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Abstract. We obtain the Lifschitz tail, i.e. the exact low energy
asymptotics of the integrated density of states (IDS) of the two-
dimensional magnetic Schrodinger operator with a uniform magnetic
field and random Poissonian impurities. The single site potential is
repulsive and it has a finite but nonzero range. We show that the IDS is
a continuous function of the energy at the bottom of the spectrum.
This result complements the earlier (nonrigorous) calculations by
Brézin, Gross and Itzykson which predict that the IDS is discontinuous
at the bottom of the spectrum for zero range (Dirac delta) impurities at
low density. We also elucidate the reason behind this apparent con-
troversy. Our methods involve magnetic localization techniques (both
in space and energy) in addition to a modified version of the “‘en-
largement of obstacles” method developed by A.-S. Sznitman.
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1 Introduction

Magnetic Schrodinger operators with random potentials have been
intensively studied by physicists, in particular because of their rele-
vance to the quantum Hall effect. Rigorous mathematical studies of
these operators have appeared only recently (e.g. [5], [6], [18], [19]).
For a wider background and many references (including physical
ones) we refer to [5]. In this paper we focus on the integrated density
of the states (IDS) in the low energy limit, i.e. on the so-called
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Lifschitz tail. We restrict ourselves to the two-dimensional situation
which is the most relevant case for magnetic problems.

The Lifschitz tail is not supposed to depend on the actual shape of
the single site obstacle potential if it has short range, and our results are
consistent with this expectation. We can treat both soft and hard-core
obstacles as well. Our result shows, in particular, that the IDS is
continuous at the bottom of the spectrum if the density of the obstacles
is positive and if the support of the potential has nonempty interior.

However, the case of zero range (Dirac delta) impurities yields a
characteristically different behavior due to a purely magnetic effect.
We rigorously justify the prediction of Brézin, Gross and Itzykson [4]
that the IDS is discontinuous at the bottom of the spectrum if the
impurity density is smaller than the density of states in the unper-
turbed lowest Landau level.

The conclusion is that while the findings of [4] are correct, it is
wrong to extend them to more realistic, nonzero range potentials. The
IDS is continuous for typical potentials and the discontinuity in the
case of Dirac delta impurities is an exceptional phenomenon.

For most of our work we shall assume that the potential has
nonzero range and in Section 9 we investigate the zero range case.

1.1 Definitions
1.1.1 Soft potential

Consider a nonnegative, measurable function ¥® on R?, which is
positive on an open set of positive measure, i.e. V) (x) > v for |x| < a
for some a,v > 0. For technical simplicity, we assume that ¥ is
continuous. Let

) = Vo) = 3V~ () (11)

be a random potential, where x;(®) is the realization of the Poisson
point process 2 = 2, on R? with density v (here @ denotes the ran-
domness, but we shall usually omit it from the notations). The ex-
pectation with respect to £ is denoted by &. We consider the following
magnetic Schrédinger operator with random potential 7,

H(V):H(Vw):Hw:%[(_iv_A)z_B]"i_Vw ) (1.2)

where 4 : R — R? is a deterministic vector potential (gauge) gener-
ating the constant B > 0 magnetic field, i.e. curl 4 = B. The properties
we are interested in are independent of the actual gauge choice, so,
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conveniently, we choose the standard gauge A(x) :z%(’xfz). Here
x = (x1,x2) € R% ie
. 2112

Hy = La wuf_s
We subtracted the constant B/2 term in the kinetic energy both for
physical reasons (spin coupling) and for mathematical convenience. In
this way the spectrum of the free operator H(V =0) is
{nB:n=0,1,2,...}, i.e. it starts at zero. It is well known that each
level (Landau band) is infinitely degenerate, and the spectral projec-
tion IT, onto the n™ level is an explicit integral operator (see (2.14) in
[5D.

We also define Hy = Hp(V') as the restriction of H onto a domain
O C R? (with Dirichlet boundary conditions). In this pdper by domain
we mean an open, bounded subset of R? with regular (C') boundary,
which is not necessarily connected.

Integration by parts shows that HQ corresponds to the quadratic
form (f,Hpf) = 2fQ ITf]* + Jo V|f]* defined on the core C3°(Q) with
T:=—i0) + 0, — A — id.

We shall always assume that V() has sufficient decay so that
V, € L10C with probability one, i.e. these operators are almost surely
selfadjoint. We always consider w from this set of full measure. We
define the integrated density of states (IDS) as

(xlaxz _x28x1) + + Vm(x) .

N(E) = lim L(g@TrPE(HQ) , (1.3)
0% |0

where Pg is the spectral projection onto the half line (—oo, E], and
O / R? denotes an increasing sequence of nested regular domains, say
squares or disks. The trace is over L*>(Q). In fact, the above limit
equals to &[Pg(H)(x,x)], moreover it has the so called self-averaging
property, i.e. the random quantity | Q|_1TrPE(HQ) becomes deter-
ministic in the thermodynamic limit. For details, we refer to [7] and
references therein.

The existence of the limit (1.3) is standard by the ergodic technique
of superadditive processes. We refer to [15] for the general technique
and to [19] for the magnetic case, here we just recall the basic idea for
the soft potential case, the same argument applies to the other two
cases.

N(E) can be defined via quadratic form as well, using that
TrPg(Hp) = Ny, (E) by variational principle, where
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. 1 5
N, E) = dim 4 : = T
A f%%&nn 24UW

[ VAP BT, vreay . (4
(¢

Here O — Ny, (E) is superadditive, stationary and for E < B it is
bounded from above by £ - |Q], since évQ’V“’ (E) < TrLzl(Q)PE(HQ(O)) <
JoPe(H(0))(x,x) dx = [, Io(x,x) dx = 5_ - |Q|. Hence 5+ & No, y, (E) is
a bounded, increasing sequence for, say, Q, := [—2”,2”]2, hence its
limit exists. By standard thermodynamic argument one can show that

the same limit is obtained for other sequence of regular domains.

1.1.2 Hard-core potential

Let K be a compact set with a non-empty interior and regular
boundary, say B(0,a) C K C B(0,a) for some 0 < a < @and 0K € C.
B(x,r) denotes the ball of radius » centered at x. Consider the random
set

9@:?:W\UM+M@) (1.5)

1

and let H5 be the operator §[(—iV — 4)* — B] with Dirichlet boun-
dary conditions on 7. Since {x;(w)}, is a.s. locally finite, 7 is open
almost surely. Hence H7 and Hsp are well defined as a selfadjoint
operators. As before, let

o/r |0

1.1.3 Dirac delta potential

We consider the model introduced by Brézin, Gross and Itzykson [4],
where the single site potential is V) (x) = gdy(x), g > 0, i.e.

Hy = Y~V 4 = B+ g3 o0 —m(@)) . (1)

Unfortunately, the mathematically rigorous definition of this operator
is problematic even for finite volume. The corresponding quadratic
form
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Goulfof) = /ITfI oS @) (18)

defined on smooth functions vanishing outside of Q, is symmetric but
not closable, hence there is no selfadjoint operator associated with it.
The reason is that for any f € C;°(Q) and for any finite point con-
figuration {x;} in Q, there exists a sequence of cutoff functions ¥, such
that ¥ (x) — 1 for x # x;, ¥.(x;) = 0 and ||T(I.f)|, — || Tf||, as € — 0.
Hence ||f; — folly + IT(: — f)ll, =0 with /== 9.f — f, but
qo.0(fe, fe) does not converge to qp ., (f,f) if f(x;) # 0. [For example
the following function ¢, has this property if there is only a single
point at the origin, x; =0; let J.(x) =0 for |x|] <e, J(x):=
log(a + blog|x|) for € < |x| < /e and Y.(x) = 1 for |x| > /€, where a
and b are such that 9, be continuous. The generalization for many
centers is straightforward.]

This problem has been widely studied for the nonmagnetic case, for
the most comprehensive reference see [3]. In nutshell, the result is that
it is possible to identify certain selfadjoint extensions of —A defined on
C(R*\U;{x;}) as a norm resolvent limit of approximating operators
with regularized deltafunctions, but the strength of the coupling g has
to be weakened as the regularization goes to zero. However, if the
approximating potential is nonnegative, then the limit is always the
usual —A on R?, i.e. the repulsive point centers remain unnoticed. [See
Section 1.5 in [3] for the one center case in d = 2, and the analogous
but more elaborated d = 3 case for many centers in Section 11.1.2.]

To our best knowledge, the magnetic case has not been fully
worked out (for partial results see [21]). It is easy to see, however, that
if one defines the IDS analogously to (1.4) using the Dirac delta
quadratic form (1.8), then the result is trivial, i.e. N(E) is exactly the
same as for the free magnetic operator (step function). One could
simply use the same orthonormal set of trial functions as for the free
case, just one has to infinitesimally cut out the effect of the impurities
using the . multipliers. As ¢ — 0, this cutoff does not influence the
kinetic energy and the orthogonality. The details are left to the reader.

Despite this triviality, several physical works considered the IDS of
the Dirac delta case and obtained a nontrivial result (see [4], [16] and
Remark 2.4. (ii) in [5] for a summary). The reason is that these works
actually considered IlyV,I1y, the so called lowest Landau band
approximation of (1.7) which has also been used in the context of
Anderson localization (see [10] and references therein).

The corresponding quadratic form, qé?c)u (f,.f) =g |(Iyf) (x,)|*=
g S {f TIf), is defined for all £ € L*(R?) such that g{'0(f, f) < oo
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where IT" :=|P,,)(P,,| is the one dimensional projection onto the
subspace spanned by P, (x) := IIy(x;,x). This form is closed in contrast
to (1.8), although it is not bounded due to a possible large concen-
tration of points (unlike the analogous operator treated in [10] with
impurities on a lattice).

There are several ways to define the corresponding finite volume
operator on Q C R?, where Q is a “nice”” domain (say disk or square).
Dirichlet boundary conditions cannot be imposed as Iy is not a local
operator, but one can consider XQHO VwHon, i.e. the almost surely
bounded, self-adjoint operator on L?>(Q) corresponding to

0 2
dy) o (fof) = 9> [ (Moxof) (xi)|” (1.9)
where 7, is the characteristic function of Q. The IDS is defined as
1
Ny(E) .= lim —&TrPe(xolloVuIloyy) - (1.10)
! o w0 ¢ .

From physical point of view it seems reasonable to focus only on the
lowest Landau band for the low energy (E < B) behavior of the
operator. However, the discussion above shows that this (or similar)
approximation is not just convenient but also necessary from the
mathematical point of view in order to define a nontrivial operator
describing Dirac delta interactions in a magnetic field. Our result re-
mains valid for the finitely many Landau band approximation
(S TL) Ve (0, TT) as well.

Remark. The spectral properties (e.g. IDS) of the magnetic operator
are invariant under a global gauge transformation on R?,
A — A+ VE with ¢ € C'(R?,S"), hence we can just use the standard
gauge (see e.g. [17]). However, for multiply connected domains Q, that
appear in the hard-core and Dirac delta cases, it is also possible to
consider local gauges, A € C'(Q, Rz), curl 4 = B on Q, which cannot
be extended to a global gauge on R? that would generate the constant
field everywhere (the holes in the domain may have to carry extra
fluxes). If such gauges were allowed, Pz(H)(x,x) or the lowest eigen-
value, for example, would not be gauge invariant, as they would de-
pend on the integer parts modulo 27 of the hole fluxes (this is
essentially the Aharonov-Béhm effect [1]). Although we believe that
our result on the asymptotic behaviour of N(E) remains valid for any
local gauge choice, the current proof does not cover this general case
(only the argument in Section 6 uses the specific global gauge).
However, in Section 7 we need to introduce local gauges for certain
auxiliary operators.
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1.2 Results

All our results are equally valid for the soft and hard-core cases, and
the proofs are almost identical. We shall focus on the soft potential
case, the hard-core case follows with minor formal modifications.
However the Dirac delta potential requires a separate treatment.

