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Abstract. Consider the standard continuous percolation in R4, and
choose the parameters so that the induced percolation on a ®xed two
dimensional linear subspace is critical. Although two dimensional
critical percolation dies, we show that there are exceptional two di-
mensional linear subspaces, in which percolation occurs.
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1 Introduction

This paper presents a natural variant on dynamical percolation, in
which, at criticality, there is a nonempty exceptional set of ``times'' for
which percolation occurs. The setup will be two dimensional sections
of the continuous percolation process, known as the Poisson or the
boolean model.

Start with a homogeneous Poisson point process x � xd in Rd

(d � 2) with intensity 1. Let x�r� denote the set of points in Rd whose
distance from x is at most r; that is, the union of closed balls of radius
r with centers in x. This is often called the open or occupied set in the
percolation jargon. Write Pr for the measure governing the process
x�r�. (For a more formal description and background on continuous
percolation, see Meester and Roy [11]). Let A be a two dimensional
linear subspace of Rd . The intersection xd�r� \ A is isomorphic to a
Poisson percolation process on A, in which the distribution of the radii
of the balls is random, but bounded by r. If xd�r� \ A contains an
unbounded connected component, we say that percolation occurs in A.
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Let C�A� denote the event that percolation occurs in A. It is well
known that there exists a critical radius r � rd

c ; 0 < rd
c <1, such that

Pr�C� � 1 if r > rd
c ;

0 if r < rd
c :

�
Consider the process x�rd

c � � Rd , d � 2. In any ®xed two dimensional
linear subspace A, with probability one there is no percolation; that is,
Prd

c
C�A�� � � 0. See Theorem 4.5 from [11]. Our main result is,

Theorem 1 For d � 4 and r � rd
c , with probability one, percolation

occurs in some two dimensional linear subspace.

The proof is based on the second moment method and uses the fact
that two generic linear planes in Rd ; d � 4, intersect only at the origin.
There is some technical di�culty in the proof, which stems from the
fact that the RSW lemma is still unproven for occupied Poisson
percolation with random bounded radii. First, an (almost) proof will
be presented, which assumes this still conjectured version of the RSW
lemma, and then a more complicated unconditional proof will be
given.

It is unknown if the theorem holds for d � 3. Consider two distinct
linear planes A;A0 � R3. The ``interaction'' of the processes A \ x3�r�
and A0 \ x3�r� is in a strip surrounding the line A \ A0. This means that
the processes are independent outside the strip. The width of the strip
depends on the angle of intersection of A and A0. What seems to be
necessary for proving the theorem in the case d � 3 is a good estimate
for the probability that a component of A \ x3�r� contains the origin
and has diameter at least R, conditioned on the same happening in
A0 \ x3�r�. The estimate would be in terms of the angle of intersection
of A and A0.

One motivation for Theorem 1 comes from dynamical percolation,
as introduced by HaÈ ggstroÈ m, Peres and Steif [8]. Following is a brief
description of dynamic percolation; for more information, see the
survey of O. HaÈ ggstroÈ m [7]. Consider an in®nite, locally ®nite graph
G, and let each edge (bond) be open with probability p and closed with
probability 1ÿ p, independently of all the other edges. Write Pp for
this product measure. De®ne C to be the event that there exists an
in®nite connected component of open edges (open cluster). There is
some critical probability pc � pc�G� 2 �0; 1�, such that,

Pp�C� � 1 for p > pc;
0 for p < pc :

�
In the dynamical version, the edge-con®guration at time 0 is distrib-
uted according to Pp, and from then on each edge, independently of all
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other edges, changes its status (open or closed) according to a sta-
tionary continuous-time two-state Markov chain. Thus, the edge-
con®guration is time-stationary, with distribution Pp for any ®xed
time t � 0. Write bPp for the probability measure governing this pro-
cess.

