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Abstract. For lattice distributions a convolution of two signed Poisson
measures proves to be an approximation comparable with the normal
law. It enables to get rid of cumbersome summands in asymptotic
expansions and to obtain estimates for all Borel sets. Asymptotics can
be constructed two-ways: by adding summands to the leading term or
by adding summands in its exponent. The choice of approximations is
con®rmed by the Ibragimov-type necessary and su�cient conditions.
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1. Introduction

It would not be an exaggeration to say that the normal approximation
plays the leading role in limit theorems. However for continuous
distributions it ®ts much better than for discrete ones. Indeed, the
di�erences in supports rule out a possibility to use total variation or
any other stronger than uniform metric. Moreover, even in uniform
metric it is impossible to apply the standard Edgeworth expansion, see
Gnedenko and Kolmogorov (1968, p. 212). Two approaches are
usually used to cope with those problems. The ®rst approach is to
replace integral CLT and its re®nements by the sum of local theorems,
i.e. to replace the normal law by the sum of normal densities ± see, for
example, Bhattacharya and Ranga Rao (1976), Chap. 5. Unfortu-
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nately such approximation is not in®nitely divisible. The second
approach is to add cumbersome summands (such as S�x� �P1

0 �2pm�ÿ1 sin�2pmx�) to the Edgeworth expansion compensating by
this the jumps of lattice distributions, see Esseen (1945), Ibragimov
and Linnik (1971, p. 100). In fact, both above-mentioned approaches
provide much evidence that, for lattice distributions, the normal ap-
proximation is not that very natural and some its lattice analogue is
needed.

The main purpose of this paper is to show that even in general
situations the normal distribution can be replaced by a convolution of
Poisson and signed Poisson measure. Such convolution is in®nitely
divisible and its `probabilities' can be expressed in Bessel functions.
This makes such approximation appropriate for calculations. More-
over, the resemblance in supports enables us to obtain estimates for all
Borel sets. Asymptotic expansions can be constructed retaining not
only latticeness but also in®nite divisibility.

Further we need the following notation. Let be Ea the distribution
concentrated at a point a, E � E0. Products and powers of measures
are de®ned in the convolution sense: FG � F � G, F n � F �n; F 0 � E:
For any signed measure of bounded variation W we denote by
W �x� � W f�ÿ1; x�g ÿ the analogue of the distribution function, by
expfW g �P1k�0 W k=k! ÿ its exponential measure, by jW j � supx
jW f�ÿ1; x�g j � supx jW �x� j - the analogue of the uniform distance,
by kW k ± the total variation norm of W and by bW �t� �R1
ÿ1 expfit xgW fdxg ± its Fourier±Stieltjes transform. Note thatdexpfW g�t� � expf bW �t�g and bE�t� � 1.

Let W be concentrated on integers. We denote lr, 1Or <1 (we
use the notation lr instead of a more common lp) metrics by

jW jr �
 X1

k�ÿ1
jW fkg jr

!1=r

: �1:1�

Evidently for lattice W we have kW k � jW j1. However, under-
standing the utmost importance of the total variation norm we also
use the ®rst notation. It is a well-known fact that the total variation is
equivalent to the total variation distance, i.e.,

kW k=2O sup
B
jW fBg jOkW k ; �1:2�

where the supremum is taken over all Borel sets. Note that

jW jOkW k; jWV jOjW j k V k �1:3�
for any two ®nite measures.
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The local distance we denote by

jW j1 � sup
k
jW fkg j : �1:4�

De®nition. Let k 2 R and let F be a distribution. Then expfk�F ÿ E�g is
called signed compound Poisson (SCP) measure. A special case of SCP
measure, when F � Ea (i.e. when we have a measure expfk�Ea ÿ E�g) is
called the signed Poisson (SP) measure.

It must be noted that, for k < 0, SCP is not a distribution but
rather a signed measure. It remains, however, in®nitely divisible and
always has a ®nite variation.

In probability theory the elements of signed approximations are
not rare. Thus, for example, Le Cam (1960) used a signed compound
Binomial approximation. Properties of SCP measures are discussed in
Cuppens (1975). However, the turning point in SCP theory were the
papers of Presman (1983) and Kornya (1983). Since then SCP mea-
sures were applied in actuarial mathematics by Hipp (1986), Dhaene
and De Pril (1994), in statistics by Kruopis (1986a), in limit theorems
by Kruopis (1986b), CÏ ekanavicÏ ius (1991, 1996, 1997), and in proba-
bilistic number theory by SÏ iaulys and CÏ ekanavicÏ ius (1989). See also
references in the aforementioned papers.

In this paper we consider one of the most classical situations: a
sequence of lattice identically distributed random variables. For our
purposes it is more convenient to use distributional notation, thus we
usualy write convolutions instead of sums.

Let us assume that n has a distribution F and
F does not depend on n, (1.5)
F is concentrated on integers with the greatest common divisor

equal to 1, (L1)
n has ®nite variance and En � l, Dn � r2. (1.6)
Note that �L1� means that n is nondegenerate. In fact, any lattice

variable can be normed by its maximum span and suitably centered to
ful®ll �L1�. Thus, all results of this paper can be reformulated for any
lattice distribution in the obvious manner.

