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Abstract. Using the machinery of zonal polynomials, we examine the
limiting behavior of random symmetric matrices invariant under
conjugation by orthogonal matrices as the dimension tends to in®nity.
In particular, we give su�cient conditions for the distribution of a
®xed submatrix to tend to a normal distribution. We also consider the
problem of when the sequence of partial sums of the diagonal ele-
ments tends to a Brownian motion. Using these results, we show that
if On is a uniform random n� n orthogonal matrix, then for any ®xed
k > 0, the sequence of partial sums of the diagonal of Ok

n tends to a
Brownian motion as n!1.

Mathematics Subject Classi®cation (1991): Primary 15A52;
Secondary 60F05

0. Introduction

Let A be a real symmetric n� n matrix, and consider the random
matrix OAOt, where O is uniformly distributed from the orthogonal
group O�n�. For n large, and for su�ciently ``nice'' A, one expects the
matrix elements of OAOt to be approximate Gaussian random vari-
ables, independent except as required by symmetry. The aim of the
present work is to formalize this statement, in a couple of di�erent
ways.

In general, we will be working with a sequence Ai of random ma-
trices, with Ai of dimension ni tending to in®nity, such that

OAiOt � Ai
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for all O 2 O�ni� (We use the notation X � Y to indicate that X and Y
have the same distribution). In section 1, we give su�cient conditions
for the upper k � k submatrix of Ai to converge (weakly) to a
Gaussian distribution, when each Ai is symmetric. (If weak conver-
gence is replaced by convergence of moments, then the conditions are
necessary as well.)

In section 2, we consider a somewhat di�erent problem. For each
Ai, we consider the sequence of partial sums of the diagonal elements
of Ai. The independence heuristic above suggests that this sequence,
scaled appropriately, should converge to a Brownian motion. We give
su�cient conditions for this to occur.

In the ®nal section, we give a couple of examples of random ma-
trices satisfying our conditions; in particular, we consider powers of
random orthogonal matrices, and show that the partial sum sequence
of the diagonal of Ok converges to a Brownian motion.

0.1. Zonal polynomials

We will need several results from the theory of zonal polynomials ([3];
also of interest is [2], which considers some applications to random
matrices). The real zonal polynomials are polynomial functions zk�A�
de®ned on (square) matrices; each zk is a symmetric function of the
eigenvalues of A. (Here k ranges over all partitions; see [4] for de®-
nition and basic results.) The primary relevance of the zonal poly-
nomials for our purpose is that they satisfy the following identity:

EO2O�n�zk�AOBOt� � zk�A�zk�B�
zk�1n� ;

where A and B are any symmetric matrices.
The zonal polynomials can be expanded in terms of power-sum

symmetric functions; we will write

zk �
X
l`jkj

al
kpl ;

with the normalization a1
j

k � 1, and note that these coe�cients satisfy
the following orthogonality conditions:X

m

2`�m�Zmam
lam

j � dlj
j2lj!

v2l�1� ;

where Zm is the size of the centralizer in Sjmj of a permutation of cycle-
type m, 2l is the partition obtained by doubling each element of l, and
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vk�1� is the dimension of the irreducible representation of Sjkj corre-
sponding to k.

Consequently, if we expand the power-sum functions (again, see
[4]) in terms of the zonal polymials as

pk �
X
l`jkj

Al
kzl ;

we have

Al
k �

v2l�1�2`�k�Zk

j2lj! ak
l :

0.2. A convergence condition

In the sequel, we will use the notation

Xn{x

to indicate that a sequence of random variables Xn converges to the
constant x in the following strong sense:

lim
n!1E�X k

n � � xk

for all k (in particular each Xn must have moments of all orders). The
following lemma will be necessary:

Lemma 0.1. Let Xn and Yn be two sequences of random variables on the
same probability space. If Xn{x and Yn{y, then XnYn{xy.

Proof. It su�ces to show

lim
n!1E�XnYn� � xy ;

we can deduce convergence of higher order moments from the fact
that X k

n {xk and Y k
n {yk. Moreover, we may assume without loss of

generality that x and y are both 0. Then

XnYn � max�X 2
n ; Y

2
n � � X 2

n � Y 2
n ;

and thus by symmetry

ÿ�X 2
n � Y 2

n � � XnYn � �X 2
n � Y 2

n � :

Taking expectations, the lemma follows immediately. (
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Thus if a collection of random variables all tend to constants in this
sense, then all their joint moments converge to the values one would
expect.