Let C�t� denote the event that this process exhibits an in®nite open
cluster at time t. By Fubini's Theorem, if bPp C�0�� � � 0, then bPp-a.s.,
for almost every t, C�t� does not occur. HaÈ ggstroÈ m, Peres and Steif
constructed graphs G for which bPpc C�0�� � � 0, but with probability
one there are times t for which C�t� occurs; that is, bPp [t�0C�t�� � � 1.
They pose the problem whether the same is true for G � Z2, the
square grid. This problem is analogous to the case d � 3 in the fol-
lowing,

Question 1 Fix some integer d > 2, and let A be a linear plane in Rd . Is
there a positive probability that there exists a plane A0, parallel to A,
such that A0 \ xd�rd

c � has an in®nite component ?

It might happen that the answer depends on d.
The method of proof of Theorem 1 also gives the following.

Theorem 2 If d is su�ciently large, then, with positive probability, there
is a linear plane A � Rdsuch that A \ xd�rd

c � contains more than one
in®nite component.

This contrasts with the fact that the uniqueness of the in®nite
component is valid in a very wide class of percolation models, and in
supercritical dynamical percolation [12].

As in [8] and in [5], away from criticality there are no exceptions:

Theorem 3 If r > rd
c , then Pr a.s. there is percolation in every 2-plane

A � Rd . If r < rd
c , then Pr a.s. there is percolation in no 2-plane

A � Rd .

Acknowledgements. We thank Harry Kesten for useful discussions and advice. Olle
HaÈ ggstroÈ m, Ronald Meester and Dietrich Stoyan have kindly provided us with
helpful comments on previous drafts of this paper.

2 Existence of exceptional sections

Let G4
2 be the space of all two dimensional linear subspaces of R4, and

let l be the uniform measure on G4
2. Given A;A0 2 G4

2, let a�A;A0� be
the angle between them; which is the least angle between a unit vector
in A and a unit vector in A0. Our ®rst step is in estimating the tail of
a�A;A0�ÿ1.
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Lemma 1 Fix A 2 G4
2, and let s 2 �ÿ1; 0�. ThenZ

A02G4
2

a�A;A0�sdl <1 :

Proof. With no loss of generality, assume that A is the x-y plane. Since
every linear 2-plane is determined by its intersection with the unit
sphere S3, we think of G4

2 also as the space of geodesic circles in S3.

For any point q 2 S3, let q�q� be the angular distance from q to A,
and for any q > 0, let M�q� � fq 2 S3 : q�q� � qg. Let N�q� be the set
of points q in the x � 0 hyper-plane with q�q� < q. Observe that M�q�
is a torus and N�q� is a pair of discs with boundary in M�q�, for every
q 2 �0;p=2�.

Fix some small d, and let A0 2 G4
2 be a circle which contains points

q with q�q� < d. If A0 also contains points with q�q� � d, then A0 must
intersect M�d�. If not, then A0 must intersect N�d�. It is a known,
useful, simple fact that the area of a smooth 2 dimensional surface
M � S3 is proportional to the expected number of intersections of a
circle in G4

2 with M . Consequently, for small d > 0,

lfA0 2 G4
2 : a�A0;A� < dg � C1�areaM�d� � areaN�d�� ;

where C1 is some constant. Since area�M�d�� � O�d� and
area�N�d�� � O�d2�, it follows that

lfA0 2 G4
2 : a�A0;A� < dg � O�d� : �1�

This gives, for all s 2 �ÿ1; 0�,Z
A02G4

2

a�A0;A�sdl �
Z1
0

lfA0 : a�A0;A�s � tgdt

�
Z1
0

lfA0 : a�A0;A� � t1=sgdt

�
Z1
0

minf1;O�1�t1=sgdt <1 : (

One basic observation needed in the proof of Theorem 1 is the
following. There is C > 0 such that for any two planes intersecting at
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the origin, with angle a between the two, the induced percolation
processes outside a ball of radius Caÿ1 are independent.

Let A be some linear plane in Rd . Denote by f0 $ A Rg the event
that the origin is connected by an open path in A to distance R, and let
fR0 $ A Rg, �0 < R0 < R�, denote the event that there is an open
connection in A between the spheres of radii R0 and R about 0.