Further on we use the same notation C��� for all positive constants
depending only on the indicated argument. For example, C�F � is used
for all constants depending on F . By h we denote all quantities sat-
isfying j h jOC�F �.

Now we shall introduce the main approximation of this paper. Set

D � exp
�r2 � l�

2
�E1 ÿ E� � �r

2 ÿ l�
2

�Eÿ1 ÿ E�
� �

: �1:7�
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Obviously,

bD�t� � exp
�r2 � l�

2
�eit ÿ 1� � �r

2 ÿ l�
2

�eÿit ÿ 1�
� �

: �1:8�

If jljOr2 then D is the convolution of two Poisson distributions, but if
jlj > r2 then D is the convolution of Poisson law and signed Poisson
measure, i.e. it becomes a signed measure. This, however is not a
serious fault because any asymptotic expansion is not a distribution.
In this sense D is nothing but a Poisson distribution with one member
of asymptotics in the exponent.

Approximation D was introduced by Kruopis (1986a,b) who used
factorial moments rather than mean and variance. He also proposed
to call it the normal ± Poisson approximation. Indeed, D is Poisson
structured and, for all t 2 R,

bD�t� � exp itlÿ r2t2

2
� hj t j3

� �
; j h jOC�F � : �1:9�

ThoughKruopis (1986b) remarked thatDn is uniformly close to F n even
in the general case, he thoroughly explored the Bernoulli case only. His
other results employ only the uniform distance and the remainder terms
have unestimated summands. In comparison toKruopis (1986b) we use
much weaker assumptions and stronger metrics. Our approach to the
asymptotics of D also di�ers from that used by Kruopis.

The structure of this paper is the following. In Section 2 we in-
troduce asymptotic expansions. In Section 3 we show that those ex-
pansions are close to F n in lr metrics, provided F has a su�cient
number of moments. In Section 4 we explore Ibragimov's necessary
and su�cient conditions and prove that they are as much natural for
approximation of lattice distributions by Dn, as they are natural for
approximation of continuous distributions by the normal law. In
concluding remarks we discuss some possible extensions and re®ne-
ments of the obtained results.

2. Construction of asymptotics for D

In this Section we discuss three possible ways of construction of as-
ymptotics. The ®rst and the most general one is so-called BergstroÈ m
expansion, see BergstroÈ m (1951). For its construction no assumptions
are needed. Set

Bs � Dn �
Xsÿ1
j�1

n
j

� �
Dnÿj�F ÿ D�j : �2:1�
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From the practical point of view it is more convenient to use in®nitely
divisible measures whenever we encounter n-fold convolutions. Note
that Bs has n-order convolutions only of the in®nitely divisible mea-
sure D. Meanwhile the largest power of F in (2.1) equals sÿ 1. The
second advantage is that Bs is a long expansion independently of the
number of ®nite moments of F . BergstroÈ m expansion does not depend
on dimension and can be used in general spaces, see Bentkus (1984),
Nagaev and Chebotarev (1989). However, if some number of ®nite
moments exists, it is more reasonable to use a simpler structured ex-
pansion.

Let Ck be k'th cumulant of F , (k=3,4,. . .) and let Ak be k'th mo-
ment of F , i.e.,

bF �t� � 1� itl�
Xsÿ1
k�2

Ak
�it�k
k!
� o�j t jsÿ1�; as t! 0 ; �2:2�

ln bF �t� � itlÿ r2t2

2
�
Xsÿ1
k�3

Ck
�it�k
k!
� o�j t jsÿ1�; as t! 0 : �2:3�

In CÏ ekanavicÏ ius (1997) we proposed to construct asymptotics in the
exponent for the normal distribution and also for a very special case
of SP. Now we shall use the same ideas for the construction of as-
ymptotics for D. Note that, for all t 2 R,

jbD�t�j � exp fÿr2�1ÿ cos t�g � exp fÿ2r2 sin2�t=2�g : �2:4�
The main idea is to replace in (2.3) all the powers of tk by the powers
of �eita ÿ 1�k retaining some analogue of (2.4). The main advantage of
�eita ÿ 1� with respect to t is that, for all t 2 R, and integer a it satis®es
two inequalities simultaneously:

j eita ÿ 1 jO 2; and j eita ÿ 1 j2 O a24 sin2�t=2� : �2:5�
Asymptotics in the exponent are constructed step by step. The algo-
rithm is the following. In the ®rst step we replace itlÿ r2t2=2 by
�r2 � l��eit ÿ 1�=2� �r2 ÿ l��eÿit ÿ 1�=2 and obtain

itlÿ r2t2

2
�
Xsÿ1
k�3

Ck
�it�k
k!
� �r

2 � l�
2

�eit ÿ 1� � �r
2 ÿ l�
2

�eÿit ÿ 1�

�
Xsÿ1
k�3

�
Ck ÿ �r

2 � l�
2

ÿ �ÿ1�k �r
2 ÿ l�
2

��it�k
k!

