a ®nite m-th moment (with a ®nite second moment
when m � 1). If for each 1 � i � m, the random variables f i

t are almost
surely uncorrelated, i.e., for L�k
 k�-almost all �t1; t2� 2 T � T , the
random variables f i

t1 and f i
t2 on Xi are uncorrelated, then for L�Pm

i�1Pi�-
almost all �x1;x2; . . . ;xm� 2 Pm

i�1Xi,

Ef 1
x1

f 2
x2

. . . f m
xm
�
Z

T
Ef 1

t Ef 2
t . . . Ef m

t

� �
dL�k� :

Proof. Denote
R

T Ef 1
t Ef 2

t . . . Ef m
t

� �
dL�k� by c. By the Fubini theorem,Z

Pm
i�1Xi

�Ef 1
x1

f 2
x2

. . . f m
xm
ÿ c�2 dL�Pm

i�1Pi��x1; . . . ;xm�

� c2 ÿ 2c
Z

Pm
i�1Xi

Z
T

f 1
x1
�t�f 2

x2
�t� . . . f m

xm
�t� dL�k��t�

dL�Pm
i�1Pi��x1; . . . ;xm�

�
Z

Pm
i�1Xi

Z
T

Pm
i�1f

i�t1;xi� dL�k��t1�

�
Z

T
Pm

i�1f
i�t2;xi� dL�k��t2� dL�Pm

i�1Pi�

� c2 ÿ 2c
Z

T
Pm

i�1

Z
Xi

f i
t �xi� dL�Pi��xi� dL�k�
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�
Z
�t1;t2�2T�T

Pm
i�1

Z
Xi

f i
t1�xi�f i

t2�xi� dL�Pi� dL�k
 k�

� c2 ÿ 2c2 � c2 � 0 :

The rest is obvious. (

In Proposition 4.2, we only require mÿ 1 of the m processes to
have essentially constant autocorrelation functions for the relevant
sample functions. On the other hand, all the m processes are assumed
to have almost surely uncorrelated random variables in Proposition
4.3. The following example shows that these conditions are optimal.
That is, the numbers mÿ 1 and m in respective settings cannot be
reduced.

Example 4.4. Choose B 2 L�A� with 0 < L�P��B� < 1. De®ne f i � 1
for 1 � i � mÿ 2, and f mÿ1 � f m � vB, where vB is the indicator
function of B in X. Then, it is obvious that for each 1 � i � mÿ 2, the
process f i has essentially constant autocorrelation function for its
sample functions, while the conclusion of Proposition 4.2 is not valid.

For the case of Proposition 4.3, let f i � 1 for 1 � i � mÿ 1, and
f m � vB. Then, each of the ®rst mÿ 1 processes has almost surely
uncorrelated random variables; but Ef 1

x1
f 2
x2

. . . f m
xm
� vB�xm� is cer-

tainly not an essentially constant function. (

Part of Theorem 4.6 in [S2] shows the duality of the notions of
uncorrelatedness and constancy of the autocorrelation functions in an
almost sense. We restate this basic fact in the following corollary and
give a new proof based on Propositions 4.2 and 4.3.

Corollary 4.5. Let f be a square integrable real-valued process on a
Loeb product space �T � X;L�T
A�;L�k
 P ��. Then the following
are equivalent:

(1) the random variables ft are almost surely uncorrelated;
(2) the autocorrelation function of the sample functions fx is essentially

constant.

Proof. By taking f 1 � f 2 � f , we observe that �2� �) �1� follows
from Proposition 4.2 while �1� �) �2� is a special case of Proposition
4.3. (

By Corollary 4.5 and Proposition 4.2, one can obtain that for a
given collection of m processes, if, except possibly one of them, all
have almost surely uncorrelated random variables, then the processes
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are uncorrelated in m-tuple among themselves. The case m � 2 is al-
ready shown in Theorem 2 in [S1].