We will also need the notation Xn ) X for weak convergence.

1. Submatrices

Suppose Mi is a sequence of random symmetric matrices of increasing
dimension, where the distribution of each Mi is invariant under or-
thogonal change of basis. Consider �Mi�k, the top-left k � k submatrix
of Mi, where k is ®xed. If the Mi are well-behaved, one would expect
this to have a limiting distribution. One clear possibility for this
limiting distribution is Nk � 1

2 �X � X t�, where X is a k � k matrix with
i.i.d. real standard normal entries. Thus the ®rst question we address is
when �Mi�k converges weakly to some multiple of Nk.

We will need the following result on the moments of symmetric
normal matrices:

Lemma 1.1. Let Nk be a sequence of random k � k matrices, where each
Nk is distributed as a symmetric normal matrix. Then as k !1,

kÿ1Tr�Nk�{0 ;

kÿ2Tr�N2
k �{ 1

2 ;

and

kÿjTr�Nj
k�{0 ;

for all j > 2.

Proof. Consider, ®rst, Tr�N2
k �. This is easily seen to be v2-distributed,

with �k�12 � degrees of freedom. But then we have

1

�k�12 �
Tr�N2

k �{1 ;

and consequently

1
k2 Tr�N2

k �{ 1
2 :

Now, consider j 6� 2. To determine the asymptotics of Tr�Nj
k�, we will

®rst consider E�Tr�NkA�j�, as a function of a symmetric matrix A.
Since Nk is invariant under conjugation, we may diagonalize A; it
follows easily that Tr�NkA� has distribution N�0;Tr�A2��. (Here we use
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the standard notation N�l;r2� for a Gaussian distribution with mean
l and variance r2.) Consequently,

E�Tr�NkA�j� � CjTr�A2�j=2; j even
0; otherwise ,

�
where

Cj � j!
2j=2�j=2�!

is the jth moment of a N�0; 1�.
Expressing Tr�NkA�j in terms of zonal polynomials, we get:

p1j�NkA� �
X
l`j

Al
1j zl�NkA� :

Since ONkOt � Nk, we have:

E�p1j�NkA�� �
X
l` j

Al
1jE�zl�ONkOtA��

�
X
l` j

Al
1jE�zl�Nk�=zl�1k��zl�A�

�
X
l;m ` j

Al
1jE�zl�Nk�=zl�1k��am

lpm�A� :

Since E�p1j�NkA�� � Cjp2j=2�A�, it follows thatX
l` j

Al
1jE�zl�Nk�=zl�1k��am

l

is 0 unless m � 2j=2, when it equals Cj. Multiplying by Aj
m , and sum-

ming over m, we get:X
l` j

Al
1jE�zl�Nk�=zl�1k��dj

l � CjAj
2j=2 ;

or

E�zl�Nk�� �
CjA

l
2j=2

Al
1j

zl�1k� :

We then have
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lim
k!1

E
pk�Nk�

kj

� �
� lim

k!1

X
l`j

Al
kE

zl�Nk�
kj

� �

� lim
k!1

X
l`j

CjA
l
kAl

2j=2

Al
1j

zl�1k�
kj

�
X
l`j

CjA
l
kAl

2j=2a1
j

l

Al
1j

:

Now, from the orthogonality relations on the a1
j

l , it follows that

Fk �
Al

ka1
j

l

Al
1jak

l

is independent of l. Thus, we have

lim
k!1

E
pk�Nk�

kj

� �
�
X
mu`j

CjA
l
kAl

2j=2a1
j

l

Al
1j

� CjFk

X
l`j

ak
lAl

2j=2

� CjFkd
k
2j=2 :

In particular, setting k � jl, we have

lim
k!1

E��kÿjTr�Nj
k��l� � 0 : (

The referee has pointed out that the above result is well known (for
instance, it follows from the semi-circle law for the eigenvalues of Nk);
the above proof seems to be new, however.