� hj t js : �2:6�
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Set x3 � C3 ÿ l. Now we shall replace x3�it�3=6 by k3�exp fi
ta�3�g ÿ 1�3, where k3 has the same sign as x3 and satis®es the
equation

a3�3�k3 � x3=6; where a�3� � jx3 j
r2

25
� �

� 1 :

Here ��� means the integer part.
Thus, we have that, for some coe�cients xj; j � 4; 5; . . . and for all

t 2 R,

k3�eita�3� ÿ 1�3 � x3
�it�3
6
�
Xsÿ1
k�4

xk
�it�k
k!
� hjtjs ; �2:7�

j k3�eita�3� ÿ 1�3 jO 2j k3 k eita�3� ÿ 1 j2 O 8 sin2�t=2�j k3 ja3�3�=a�3�
O 2ÿ2r2 sin2�t=2� : �2:8�

The next step is to replace �C4 ÿ r2 ÿ x4��it�4=4! by some k4
�exp fita�4�g ÿ 1�4, where a�4� is a natural number and k4 satis®es
assumptions that lead to the analogue of (2.7) and (2.8). In general the
algorithm of replacement of x�it�k=k! by kk�exp fita�k�g ÿ 1�k is the
following. Let kk be of the same sign as xk and let

kkak�k� � x=k! ; �2:9�
where

a�k� � jx j1=�kÿ2�rÿ2=�kÿ2�2�2kÿ1�=�kÿ2�
h i

� 1 : �2:10�

After s steps, for all t 2 R, we get

itlÿ r2t2

2
�
Xsÿ1
k�3

Ck
�it�k
k!
� �r

2 � l�
2

�eit ÿ 1� � �r
2 ÿ l�
2

�eÿit ÿ 1�

�
Xsÿ1
k�3

kk�eita�k� ÿ 1�k � hj t js : �2:11�

Moreover, due to the construction

Xsÿ1
k�3

��kk eita�k� ÿ 1
� �k��OXsÿ1

k�3
jkkj2kÿ2a2�k�4 sin2�t=2�

O
Xsÿ1
k�3

2k sin2�t=2�r221ÿ2kO
r2

2
sin2�t=2� : �2:12�

Set
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Ds � exp �r2 � l�
2

�E1 ÿ E�
�
� �r

2 ÿ l�
2

�Eÿ1 ÿ E��
Xsÿ1
k�3

kk�Ea�k� ÿ E�k
)

:

�2:13�

Assume that F has a ®nite absolute moment of order sP3. By (2.11),
(2.12) and the relations between cumulants and moments, for all
t 2 R, we have

jbDs�t�jO exp ÿ 3r
2

2
sin2

t
2

� �
; �2:14�

jbF �t� ÿ bDs�t�j � C�F ; s�jtjs : �2:15�
After a quite standard calculation we also get that, for all t 2 R,

jbF 0�t� ÿ bD0s�t�jOC�F ; s�jtjsÿ1 �2:16�
and ���bF �t�eÿitl�0jOC�F �jtj; j�bDs�t�eÿitl�0jOC�F ; s�jtj : �2:17�
Ds is both in®nitely divisible and lattice. Note that the construction of
Ds is quite arbitrary and other kk and a�k� can be selected provided the
relation (2.11) is ful®lled and the analogue of (2.14) holds. Here we
presented just one of the possibilities.

If we want to construct asymptotics by adding summands to D,
then we should put down some of the expansion in the exponent.
Kruopis (1986b) considered one of such expansions based on factorial
moments. Here we shall introduce a di�erent approach based on
cumulants. For the sake of brevity we shall use only a short expan-
sion. We can write formally

bF n�t� � exp fn ln bF �t�g � bDn�t� 1� n�C3 ÿ l� �it�
3

3!
� � � �

 !
: �2:18�

Now let us replace �it�3 by �eit ÿ 1�3. Note that in this case we do not
need the analogue of (2.8). Moreover, the replacement is not unique.
Indeed, we can use �1ÿ eÿit��eit ÿ 1�2 etc. Set

K3�n� � Dn E � n
C3 ÿ l

6
�E1 ÿ E�3

� �
: �2:19�

If we want to get a longer expansion then evidently we should take
more summands in (2.18) and replace �it�k by some kk�eit ÿ 1�k in a
manner analogous to the construction of Ds with the only exception
that the analogue of (2.14) is unnecessary.
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We shall end this Section by formulating important consequences
of the conditions (1.5), �L1� and (1.6). It is easy to check that, if those
conditions are satis®ed then, for some 0 < eO p,

jbF �t�jOeÿC�F �t2 ; if jtjOe : �2:20�
Moreover, for any 0 < eOp and all eOjtjOp,

jbF �t�jnOeÿnC�F ;e�; �2:21�
see Gnedenko and Kolmogorov (1968, p. 234). Note also that from
(2.14) we get that, for jtjOp,

jbDs�t�jO eÿC�F ;s�t2 : �2:22�

3. Estimates in `r metric

Throughout this Section we assume that 1Or <1 is a ®xed number,
s is a natural number and by writing O�nÿs� we consider n!1.