Corollary 4.6. Let m � 2 be a positive integer. For each i � 1; 2; . . . ;m,
let f i be a real-valued process on a Loeb product space �Ti � X;L�Ti

A�; L�ki 
 P �� with a ®nite m-th moment. If for each 1 � i � mÿ 1, the
random variables f i

t in the process f i are almost surely uncorrelated,
then for L�Pm

i�1ki�-almost all �t1; t2; . . . ; tm� 2 Pm
i�1Ti, f 1

t1 ; f
2
t2 ; . . . ; f m

tm are
uncorrelated in m-tuple, i.e., E�f 1

t1f
2
t2 . . . f m

tm � � Ef 1
t1Ef 2

t2 . . . Ef m
tm .

Now, we consider an analog of the above corollary in terms of the
constancy of joint moment functions.

Corollary 4.7. Let m be a positive integer. For each i � 1; 2; . . . ;m, let f i

be a real-valued process on a Loeb product space �T � Xi; L�T
Ai�;
L�k
 Pi�� with a ®nite m-th moment (with a ®nite second moment when
m � 1). If for each 1 � i � m, the autocorrelation function of the sample
functions f i

x in the process f i is essentially constant, then for L�Pm
i�1Pi�-

almost all �x1;x2; . . . ;xm� 2 Pm
i�1Xi,

Ef 1
x1

f 2
x2

. . . f m
xm
�
Z

T
Ef 1

t Ef 2
t . . . Ef m

t

� �
dL�k� :

Proof. By the equivalence result in Corollary 4.5, we know that for
each 1 � i � m, the random variables f i

t in the process fi are almost
surely uncorrelated. Hence the result follows from Proposition 4.3. (

We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1. One can simply take f i � f for all 1 � i � n.
Then each f i still has a ®nite n-th moment. The rest follows from
Corollary 4.6. (

Proof of Theorem 2. One can simply take f i � f for all 1 � i � n.
Then each f i still has a ®nite n-th moment. The rest follows from
Corollary 4.7 by renaming the variables xi to ti and t to x. (

For the two Loeb spaces �T ;L�T�;L�k�� and �X;L�A�;L�P ��, one
can also take their product in the usual sense to obtain a measure
space �T � X;L�T� 
 L�A�;L�k� 
 L�P ��, which is clearly contained
in the corresponding Loeb product space �T � X;L�T
A�;L�k
 P��
(noted ®rst by Anderson in [A1]). For simplicity, we will not distin-
guish the di�erence between �T � X; L�T� 
 L�A�; L�k� 
 L�P �� and
its completion. Both the product r-algebra L�T� 
 L�A� and its
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completion with respect to L�k� 
 L�P�� will be denoted by U. It is
interesting to note that except the trivial case that one of the Loeb
spaces is purely atomic U is always strictly contained in the Loeb
product algebra L�T
A� (see Proposition 6.6 in [S2]). For the case
that T is a hyper®nite set, X the internal power set on T , and both
endowed with the Loeb counting probability measures, such a proper
inclusion was ®rst observed by Hoover (see [AFHL]). The intimate
connection between the law of large numbers andU is also established
in [S1] and [S2]. In particular, it is shown that an integrable real-
valued process f on the Loeb product space satis®es the consistency
law if and only if the conditional expectation E�f jU� is essentially a
function of t (see Theorem 1 in [S1] and Theorem 3.17 in [S2]).

Remark 4.8. Theorem 4.6 in [S2] also points out that the auto-
correlation function of the sample functions of a process is essentially
constant if and only if the conditional expectation of the process with
respect to U depends only on the indices of the random variables. By
symmetry, it is obvious that the autocorrelation function of the ran-
dom variables ft is essentially constant if and only if E�f jU� is es-
sentially a function on X; and in this case E�f jU��t;x� � Efx for
L�k
 P �-almost all �t;x� 2 T � X, i.e., f �t;x� can be expressed as the
sum Efx � e�t;x�, where the process e has almost surely orthogonal
random variables.

As noted in the paragraph above Proposition 4.2, even if one works
with a ®xed process as in Theorem 3, one still needs to consider
uncorrelatedness involving possibly di�erent processes to prove some
relevant results. Thus, it might be helpful to prove an analog of
Corollary 4.6 for the case of independence.