1.2.1 Soft or hard-core obstacles

First, we recall the relevant results for the nonmagnetic (B = 0) case in
any dimension d (see [20]). Assume that the single site potential, (%),
isin L} and it has a definite tail behaviour with exponent o > d, i.e.
lim x"VOx)=p, 0<p<oo . (1.11)

|x| =00
For slowly decaying potentials, i.e. for d < o < d + 2, the asymptotics

of N(E) is given by

lim EY®~?log N(E) = —C(d 1.12
m og N(E) (dyo, p1,v) (1.12)
where the constant is explicit. This behaviour is completely governed
by the potential energy, i.e. by classical effects. For o > d 4+ 2 (more
precisely, if ¥©(x) = o(|]x|""*) at infinity), one has (see [9] and [24])

i d/2 - _
E%&OE log N(E) C(d,v) , (1.13)

i.e. the tail is independent of the parameters of the single site potential.
In fact, we obtain the same behaviour for hard obstacles (formally, it
corresponds to o = 00), indicating that the localization properties of
the kinetic energy plays the major role in contrast to the previous case
of slowly decaying potential. We call this regime nonclassical. Note
that the threshold for this transition is at the decay exponent
o = d + 2. Heuristically, it is obtained from the competition between
the kinetic energy within the ball of radius R (~R~?) and the potential
energy within this ball originated from obstacles outside the ball
(~ J=r gpvdx ~ RI=%),

In the magnetic case, the situation is different. The magnetic field
itself has a strong localization effect, i.e. the kinetic energy is expected
to play less role. In fact, it has been proven in [5] that the classical
effects dominate for any d =2 < o < oo, and any B > 0, i.e. (compare
with (1.12); even the constant is the same)

: 2/(a—2) — —
Jim E log N(E) = —C(d = 2,0, 1, v) (1.14)
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under the condition (1.11). Note that the strength of the magnetic field
does not appear in the asymptotic behaviour of N(E), only the fact
that B > 0 is used. Analogous result is valid in higher even dimensions
as well.

One of the conclusion of [5] is that the low energy tail is always
determined by the classical effect. In the present paper, we show that
with a more careful analysis one can detect the nonclassical behaviour,
but the threshold decay of the potential, where the transition occurs,
has to be faster than polynomial. Therefore it is invisible in the regime
investigated in [5]. Moreover, we show that the asymptotic behaviour
of N(E) does depend on the strength of B in the nonclassical regime.
Our theorem is the following [1(-) or 1() denote the characteristic
function]:

Theorem 1.1. In two dimensions let v be the intensity of the Poisson
point process and let B> 0 be a constant magnetic field. Let V) be
continuous, compactly supported and V0 > vl B(0.a) Jor some a,v > 0 in
the soft obstacle case; and assume that the compact set K contains a ball
B(0,a) and has a regular boundary in the hard-core case. Then the
integrated density of states of H(V') or Hy, defined in (1.3) and (1.6),
respectively, satisfies

log N(E 2
iy 108 N(E) _ 2mv (1.15)
E—0+0 |log E| B

In particular

lim N(E)=0
E—0+0
for any v > 0, i.e. the integrated density of states is continuous at the
bottom of the spectrum.

Remark 1. This theorem does not establish the optimal condition on
the decay of . In particular, we do not address the question how to
improve our result to include potentials with unbounded support (the
results of [5] show that the decay of the potential has to be faster than
any polynomial). Similarly to the nonmagnetic case, a competition
between the kinetic energy and the potential energy suggests that the
threshold decay is probably Gaussian.

Remark 2. Our method does not work to investigate Lifschitz tails
above higher Landau levels. Note that statements analogous to (1.14)
were proven in [5] for the restriction of H onto any fixed Landau band.
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1.2.2 Dirac delta potential in the lowest
Landau band approximation

The results by Brézin, Gross and Itzykson [4], which are based upon
nonrigorous supersymmetric functional integrations, show with our
notations that for any g > 0

E 2 2
lim NelE) __2m e 2 (1.16)
E—0+0 | log E| B B
and
B 21y .. 2my
Jim Ny(E) =3 (1-) it SE<t (1)

In fact the calculations in [4] give more detailed information, as they
yield the density of states as well.

The heuristic explanation for these results is that a fraction of the
total number of states in the lowest Landau level of the free operator
remains unaffected by the Dirac delta potential. This is possible be-
cause the ground state magnetic eigenfunctions have many zeros
which can neutralize the Dirac delta impurities at low density v < éin
(roughly saying the density of zeros of a typical ground state is %). If
the impurity density is high, then there are not enough zeros to ac-
commodate all the obstacles, but the zeros can match % obstacles per
unit area. Hence the effective density of the obstacles is
Vefr :i= v — & = £ (3 — 1) which accounts for the discrepancy be-
tween Theorem 1 1 and (1.16)—(1.17).

Here we rigorously justify the most interesting part of this heuristic
explanation by proving the following theorem.

Theorem 1.2. Let % <1 and g > 0, then

B 21y B
>_ —_—
lémomofN( ) 5 (1 ) V. (1.18)

In particular, the IDS is discontinuous at the bottom of the spectrum.

Remark. This theorem gives the easier direction of (1.17) and is es-
sentially a trial function calculation. The upper bound would require
extending the method of Section 7 to point interactions, but unfor-
tunately the fatness of the obstacle support is heavily used in our
technique.
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1.3 Idea of the proofs

First we discuss the proof of Theorem 1.1. Similarly to the difference
in complexity between the proofs of (1.12) and (1.13), one can expect
that the proof of (1.15) requires more detailed analysis than that of
(1.14). In particular, the lower bound on the Hamiltonian (upper
bound on the IDS) is more complicated; Golden-Thompson and
related inequalities used in [5] are insufficient.

First, we translate the problem into a heat kernel estimate. Then,
there are three main ingredients in our work. Not unexpectedly, the
proof of (1.15) must contain an argument similar to the proof of
(1.13), i.e. a Donsker-Varadhan type upper bound on the heat kernel
(see [9]). A.-S. Sznitman has worked out an alternative method for
proving this upper bound (in fact, his technique, called the method of
the “enlargement of obstacles”, is applicable to a much wider class of
problems), and we found this approach suitable to the magnetic
problem. This is the first major ingredient.

Sznitman’s method is able to estimate the lowest eigenvalue only.
Hence, before applying it, one needs to localize the problem so that
the lowest eigenvalue dominate the behavior of the IDS. Here we use a
special magnetic localization technique developed in [14]. This is the
second ingredient.

Finally, the third ingredient is an isoperimetric inequality. For the
nonmagnetic case this boils down to the standard isoperimetric
problem; the minimization of the lowest Dirichlet eigenvalue of a
domain with a fixed volume. Note that neither Donsker-Varadhan’s
nor Sznitman’s method can avoid this step. Apparently the same is
true for the magnetic problem; this was our main motivation to prove
the corresponding isoperimetric inequality with a magnetic field in
[12]. The necessary results are recalled in Section 4.

The present paper contains a modified version of the “enlargement
of obstacles” argument in the magnetic setup and the localization
step. Here we explain briefly the strategy.

Sznitman’s method relies on heat kernel estimates. This is not di-
rectly applicable, since it heavily uses that the transition kernels are
positive, in contrast to the oscillatory character of the magnetic
problem. It also requires a real valued “‘free” diffusion process, such
that the Feynman-Kac formula for e (") could be viewed as its
perturbation. We were not able to find a suitable diffusion process
associated with the free magnetic problem. Diffusion with a drift
comes as a natural candidate but we are not aware of any process with
a real drift that mimics the free magnetic Schrédinger operator. We
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are able to replace the effect of the magnetic field by a potential via a
variational principle (see Egs. (6) and (8) in [12]), but this potential
changes sign which makes it hard to estimate in the Feynman-Kac
formula.

Instead, our key idea is to use the spectral gap in the free magnetic
Hamiltonian to separate the lowest Landau band. It turns out, by a
simple energy argument, that the contributions from the higher
Landau bands are irrelevant as we are investigating unusually low
lying eigenvalues. Hence almost the whole principal eigenstate lives in
the lowest Landau band. By the proof of the Aharonov-Casher the-
orem [2], the projection of any state onto the lowest Landau band can
be expressed as heB9 where £ is analytic, and g solves Ag = —1 on the
domain. We write ¢ in terms of the expected value of the boundary
hitting time of a free Brownian motion. It is this stage where we use an
argument similar to Sznitman’s, applied to a process which is, unlike
in Sznitman’s papers, completely different from the one generated by
the original free Hamiltonian. This is the content of the most technical
Section 7.

The IDS in infinite volume contains information about infinitely
many (generalized) eigenvalues. However, the crucial part of our
analysis (as well as in Sznitman’s original work) proves that the lowest
eigenvalue of H (V) is comparable to the lowest eigenvalue of another
Hamiltonian (the one with the so-called “‘enlarged obstacles’), whose
potential configuration has a smaller entropy factor. This method is
able to estimate only the lowest eigenvalue, hence, before applying it,
we have to localize the problem onto a small enough box on which the
lowest eigenvalue solely determines the low energy asymptotics of the
averaged IDS. The choice of the size of this localization box depends
on the energy threshold E according to the following two require-
ments.

On one hand, it turns out that for each energy E the main con-
tribution to the averaged IDS comes from very atypical configurations
(where the Poisson cloud has a large clearing) which support an
eigenfunction with a very low lying eigenvalue. This eigenfunction has
a natural lengthscale, depending only on E. Obviously, the localiza-
tion box has to be at least as big as this natural lengthscale in order
not to destroy these low lying states by the artificial localization.

On the other hand, the actual number of eigenvalues below E
should be irrelevant (on logarithmic scale) compared to the large
deviation probability that there is any eigenvalue below E at all. This
is the case, at least, if the size of the localization box is not much
bigger than the natural lengthscale of the typically contributing
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eigenfunction. The number of the relevant low lying eigenvalues is
approximately equal to the volume ratio between the apriori box and
the box with side lengths equal to the natural lengthscale.

Using (1.3), the infinite volume IDS can be approximated by a
finite volume IDS, but we have to control the error effectively. It is
done in two steps. In the first step we localize onto a big ““apriori” box
to make the problem finite. In the second step we apply the magnetic
localization technique of [14]. This enables us to localize onto a
constant (= ng) multiple of the natural lengthscale (this will be our
localization scale) at the expense of changing the magnetic field by a
constant amount 2f. The relation between these constants is that
p — 0 as ny — oo, but we take this limit only after £ — 0 + 0.

The whole proof is actually done in the language of the heat kernel
as we explain it in Section 2. We shall take the Laplace transform of
N(E) to obtain the heat kernel, whose time parameter ¢ is the conju-
gate variable to E. The small energy asymptotics of N(E) is related to
the large time asymptotics of the heat kernel by a Tauberian type
argument, which also establishes the relation between ¢ and E. The
apriori localization entails a large deviation estimate of the probability
that the Brownian loop (in the Feynman-Kac-Ito representation of
the heat kernel) goes extremely far. By the simplest Gaussian tail
estimate on this probability one obtains the necessary decay (expo-
nential in ¢ is good enough) if the linear size of the apriori box is of
order ¢. This estimate does not use any extra localization due to the
magnetic field (if any); the oscillatory factor in the Feynman-Kac-Ito
formula, which supposedly enhances localization, is estimated by
absolute value. We remark that it is not clear to what extent the strong
Gaussian type off-diagonal decay of the free magnetic heat kernel
survives under a general potential perturbation. Warning examples
and related phenomena are discussed in [11] and [13].