As we have mentioned previously, BergstroÈ m expansions require a
very little amount of information. The following long expansion re-
quires only the existence of three absolute moments.

Theorem 3.1. Let F satisfy conditions (1.5), (1.6) and �L1� and letZ1
ÿ1
jxj3F fdxg � b <1 :

Then, for any ®xed sP1,

jF n ÿ Bsjr � O nÿs=2ÿ�rÿ1�=�2r�
� �

; �3:1�

jF n ÿ Bsj1 � O nÿ�s�1�=2
� �

: �3:2�

Corollary 3.1. Under the conditions of Theorem 3.1

kF n ÿ Bsk � O nÿs=2
� �

: �3:3�
If F has the s'th ®nite absolute moment we can apply the approxi-
mation Ds.

Theorem 3.2. Let F satisfy (1.5), (1.6) and �L1� and have ®nite s'th
absolute moments. Then

jF n ÿ Dn
s jr � O nÿ�sÿ2�=2ÿ�rÿ1�=�2r�

� �
; �3:4�
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jF n ÿ Dn
s j1 � O nÿ�sÿ1�=2

� �
: �3:5�

Corollary 3.2. Under the conditions of Theorem 3.2

kF n ÿ Dn
sk � O nÿ�sÿ2�=2

� �
: �3:6�

We can apply K3�n� too.
Theorem 3.3. Let F satisfy (1.5), (1.6) and �L1� and have ®nite third
absolute moment. Then

jF n ÿ K3�n�jr � O
ÿ
nÿ1ÿ�rÿ1�=�2r�� ; �3:7�

jF n ÿ K3�n� j1 � O
ÿ
nÿ3=2

�
; �3:8�

kF n ÿ K3�n�k � O nÿ1
ÿ �

: �3:9�
Before proving theorems we shall discuss some aspects of their ap-
plication. In all cases the fast Fourier transform can be used for cal-
culation of `probabilities'. However it is evident that, in fact, Bs is not
as convenient as the remaining two approximations, because in Bs the
initial distribution F is used (not only its moments). Thus Bs to some
extent can be viewed as an intermediate approximation. For K3�n� it is
possible to use some recursion algorithm. Indeed, let

P �m� � 1

2p

Zp

ÿp

eÿitmbDn�t� dt :

Then P�m� satis®es a simple recursion formula

�lÿ r2�P�m� 1� � 2mP�m� � �r2 � l�P �mÿ 1� : �3:10�
But K3�n� can be expressed in P �m�'s as follows

K3�n�fmg � P �m� � n
�C3 ÿ l�

6

� P �mÿ 3� ÿ 3P �mÿ 2��3P�mÿ 1� ÿ P�m�� :�
�3:11�

Now for calculation (3.10) can be applied. Note that P �0�; P�1�; P �ÿ1�
can be calculated with a given accuracy directly from the inversion
formula. Besides P �m� can be expressed in Bessel functions. For ex-
ample, let r2 � lP0 and r2 ÿ l < 0. Then

P�m� � eÿr2�r2 � l�m=2jr2 ÿ ljÿm=2Jm

������������������
jr4 ÿ l2j

q� �
;
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where Jm is the Bessel function of the ®rst kind. For other values of l
and r analogous formulas can be obtained.

Now we pass onto the proofs of theorems. The following auxiliary
result is needed.

Lemma 3.1. Let D be a measure of ®nite variation concentrated on
integers. Then

jDjrO
1

2p

Zp

ÿp

jbD�t� jr=�rÿ1� dt

0@ 1A�rÿ1�=r

; for rP2 �3:12�

jD j1O
1

2p

Zp

ÿp

j bD�t� j dt ; �3:13�

jD jO 1

4

Zp

ÿp

jbD�t�j
j t j dt : �3:14�

If, in addition,
P

k j k kDfkg j <1 then for all a 2 R, b > 0 and
1Or < 2

jD jrO 1� bp
�������������������
r=�2ÿ r�

p� ��2ÿr�=�2r�

� 1

2p

Zp

ÿp

j bD�t� j2 � 2ÿ r
rb2

eÿitabD�t�� �0��� ���2 dt

0@ 1A1=2

:

�3:15�

The relation (3.13) follows directly from the inversion formula. The
relation (3.14) is a well-known Tsaregradskii's inequality, see Tsare-
gradskii (1958). Proof of other relations can be found in SÏ iaulys and
CÏ ekanavicÏ ius (1988).