Proposition 4.9. Let n � 2 and f i; i � 1; 2; . . . ; n be processes from a
Loeb product space �T � X;L�T
A�;L�k
 P �� to a separable metric
space X . If for each 1 � i � nÿ 1 the random variables f i

t are almost
surely pairwise independent, i.e., for L�k
 k�-almost all �t1; t2� 2 T � T ,
f i

t1 and f i
t2 are independent, then for L�kn�-almost all �t1; t2; . . . ; tn� 2 T n,

f 1
t1 ; f

2
t2 ; . . . ; f n

tn are mutually independent.

Proof. Fix a countable open base fQjg1j�1 for X . Let fOkg1k�1 be a list
of all the ®nite intersections of the sets Qj. Now, ®x an n-tuple
�`1; `2; . . . ; `n� of positive integers (not necessarily di�erent). Then,
take the n sets O`1 ;O`2 ; . . . ;O`n from the sequence fOkg1k�1. For each
1 � i � nÿ 1, by the assumption of almost sure pairwise in-
dependence of the random variables f i

t , we know that the process
vO`i
�f i� has almost surely uncorrelated random variables, where vO`i

is
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the indicator function of the set O`i . Then, Corollary 4.6 implies that
there is an L�kn�-null set N`1`2...`n such that for all
�t1; t2; . . . ; tn� j2N`1`2...`n , the random variables vO`1

�f 1
t1�; vO`2

� f 2
t2�; . . . ;

vO`n
�f n

tn� are uncorrelated in n-tuple. LetN be the union of all the null
sets N`1`2...`n . Then N is still an L�kn�-null set, and for all
�t1; t2; . . . ; tn� j2N,

L�P ���f 1
t1�ÿ1�O`1� \ �f 2

t2�ÿ1�O`2� \ . . . \ �f n
tn�ÿ1�O`n��

� L�P���f 1
t1�ÿ1�O`1��L�P �

ÿ�f 2
t2�ÿ1�O`2�

�
. . . L�P ���f n

tn�ÿ1�O`n��
holds for all n-tuples �`1; `2; . . . ; `n� of positive integers. Since the
collection fOkg1k�1 generates the Borel r-algebra of X and is closed
under the formation of ®nite intersections, the Extension Theorem in
[Lo] (see p. 237) implies that for all �t1; t2; . . . ; tn� j2N, f 1

t1 ; f
2
t2 ; . . . ; f n

tn are
mutually independent. One can also view this fact on mutual
independence directly through a consequence of Dynkin's pÿ k the-
orem which guarantees that two probability measures agree on a p-
system are the same (see [C], p. 45 or [Du], p. 404). Note that for
�t1; t2; . . . ; tn� j2N, the joint distribution of f 1

t1 ; f
2
t2 ; . . . ; f n

tn agrees with
the product of its marginal distributions on all the sets from the
collection

fO`1 � O`2 � � � � � O`n : 1 � `1; `2; . . . ; `n <1g :
Since this collection is still closed under ®nite intersections and also
generates the Borel r-algebra of X n, i.e., a p-system, the joint dis-
tribution of f 1

t1 ; f
2
t2 ; . . . ; f n

tn is thus equal to the product of its marginals,
and hence f 1

t1 ; f
2
t2 ; . . . ; f n

tn are mutually independent. (

For any ®xed n � 2, the implication (1) �) (2) in Theorem 3
clearly follows from Proposition 4.9 by taking f i � f for 1 � i � n. It
remains to prove the other half of the equivalence in the theorem.

Proof of Theorem 3. Assume (2) is valid. Let A be the set of all the n-
tuples �t1; t2; . . . ; tn� 2 T n such that ft1 ; ft2 ; . . . ; ftn are mutually in-
dependent. Then (2) says that L�kn��A� � 1. By the Fubini theorem,
for L�knÿ2�-almost all �t3; t4; . . . ; tn� 2 T nÿ2, the set

A�t3;t4;...;tn� � f�t1; t2� : �t1; t2; t3; t4; . . . ; tn� 2 Ag

is of probability 1, and hence we can choose a particular �nÿ 2�-tuple
�s3; s4; . . . ; sn� with the property, i.e., L�k
 k��A�s3;s4;...;sn�� � 1. Thus,
for any �t1; t2� 2 A�s3;s4;...;sn�, ft1 ; ft2 ; fs3 ; . . . ; fsn are mutually indepen-
dent, and so are ft1 ; ft2 . Therefore (1) follows. (
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The following proposition is an analog of Proposition 4.9 for the
case of exchangeability. The consideration of di�erent processes be-
low might be useful elsewhere.