In the nonmagnetic case the Tauberian argument sets E ~ ¢~2/(@+2),
and the natural lengthscale is of order E~'/2 ~ ¢!/(4+2) 4 being the
space dimension. Since the volume of the apriori box is of order #, the
number of low lying eigenvalues is around ¢/ /t%/(@+2) i e. a power of ¢.
This overcounting is irrelevant compared to the subexponentially
small size of the averaged heat kernel (~ exp —¢%/(@+2)),

In the magnetic case, the situation is much tighter. The natural
lengthscale is proportional to /|log E| ~ /log t, and the over-
counting is still a power of ¢ if we use only the apriori localization of
linear size ¢. But the actual heat kernel decay is algebraic as well
(t~2™/8 see (2.7) later). Hence the overcounting error is comparable to
the main term. This is the reason why we have to do a second local-



Lifschitz tail in a magnetic field 333

ization which brings us down to a constant multiple of the natural
lengthscale from the apriori lengthscale. In fact the second localiza-
tion (Section 6) is strong enough so that we do not need a particularly
effective apriori localization (Section 3).

The proof of Theorem 1.2 is significantly simpler and we present it
in Section 9 which is independent of the rest of the paper.

After identifying R? with the complex plane z € C the idea is to
construct many linearly independent analytic functions which all have
zeros at the points of the Poisson process. Multiples of the well known
Weierstrass product serve as natural candidates. By the Aharonov-
Casher theorem, all these functions multiplied by exp ( — B|z|*/4) are
zero energy eigenfunctions of H,, if they are in L?>(C). It is well known
that the growth rate of the Weierstrass product depends on the density
of zeros. It turns out that if the density of zeros is smaller than %, then
the growth is controlled by the factor exp ( — B|z|*/4).

To produce the necessary amount of linearly independent func-
tions, all having zeros at the Poisson points, we superimpose the
original Poisson process of density v with another one with density
slightly smaller than 2% — v. The Weierstrass product corresponding to
the union of these two Poisson clouds is still controlled by
exp(—B|Z|2/4) since the union of the two point clouds is also a
Poisson process with density slightly smaller than 2%. Moreover, this
Weierstrass product naturally factorizes into two factors, according to
the two processes. Keeping the factor corresponding to the original
process fixed (this ensures the vanishing at the points of the original
process), we choose the remaining factor by sampling randomly from
the second Poisson process. Since this second factor is a random
polynomial of a degree essentially N ~ [2% — v] - (Volume), choosing
N samples typically gives linearly independent random polynomials.
Including the first factor and exp (— Blz|? /4), we obtain N linearly
independent functions, all vanishing at the points of the original
process, and typically they are decaying at infinity. The actual proof is
done in a finite volume with appropriate cutoffs.

2 Heat kernel, Laplace transform
Let L(z) (t > 0) be the Laplace transform of the density of states N(E):
L) = L(t) = / e MdN(2) . (2.1)

We usually omit the B superscript if it refers to the original magnetic
field.
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2.1.1 Soft potential

Let By := B/2 for simplicity. For all  and x € R* we can define
15 (1) = (2m) Pz [ AT P OB oty ) (22)

where Ex’f) stands for the expectation with respect to the probability
measure of the two dimensional Brownian bridge W; (0 < s < ¢) with
Wy = x, W; = y. Notice that the heat kernel, e (x, y) in general exists
only for almost all x and y and almost surely. But by Theorem 3.1.
from [7] it is continuous almost surely (if V;, € L}, ), and the Feynman-
Kac-Ito formula gives this continuous representation. In particular,
the diagonal element is well defined and nonnegative since e " is a
nonnegative operator.

Notice that L¥ (¢) is independent of the gauge choice, in particular
its distribution is ergodic with respect to the spatial translations in x,
i.e. &L} (¢) is independent of the choice of x.

Using the approximation result in [5] (formula (A.10)) we get that

L(t) = ELF (1) (2.3)

for any x (in particular this shows that L(¢) is finite).

2.1.2 Hard-core potential
For all x € R?
L0) = ()~ B e WA (17 > )| = e e ()

(2.4)

Here and in the sequel T denotes the exit time from the domain Q.

The continuity of the heat kernel of Hs has not been explicitly
proven in [7], but it follows immediately from the soft potential case
by the following approximation. Since J = .7, is open (almost
surely), by dominated convergence

o o LA - [! V,,(WS] L [eifomw.c)dml(& -9 @)

locally uniformly in x,y € J and in ¢, where V), is an increasing se-
quence of continuous functions supported on 7 ¢ such that V;,(x) — oo
for allx € 7. Such a sequence exists because int(K) is non-empty and
OK is regular.
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By continuity of the heat kernel, its diagonal element in (2.4) is well

defined and for all x
L(t) = 6L (1) . (2.6)

Again, this relation is proven in [5] only for soft potential, but the
proof of (A.10) goes through with obvious changes for the hard-core
case as well.

Theorem 2.1. Under the conditions of Theorem 1.1, we have

log L(¢) 2y
=—— 2.7
= log ¢ B (27)

for both the soft and hard-core cases.

By a standard Tauberian argument, Theorem 1.1 immediately
follows from Theorem 2.1.

The rest of the paper, apart from Section 9, contains the proof of
Theorem 2.1. We shall focus on the proof of the soft potential case,
the modifications for the hard-core case are obvious.

3 Apriori localization

Recall that for any box 0 := [—g, ¢]* and for almost all configurations
w, we defined the self-adjoint operator Hp, = % [(—iV — A)2 — B]
+V,, with Dirichlet boundary condition on Q. Let 4¢,, be its lowest
eigenvalue. For any x € Q, let

Ly olt) - = ¢ Mom (x, )

— (2m) ' PVED [e-ifofw L CCREETE PR IE Y

be the diagonal element of the heat kernel by the magnetic Feynman-
Kac formula. Recall that for any domain Q C R?, Ty denotes the exit
time from the set Q.

The heat kernel of Hyp, is trace class, therefore

1 1 ~
LQ’(D(t) = @/QL)CQ,(U(t) dx = @Tre 1Ho.

exists and is finite (| - | denotes the Lebesgue measure of a set). Finally
let

LQ([) = gLQw(l‘) .

We need the following robust estimates.
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Lemma 3.1. (i) For t > 2B, for any x € R? and for almost all w

Li(t) =e ™ (x,x) <B, (3.2)
and for any square Q
Ly (1) = e Moo (x,x) <B . (3.3)

(ii) For any square Q, for any x, t > 4B~" and for almost all w

Lx

Q’w(t) = e Moo(y x) < lOB(e’MQ*” + e’BO‘) . (3.4)

Proof of Lemma 3.1. (1) The robust diamagnetic estimate in the
Feynman-Kac-Ito formula (2.2) gives

e Mo (x,x) < (2m7) P (3.5)
for any t > 0. Hence, using H,, > 0, we have

_ _p-1 (4 —1 _p-1

e tH"’(x,x) _ (e B Hw(,,x)’e (+=2B7")H,, o —B HL,](,7X))L2(R2)
2 _
= B 'Ho (x,x) <B .
L2(R?)

IN

[RIOR)

The proof of (3.3) is identical.
(i1) Similarly to part (i),

e Moo (x,x) = (C‘BAHQ«“(-,x),e_(’_zBfl)HQ“e_Bf]HQ‘“('ax)) ) (R2
(R
2

< ef(zsz-l);va efB-IHQ_w('

,X)
< 108 (e—”-w n e_B°’> (3.6)

using that Hp, > Ao, t > 4B~ and that e oo (x,x) < (2n7) e,

for any 7, again by a robust estimate in the Feynman-Kac formula

3.1). O

Proposition 3.2. Let Q = [—q,q}2 and M = [—m,m]2 be squares. Then
for any q and t

Lo(t) < L(¢) = liminf Ly (¢) . (3.7)
Proof. We start with the lower bound. Let M :=[—m,m]’,

M = [-m, m’]2 with m’ < m being integer multiples of g. We have
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L(r)>|;4‘ M,(g)y()dx—mlﬂ [ sty 0 ds
rM\/ i 0]
2 ] e 200
Bot 147 N2
_4§n(;||]\A/;[||eXp (‘ o 8tm> ) ' (3:8)

Here we used (3.3) for Lj, ,, x € M\M’', and we estimated
|8 [e™" (x,x) — e e (x,x)]|

= ‘£(2nt)_leB°tEi:6 [eifoA(Ws)dsfo R dsy oy, < t)] ‘

< 42m) e (—M> 3.9
< 4(2nt)” e’ exp o (3.9)

for any x € M’. The last estimate follows from the fact that x is at least
at a distance m — m’ from the boundary of M and from the standard
large deviation estimate for the Brownian loop ([22])

L2
ng(sup |W|>L> <4exp< > (3.10)
0<s<t 8t

for any L > 0.

Since n = m/q is an integer, there are squares {Q,}l |» each being
congruent to O, which partition M. Obviously Hy ., < @®;H,,. Since
the trace of the heat kernel is operator monotone, we have

2
1 / 1 1 &1
— [ L}, () dx = — Tre e > — Tre oo
] Jy, PO = o > F 2ol
Hence (3.8) yields

/ Bot m—m 2
L(t) > Lo(t) — 2B(m —m') _de exp <—¥> .

- m 2nt

Since this is true for any m,m’, letting m,m’ — oo such that
m—m — oo but (m—m')/m — 0, we obtain the lower bound in
(3.7).

The proof of the upper bound in (3.7) is very similar. We again
consider the squares M and M’. Then
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1 1
L (1) dy + —
rM\ PRVl

ol s}

Ly o(t) = Ly (1) dx

Taking expectation

|M'| 1
——L(t) + &Ly (1) dx
) 0] Sy )

LM(t) =

o ), g(Lme(t) - LZ,(t)) dx

> L(1) (1 _Hm=- ml)> - 4eBUleXp (— M) (3.11)

m 2mt 8t

using the estimate (3.9). Choosing m' = m —+/m and taking
liminf,, _, ., on both sides we obtain the upper bound in (3.7). O

4 Estimates on the lowest eigenvalue on a disk

For any open bounded domain Q ¢ R? with piecewise C' boundary
we would like to define the lowest magnetic eigenvalue of Q with
constant magnetic field B and with Dirichlet boundary condition. For
simply connected domains this eigenvalue is gauge invariant. How-
ever, for multiply connected domains, the eigenvalue can depend on
the extra fluxes through the holes in the domain, hence on the actual
gauge, as we remarked in Section 1.1. If we allow local gauges as well,
then the lowest eigenvalue might not come from a global gauge on R?
generating the constant field everywhere. Hence let A(B)(Q) =

inf Spec §[(—iV — 4)* - B],, and

~ 1 o R _
B (Q) = inf{ inf Spec [(—iv _ AP - B]Q LA e d(Q)NCxQ),

curl 4 = B on Q} , (4.1)

where, as usual, the index Q refers to Dirichlet boundary condition on
Q and /(Q) is the set of real analytic vectorfields. In general
B (Q) < 2B)(Q), but if Q simply connected, then 18(Q) = 15)(Q).

Let Bz be the disk of radius R, then the magnetic isoperimetric
inequality [12] states that
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AP(Q) > i) (Bg) (4.2)

if |Q| = |Bg| = nR®. Though it is not stated explicitly, notice that the
proof given in [12] is valid for any analytic local gauge 4 defined on Q,
i.e. the gauge does not have to be global. The smoothness condition
on 9Q can be relaxed to piecewise C! by standard approximation.