Proof of Theorem 3.1. For the sake of brevity we write bF ; bD;Bs;C
instead of bF �t�; bD�t�; bBs�t�, C�F ; s; r; e�. Note that C is used for dif-
ferent constants. By the BergstroÈ m (1951) identity we have

j bF n ÿ bBs j �
����� Xn

j�s

jÿ 1
sÿ 1

� �bF nÿj�bF ÿ bD�sbDjÿs

����� : �3:16�

Let j t jOe, where e is de®ned by (2.20). Then

j bF n ÿ bBs j O
Xn

j�s

jÿ 1

sÿ 1

� �
eÿ�nÿs�Ct2 j bF ÿ bD js
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OCnseÿnCt2 j t j3OCnÿs=2eÿnCt2 : �3:17�
By (2.21) and (2.22) we obtain, for eOj t jOp,

j bF ÿ bBs jOCnseÿnC � O
ÿ
nÿ�s�1�=2

�
; as n!1 : �3:18�

From (3.17), (3.18) and (3.13) we get (3.2). Quite analogously we
prove (3.1) for rP2. Now let 1Or < 2. Then, taking a � �nÿ s�l, for
all j t jOe by (2.17) and (2.18) we obtain

j ÿ�bF n ÿ bBs�eÿita
�0 jOXn

j�s

jÿ 1

sÿ 1

� ���ÿ�bF eÿitl�nÿj�bDeÿitl�jÿs�bF ÿ bD�s�0��
OCeÿnCt2nsÿnj t j1�3s � j t j3�sÿ1��2�
OCeÿnCt2nÿ�sÿ1�=2 :

�3:19�

From (2.21) and (2.22) we get that, for eOj t jOp,��ÿeÿita�bF n ÿ bBs�
�0��2 � O

ÿ
nÿs=2ÿ�rÿ1�=2r� : �3:20�

Putting b � ���
n
p

in (3.15) and taking into account (3.17)±(3.20) we get
the assertion of the theorem. (

Proof of Theorem 3.2. From (2.21) and (2.22) we see that it su�ces to
get the estimates only for j t jOe. But, for j t jOe,

j bF n ÿ bDn
s jO nmax�j bF jnÿ1; j bDs jnÿ1�j bF ÿ bDs jOCneÿnCt2 j t js

O CeÿnCt2nÿ�sÿ2�=2
�3:21�

and

j �eÿit�nÿ1�l�bF n ÿ bDn
s ��0 jO

Xn

j�1

�� ÿ�bF eÿitl�nÿj�bDse
ÿitl�jÿ1�bF ÿ bDs�

�0 ��
OCn�nj t j1�s � j t jsÿ1�eÿnCt2

OCeÿnCt2nÿ�sÿ3�=2 :

Applying Lemma 3.1 with a � �nÿ 1�l, b � ���
n
p

we get the assertion
of the theorem. (

Proof of Theorem 3.3. By the properties of metrics we have

j F n ÿ K3�n� jr O j F n ÿ B2 jr � jB2 ÿ K3�n� jr ;
jB2 ÿ K3�n� jr O njDnÿ1�F ÿ D��E ÿ D� jr
�njDn�F ÿ Dÿ C3 ÿ l

6
�E1 ÿ E�3� jr :
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Now we should apply Theorem 3.1 and Lemma 3.1 (once with b � ���
n
p

and a � �nÿ 1�l and once with b � ���
n
p

and a � nl). As all calcula-
tions are quite analogous to the previous ones we omit the remaining
part of the proof. (

Remark. Proof of the Theorem 3.3 demonstrates one of the properties
of BergstroÈ m expansions, i.e., their usefulness as the intermediate
results.

4. Necessary and su�cient conditions

Ibragimov was the ®rst who established necessary and su�cient
conditions for the rate of convergence to the normal distribution, see
Ibragimov (1966, 1967). Later Ibragimov's conditions were reformu-
lated and generalized in many directions, see, Bikelis (1972), Rozov-
skii (1978), Michel (1983) and references therein. However in this
paper we shall stick to the original Ibragimov version, because it
clearly demonstrates that the most appropriate case for the normal
approximation is the case when F satis®es Cramer's (C) condition, i.e.,

lim sup
j t j!1

j bF �t� j < 1 : �C�

For lattice distributions the lattice structured approximation is more
natural. To this goal we shall show that Dn

s�3 is close to F n for all Borel
sets. Let n have a distribution F which satis®es (1.5), (1.6) and has
®nite cumulants C3;C4; . . . ;Cs�2. Let Fg correspond to g � �nÿ l�=r.
Cumulants of Fg we denote by l1; l2; . . . ;ls�2. Let Ds�3 be constructed
as in (2.13), i.e. Ds�3 has the same form as in (2.13) and kj; a�j� are
such that bDs�3�t=r� � eitl=rhs�t� exp fhj t js�3g ; �4:1�
where

hs�t� � exp

(
ÿ t2

2
�
Xs�2
k�3

�it�k
k!

lk

)
: �4:2�

Besides, for all t 2 R

j bDs�3�t� jO exp
n
ÿ 3r

2

2
sin2

t
2

o
: �4:3�

Now we can formulate the main result of this Section.