Proposition 4.10. Let n � 2 and f i; i � 1; 2; . . . ; n be processes from a
Loeb product space �T � X;L�T
A�;L�k
 P �� to a separable metric
space X . If for each 1 � i � n the random variables f i

t are almost surely
pairwise exchangeable, i.e., there is a distribution mi on X � X such that
for L�k
 k�-almost all �t1; t2� 2 T � T , the joint distribution of f i

t1 and
f i

t2 is mi, then there is a distribution mn on X n such that for L�kn�-almost
all �t1; t2; . . . ; tn� 2 T n, the joint distribution of f 1

t1 ; f
2
t2 ; . . . ; f n

tn is mn.

Proof. As in the proof of Proposition 4.9, we can obtain a countable
open base fOkg1k�1 which is closed under the formation of ®nite in-
tersections. Fix an n-tuple �`1; `2; . . . ; `n� of positive integers. For each
1 � i � n, by the assumption of almost sure pairwise exchangeability
of the random variables f i

t , we obtain that the autocorrelation func-
tion of the random variables in the process vO`i

�f i� is essentially
constant. By renaming the variables xi to ti and t to x in Corollary
4.7, we know that there is an L�kn�-null set N`1`2...`n such that for all
�t1; t2; . . . ; tn� j2N`1`2...`n , the joint moment of the random variables
vO`1
�f 1

t1�; vO`2
�f 2

t2�; . . . ; vO`n
�f n

tn� isZ
X
�EvO`1

�f 1
x�EvO`2

�f 2
x� . . . EvO`n

�f n
x�� dL�P ��x� :

Let N be the union of all the null sets N`1`2...`n . Then N is still an
L�kn�-null set, and for all �t1; t2; . . . ; tn� j2N,

L�P ���f 1
t1�ÿ1�O`1� \ . . . \ �f n

tn�ÿ1�O`n��
�
Z

X
Pn

i�1L�k���f i
x�ÿ1�O`i�� dL�P ��x�

holds for all n-tuples �`1; `2; . . . ; `n� of positive integers. De®ne a dis-
tribution mn on X n by letting mn�B� �

R
X Pn

i�1L�k��f i
x�ÿ1

h i
�B� dL�P ��x�

for any Borel set B in X n. Then the previous identity shows that for all
�t1; t2; . . . ; tn� j2N, the joint distribution of f 1

t1 ; f
2
t2 ; . . . ; f n

tn and mn agree
on all the sets in the p-system for the Borel r-algebra of X n

fO`1 � O`2 � � � � � O`n : 1 � `1; `2; . . . ; `n <1g ;
and hence are equal by Dynkin's pÿ k theorem as quoted earlier.(

Note that Example 4.4 can still be used to show that the number
mÿ 1 in Corollary 4.6 and Proposition 4.9 as well as the number m in
Corollary 4.7 and Proposition 4.10 cannot be reduced in the same
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context. We also note that exchangeability has been studied by using
model-theoretic methods in [H] and [Ho]. It is noted in [H] that one
can always ®nd an exchangeable sequence among a given continuum
of random variables (for some discrete versions, see [A] and [K]). [Ho]
is concerned with a special notion of partial exchangeability for
multiply indexed arrays fXi1...ingi1...in2N, called dissociated row-column
exchangeability (DRCE). It shows how DRCE may be related by a
certain sampling procedure to random variables on product spaces in
a graded probability space which could be constructed from a se-
quence of Loeb product spaces.

We are now ready to prove Theorems 4 and 5.

Proof of Theorem 4. The same argument as in the proof of Theorem 3
can be used to prove �2� �) �1� here.

Next, if we assume (1), then by taking f i � f for 1 � i � n, it
follows from Proposition 4.10 that the joint distribution of
ft1 ; ft2 ; . . . ; ftn is essentially independent of t1; t2; . . . ; tn; the essentially
common joint distribution is mn with mn�B� �

R
X sn

x�B� dL�P��x� for
any Borel set B in X n, where sx is the distribution on X induced by fx

and sn
x its n-fold product.