Moreover, in the Appendix of [12] we gave a lower and an upper
bound on A# (Bg). The choice of the parameters in the proof given
there is not well-suited for our problem, hence we slightly reformulate
the statement and the proof. Recall that By := B/2.

Proposition 4.1. For any k > 0, there exists C(k) >0 such that if
BoR?> > C(k), then

e~ BoR(1+1) < }L(B>(BR) < e BoR*(1-x) (4.3)

Proof. We slightly modify the proof given in [12]. Recall that it is
sufficient to consider the case B =1 by scaling. Then, we identified
AB=D(Bg) with the smallest eigenvalue of the one dimensional har-
monic oscillator —9? + x?/4 — 1/2 with Dirichlet boundary conditions
on the interval [—R,R].

To construct a trial function for the upper bound in (4.3), we cut
off the Gaussian eigenfunction ¢(x) = e */* of the unrestricted os-
cillator by straight line segments on R — 1 < |x| < R. For large R this is
more effective than the line segments on R/2 < |x| < R used in [12].

For the lower bound, we follow the same proof based on the
Birman-Schwinger principle, but we choose the following parameters:
E :=exp(kR?/2), N := 3+ «)R’E, n:=exp (—5*R?*). For com-
pleteness, we recall the Birman-Schwinger type argument here, since
the usual references (e.g. [23]) do not precisely cover our case.

Let U := (E+n)1_gge and Hog := —0; +x*/4 — 1/2 defined on
L*(R). Then A®=Y(Bg) >y, would follow from Hee + U > 5. To
show this latter, it is sufficient to prove that Hys. — |U —n — E|_ >
—E. Here | - |_ denotes the negative part.

Suppose there is an eigenvalue —A4, with eigenfunction f, such that
L>E, ie. (Hoe—|U—n—E|)f=—-Af. Then [JU—n—E|"?
(Hose + ) '\U —n—E|"lg=g with g:=|U—n—E|"?f € [*(R).
This means that the bigger operator
1

Hose + E

(the Birman-Schwinger kernel) has an eigenvalue at least 1. In par-
ticular Tr(Kﬂ,E)N > 1.

Kyp=|U—n—E["? U —n—E|"?
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On the other hand, one can show, exactly as in [12], that
Tr(K,z)" < 1. O

5 Proof of the lower bound

Using Proposition 3.2, to give a lower bound on L(?), it is enough to
bound Ly(t) for a convenient Q. Since it corresponds to an upper
bound on the Hamiltonian Hy,, we have to choose a convenient
obstacle configuration and a trial function.

Let ¢(¢) :== 10(log t/BO)l/ %, This is the natural lengthscale, men-
tioned in the introduction, on which the eigenfunctions, with eigen-
values substantially contributing to the Lifschitz tail, are supported.
Let A(¢) := [—0(2), £(1)]*.

For the lower bound we choose Q:= A = A(f). Let supp
V© < B(0,a) for some @. Hence

1
LA(f) = — 6 Tre Hao

Al
1
> su M2l an| |B(xi(w),a) =10
-y Jsisien
1 ) _
1(Q) a—v[Q+B(0,3)]
su e , 5.1
n ‘Alﬂca{ } ( )

where the supremum runs through all open sets Q C A, and recall that
)(Q =5 (zQ denotes the lowest eigenvalue of Hg:=
1[(—=iV — 4)” — B] with Dirichlet boundary conditions on Q.

For Q, one can choose a disk with radius R:=
(logt/Bo(1 — ))/*< £() with some 0<x<1/2. Then A(Q)<
e BRI (1-1) — 4-1 by Proposition 4.1 for large enough ¢. Hence, we
obtain from (5.1) and (3.7)

1  om
> > T .
L(t) > Lagy(1) > 0y (52)
for large enough ¢ > #(B,v,a). Taking logarithm of (5.2), and con-
sidering liminf, .., first, then lim,_ o, we immediately obtain the
lower bound in (2.7).

6 Second localization for the upper bound

For the upper bound we need a further localization from the un-
controlled lengthscale of the square M to a square S of lengthscale
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s = s(t) ~ (const) - £(¢) (the precise definition is given later). Here we
use the magnetic localization technique developed in [14]. As it is
explained there, the usual IMS formula (see, e.g. [8]) makes a local-
ization error of order L=2 in the energy, where L is the localization
lengthscale. The magnetic kinetic energy can be localized at a price
which is of order exp[—(const)L?] if one is willing to change the
magnetic field by a constant amount.

Fix  parameters 0 < B<Bo=B/2, 1 < s<m and let
M= [-mm, S=][-ss]", M=[-m —sm+s] , and §=[-3,3".
Let S, :=S + zforanyz € R2 Let A(SB;M be the lowest eigenvalue of
Hg’“’f’” =1 [(=iV — (1 +28B")4)* — (B +2p)] + Vi, with Dirichlet
boundary condltlons on S.. Recall that A( ) = (41(x),42(x))
= (B/2)(—x2,x1), and the magnetic field in HéB::z/) is B+ 2p.

Proposition 6.1. Assume that the parameters introduced above satisfy
Bs? > 4. Then for any z € R® there exist functions 1., supported on S.,
such that for any f € H} (M)

B 8
<f7 HM,U)f> Z ﬂ/ dZU”z? SB;‘)—zﬂ fnz> 327'Cﬁ l ze § 2”f||L2(M)

(6.1)
Furthermore |n.(x)| depends only on x — z. Hence ||n.|* = Ik n.|* is in-
dependent of z and we denote this common value by ||n||* := ||n.||*, which
satisfies
T 2 2 T
—<|nl"=1lnll" <5 . (6.2
2 Il = lIn.l 3 )

We shall need the following corollary.

Corollary 6.2. Under the conditions of Proposition 6.1 we have

Tr(e ") < C(B,s, Z)/ dzTrLz(SZ)(exp[ —éHS(fZM)]) (6.3)
o :

with

C(B,s,t) :==exp (32nﬁ’1s 2 t> . (6.4)
In particular ;
lim sup Ly (1) < C(B,s, t)LgB”ﬁ)(Z) . (6.5)

In our application, we shall use this corollary together with
Proposition 3.2 to obtain

Theorem 6.3. Let s = s(t,ng) := noﬁ(tg and S = [—s,s]* as usual. For
any fixed p > 0 and any ny > (B/ﬁ)l/
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lim sup log L(1) < lim sup(log t)f1 log &exp ( t/ISB(jzﬁ ) . (6.6)

t—00 o t—00

Proof of Proposition 6.1. We can assume that ||f|| = 1. We can think
of 1 to be extended to the whole R? by defining it to be zero outside of
M, and let | denote [, in this section. Then, using integration by
parts and that [exp(—p(x — 2)*)dz = np~! for all x,

F Huaf) = [ (M9 = A P=Bolf P+ Vol P)
= [ (31014 0 - 1 = i) P+ P)

ﬁ/dz/ —B(= z)’ 181+62—A1—i142)f’2

Ve ) (6.7)
Straightforward calculation shows that for any fixed z
(=101 + 0> + (Bo + B)x2 — i(Bo + P)x1)(¢.f)(x)
= ¢,(x)(—10) + O» + Box — iBox ) f (x)
where
0.(x) = o b=z itz —xz)
Let
Ty := =10y + O + (Bo + f)x2 — i(Bo + B)xi (6.8)
for simplicity. Hence from (6.7), using A(x) = Bo(—x2,x1)

Uotinat) =" [ @ [{SinenP +VilosPy . (69

Fix a smooth function 6(x) such that 0(x) = 0 for x € R\S, 0(x) = 1
onS,0<60<1and V0|, <4s!. Then

< /Hz(x)eﬁx2 d g% , (6.10)
using Bs*> > 4. Consider z fixed for a while and let 0,(x) := 0(x — z) and
n, := 0.¢, for any z € R%. Clearly |n,(x)| depends only on z —x and
(6.2) is guaranteed by (6.10). Furthermore,

e
(1 -0.)p.f’< e |g||f]" and
lp.f]* - 1(supp V0.) < e - | If? (6.11)
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where 1(-) is the characteristic function of a set as before.
By a Schwarz inequality, recalling the definition of 7}

O\ T5(0.f) > > Y Tp(0.0.1)] — 2| V02 - 1(supp VO.) g1’

_o _b
> N T5(0.0.0)] — 32572 |||/ . (6.12)

Hence using 07 <1, ¥, >0, [|g.(x)]dz=2np"" (for any x) and
[P =1, we have

Ly el 2 2}
ottt = 22 [ [Amonf+ [ v 613

—0ap s e

Finally, since f is supported on M and 7, is supported on S, we have
n.f = 0 unless z € M. Therefore the z-integral above can be restricted
to M. This finishes the proof of Proposition 6.1. O

Proof of Corollary 6.2. Consider the space .# := f \ L?(S.) dz defined
as a direct integral. Its elements will be denoted by g = (gz)ze w7 Where
g- € L*(S.). Let H be the following operator defined on .#:

© B2
H=[ #’ @ (6.14)
i.e. it acts as

Hg = <H5(,B;2ﬁ)gz> . e

(strictly speaking it is defined on a dense subspace f " 3(S.) dz of ).
Let T: L*(M) — . be defined as

Tf = H H (f’/lz)zeME M

If S, is not included in M, then we extend f to be zero outside M to
ensure that f7, be defined on S;. Notice that T is a partial isometry

(Tf,Tg) , = e / /!nz\ /g
:W/MdZ/Rzlnzlfg
. ﬁ [ [ 0 7a =10

To extend the integrations, we used that 7, is supported on S, dnd fy
is supported on M. In the last step we used that [ dz|n,(x ) = |Inl)? for
any x since |n,(x)| depends only on x — z.
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Let f1,/>,... be the normalized eigenfunctions of the (compact)
operator Hys . Then

o0
Tr e v = Ze_lm’HM"”m < C(B,s,t)
=1

X ZeXp<——/ dz(fm.. SBj,zﬁfm))
Lo ( ﬁ””” <Tf,,Hsz>>

C(B,s f) p(—£<TfijTfj>//)

LMg I

using Proposition 6.1 and (6.2). By the Jensen-Peierls inequality and
the fact that {Tf;},_,, is an orthonormal family in .# we can
continue this estimate

Tre e < C(B,5,0) Y (Tfy,e TS, < C(B,s,0)Try (ﬁ“)

=
= C(ﬁ? S, Z) / dZ TI’Lz(S" <e_%HS;,w )
M z

to arrive at (6.3).

Finally, to obtain (6.5), we take expectation of (6.3) and d1v1de by
|M|. Use that [M|/|M| — 1 as m — 0 and notice that 5L<B+ (t/4) is
independent of z by translation invariance. This completes the proof
of the Corollary. O]

Proof of Theorem 6.3. Using (3.7), (6.5) and (3.4) we obtain

(B+2p)

L(t) < 40Bs*C(, s, 1) (@@e $i0," e*(%ﬂ%)

if £ > 16B~!. Taking logarithms and dividing by log(¢/4) we easily
obtain (6.6) using the explicit form of C(f,s,¢) from (6.4). O

7 Enlargement of obstacles

Estimating the IDS of Hy, amounts to considering all eigenvalues
below E (if any). But, as we mentioned in the introduction, for the
Lifschitz tail in a finite box of appropriate size, only a much rougher
information is needed, namely the location of the bottom of the
spectrum. The main contribution to Lg(¢), hence to N(E), comes from
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few configurations with a large clearing of size of order ¢(z), and the
actual number of the eigenvalues below E is irrelevant compared to
the large deviation probability that there is any eigenvalue below E at
all. We shall see that focusing on the lowest eigenvalue is enough. We
really shall need this argument for HS( +26) , but the actual size of the
field does not play much role in this sectlon, so for simplicity we
consider Hs ., = Hé@.