Theorem 1.2. Let Mi be a sequence of random symmetric matrices of
dimension ni !1, with moments of all orders, where the distribution of
each Mi is invariant under orthogonal change of basis, and let �Mi�k be
the top-left k � k submatrix of Mi, for any ®xed k. Then �Mi�k will
converge weakly to cNk, where Nk is a k � k symmetric normal matrix, if
the following conditions hold:

ni
ÿ1Tr�Mi�{0;

ni
ÿ2Tr�M2

i �{
c2

2
;

and
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ni
ÿjTr�Mj

i �{0

for all j > 2.

Proof. By the method of moments, and the fact that Gaussian random
variables are determined by their moments, we see that �Mi�k ) cNk if
for all symmetric matrices B and for all j,

lim
i!1

E�Tr��Mi�kB�j� � cjE�Tr�NkB�j� :
Clearly, the distribution of �Mi�k is invariant under orthogonal change
of basis, so we can expand the left hand side in terms of zonal poly-
nomials as above:

lim
i!1

E�Tr��Mi�kB�j� �
X

l

Al
1j lim

i!1
E�zl��Mi�k��

zl�B�
zl�1k� :

Consequently, we need only show that

lim
i!1

E�zl��Mi�k�� � E�zl�cNk�� :
Now, �Mi�k can be written as PkMiPt

k, where Pk is orthogonal pro-
jection onto the ®rst k coordinates. This allows us to write:

E�zl��Mi�k�� � E�zl�PkOAiOtPt
k��

� zl�Pt
kPk�E�zl�Mi��

zl�1ni�
:

and similarly for Nk. Thus we must show that

lim
i!1

E�zk�cNni�� ÿ E�zk�Mi��
zk�1ni�

� 0 :

Now, for k ` j, limn!1 nÿjzk�1n� � a1
j

k 6� 0; consequently, we can re-
place zl�1ni� in the limit with nj

i . But then, by taking an appropriate
linear combination, the condition becomes

lim
i!1

E�pk�cNni�� ÿ E�pk�Mi��
nj

i

� 0

From the lemma, this is equivalent to the desired conditions. (

This result can be generalized in a number of ways; for instance, by
using the complex or quaternionic zonal polynomials, the result easily
generalizes to complex or quaternionic Hermitian matrices. One can
also prove a similar result for antisymmetric matrices, using the mixed
zonal polynomials of [6]. Finally, we note that the only step in the above
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proof which is not reversible is the deduction of weak convergence from
convergence of moments; thus the given conditions are necessary for
the convergence of the moments of �Mi�k to those Nk for all k.

In the complex case, [5] gives convergence conditions for a larger
class of limiting distributions. It is likely that the above arguments can
be generalized to cover these distributions (as well as analogous real
and quaternionic distributions); all that is needed is an analogue of
Lemma 1.1 (which should be a straightforward application of Theo-
rem 1.1 of [2]), and a proof that these distributions are determined by
their moments.

2. Brownian motion

As before, let Mi be a sequence of random symmetric matrices of
increasing dimension, with distribution invariant under orthogonal
change of basis. Consider, now, the random walk given by partial
sums of the diagonal of Mi. Again, assuming the Mi are reasonably
well-behaved, one would expect this process to tend to a limit; here the
expected limit is Brownian motion.

To be precise, de®ne, for a symmetric matrix, X , a partial trace
function tr�x; X �, by:

tr�x; X � �
X

1�i�bdim�X �xc
Xii

0@ 1A
� �dim�X �xÿ bdim�X �xc�Xddim�X �xeddim�X �xe :

In other words, tr�x; X � is a linear interpolation of the partial sums of
the diagonal of X on the interval �0; 1�. In particular, tr�0; X � � 0 and
tr�1; X � � Tr�X �. We would like to ®nd conditions for tr�x; Mi� to
converge weakly to Brownian motion. One obstacle that arises im-
mediately is that the traces of the Mi might not converge to a normal
distribution. As long as they do converge to some distribution, how-
ever, we can always subtract that contribution, and ask when the
result tends to a ``Brownian bridge'' (that is, B�x� ÿ B�1�x, where B is
Brownian motion). In other words, we can consider instead
tr�x; Mi ÿ Tr�Mi�= dim�Mi��. Consequently, we will restrict our atten-
tion to traceless matrices.