Finally, for any ` � 1, (1) also implies the essential constancy of the
autocorrelation function of the random variables in the process
vO`
�f �. By Theorem 2, we obtain that

EvO`
�ft� �

Z
X

EvO`
�fx� dL�P � �

Z
T�X

vO`
�f � dL�k
 P�

for L�k�-almost all t 2 T . By taking the union of countably many L�k�-
null sets, we can obtain that for L�k�-almost all t 2 T , the respective
distributions of ft and f agree on all the O`, and hence are identical by
Dynkin's pÿ k theorem. Therefore, (2) holds. (

Proof of Theorem 5. By Theorems 3 and 4, we only have to show the
equivalence for the case n � 2. Let fOkg1k�1 be a countable open base
of X which is closed under the formation of ®nite intersections. Then,
by interchanging the index and sample variables in Corollary 4.5, we
know that for each k � 1, the essential constancy of the autocorre-
lation function of the random variables vOk

�ft� is equivalent to the
uncorrelatedness of the sample functions vOk

�fx�.
If (1) holds, then the autocorrelation function of the random

variables vOk
�ft� is indeed essentially constant for each k. By the above

equivalence and by taking the union of countably many L�P 
 P �-null
sets, we can obtain that for L�P 
 P �-almost all �x1;x2� 2 X� X, the
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sample functions vOk
�fx1
� and vOk

�fx2
� are uncorrelated for all k � 1.

The same argument in the end of the proof of Proposition 4.9 can be
used to claim almost sure pairwise independence for the sample
functions fx, i.e., (2) holds.

Next, note that (2) implies that for any k � 1, the sample functions
in the process vOk

�f � are uncorrelated, and hence the autocorrelation
function of the random variables vOk

�ft� is essentially constant by the
equivalence in the ®rst paragraph. By interchanging the index and
sample variables t and x in Corollary 4.7, we know that for L�k
 k�-
almost all �t1; t2� 2 T � T , the joint moment

EvO`1
�ft1�vO`2

�ft2� �
Z

X
EvO`1

�fx�EvO`2
�fx� dL�P��x� ;

for any given `1; `2 � 1. By taking the union of countably many
L�k
 k�-null sets, we can ®nd an L�k
 k�-null set N and a distri-
bution l on X � X such that for any �t1; t2� 2N, l and the joint
distribution of ft1 and ft2 agree on all the O`1 � O`2 , and hence are
identical by Dynkin's pÿ k theorem as in the proof of Proposition
4.10. Therefore, (1) follows. (

In the previous part of this section, we have considered uncorre-
latedness, constancy of joint moment functions, independence and
exchangeability. We shall now move to the study of orthogonality in
the same context. The surprising point is that when one works with a
®nite collection of processes, one can only require almost sure or-
thogonality for one of these processes. This is in contrast with the
previous cases where all the processes in the collection (or except one
of them) must satisfy the relevant conditions.

The following lemma is an analog of Corollary 4.5 in the setting of
orthogonality. It shows that the almost sure orthogonality of the
random variables and sample functions in a process are equivalent,
which can be proven by establishing the equality of

RR
X�XR

T fx1
�t�fx2

�t� dL�k�ÿ �2 dL�P 
 P � with
RR

T�T

R
X ft1�x�ft2�x� dL�P �ÿ �2

dL�k
 k� (see Theorem 4.5 in [S2]).

Lemma 4.11. Let f be a square integrable real-valued process on a Loeb
product space �T � X;L�T
A�; L�k
 P ��. Then the following are
equivalent:

(1) the random variables ft are almost surely orthogonal, i.e., for
L�k
 k�-almost all �t1; t2� 2 T � T , ft1 and ft2 are orthogonal;

(2) the sample functions fx are almost surely orthogonal.
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The following proposition is an analog of Corollary 4.6 in the
setting of orthogonality. It can be proven by showingR
Pm

i�1Ti
Ee1t1e

2
t2 . . . em

tm

� �2
dL�Pm

i�1ki� to be zero.