As before, let ig_yw be the lowest eigenvalue of Hs,. Following
Sznitman’s original idea, we shall estimate this eigenvalue from below
by the lowest eigenvalue of another magnetic Hamiltonian which has
hard-core potential on the “enlarged obstacles™, i.e. on a set which
consists of larger balls centered at the points of the Poisson configu-
ration. This part of the analysis yields estimates uniformly in the point
configuration, hence the Poisson randomness plays no role.

The enlarged obstacles typically occupy a much larger portion of §
than the support of V,, (in particular their union has a smaller com-
binatorial complexity), but the enlargement does not substantially
influence the largest clearing on which the lowest eigenstate lives if this
clearing is really large. In other words, the enlargement does not
influence the lowest eigenvalue if it is really small.

We need several definitions.

7.1 Good points, boxes, clearings

This construction follows Sznitman’s work [25]. Consider a fixed
locally finite set of points @ = {x;},_,, inS= [—s,s]%. Let £ < s and
let C,, stand for the cube (square)

Con={z€R*:ml <z < (m+ 1), i=172}.

Fix two parameters b > 10a and ¢ > 0 (recall that « is the radius of a
disk located fully within the support of V(?)). We say that a point
x; € Gy, is good if for all closed balls C = B(x;, 10/*'h), 0 < j, and
10/1p < 1/2

- €
Cmmcm< U B(xj,b)> >5lcnncl, (7.1)
xjeCm
in particular
_ €
cn B(x;,b) || > =—|C| .
(x/EJCm (xj7 )) — 36| |
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Let Good(m) be the set of good points in C,,, the rest is Bad(m), and
let ¥ := U,,Good(m). By a covering argument (see [24]) we know that

Cp N ( U E(x,,b))‘ < g|Cy| = el? . (7.2)

x;€Bad(m)

Chop each segment [k/, (k + 1)/] into at most [v/2¢/b] + 1 intervals of
length b/+/2 (except the last one). This yields closed boxes with di-
ameter less than b, with union C,,.

Introduce a number » > 0. We define the event C/,, that ““there is a
clearing of size » in C,,”, i.e.

Cly = {w: |Uy(w)] > 972 u2} |

where U, (w) is the open subset of int (C,) obtained by taking the
complement in the interior of C,, of the closed boxes where a good
point of C,, falls. Let A°(w) be the union of all closed cubes C,, where
there is clearing of size r:

Lyow) Z 1= (2) - 1¢, (0) .

Let A' = A4'(w) be the open set of points at distance less than ¢ from
A%w). If A%(w) is empty, so is A'(w). Let S¢ be the open square
(—s—o0,s + Q)2 and S? := (—s+ 0,5 — Q)2 for s > ¢ > 0. Finally, let

Q=S5 Uﬁ(xi,a) ,

ic%
and for any b > a, s > b
Q= (stna') \ B b)
1S4
Let 6 := min{55;,%} and let
Q° :=B(0,0)+Q and Q¥ :=B(0,20)+Q .
Notice that Q2b C Qb C Qc Q° c 0¥ and that there is no 4! in the
definition of Q Q‘3 and Q2‘)
Let s, be the lowest eigenvalue of %[(—iv —A)2 — B] + V,, with

Dirichlet boundary conditions on S. For a lower bound on 45, one
can replace the true potential V' by V = V,, which is defined as

Vox):=v-1 <x € i:x.gegg(xi’ao , (7.3)

and we can assume that v< Band 0 <a < 1.
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7.2 Gauge choice

Since we work on multiply connected domains, we have to define the
gauge freedom carefully. In Section 7 we shall allow independent extra
fluxes from 0 to 27 through the good points to ensure more gauge
freedom on the complementary domain.

Let o= {a},cy €10,27)%, By(x):=B+ Y,y 0B (x —x;) and
Ay(x) = A(X) + >, 0iA*(x — x;), wWhere A* is the (unique) radial
gauge generating the uniform radial magnetic field B*(x):=
8a ?1p(0/2)(x) supported on the disk B(0,a/2) with flux 2=, ie.
A*(x) = a(|x])(—=x2,x1) with a(r) := 2m?)™! fMSrB*(x) dx. Let

1
B ObY . ; e 2
Ing = AP(Q) = infSpec [( iV — A,) BZ]QIi (7.4)
with Dirichlet boundary condition on Qi and
Ty =10(Q}) = inf{/l(ZB) (@) :ae [0,277;)‘5} . (7.5)

Since B, = curl4, = B on Qb and 4, is real analytic on Q , we have
(recall (4.1))

(@) > 20(Q)) (7.6)

(in fact, one can show that /®)(2) = /®)(X) for any domain £ such
that B, = B on X). Similarly,
1 -
Iy = 2{J)(S) = inf Spec [(—iv — 4, - 34 7, ()

o
with Dirichlet boundary conditions on § and

J=7®(s) = inf{/l( )(8) : 2 € [0,2m)" } . (7.8)

(0]

Certainly Ag ., > J. The advantage of these extra fluxes can be seen in
the following lemma.

Lemma 7.1. Let f € H}(Q), f|f]2 =1 and X € C'(Q,R?) be a
vectorfield  that satlsﬁes curlX =B on Q. Then 1<
f|(—i81 + 0, — X1 —iXp f‘

Proof. Any bounded component % of Q° is a union of closed disks;
% = U;erB(x;,a) with some index set I = I4. For each €, pick one of
the element of Iy, say iy, and let o;:=0 for i€ Iy, i#ip. Let
%y = [, X — 27[5 [5, X]. i.e. the fractional part (modulo 2m) of the
flux through %. Notice that f g X is well defined as
lims_ fa(me(o,&))X using curl X = B even if X is not defined on 9%.
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Let ¢ € C*(Q,S') be a real solution to V& =4, — X with «:= {o;}.
This equation has a solution since curl(4, — X) = curl4 — curlX =0
on Q, and fy(Az — X) € 2nZ for every closed curve y in Q by the
choice of «. Hence

‘2

/\(—ial + 0 — (Ay); — i(4y),) (€5)

= /|(—i81 +0— X — i)/

proves the claim by the definition of . O

7.3 Green’s function, exit time

For any bounded domain Q with piecewise C! boundary we define its
Green’s function gq as the solution to the following boundary value
problem:

Ago=—1o0n Q
ga =0 o0n 0Q .

By standard elliptic theory, go € C(Q) N C*(Q) uniquely exists and is
positive and bounded. Let

Go := max go(x) . (7.9)

xeQ

Let us consider the standard Brownian motion W, in Q, starting from
x € Q. The probability with respect to this Brownian motion is de-
noted by P,, the expectation value by E,. Let T be the exit time from
Q. By Ito’s formula go(W;) — ga(x) — 1 [y Aga(W;) dt is a martingale,
hence

gg(x) :%EXTQ . (710)

Using these notations, the goal of this section is to prove the following
theorem.

Theorem 7.2. Given a finite point configuration @ in S = [—s,s]z. Let
and /. be defined by (7.5), (7.8). There exist two universal constants
0 < &, co < 1 and a function £(e,b,B,r) >0 for all ¢ < &, b > 1 such
that for all £ > ¢(e,b,B,r)

(7.11)

with
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K =K(b,B,v,0,r,¢,5)

— <8Ob721)71 572S2+20(l*Co)l/’IGZOBCaIr2€263036) —wir) (712)

" 1
w(r) ==
1 —20(1 —co) /"

under the following conditions: 6 := min{55,%}, a <1<b, r <1/4,
r <log(t*-)/(log 30), v < B, and

€0

(7.13)

J.
Z <o) 7.14
= (7.14)

All the estimates are uniform in the point configuration .
We shall need this result in the form of the following

Corollary 7.3. Assume a < 1, v < B and fix an integer ny. For any b
large enough and r, & small enough, for all ¢ large enough and s := not
we have /lzv(r) < A/K if A/K < 27v0) . where

linaw(r) =1 (7.15)
and
log K

lim sup lim sup lim sup =0 . (7.16)

r—0o0 b—oo {—o0 62
e—0

Since the relevant size of / is of order exp|—(const)B¢2], we see that
log 2 < log K < 0 for large ¢ and small r. Hence (7.11) tells us that
log 2, < (1 —o(1))log 2 < 0.

The proof requires several lemmas. The intuitive idea is that the
magnetic Dirichlet eigenvalue 4(Q) of a domain Q is essentially e 5%
and the corresponding eigenfunction is roughly e?@e()-Ce) if Q is
large. The increase of the ecigenvalue due to the enlargement is
determined by the size of the eigenfunction, hence of gqg, within a
distance of order b from the boundary of Q (Lemma 7.4). Then, by
applying the method of enlargement of obstacles, we show that
ga(x) < Gq if Q is large and x is close to the boundary of Q (Lemma
7.5). Here we use the probabilistic representation of gq (7.10). For
technical reasons, we have to work on a slightly bigger domain, Q%,
and we have to compare Gq and G2 (Lemma 7.6). Finally we have to
go back and estimate Gq in terms of A(Q) (Lemma 7.7). Additional
difficulties arise from the facts that 4 in the theorem is not exactly (Q)
because the obstacles are soft and that we have to consider the infi-
mum over the extra gauge freedom.
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Lemma 7.4 With the notations above, if 6 <s, v<B, and
2 < (1/16)vs™ 2728152 then

A<y <32i(148b7 20 525 72) (7.17)

where —
n:= max{ggz:a(z) 1z Q¥\ QY } . (7.18)

Proof of Lemma 7.4. The first inequality is trivial by variational
principle. For the second one, first fix « € [0,27)%, and let ¢, be a
normalized eigenfunction corresponding to 4,. We can assume that o
is such that 2, < (1/16)vs‘2e_28’752 and it is enough to show that
Iy < 327 (1 + 8b~ 205?215~ ) for all such a. Then taking the infi-
mum over all these a’s, (7.17) will follow.

By variational principle

A Loy (I3V = 40F = B0F) Loy Tl
Abg = n = f i S

i 3 mn
YeH) (Q)) fgi 2 yet; (@ be [

using integration by parts with 7, := —id) + 0, — (4y); — i(4y),.
Let 0 be a cutoff function such that 6 = 1 on Qib, 0=0o0n RZ\Qi,
0<0<1and|V0| <4b'. Since

Iy = / Ty, + / Plo, / Ty, + / Plo,

>— | |T,(0p,)| —=||VO OO/ M
3 [ 1T00F 3150 [ lo,f

by a Schwarz inequality and ¥ > 0; we can use y := Op, as a trial
function to obtain

%fﬂi |TZ'70| 2)“06 + 165~ ? fSﬂsuppr) |(/)Z|2

;~b-,z <

fgh le B fgb 02‘%
2/1 + 1672 2 |(pa
e (7.19)
fS\QZb |§0a
using fs|%| =1 and 6=1 on sz Hence we have to estimate

fS\QZb |¢,|” from above.