Theorem 4.1. For the relation

k F n ÿ Dn
s�3 k � O�nÿ�s�d�=2� ; �4:4�
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s � 1; 2; . . ., 0 < d < 1 to hold it is necessary (and, for F satisfying (L1),
su�cient) that the conditionZ

j xÿl j>z

j xÿ l js�2dF � O�zÿd�; z!1 ; �4:5�

be satis®ed.
For the relation (4.4) to hold with d � 1 it is necessary (and, for F

satisfying (L1) su�cient) that the conditions (4.5) andZl�z

lÿz

�xÿ l�s�3 dF � O�1�; z!1 �4:6�

be satis®ed.
Conditions (4.5)±(4.6) are the well-known Ibragimov conditions

for the uniform normal approximation, see Ibragimov (1966). In fact,
we shall prove a stronger proposition, namely we shall show that
(4.5)±(4.6) are necessary for

j F n ÿ Dn
s�3 j � O�nÿ�s�d�=2� ; �4:7�

and su�cient for (4.4). By the properties of distances

j F n ÿ Dn
s�3 jOk F n ÿ Dn

s�3 k : �4:8�
Therefore, (4.7) will follow immediately from (4.4) and (4.8). More-
over, from (4.8) we shall get that (4.5) and (4.6) are necessary and
su�cient for (4.7).

Proof of Theorem 4.1. Necessary part. Ibragimov (1966, 1967) proved
that (4.5)±(4.6) are necessary and su�cient for the closeness of the
normed sum to the standard normal distribution. We shall prove the
necessity of (4.5) and (4.6) by induction. Let s � 0. Then Ds�3 �
D3 � D. From Ibragimov's (1966) paper we have that (4.5) and (4.6)
are necessary for

j F n ÿ U�nl; r
���
n
p � j � O�nÿd=2� ; �4:9�

where U�nl; r
���
n
p � is the normal distribution with the mean nl and

variance nr2. Applying variant of Esseen's smoothing lemma from
Petrov (1975, Chap. 5, Th.1) we get

jDn ÿ U�nl;r
���
n
p � jOC

Zp

ÿp

j bD�t� ÿ exp fitnlÿ nr2t2=2g j dt
j t j � C
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�
Z

j y jOC

jDn�x� y� ÿ Dn�x� j dy : �4:10�

By (3.13) and (2.22)

jDn�x� y� ÿ Dn�x� jOC�jyj � 1�max
k
jDnfkg j

O
C�jyj � 1�

2p

Zp

ÿp

j bDn�t� j dtOC�jyj � 1�nÿ1=2 :

�4:11�
On the other hand, the ®rst integral in (4.10) is also majorized by
C�F �nÿ1=2. Hence

jDn ÿ U�nl; r
���
n
p � j � O�nÿ1=2� : �4:12�

Taking into account (4.12) and (4.8) we see that from (4.4) it follows
(4.7) and, subsequently, (4.9). The conditions (4.5)±(4.6) are necessary
for (4.9). The necessary part, for s � 0, is proved. Now let (4.4)±(4.6)
be satis®ed for some s, i.e., let them be necessary for

j F n ÿ Dn
s�3 j � O�nÿ�s�d�=2� : �4:13�

We shall prove that then (4.5), (4.6)(with s� 1) are necessary for

j F n ÿ Dn
s�4 j � O�nÿ�s�1�d�=2� : �4:14�

Just as in Ibragimov (1967) set

A�t� � t�1ÿ t�hn�t= ���
n
p �; t 2 �0; 1�

0; t 62 �0; 1� .

�
Let ~A�x� be the Fourier transform of A�t�. Then by the properties of
uniform distance

j F n ÿ Dn
s�4 j � sup

x
j F n

g �
���
n
p

x� ÿ Eÿln=r
��
n
p Dn

s�4�
���
n
p

rx� j � sup
x
jD�x� j;
say :

By Parseval's identity���� Z
1

0

bD�t�
it

A�t� dt

����O Z1
ÿ1
jD�x� jj ~A�x� j dx � O�nÿ�s�1�d�=2� : �4:15�

But by (4.1)bD�t� � bF n
g �t=

���
n
p � ÿ hs�1�t=

���
n
p � exp fhj t js�4nÿ�s�2�=2g : �4:16�
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Ibragimov (1967) proved that, for j t jO1,

gs�1�t� � hn
s�1�t=

���
n
p � exp

n
O
�
j t js�2nÿ�s�2�=2

�o
; n!1 : �4:17�

From (4.15)±(4.17) it is not di�cult to obtain�����
Z1
0

�bF n
g �t=

���
n
p � ÿ gs�1�t��A�t�

it
dt

����� � O�nÿ�s�1�d�=2� : �4:18�

But Ibragimov (1967) proved that (4.18) and necessity of (4.5)±(4.6)
for s imply the necessity of (4.5)±(4.6) for s� 1. Thus, the necessary
part is proved.