Proposition 4.12. Let m be a positive integer. For each i � 1; 2; . . . m, let
ei be a real-valued process on a Loeb product space �Ti � X; L�Ti 
A�;
L�ki 
 P �� with a ®nite m-th moment (with a ®nite second moment when
m � 1). If there is a j between 1 and m such that the random variables ej

tj
are almost surely orthogonal, then for L�Pm

i�1ki�-almost all �t1; t2; . . . ;
tm� 2 Pm

i�1Ti, Ee1t1e
2
t2 . . . em

tm � 0.

The following corollary is an analog of Proposition 4.3.

Corollary 4.13. For i � 1; 2; . . . ;m, let ei be a real-valued process on a
Loeb product space �T � Xi; L�T
Ai�;L�k
 Pi�� with a ®nite m-th
moment (with a ®nite second moment when m � 1). If there is a j be-
tween 1 and m such that the random variables ej

t are almost surely
orthogonal, then for L�Pm

i�1Pi�-almost all �x1;x2; . . . ;xm� 2 Pm
i�1Xi,

Ee1x1
e2x2

. . . em
xm
� 0.

Proof. By Lemma 4.11, the sample functions ej
xj

are almost surely
orthogonal. The result can then be proven by interchanging the index
and sample variables in Proposition 4.12. (

In Proposition 4.12 and Corollary 4.13, we allow the processes
under consideration to be di�erent. In the following corollary, we
work with a ®xed process. We can again obtain a sort of results in the
style of ``Two implies many'', i.e., almost sure orthogonality implies its
corresponding multiple versions for the random variables as well as
for sample functions. The proof is obvious.

Corollary 4.14. Let e be a real-valued process on �T � X;L�T
A�;
L�k
 P �� which has almost orthogonal random variables and also a
®nite m-th moment for some m � 2. Then the random variables et are
almost orthogonal in n-tuple for any 1 � n � m, i.e., for L�kn�-almost all
�t1; t2; . . . ; tn� 2 T n, Eet1et2 . . . etn � 0, and so are the sample functions.

The previous corollary shows that the usual orthogonality (second
order) implies its higher order counterpart. It is natural to ask when
the converse holds. The following result indicates that an even order
orthogonality also implies the usual orthogonality (second order). On
the other hand, it seems unlikely that a similar result holds for the odd
case.
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Proposition 4.15. Let e be a real-valued process on �T � X; L�T
A�;
L�k
 P �� with a ®nite m-th moment for some positive even integer m. If
the random variables et are almost surely orthogonal in m-tuple, then
they are also almost surely orthogonal.

Proof. By the Fubini Theorem, we can establish the following
identitiesZ

X�X

Z
T

ex1
�t�ex2

�t� dL�k��t�
� �m

dL�P 
 P�

�
Z

X�X
Pm

i�1

Z
T

ex1
�ti�ex2

�ti� dL�k��ti�
� �

dL�P 
 P �

�
Z

T m

Z
X

Pm
i�1e�ti;x1� dL�P ��x1�

Z
X

Pm
i�1e�ti;x2� dL�P ��x2� dL�km�

�
Z

T m

Z
X

et1�x�et2�x� . . . etm�x� dL�P��x�
� �2

dL�km� :

Since the random variables et are almost surely orthogonal in m-tuple,
we have Z

X
et1�x�et2�x� . . . etm�x� dL�P� � 0

for L�km�-almost all �t1; t2; . . . ; tm� 2 T m, and henceZ
X�X

Z
T

ex1
�t�ex2

�t� dL�k��t�
� �m

dL�P 
 P � � 0 :

Since m is even, we obtain that
R

T ex1
�t�ex2

�t� dL�k� � 0 for
L�P 
 P �-almost all �x1;x2� 2 X� X. The rest follows from Lemma
4.11. (

Remark 4.16. Since many applied probabilistic models involve not
only uncertainty and large number of entities but also time con-
straints, one is naturally led to use a hyper®nite set to index a large
collection of stochastic processes with time and sample parameters. As
illustrated in Section 8 of [S2], many results in the previous sections
can be routinely extended to such ``hyperprocesses''. In particular,
Theorems 3±5 can be restated to the case of general hyperprocesses
with continuous time parameters. Note that the various notions of
independence and exchangeability for hyperprocesses should be de-
®ned in terms of the ®nite dimensional distributions of stochastic
processes.
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5. Asymptotic equivalence of pairwise and mutual independence
and the duality with exchangeability

In this section, we shall translate Theorem 3 and the dual version of
Theorem 5 to obtain information about triangular arrays or sequences
of random variables. In particular, some versions of pairwise and
mutual independence are shown to be asymptotically equivalent. The
duality between independence and exchangeability is also established
in the asymptotic setting.