Let I1, be the spectral projection onto the lowest (zero energy)
Landau level of the unperturbed operator 3 L[(=iV — 4,)° — B, =
1 5 T, T, defined on R’. Notice that this operator is nonnegative. Extend
cpa on the whole plane to be zero outside S. Then ¢, = I, +
(I —11,)¢,. Since T,I1, = 0, we have B B
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Jy = /|n%|+/vwa /WTI 1,)g,
+/ﬁwg23/Wa—Hy%|+/ﬁwg
S R2 S

by the gap of size at least B in the spectrum of the free magnetic
operator 1 [(—iV — 4,)* — B,] defined on R?. Recall from [8] that

(—iV — Ag)2 — B, and (—iV — Ag)2 + B, have the same spectrum
apart from 0, and (—iV —4,)" + B, > 2B, > 2B. Hence, using the
form of V,

o }O(
Rz‘(l—HZ)(pZESE‘ and / . )Iwglzsj - (720)

Notice that
S\Q¥ ¢ (Q\QZb) U (i, @

Hence

[tk s [ 0, + 22
s\Q*  ~ o\

2,
sz/ \de+ﬂ/ (1~ )P +22
0\Q* Q\Q% - v

<2/ L, 2y | L (7.21)
0Py =+ —= . .
- Jae «Px B v

Let g = g for simplicity (recall that Ag = —1 on Q* and g =0 on
0. Since T, 2y, = 0, it implies
(—181 +0—-Y — 1Y2)h =0 (722)

pointwise on Q, with ¥ = (11, 1>) := ((4y), — Bdsg, (44), + BOig)
and & := e*BQHaq)l (we omit the dependence on ). Notice that curl
Y =0 on Q%. From (7.22), by a short calculation

AlR)> = |(i6) + 82 + ¥y — iY2)h|*

in particular |A|* is subharmonic on Q% and |A| satisfies the maximum
principle. [The real reason behind these properties is that (7.22) is a
Cauchy-Riemann equation in local coordinates on a flat analytic U(1)
bundle over Q%°, determined by the integer part (mod 27) of the in-
tegrals of Y over noncontractible cycles. Hence its solution is an an-
alytic section. In particular (see [2]), if Q% is simply connected or
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f Y € 27Z for all cycles y, then this bundle is trivial and the solution is
an analytic function.] )

Let zy be the point on 9Q° where |A(z)| takes on its maximal value.
By the maximum principle |A(z)| < |h(zo)| for all z € Q°.

Since zg € 9Q°, we have B(z, d) C UicsB(x;,a) |JS¢ (here S¢ is the
complement of S) and since ¢ = 0 on S¢, we have fB (20.5) ]q)m\ < !
by (7.20). Agdm by (7.20) and

(I —T1 )(p“\ > é|l’[aq)7\ \%12 pointwise, we have

)W
/|1 n><p1|>/ (1~ L),
B(Z()é)

1
25/ |ng)g| _/ |q)g|
B(Z(),(S) B(Zo,(s)

1
> 1 / P69 — 55t > T lh(z) 26 — A
2 (Zo 5) - 2 -

by subharmoniticity of |A|* and g > 0. Hence, by v < B

hE)P < hizo) < 250727
for all ze Q°. Hence, using that ]Hg<p1| =eP|n|, |Q <s* and
Q\QF c

\H“goa] < 20,07 5%
Q\QZb
and therefore

2% A
/ |, |° < 42,07 s%eB157% + ?Z + 2 < 8,0 s
oo - v

using (7.21), v < B, n > 0 and ¢ < s. Hence from (7.19)
1+ 8b 2y 5221572

/Lb,z S 16}"1 . - 8/121)7152623’1572

< 327, 1+ 862 1572

since we assumed that the denominator is bigger than 1/2. O

Lemma 7.5. Let ©:=Q% for simplicity and assume that
0 <min{5;,4},a<1<b,40b<(<s,r<1/4 Go > /.

(i.) There exist two functions, y(e,b) > 0 and 1/4 > k(e, b) > 0 for
all b and 0 < ¢ < &y, where & is a universal constant, such that
/ —k(e,b
g@(x) S (E) G@) (723)

Sor all ¢ > ty(g,b) and for all x € ® N Z, where
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T = (535\( s+ 2b,s — 2b) ) B 20) . (7.24)
1S
We can assume that {y(g, b) is increasing and k(e,b) is decreasing in b.
(ii.) There exists a positive number cy such that if x € ® and
x&A'NS, then

go(x) < [(1 — )/ Go + ¢y rﬂ + sup go(y) - (7.25)
YyEZNO

Proof of part (i.). Fix x€XNO. Let T; be the exit time from
B(x,2-10/b) for j > 1, and T := 0. For simplicity, let 7 := Tg in this
proof. Let M be the smallest integer such that 2- 10M+1p > 7/2, ie.

log(¢/4b
M =] fo(g/lo )] > 1. Then

E.T = iEx{T NI <T<T)}+EAT-1(Ty <T)} (7.26)

=
+EL1(T < T)- [TM+EWT TH
M+1

<SR <T) 1)
=1

M
+) PUT_ <T) x sup  E(TAT)
; yEONS(x,2-10/-1b)

Jj=1
+P(Tyy <T)x sup E,T
y€ONS(x,2-10Mb)
by estimating 7-1(7 < T;) < T AT; and using that 7; < 7 implies
Wr, € ®@NS(x,2-105b) for k=1,2,...M [here S(z,7) denotes the
circle of radius » with center z].
Next, we claim that

P.(T; < T) < (1 —m(e,b)y (7.27)

for any 0 < j < M.
To prove (7.27), let Hr denote the first hitting time of F, for any
closed set F, and let
C(b) = ye;{%)fz}))l) ( B(0.a—20) < TB(O 6b)) >0 (728)
which is decreasing in b. Since « and § are considered fixed, they are
omitted from the notation. Let
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I’I’l(S,b) = C(b) 1nf{1nf P (HF < TB(O 10)) F C B(O, 10), |F| > 1(1)22—'8}
where the first infimum runs through all closed sets ' C B(0, 10) with
relative volume bigger than ¢/144. Obviously m(e,b) > 0 for ¢ > 0,
m(e,b) — 0 as ¢ — 0 uniformly in » and m(e, b) is decreasing in b.
These standard statements follow from Lemma 2.1 in [24]. Hence, for
small enough ¢ < ¢, we can assume that m(e, b) < 1/3. For brevity, let
m = m(e,b).

First let x € {J;cy B(x;,2b), i.e. |x — x,| < 2b for some u € ¥ which
we fix. Let

r()== |J B(x,2b) CB(x,10b+4b) C B(x,2 - 10')
x; 7‘(‘5‘; 10/b

for j > 1. Then, by the definition of good points,
& .

if 10/b < ¢/2. Let W be a Brownian motion, started from x. If j > 1
and Wr,, € © (i.e. Tj; < T), then

Py,

Tj-1

Ty > Hr) - P~ (T;> T)} >m (7.29)

Ar )

using Wy, € S(x,2-10/"'b) and that T < Hy(, 25y a0d Tpe, en) < T
if 0 € % is such that |WHW) Xs| = 2b. The first reldtlon is obvious, the
second follows from B(x4,6b) C B(x,, 10/b+ 10b) C B(x,2-10/b). 1
(7.29) W denotes another Brownian motion, independent of W
Hence, for j > 1

Px(Tj >T|T > Tj_1)

> Px{PWT/] |:1(T] > HFU)) . P’WV/ (T/ > T):| ‘VVTF1 S @} >m .

Hr(j)

By the strong Markov property we obtain (7.27) for any 0 < j < M
(recall that for j < M we have 10/ < £/2). A similar but eas1er ar-
gument shows that (7.27) is true if x € - 520 \ (—s+2b,s — 2b) as well.

Let 1<N<M Dbe chosen later. Introduce Aj =

Ex{l(Tj <T7)- 7}}, then we can continue the estimate (7.26) as
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M+1

E.T < ZA, | +Zz 10762 (1 — m)’™!

+ 2(M —N)G@(l — m) + 2(1 — m) G@
M+1
<Y A48 107D (1 = m)" + 2MGo(1 — m)™, (7.30)
=1
Here we estimated

Sup E(TAT)< sup ET;=2-10%p"
yEONS(x,2:10771h) ' yeB(x,2-10/b)

for j < N and

sup E, (T ANT;) <supE,T = 2Ge
yeONS(x,2-10/-15) ' y€®

for j > N using (7.9), (7.10) and
yeszalz(l)?l)EyTB(O’l) :% . (7.31)
Now we estimate 4;
4, =E{I(T; <T) T;}
<E{UT < 1) [Ty Py, (< T)+ By T }
< (1 —=m)d;_y +2-10%0*(1 — m)’™

for 1 < j < N using (7.29), (7.31) and (7.27). Iterating this inequality,
and using that 4; < E, T} < 2000% we obtain for 1 < j < N that

A; <2-10%%j(1 —m) ™" . (7.32)
For N <j<M,
A, =E{NT; <T) T;}
<E{UT < 1)\ + By (1 1T < 7))}
<Aj 1 +2GeP(Tj_| < T) < A4; 1 +2Go(l —m)"

by (7.27) and Ty < T;_;. By iteration, and using the estimate (7.32) for
Ay, we have

A; < 4(102VNb? + MG ) (1 — m)" (7.33)
for j > N. Continuing (7.30) we get
E.T < 12M%*(1 — m)"[20?Y + Gg] .
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} |

ok 0\ ~2k(e.b)
E.T < 48(log(¢/b))b*Ge max{G@”‘( ), (@) }

Now choose

log Ge
21og?20

N = min{M,

Short calculation shows that

with k(e, b) == 410220 logl_ml(g?b) < ‘1—‘. Since Gg > ¢, b > 1, choosing a
large enough function ¢y(¢, b) we finish the proof of (7.23) by (7.10).

Proof of part (ii.). Let x€ A' NS and x € ®. We can assume that
x €%, in particular x € §. Consider again a Brownian motion W
starting from x. Since SE‘S\Z C ©, we have Hy < Tg =T, hence
E.T = E.{Hs + Ey;,_T}. Obviously Ey;, T <2supcsqe go(y), and it
can be estimated by part (i).

To estimate E, Hs, let

F(n):= sup EHs
yeS:|x—y|<nrt

forn=1,2,...[1/r] — 1. Fix y € S such that |x — y| < nr¢, then
E,Hs = E{Hs - 1(Hs < Ty(0)) }

+ Ey{l(Hz > Tpym0)) - {TB(y,rﬁ) + EWTBO,V,,[)HZ] }
< 2EyTB(y,rZ) + F(l’l + 1) : Py(Hz > TB(,V,rZ)) . (734)

To estimate Py, (Hs > Tg(,,0)), notice that the total volume of subboxes
containing no good points in B(x, ) is at most 3~2n72¢>. The reason is
that B(x, /) does not intersect with any clearing box, hence each of the
boxes intersecting B(x, ¢) (there are at most nine of them) has at most
9~2172¢*> volume of subboxes which contain no good point. Hence, if
B(y,rl) C B(x,{), then

ZNB(y,rl)| > 2l — 3722 = (272 = 372)|B(y, rl)|

using that if y € S C §% then at least one fourth of B(y, ) is in §2°. So
let

Ccy = mm{% , inf  rreson P()(HF < TB(O,I))} >0

[F|>(272-372)[B(0,1)]

be a positive universal constant, then P,(Hs > T, .¢)) < (1 — co), and
by continuing (7.34) we have
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EHs <P+ (1 —c))F(n+1) ,

by (7.31) if B(y,r¢) C B(x,¢) which is satisfied as n < [1/r] — 1 and
Ix —y| < nre.
Taking the supremum for all y € S such that |x — y| < nrf, we have

F(n) <+ (1 —co)F(n+1) . (7.35)

We also have F(ny) < 2Gg for any ny, since Hy < Tg. Iterating the
inequality (7.35), we get

F(0) <cy'r?f* +2(1 — )" Geo -

Applying this to mny:=[l/r]—1 for r<1/4 we obtain
E,.T < 2[cg' 22 + (1 — )"/ Go) for all x ¢ SN A", x € ©, which fin-
ishes the proof of (7.25). O

Lemma 7.6 For 6 < 3
Ga < G < 8Gq + 10005 .