Theorem 2.1. Let Mi be a sequence of random traceless symmetric
matrices of dimension ni !1, having moments of all orders, where the
distribution of each Mi is invariant under orthogonal change of basis,
and let tr�x; Mi� be as above. Then tr�x; Mi� converges weakly to

418 E. M. Rains



c�B�x� ÿ B�1�x�, where B is Brownian motion, if the following conditions
hold:

nÿ1i Tr�M2
i �{

c2

2
;

and

nÿj�1
i Tr�Mj

i �{0 ;

for all j > 2.

Proof. Again, we use the method of moments. First, note that tr�x; Mi�
can be written as Tr�MiP�x; ni��, for suitable diagonal matrices P �x; ni�
(with the ®rst bnixc entries 1, etc.). The theorem follows, therefore, if
we can show that

E�Tr�MiF �ni��j�
tends to the correct value for all j, and all ®xed linear combinations F
of the P �x�.

For each k, de®ne a random matrix

Bk � c�kÿ1=2Nk ÿ kÿ3=2Tr�Nk�� :
Clearly, Bk has the right convergence properties; we therefore need to
show that

E�Tr�MiF �ni��j� ÿ E�Tr�BniF �ni��j� ! 0 :

Again, we expand things in terms of zonal polynomials:

E�Tr�MiF �ni��j� �
X
l`j

Al
1jE�zl�MiF �ni���

�
X
l`j

Al
1j

zl�1ni�
E�zl�Mi��zl�F �ni��

�
X

l;k;j`j

Al
1jak

laj
l

zl�1ni�
E�pk�Mi��pj�F �ni��

Unfortunately, we can no longer replace zl�1ni� by nj
i ; we need higher-

order information in this case. To be precise, we need a better as-
ymptotic understanding of X

l`j

Al
1jak

laj
l

zl�1ni�
�2:1�

First, some information about the al
k:
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Lemma 2.2. For any partitions k; j ` j, there exist coe�cients Ckj
m such

that

ak
laj

l �
X
m`j

Ckj
m am

l :

Moreover, Ckj
m is 0 unless

j`�k� ÿ `�j�j � jÿ `�m� � �jÿ `�k�� � �jÿ `�j�� ; �2:2�
where `�m� is the number of parts of m.

Proof. The existence of the Ckj
m follows immediately from the fact that

the ak
l are spherical functions on S2j=Bj, and from elementary results

on spherical functions. The coe�cients can be expressed in terms of
multiplication of double cosets BjnS2j=Bj, as in [2]. In particular, it
su�ces to show that the product of elements of double cosets with
type k and j can be in a double coset of type m only when the stated
condition is satis®ed. (It is worth noting that the same condition ap-
plies to cycle types of permutations; essentially the same proof can be
used here.) (

Corollary 2.3. For any partition k ` j,

X
l`j

Al
k

zl�1n� � O�nÿ2j�`�k�� :

Proof. First, consider the function fl: n 7! nÿjzl�1n�. fl�1=x� is poly-
nomial in x; the coe�cient of xk is the sum of am

l for all m such that
`�m� � jÿ k. If we compute the power series of 1=fl�1=x� in x, it is easy
to see that the coe�cient of xk in 1=fl�1=x� is a polynomial in the am

l
(with coe�cients independent of l), and further that the sum of
jÿ `�m� for all the factors of any term in the polynomial will be k. It
follows from the lemma that the coe�cient of xk in 1=fl�1=x� is a
linear combination, again independent of l, of terms of the form am

l,
where jÿ `�m� is at most k. Multiplying by Al

k and summing over
l ` j, we conclude that the coe�cient of nÿk in the asymptotic ex-
pansion of

P
k`j Al

k=fl�n� can be nonzero only if k � jÿ `�k�. Divid-
ing through by nj, the result follows. (

Consider, now, equation (2.1). By the lemma, ak
laj

l can be written
as a linear combination of am

l, subject to the constraint (2.2). But

Al
1jam

l �
v2l�1�2jj!
j2lj! am

l �
2jj!
2`�m�Zm

Al
m :
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Dividing by zl�1n� and summing in l, we get something of order
O�nÿ2j�`�m��. By (2.2), this is, in turn, of order O�nÿjÿj`�k�ÿ`�j�j�.