We shall now ®x some notation for the asymptotic case. Let
�X;A; P � be a ®xed probability space which will be used as the
common sample space of the triangular array of random variables to
be considered. For each n � 1, let �Tn;Tn; kn� be a ®nite probability
space, which will be the n-th index space, and we shall assume that the
number of points in Tn goes to in®nity as n!1; let gn be a process
from Tn � X to a separable metric space X such that gn�t; �� is a ran-
dom variable on X for each t 2 Tn. The measure kn provides the weight
for each point in the ®nite index set Tn andTn is the power set of Tn.
Such a sequence of processes g � fgngn�1 will be called a triangular
array of random variables. For a positive integer m and a separable
metric space X , qm denotes a Prohorov distance on the space of dis-
tributions on X m.

Note that the usual de®nition of a triangular array of random
variables is set in the form, xn

1; x
n
2; . . . ; xn

n, n � 1; 2; . . ., which corre-
sponds to our case when Tn � f1; 2; . . . ; ng and kn is the uniform
probability measure on Tn. So integrals on Tn are just the arithmetic
averages. In this section, we consider general weighted averages
rather than the special arithmetic averages, since the proofs are the
same.

The following proposition shows that for a triangular array of
random variables, asymptotic pairwise independence implies its as-
ymptotic multiple versions; the other implication is clear and omitted
here. As noted earlier in Section 3, the asymptotic pairwise indepen-
dence as presented here is simply a version of the usual notion of weak
dependence. In particular, it covers the type of mixing conditions as
discussed in [Bi].

Proposition 5.1. For any t1n; t
2
n; . . . ; tm

n 2 Tn, let lti
n
be the distribution of

the random variable fn�ti
n; �� and lt1nt2n...tm

n
the joint distribution of the

random variables fn�t1n; ��; fn�t2n; ��; . . . ; fn�tm
n ; ��. Assume that the collec-

tion of distributions induced by all the fn on X (viewed as random
variables on Tn � X) is tight. For any e > 0 and n � 1, de®ne
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T m
n �e� � f�t1n; t2n; . . . ; tm

n � 2 �Tn�m : qm�lt1nt2n ...tm
n
;Pm

i�1lti
n
� � eg :

If limn!1�kn 
 kn��T 2
n �d�� � 1 for any d > 0, then limn!1�kn�m

�T m
n �e�� � 1 for any e > 0.

Proof.We transfer the sequence to the nonstandard universe to obtain
a sequence ffngn2�N of internal processes on the associated sequence
f�Tn � �X;Tn 
 �A; kn 
 �P � : n 2 �Ng of internal probability spac-
es. The tightness assumption on the processes fn implies that for each
n 2 N1, the standard part of the fn�tn;x� exists for almost all �tn;x�
2 Tn � �X, and hence for almost all tn 2 Tn, fn�tn; �� has a standard
part.

Next, ®x n 2 �N1 and omit the subindex n in the rest of this pa-
ragraph for simplicity. By spillover, we can obtain that
k
 k�T 2�h�� � 1 for some positive in®nitesimal h. Thus, for L�k
 k�-
almost all �t1; t2� 2 T � T , q2�lt1t2 ;lt1 
 lt2� � h. It is easy to see that
lt1t2 ' L�P � �ft1 ;

�ft2� �ÿ1 and lt1 
 lt2 ' L�P� �ft1� �ÿ1
L�P � �ft2� �ÿ1, and
hence

L�P� �ft1 ;
�ft2� �ÿ1� L�P � �ft1� �ÿ1
L�P� �ft2� �ÿ1 :