Proof. The first inequality is trivial by Q ¢ Q. For the second in-
equality, let 7_ := Tpps T} := Tq for simplicity, and we write

E.T_ =E({T, +Ey, T } <E.T  + sup E,T_
yeQ?\Q

for any x € Q. If x € Q*\ Q, then we can drop the first term. Hence we
get

2Gp <2Go+ sup E, T . (7.36)
- yeQ¥\Q

Letus fix y € QE‘S\Q, let T := Ty, 45) and let the positive number 0 to
be chosen later. Then

ET =EJ 7 -1(T>0)-1(I_ > 0)}
FEAT. 1T <0) (T- > 0)} +E{T_-1(T_ < 0)} . (7.37)

For the last term simply use E, {7 - 1(7_ < 0)} < 0. For the second
term, using that 7' < 0 and 0 < T_ implies Wy € 0, we obtain

E{T -1(T<0) 1(T_ > 0)}
<EJ{I(T <0)-1(Wr € Q*)[T +Ep, T_]}
<O+ E{1(Wr € Q°)Ey, T_} < 0+ 2Gqu - P,(Wr € Q)
<043 2Gg

since
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S(y,40) N Q¥
Py(WTGQz,é)Z—| (‘S(y)%” |

(the exit measure is the Lebesgue measure on the circle) and this ratio
is at most 3/4 by elementary geometry. Here we used that the
boundary of Q% consists of straight line segments and circular arcs of
curvature not bigger than (a —26)"' < (49)”' by the assumption on
a.

Finally for the first term in (7.37) we use

EAT - 1(T>0) - 1(T- > 0)} < 0+E{1(T > 0)Ey,T_}

<0+ 2Ggps - Py(T > 0) <0+ 2G ((27‘60)1 ) efé% dZ)
- - zeR

fe/<4
=0+2(1 - ¥ )Gy .
Putting these three estimates together, we obtain from (7.37)
ET <30+ B + 2(1 - e—8529")} Gopo -
Combining this with (7.36), we have
G < Ga +32—0+ EJF (1 - e85201>] Gy -

Choose 0 such that e8¢ >17/8, e.g. let 0 = 806°. This gives
Gg < 8Gq + 10006 . O

Finally we bound the Green’s function from above in terms of the
magnetic eigenvalue.

Lemma 7.7 Let Q = S\{J,.y B(xi,a) as usual and recall the definition of
A from (7.8). Assume a <1 < € <s, v < B, then there exists a function
¢ (&,B) > 0 such that

ePla < P2eB)! (7.38)
for all £ > ¢,(g,B).

Proof. We can assume that Go > ¢, otherwise (7.38) is trivial, since
V<v<B, hence i<B+B(B)<P<s is automatic if
¢> (B+ 2P (B))"* (B, is the unit ball).

We shall construct a trial function. For any d > 0 let

QD = [=s+d,s—d’ \ | JB(x:,d)

icY



Lifschitz tail in a magnetic field 359

and let g := go for simplicity. Let y > 0 be a fixed smooth bounded
function with support in the unit ball and [y =1, [|[Vy[|; < 4. Let
0:=7yx1(Q% + B(0,1)), where * denotes the convolution. Notice
that 0 <0 <1,0=10nQ% 0=00nQ and |VO|_ <4

Let ¢(x) := 0(x)eB?™ for x € S, obviously ¢ € H}(Q) C HL(S),
hence we can use it as a trial function for 4. Notice that ¢ is zero on
the support of 7. Choose a gauge X corresponding to g, i.e. let
(X1,X2) := B(02g, —01¢), which is well defined on Q and curl X = B.
Since ¢ is zero outside of Q, we can use Lemma 7.1 to obtain

I LI 10y + 8y — X, — iXa) gl
a Jolol’

By a Schwarz inequality
/ (—id) + 0 — X — i)l < 2/ 02|(—idh + r — Xy — iXa)eP?
Q Q

+2Hv0|y§c/ R

suppVo

We know that (—id; 4+ 0y — X; — iX3)eP9™) =0 for x € Q. We can
apply part (i) of Lemma 7.5 with b= by := (a+3)/2 <2, 5:=0 to
obtain

—k(e,bg)
g9(x) = ga(x) < Ga <b—0> < 2Gqot KM (7.39)

for £ > €y(e,2) > lo(e, by) and for all x € Q\QE* | in particular for all
x € suppVé, since suppVl C Q\Q(z) C Q\Q“*‘”. Hence

165 exp (4BGql *(#h0))
fg ’@’2

(the extra s* comes from volume (suppVo) < s?).

Let xyp € Q be the point where g(x) takes on its maximum. By (7.39)
we know that xo € QC* (in particular QG is not empty) if
/ log2 log2

Moreover, O}E(xo,rc_l/z) cQ? cQ hence =1 on B(xy,n /?).

Therefore, by Jensen’s inequality

/|go|2 2/ e?89 > exp 2B/ gl - (7.41)
Q B(xo,?'[fl/z) B(xo,ﬂ:il/z)

Since Ag = —1, we have

A(g—i—}—‘]x—xo\z) ~0

2 < (7.40)
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on B(xg, n~'/?), hence
/ (g(X) —l—%\x — )C0|2) dx = g(x()) = GQ .
B(xo,n7]/2>

Therefore

1
/ g > GQ o
B(xg,m=1/?) 87

which finally gives

/ o2 > ¢ B/(4m) 628G
Q

from (7.41). Hence, from (7.40) and Go > ¢ > 1
7 < 16eB/498 exp [—23(;Q (1 - 25—"(8’%))] < s2eBGa

for large enough ¢ > 45 (e, B) (recall that by < 2). Choosing
1/2 log?2
06.8) = max{ (B4 1780) " o621 2 5 4 1,825
we finish the proof of Lemma 7.7. O]
Now we are ready to prove Theorem 7.2.

Proof of Theorem 7.2. First notice that K < 1 and (7.14) imply A< 1.
Then, we need an estimate on x which is defined in (7.18). We can
assume that Gy > 1, otherwise 1 < 1 and Lemma 7.4 immediately
implies Theorem 7.2 for large enough /. Hence

Ga < G < 9Gaq (7.42)

by Lemma 7.6 and 6 < 21W- Furthermore, we can assume that Gg > /,
otherwise n < 9¢ using (7.42), and Theorem 7.2 follows directly from

Lemma 7.4 thanks to the factor ¢?*2¢ in the definition of K. In par-
ticular G > £.

Therefore using Lemma 7.5, the fact that Q% \Qib C XU (4" and
(7.42) we obtain that

—k(e,b)
n< <Z> G + [(1 — ) "Gs + ¢y P

<10 [(1 — )G + cg‘rzzz} (7.43)
if ¢ > ¢3(e,b,r). Combining this estimate with (7.38), we obtain

~ N 20(1—co)V" Ciap
2B < <SzeBz/Tl> 20Bc; ¢ (7.44)

if, in addition, ¢ > ¢, (¢, B).



Lifschitz tail in a magnetic field 361

Now we can estimate /. By Lemma 7.4, (7.44) and the definitions
of K and w(r) given in (7.12) and (7.13) we immediately obtain (7.11).
The condition on A required in Lemma 7.4 is implied by (7.14) if £ is
large enough. The function ¢ is obtained by taking the maximum of all
previous lower bounds on /. O

8 Proof of the upper bound

To complete the upper bound, we shall continue the estimate given in
Theorem 6.3, hence we choose 0 < i< By, s=mnpl(t), with
[(B/ﬁ)l/2]+1 and /(t) = 10\/@ We apply Theorem 7.2 to
estlmate Ag B+2ﬁ ) from below. The magnetlc field is B+ 2p. Let
0<8<80, 0<r<1/4 r <log (%;)/(log30), b>1 and ¢:=
min{¢, 200} With these data, the procedure of Section 7 gives

Ty = AEF2P) (Q” ) and a number K given by (7.12) (replace B by B + 2
everywhere) such that (7.11) holds for A = Ef*zﬁ)( ) under the con-
dition (7.14) and that £(z) > {(g, b, B + 2, r). This latter condition is
satisfied if ¢ > #y(eo, b, B + 2, r) With some function #y(&y, b, B + 2f,7).
We also have 4 < /I(Slij ) We obtain

)
lim sup(log#) ' log Se 50

—00

< limsup(log?) " log [(5’ exp(—tKiZ(r)) + exp(—tK : 2‘W(V))}

t—00

(8.1)
recalling the condition (7.14) and distinguishing the cases (AN/K) is
smaller or bigger than 27", Since

lim sup(log#) ™' log exp(—tK : 2*W(r)) = —00 (8.2)

t—00

we get from Theorem 6.3 and (8.1)

log L(¢ wlr
lim sup%() < lim sup(log t)_1 log @@exp(—tK/lb( )) . (8.3)
t—o00 t—00
Recall (7. 6) ie. iy = AE0(Q) > JED Qb)) Using (4.2), Q% c U
and that 4 B”ﬁ)( -) is monotone function of the domain, we can fur-
ther estimate 4, > A*"7(Q}) > JEL20 (B0, /2|05 |1/7)) > 2B+2P)
(30,5120,
Following Sznitman’s construction let
D:=Sn |J Cu>Sn4'.
CuNA#£0
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Let U (respectively U) be the complement in D of the union over
m € Z? of closed subboxes intersecting int(C,,) and containing a point
(respectively a good point) from w. By the definition of good points
and the construction of 4° and D we have (see Eq. (2.17) in [25])

UcUcD, |U<|U|l+eD| . (8.4)

Let N = |D|/¢* which is an integer. For fixed N, the number of pos-
sibilities for D is at most (4n3)", since S consists of 4n} boxes.

For ﬁxed D the number of poss1b111t1es for U and U is at most
D2N-(IV2U/BI1) < 98N(U/8)° Finally |U| > |U| — eN£2, and we know, that
once D, U, U is chosen, the total volume which receives no point is at
least max{|U|, Nr*¢*r/729} > max{|U|, Nr’>n/729} — eN(>. Here we
used the definition of good points and that |4°| > 1|D| by construc-
tion.

Hence
N 4 2
& exp <—tK;{ZV(F)) < Z(4n%)N28N(5/[,) esz[Z
N=0
~ w(r)
S ——
% e*v-maX{l0|7Nr2£2n/729} ) (85)

This sum is majorated by

2
4ng

1
2(4710)]\, ~NCE < ( 41’12 7[2]5)
N=0
if
Ty
E=E(e,b,r,v) = g ~ Ve~ 8(log2)b™2 >0

andtZl‘l(S,B-l-zﬁ,b,}’,V,no) . ~ _

Fix x > 0. We minimize K [2#"2/)(B(0, 7 1210)"PN ] 490
for the number |U| using the lower bound on the lowest eigenvalue of
the disk (4.3). The result is

o [14420) (8 (0.22101')) " 4 910

> n}}n{tKe*<Bo+ﬁ><1+'<>“"W<’>X n vX} > Flog(iK /F)

w(r)

if t > t,(k,B+2f,v), where
27y

F =F(x,B+2p,r,v) := BE2 0+ w0
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For any r > O there exists a small enough ¢ and large enough b such
that £ > 10~3/2v. In this case (recalling that ny = [(B/B)"*] +

lim sup(log t)_l log & exp (‘tK}"ZV(r»

t—00

| exp(—F log(tK/F))

< limsup(log?)  log . (8.6
10 (log?) 1 —4([(B/B)"] + 1)? exp(—10-3202v) (86)
Using (7.16), we have
—Flog(K/F
lim sup lim sup lim sup M =0,
r—0 b}:%c —00 IOgt
hence, recalling (7.15), we obtain from (8.3) and (8.6)
. . . log L(¢) 27y
1 1 1 < - . 8.7
P P Togr = T B 2B)(1+ 1) 8.7)

a0

Finally, letting f — 0 (which is the same as ny — o0) and k¥ — 0, we
obtain

log L(t 2
lim sup lim sup lim sup lim sup lim sup 02 L(1) < — iid , (8.8)
B—0 k—0 r—0 b—oo t—00 logt B

£—0

which completes the proof of the upper bound in (2.7).