Su�cient part. Ibragimov (1967) proved that (4.5)±(4.6) implybFg�t� � hs�t� exp
n
O
�
j t js�2�d

�o
t! 0; 0 < dO1 : �4:19�

Therefore, for some e1 by (4.1) and (4.19) we getbF �t� � eitlhs�tr� exp fhj t js�2�dg; for j t jOe1 �4:20�bDs�3�t� � eitlhs�tr� exp fhj t js�2�dg for all j t jOp : �4:21�
Let b1;b2; . . . be the moments of g. Then, just like in Ibragimov
(1966), (1967) we get that���� bFg�t� ÿ

Xs�2
k�0

�it�k
k!

bk

���� � O�j t js�2�d�;����� bF 0g�t� ÿ
 Xs�2

k�0

�it�k
k!

bk

!0 ����� � O�j t js�1�d� :
�4:22�

After quite standard calculation from (4.20)±(4.22) and (4.3) we get
that, for some 0 < e2Op and all j t jOe2,

j bF �t� ÿ bDs�3�t� jOC�F ; e3�j t js�2�d ;

j bF 0�t� ÿ bD0s�3�t� jOC�F ; e3�j t js�1�d :

But by (2.21) and (2.22), for j t j > e2, all j bF �t� jn , j bDs�3�t� jn and their
derivatives vanish exponentially. Thus to end the proof it su�ces to
proceed as in Theorem 3.1. (

Of course, it is also possible to use K3�n� or other expansions. For
example, let us consider K3�n� and the uniform distance. According to
Ibragimov (1967) the conditions (4.5)±(4.6) can be replaced by the
condition on characteristic function. We shall use the same approach.
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Theorem 4.2. For the relation

j F n ÿ K3�n� j � O
�

nÿ�1�d�=2
�
; 0 < d O 1 �4:23�

to hold it is necessary (and, for F satisfying (L1), su�cient) that

bF �t� � exp
n
itlÿ r2t2

2
� C3

�it�3
6
�O

�
jtj3�d

�o
: �4:24�

Proof. Ibragimov (1967) proved that from (4.5) and (4.6) it follows
(4.24). Now the necessary part can be proved analogously to the
necessary part in Theorem 4.1 and the su�cient part follows from
(4.24) and (3.14). (

5. Concluding remarks

Asymptotic expansion in the exponent of Section 2 is not the only
possible one. In fact, kk and a�k� can be chosen in an arbitrary way
provided (2.11) and (2.12) hold true. The idea of ®tting as much
moments as possible lead Rachev and RuÈ schendorf (1990) to the
`scaled' Poisson approximations. However, their approach means that
the approximated distribution and the approximating distribution
have di�erent maximal spans ± and all problems, analogous to those
of normal approach, remain.

The estimates of this paper are obtained for the scheme of se-
quences. If we require in addition that F f0g; F f1g > 0 then it is
possible to reformulate all results in the general scheme of series,
where the dependence of C�F � on F will be explicit. The main dif-
ference in the proofs is the following estimate

j bF �t� j2 �  F f0g �
X1
1

F fjg cos�tj�
!2

�
 X1

1

F fjg sin�tj�
!2

O F 2f0g � 2F f0g
X1
1

F fjg cos�tj� �
 X1

1

F fjg
!2

O 1ÿ 2F f0g
X1
1

F fjg sin2�tj=2�

O exp fÿ2F f0gF f1g sin2�t=2�g; �5:1�
which holds for all t 2 R.
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Assuming more of ®nite moments it is not di�cult to get the lower
estimates. In this case the Theorem 2 from SÏ iaulys and CÏ ekanavicÏ ius
(1988) can be applied.

Example 5.1. Let F ;D be as de®ned in Sections 1±2. Assume that F
has a ®nite fourth moment A4 and let

jl� 3lr2 � l3 ÿ A3 j > 0; where A3 �
Z

x3F fdxg :

Directly applying aforementioned theorem we get that for all nP3

j F n ÿ Dn jPC�F �nÿ1=2 : �5:2�
So far in this paper we considered identically distributed summ-

ands (i.e. F n). Now we give one example of approximation of sum
with nonidentically distributed summands.

Example 5.2. Let us consider the Wilcoxon signed rank statistic. The
well known fact is that this statistic is uniformly close to the normal
distribution. Moreover, it can be decomposed in the sum of inde-
pendent nonidentically distributed two-valued random variables. In
the terms of distributions (denoting by Fn the distribution of Wilcoxon
statistic) we have

Fn �
Yn

j�1

�1
2

E � 1

2
Ej

�
�
Yn

j�1
F �j�; say :

Note that bFn�t� �
Yn

j�1
�1=2� eitj=2� : �5:3�

The mean and the variance of Fn respectively are

l�n� � n�n� 1�=4; r2�n� � n�n� 1��2n� 1�=24 : �5:4�
Let Dn be de®ned as in Section 2, i.e.,

Dn � exp

(
r2�n� � l�n�

2
�E1 ÿ E� � r2�n� ÿ l�n�

2
�Eÿ1 ÿ E�

)
: �5:5�

We have that Dn �
Qn

1 D�j�, where

bD�j��t� � exp

(
�2j� j2�

8
�eit ÿ 1� � �j

2 ÿ 2j�
8

�eÿit ÿ 1�
)

: �5:6�

In Quine (1994) it was shown that for j t j > C1=n

j bFn�t� jO eÿC2n : �5:7�
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Proceeding just as in Section 3 we establish that for j t jOC1=n

j bF �j��t� ÿ bD�j��t� jOC�j t j � j t j3j3� ; �5:8�
j �bF �j��t�eÿitj=2�0 ÿ �bD�j��t�eÿitj=2�0 jOC�1� t2j3� ; �5:9�
j �bF �j��t�eÿitj=2�0 j; j �bD�j��t�eÿitj=2�0 jOCj t jj2 ; �5:10�Yn

j�1
j bF �j��t� jOC exp fÿCn3t2g;

Yn

j�1
j bD�j��t� jOC exp fÿCn3t2g :

�5:11�
From (5.7)±(5.11) it is not di�cult to obtain

k Fn ÿ Dn k � O�nÿ1=2� : �5:12�
Thus we see that, just as in the identically distributed case, the order of
the estimate is the same as for the normal approximation, but (unlike
the normal case) it holds for all Borel sets.
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the paper.