Therefore, the random variables �ft are almost surely pairwise inde-
pendent, and by Theorem 3, also almost surely independent in m-
tuple. By the fact that the topology of weak convergence of distri-
butions on X m restricted to the product measures is simply the m-fold
product topology of the topology of weak convergence of distribu-
tions on X (see Theorem 3.2 in [Bi]; p.21), we can obtain for almost all
m-tuples �t1; t2; . . . ; tm�, qm�lt1t2...tm ;Pm

i�1lti� ' 0.
Now we resume the index n and also ®x an e 2 R�. The previous

paragraph shows that �kn�m�T m
n �e�� ' 1 for any n 2 �N1 and for any

positive standard real number e. Hence limn!1�kn�m�T m
n �e�� � 1. (

Note that if we start from three random variables which are
pairwise independent but not mutually independent, then, by taking
independent replicas of the three random variables, we can obtain a
sequence in which pairs of random variables are independent but
some triples are not mutually independent. This is the usual way of
constructing a sequence of pairwise independent but not mutually
independent random variables (see, for example, [F], p.220). Note that
most triples in such a sequence are still mutually independent. Prop-
osition 5.1 says that this is approximately the general case in the sense
that even if one works on a sequence with approximate pairwise in-
dependence, then ``almost all'' triples are still approximately mutually
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independent. That is, one cannot expect the pairs in a sequence to be
independent but the triples to be ``highly'' non-independent.

Next, we transfer the result on the duality of independence and
exchangeability to the asymptotic setting. The proof is omitted.

Proposition 5.2. Let m � 2. For any t1n; t
2
n; . . . ; tm

n 2 Tn, let lti
n
be the

distribution of the random variable fn�ti
n; �� for each 1 � i � m, and

lt1nt2n ...tm
n
the joint distribution of the random variables fn�t1n; ��; fn�t2n; ��;

. . . ; fn�tm
n ; ��. For any x1

n;x
2
n; . . . ;xm

n 2 X, let sx1
nx

2
n...xm

n
be the joint dis-

tribution of the sample functions fn��;x1
n�; fn��;x2

n�; . . . ; fn��;xm
n �. De-

®ne a distribution mm
n on X m by letting mm

n �B� �
R

Tn
�Pfÿ1tn �m �B� dkn�tn� for

any Borel set B in X m, where �Pfÿ1tn �m is the m-fold product distribution of
Pfÿ1tn . Assume that the collection of distributions induced by all the fn on
X (viewed as random variables on Tn � X) is tight. Then the following
are equivalent.

(1) for any d > 0 and n � 1, let
T m

n �d� � f�t1n; t2n; . . . ; tm
n � 2 �Tn�m : qm�lt1nt2n...tm

n
;Pm

i�1lti
n
� � dg ;

then limn!1�kn�m�T m
n �d�� � 1;

(2) for any e > 0, limn!1�P m��W m
n �e�� � 1, where

W m
n �e� � f�x1

n;x
2
n; . . . ;xm

n � 2 Xm : qm�sx1
nx

2
n...xm

n
; mm

n � � eg :

Since a nonstandard model is elementarily equivalent to the corre-
sponding standard model, it is routine to interpret results from one
model to the other. The general possibility of such a translation was
already demonstrated by Brown and Robinson in [BR], where large
®nite results on the cores of exchange economies are obtained from
some internal counterparts. The procedure usually involves the so-
called lifting, pushing-down and transfer, and by now is standard.
Thus, there is no point to transfer all the results in earlier sections to
the large ®nite setting, since we know that this is always possible and
no additional scienti®c signi®cance is added. We may also point out
that when an exact result in the measure-theoretic setting is reinter-
preted into the discrete case, much mathematical elegance may be lost
in this process of translation (though the scienti®c meaning is still
retained). This may partially explain why the type of discrete results in
this paper were not considered before in the literature.

To conclude this paper, we note that earlier applications of non-
standard methods and their di�erent variations (see, for example,
[AFHL], [HL], [K1], and [K2]) usually focus on obtaining exact results
via either internal or large ®nite approximations, where the main
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concern is often on existence issues. On the contrary, our focus here is
to obtain qualitative properties of general processes and then to pass
the properties to triangular arrays of random variables automatically.
To put it in a di�erent way, we derive ``di�cult'' approximate results
for the large ®nite case from ``easy'' exact results in the limit model
rather than the other way around. In some sense, this is the opposite
to the usual approach of using Loeb measures.
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