9 Discontinuity of the IDS for zero range potentials

In this section we prove Theorem 1.2. Recall the definition of
q<qu(f f) from (1.9) and that # = 2, is the Poisson process with
density v. Let Bg := B(0, R) be the disk of radius R. It is easy to show
by a standard limiting argument that Theorem 1.2 follows from

Proposition 9.1. Assume v < 2%. For every E>0and 0 <e <1 — 22

lim 2, <N(BR,g,E, w) > N(R,e)> ~1, (9.1)

where N (B IE g,E, ) is the dzmenszon of the maximal subspace of L*(Bg)
on which qBRg(u(f f) < EHfH and
2ny )

N(R,e) =N := |B -—(1———

(R.2) Bel o (1- 2 = ¢

The idea is to present NV functions supported on Bg, all having zeros at
the points of the Poisson cloud within a disk of radius R, and with
total energy less than E.
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Temporarily we use complex notation and identify C with R* as
z =x + ixp = (x1,x2). Let the random function F(z) be defined as

F(2) = Fro(z) == ..‘ H) (1—%) .

In other words F(z) := ¢¥®), with

XE) = Yol = |

|u[<R

log (1 - z)Pw(alu)
u
where {u;(w)},_,,  is the realization of the Poisson process and
P(du) = P, (du) Z o(u —uj(w

is the corresponding random P01sson measure. In most cases we shall
omit @ from the notation. Let Y(z) := 2Re X(2) and x(z) = y3,(z).
Finally let
8P
Gy(z) :=Fy(z)e + and f(z) = f,(2) := y(2)Gy(z) .
The basic result is the following

Lemma 9.2 For any g >0, E >0 and v < £

lim yv [qBR ,9, (u(fwafw) < E]
Reoo 1foll2

Postponing the proof of Lemma 9.2 we first show that it implies
Proposition 9.1. For simplicity we let gg (-, ) == ql(BR),gw( ,)-

=1. (9.2)

Proof of Proposition 9.1. Consider two independent Poisson processes,
#"1) and 2%, on a common probability space with densities v; := v
and v;:=£ (1 =22 —%). Let &, and %, be the corresponding o-
algebras. The sum of these two processes (as the sum

(D(du) + PP (du) of random point measures on R?) is again a
Poisson  process 27 := 21 @20  with  density v, =
i+ v = 2%(1 —¢/2). We can apply Lemma 9.2 to this process to
obtain for any £ > 0 that

Jim 2+ [M < E] _1, (9.3)

1oll2

where g, is the quadratic form with obstacle configuration ® from
the process 2.
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Let gz, Z) be the quadratic form with obstacles only from the 2(!)

process, then the distribution 01? QEQ 20 1s the same as that of gz, in
Proposition 9.1, and certainly g ;, < gz,

Taking cond1t10nal probab111ty, we have

lim ,@@){@ [M <E 5@] } —1. (9.4)

R olls  ~

For any n > 0 let 2 = 2(R,n) be the following event

(1)
2:= {w W 7‘1’@(}(‘”’2}(‘”) <E|\Sr| >1- n} ,
1foll2
which is %>-measurable, and clearly
Jlim 222R,n) =1 . (9.5)

f(z) = ~wz = ze‘mi‘z X 1 1 —Z)p du]
f() f() /(() ep[A<ROg< u) w( )
and

h(z) = hy(z) = exp !/|;1§R log <1 _E)sz)(du)] = H (1 —g) .

w:|u|<R

PP (fup—1

Notice that f is & 1-measurable and / is %>-measurable. Consider the
following %,-measurable event

Br|B
R =RR,e) = {a) )P()(BR)_VZ‘B \‘ “1BxIB R’ } ;

then clearly

Jlim 22 (R(R,¢)) = 1 (9.6)
for any fixed ¢ > 0. On the event %, the function 4(z) is a polynomial
of degree at least v,|Bg| — ‘Bf[‘B N(R,e).

Finally consider the event 2(R,n) N %(R,¢) which is ¥>-measur-
able and its probability tends to 1 as R — oo by (9.5) and (9.6). Pick
independently N(R,¢) functions i = h, with w € 2(R,n) N (R, ¢)
using the distribution induced by 2>). We obtain N (R, &) polynomials
of degree at least N(R,¢). Let Ay, hy, ..., hy denote them. We claim

that almost surely these are linearly independent.
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For the proof, we can focus on fixed degree, since polynomials with
different degree are always linearly independent. Hence consider the
conditional measures

n

P[] = 2@ [-\P(Ef) (Br) = n} 9.7)

with n > N (this is in fact the n-fold product of uniform measures on
Bg). Let h(z) = hy(z) = 1 + a1(w)z + ...a,(w)Z" ie, let a; = a;(w) be
the (random) coefficients, and notice that the (random) roots of %(z)
are the Poisson points {u;(w)},_;, , taken from the process 22,
Since there is a continuous one-to-one mapping between the sets of
the n roots and the n-tuples of coefficients by the fundamental theorem
of algebra, and since the joint distribution of the Poisson points under
the conditioning (9.7) is the Lebesgue measure, we obtain that the
distribution of n-tuples of coefficients of the polynomials /(z), induced
by 9’22), is absolutely continuous. But then N random #n-tuples (n > N)
are almost surely linearly independent, so are the corresponding
polynomials.

Summarizing, we have shown that for any e 17 >0, with a 2?-
probability tending to 1 as R — oo and with 2! -probabﬂlty bigger
than 1 — 5, there exist at least N = N(R, ¢) functions, fhl,fhz, ) th
with energy below E. Letting first R — oo, then 7 — 0 we obtain
Proposition 9.1. O]

Finally we have to prove Lemma 9.2. As a preparatory step we
prove some results about the random variable Y(z).

Lemma 9.3 Suppose that R < |z| and R is large enough. Then
(@)
EY(z) < vlz|* (9.8)
g[y(z) - @@Y(z)r < vz . (9.9)
(ii) If, in addition, |w| > R + 1, then
g[eY(z)—Y(w)} < exp <cv{|z —w|*logR + |z — w|R}) (9.10)

Proof of Lemma 9.3 (i)
log|1
<§Y(z):2v/ log‘l——)du—2v|z| / Lély'dy
lu|<R WI=zl/R

(here [du and [ dy refer to the two dimensional Lebesgue integration
on C = R?). By Newton’s theoremf‘ Jlog |l —y| =2nrlogrifr>1,
hence
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EY(2) = 4mvlz)? %7 i < dmvlz)? 087 i = e,
R 1 P

using |z| > R. Similarly

2
@@[Y(z) - @@Y(z)} —4v [ log ‘1 _z ‘du
lul<R u
log? |1 —
= 42| wdy <evlz| .
pzl/R (Yl

(i) Write Y(z) — Y(w) = Q; + @, with

z w
Q, .zz/mm (log‘l —;’ —log‘l —;’)Pw(du) ,

[u|<R
z w
Q, ':2/“3;w (1og |1 == | ~1tog |1 = =) P, (dt) -

Notice that Q; and €, are independent, hence
é"[ey(z)_y(w)] = [é’egl] [(o@egz} )

For Q,, we have that
clz —w

g =22
u u |z — ul

since |V;log|l —§| < |¢—u|"" and |{ —u| is comparable to |z — u|
for any { on the segment [z,w]|. Therefore (recall that ¢ denotes uni-
versal constants, whose values can change from line to line)

&e < Eexp / Mﬂ,(du)
‘uizu?i‘léiw‘ zZ- Z/l|

clz—w|
= exp (v / - [e\z—u\ — l}du)

[u|<r

< exp (v/ clz — wl du) < eOvIR
[u—z|>2|z—w| ‘Z — u‘
[ul<R

For Q,, we have

o (v [l
|u—z|<2|z—w|

1]

— 2
= eXp (V/ Hl +Z W’ _ 1i| du> < eCV|Z—W\210gR ’
|u—z|<2[z—w| w —

[ul<R
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where we used that |w — u| > 1. This completes the proof of Lemma
9.3. O

Proof of Lemma 9.2. Let </ (R) be the following event

A(R) = {a) . P, (B(O,R‘l)) = 0,|P,(Br) — v|Bg|| < v|BR|} .

Clearly i
lim 2(/(R)) = 1, (9.11)
hence we can assume that there is no Poisson point in the R™!
neighborhood of the origin and the total number of points in By is less
than twice its expectation.
To estimate the norm from below, we notice that f,,(0) = 1 and for
all |z| < (2R)™!

NACIE\ACIESTAC (/

< cvR® |fw(Z)’
with some universal constant ¢ if R is large enough. Here we used the
condition that the total number of obstacles is bounded. Therefore
IV log |f,,(2)|] < evR3, hence |f,,(z)| > exp (—cvR|2|) for |z| < (2R)™",
using £,(0) = 1. Hence |f,,(z)| > 1 for all |z| < (cvR*)™" and for large
enough R, and this means for o € .«/(R) that

Iful? > v 2R (9.12)

To estimate gg«(fw,f), We notice that it would be exactly zero if
there were no cutoff y = y;, since I1yG,, = 0. Hence, for o € ./(R)

drolforfn) = g / (T (1 = £)Go) ()2 ()

|ul<R

P, (du) + ?)

w
i<u<r |7 — ul

Bg 2
<= P,(B
=n ) w( R)

(1 - X)Gw

< Bngz/ |Fw(z)|2e*% dz ,
lzZ|>R

where we used that ||H0||izHLw =2 (see (2.11) in [5]).

Foreach k=1,2,..., fix M; := [27‘5\/R + k| + 1 equidistant points
{zki}iz1..ag, On the circle |z| = R+ k. For any point |z| > R there is a
pair of indices §k i), i <M such that |z—z, < ]zk.,-|1/2. Let
Dy := B| zx, \zk,,-ll 2}, then B$, C Uy Dy ;. Therefore

o0

k Bl2
Gro(for fio) < BgvR> Y Y et OV T g (9.13)
k=1 i=1

= z€Dy,;
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Using Lemma 9.3 and Chebyshev’s inequality
cv

K2 |Zk,,'

2(Y (i) 2wzl + il < -

- M, -2
for any x > 0. Since > 7, > |zx;| ~ — 0 as R — oo, we have

lim g)(,@(R,K)) —1, (9.14)

R—o0

where #(R, k) is the following event:

BR, k) = {0” max Y(z;) < (nv + K)’Zk.,i|2} :

Hence, using (9.13) and part (i) of Lemma 9.3, we obtain for R large
enough

& [ Gro(fors foo)1 (%’(R, K) N %(R)) } (9.15)

oo Mg

- B
< BgvR? Z Z exp [ (rcv + 2Kk — 5) |zk’i|2} / & (eY(Z)—Y(ZkJ))dZ
=1 i=1 €Dk

B
(nv + 2K — E) |zk,,~|2.

+ cv(\zkvl-] logR + |zk,,~\l/2R)]

B
3k —= |R?
(nv—i— K 2) ]

We also used that |zx;| > R+ 1, |z — zx,| < |zk,,~]1/2 for z € Dy;, hence

§|Z|2 > (8-x) |zk7,-\2 for R > R(x, B). Combining this with (9.12), we

conclude that

oo M

< BgvR® Z Z |Dr.i| exp
k=1 =1

< cBng2 exp

lim & [M 1(/(R) N B(R,K))| =0

R0 1foll2
for any k < % <§ — nv). Together with (9.11) and (9.14) this completes
the proof of Lemma 9.2. ]
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