Recall that we have shown

E�Tr�MiP�ni��j� �
X

k;j;l`j

Al
1jak

laj
l

zl�1ni�
E�pk�Mi��pj�P �ni�� :

Summed over l, the ®rst factor has order O�nÿjÿj`�k�ÿ`�j�j�, as we have
just shown. Since the eigenvalues of P�ni� are bounded, pj�P �ni�� �
O�n`�j�i �. From the hypotheses, it is clear that E�pk�Mi�� � O�njÿ`�k�

i �,
and that E�pk�Mi�� ÿ E�pk�Bni�� � o�njÿ`�k�

i �, assuming that Bni also
satis®es the hypotheses. Thus

E�Tr�MiP �ni��j� �
X
k;j`j

O nÿjÿj`�k�ÿ`�j�j
i

� �
O njÿ`�k�

i

� �
O n`�j�i

� �
� O�1� ;

and

E�Tr�MiP�ni��j� ÿ E�Tr�BniP�ni��j� � o�1� :
It remains only to show that Bk satis®es the hypotheses. From Lemma
1.1, it follows that the ®rst term has eigenvalues of order O�k1=2�, while
the trace term has eigenvalues of order O�kÿ1�. It follows that
E�Tr�Bj

k�� � O�kj=2�; thus the conditions are satis®ed for j > 2. For
j � 2,

kÿ1E�Tr�B2
k�� � kÿ2E�Tr�N2

k �� � O�kÿ1=2�
� c2

2 � O�kÿ1=2� : (

3. Examples

Theorem 3.1. Let Mi be a sequence of random traceless symmetric
matrices of dimension ni !1, with moments of all orders, where the
distribution of each Mi is invariant under orthogonal change of basis. If
all moments of a random eigenvalue of Mi converge, then the sequence����

ni
p

Mi satis®es the hypotheses of Theorem 1.2, and the sequence Mi

satis®es the hypotheses of Theorem 2.1; in each case, c is the limiting
standard deviation of the eigenvalue distribution.

Proof. Clearly, nÿ1i Tr�Mj
i � converges to the same limit as the j-th

moment of the eigenvalue distribution, for each j. The theorem fol-
lows immediately. (

One way to get matrices satisfying the hypotheses of Theorem 3.1 is
to generate diagonal matrices with i.i.d. entries, then apply a random
orthogonal change of basis.
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A less contrived example is this:

Theorem 3.2. For each n > 0, let On be a uniform random element of the
orthogonal group O�n� (chosen with respect to Haar measure). For any
®xed k; l > 0, the matrices 1

2 n1=2�Ol
n � Oÿl

n ÿ 2Tr�Ol
n�=n�k converge

weakly to Nk. Moreover, tr�x; Ol
n� converges weakly to the process

N�0; lÿ 1�x� B�x� if l is odd and N�1; lÿ 1�x� B�x� if l is even.

Proof. The eigenvalues of On are bounded; it follows that the trace of
any power of Ol

n � Oÿl
n ÿ 2Tr�Ol

n�=n will be of order O�n�. Moreover,

E�Tr�Ol
n � Oÿl

n ÿ 2Tr�Ol
n�=n�� � 0

E�Tr��Ol
n � Oÿl

n ÿ 2Tr�Ol
n�=n�2�� � 2n� 2E�Tr�O2l

n ��
ÿ 4E�Tr�Ol

n�2�=n

� 2n� O�1� ;
since E�Tr�O2l

n �� � 2l for su�ciently large n [1]. The ®rst claim follows
by Theorem 1.2.

The second claim follows by Theorem 2.1 applied to 1
2 �Ol

n � Oÿl
n �

(which clearly does not change the partial traces); we ®nd

tr�x; Ol
n� ) N��l� 1�mod 2; l�x� �B�x� ÿ B�1�x�

(note that Tr�Ol
n� ) N��l� 1� mod 2; l� [1]). But this has the same

distribution as

tr�x; Ol
n� ) N��l� 1�mod 2; lÿ 1�x� B�x�: (

For l � 1, these results were already known; a stronger version of the
®rst claim, as well as unitary and sympletic versions, was proved in [7],
while a simple proof of the second claim was given by P. Diaconis
(personal communication). This latter was the motivation for section
2. As before, Theorem 3.2 has analogues for unitary and symplectic
matrices.
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