References

Bentkus, V.: Asymptotic expansions in the CLT in Hilbert space. Lithuan. Math. J.

24, 210±225 (1984)
BergstroÈ m, H.: On asymptotic expansion of probability functions. Skand.

Aktuarietidskrift 1, 1±34 (1951)

Bhattacharya, R.N., Ranga Rao, R.: Normal Approximation and asymptotic
expansions. New York: Wiley (1976)

Bikelis, A.: Limit theorems for the sums of independent random variables. (In

Russian) Litovsk. Matem. Sb. 4, 4±14 (1972)
CÏ ekanavicÏ ius, V.: Approximation of mixtures of distributions. Lithuan. Math. J. 31,

243±257 (1991)

CÏ ekanavicÏ ius, V.: On multivariate Le Cam theorem and compound Poisson
measures. Statist. and Probab. Lett. 28, 33±39 (1996)

CÏ ekanavicÏ ius, V.: Asymptotic expansions in the exponent: a compound Poisson
approach. Adv. Appl. Probab. 29, 374±387 (1997)

Cuppens, R.: Decomposition of multivariate probability. New York, San Francisco,
London (1975)

Dhaene, J., De Pril, N.: On a class of approximative computation methods in the

individual risk model. Insurance: Math. and Economics. 14, 181±196 (1994)
Esseen, C.G.: Fourier analysis of distribution functions. A mathematical study of the

Laplace-Gaussian law. Acta Math. 77, 1±125 (1945)

Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent
random variables. (second ed.) Addison-Wesley (1968)

Michel, R.: On the in¯uence of moments in nonuniform expansions of Chebyshev±

Cramer type. Statistics and Decisions 1, N. 2, 205±215 (1983)

582 V. CÏ ekanavicÏ ius



Hipp, C.: Improved approximations for the aggregate claims distribution in the

individual model. ASTIN Bull. 16, 89±100 (1986)
Ibragimov, I.A.: On the accuracy of Gaussian approximation to the distribution

functions of sums of independent variables. Theory Probab. Appl. 11, 559±580

(1966)
Ibragimov, I.A.: On the Chebyshev±Cramer asymptotic expansions (In Russian).

Teor. veroyatn. i primen., 506±519 (1967)

Ibragimov, I.A., and Linnik, Yu.V.: Independent and stationary sequences of random
variables. Wolters-Noordho�, Groningen (1971)

Kornya, P.: Distribution of aggregate claims in the Individual Risk Theory model.

Society of Actuaries: Transactions. 35, 823±858 (1983)
Kruopis, Yu.: Precision of approximations of the generalized Binomial distribution

by convolutions of Poisson measures. Lithuanian Math. J. 26, 37±49 (1986a)
Kruopis, Yu.: Approximations for distributions of sums of lattice random variables I.

Lithuanian Math. J. 26, 234±244 (1986b)
Le Cam, L.: An approximation theorem for the Poisson binomial distribution. Paci®c

J. Math. 10, 1181±1197 (1960)

Nagaev, S.V., Chebotarev, V.I.: On asymptotic expansions of BergstroÈ m type in
Hilbert space. (In Russian) Trudy Inst. Mat. Novosibirsk. 13, 66±77 (1989)

Petrov, V.V.: Sums of Independent Random Variables. Springer-Verlag (1975)

Presman, E.L.: Approximation of binomial distributions by in®nitely divisible ones.
Theory Prob. Appl. 28, 393±403 (1983)

Quine, M.P.: Probability approximations for divisible discrete distributions. Austral.
J. Statist. 36, 339±349 (1994)

Rachev, S.T. and RuÈ schendorf, L.: Approximation of sums by compound Poisson
distributions with respect to stop-loss distances. Adv. Appl. Prob. 22, 350±374
(1990)

Rozovski, L.V.: The accuracy of an estimate of the remainder term in the central limit
theorem. Theor. Probab. Appl. 23, 712±730 (1978)

SÏ iaulys, J., CÏ ekanavicÏ ius, V.: Approximation of distributions of integer-valued

additive functions by discrete charges. I. Lithuanian Math. J. 28, 392±401 (1988)
SÏ iaulys, J., CÏ ekanavicÏ ius, V.: Approximation of distributions of integer-valued

additive functions by discrete charges. II. Lithuanian Math. J. 29, 80±95 (1989)

Tsaregradskii, I.P.: On uniform approximation of a binomial distribution by in®nitely
divisible laws. (In Russian) Teorya Veroyatn. Primen. 3, 470±474 (1958)

On signed normal-Poisson approximations 583