The discrete version of the following lemma is from van den Berg
and Kesten [4].

Lemma 2 Let A � Rd be a linear plane, and set r � rd
c . Then

Prf0 $ A Rg > ConstRÿ1=2 ;

for all su�ciently large R.

Although the proof is nothing more than a straightforward
translation of the proof in [4], it is presented here, because the same
argument will be used again below, and for the sake of completeness.

Proof. For simplicity, assume that A is the x-y plane. Let LR be the
event that there is a left-right crossing of the rectangle �0; 2R� � �0; 6R�.
It follows from Lemma 3.3 of [11] that infR Pr�LR� > 0. Any left-right
crossing of the rectangle must pass through the middle vertical seg-
ment fRg � �0; 6R�. Therefore, conditioned onLR, there is some point
z � �R; y� in the rectangle, such that there are two open paths
c1; c2 � A connecting the sphere of radius r1 � 2r about z to the sphere
of radius R about z, and such that the set of occupied percolation disks
that intersect c1 is disjoint from that of c2. Moreover, by changing r1
to 3r, we may assume that y is divisible by r. Let Z be the set of points
of the form �R; y�, where y 2 �0; 6R� is divisible by r, and let YR�z� be
the event that there are two paths in A connecting the sphere of radius
3r about z to the sphere of radius R about z, and the paths do not meet
the same occupied percolation disk. Then

PrLR �
X
z2Z

PrYR�z� :

Since infR Pr�LR� > 0 and the cardinality of Z is proportional to R,
when R is large, it follows that,

PrYR�0� � ConstRÿ1 :

The BK inequality, which is valid also in the continuous setting [11],
now gives,

�Prf3r $ A Rg�2 � PrYR�0� � ConstRÿ1 :
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By FKG, Prf0 $ A Rg � Const Prf3r $ A Rg, and the lemma
follows. (

We now present an ``almost proof'' of Theorem 1. Its de®ciency is
that it assumes the RSW lemma for occupied Poisson percolation,
which is currently only proven for constant radii. See K. S. Alexander
[2].

Almost proof of Theorem 1. Abbreviate P � Prd
c
, take R4 � Rd , and

®x some plane A1 2 G4
2. Consider the random variable WR �R

A2G4
2
1f0$ARgdl. The event that there is percolation in some linear

plane A � Rd is independent of xd \ K for any bounded set K � Rd ,
and therefore has probability 0 or 1. Moreover, by compactness of G4

2,
this event contains the intersection

T1
R�1fWR > 0g. Consequently, it is

enough to show that infR P �WR > 0� > 0. By Cauchy-Schwarz,

P �WR > 0� � �EWR�2
E�W 2

R �
� �Pf0$A1

Rg�2
E

R
G4
2
�G4

2

1f0$ARg1f0$A0Rgdl� dl

� �Pf0 $ A1
Rg�2

Pf0$A1
Rg R

A02G4
2

P �f0$A0 Rgjf0$A1
Rg�dl

� Pf0 $ A1
RgR

A02G4
2

P�f0$A0 Rgjf0$A1
Rg�dl

:

Because the part of xd�rd
c � \ A0 that's outside the ball of radius

Ca�A1;A0�ÿ1 around 0 is independent from xd�rd
c � \ A1, we have

P �f0$A0 Rgjf0$A1
Rg� � P�fCa�A1;A0�ÿ1 $A0 Rgjf0$A1

Rg�
� PfCa�A1;A0�ÿ1 $A0 Rg:

Consequently,

P�WR > 0� �
Z

A02G4
2

PfCa�A1;A0�ÿ1 $A0 Rg
Pf0$A1

Rg dl

0B@
1CA
ÿ1

: �2�

We now estimate the integrand. Note that 0$A R if 0$A 2R0 and
R0 $A R and there is an open winding in the annulus
fx 2 A : R0 � jxj � 2R0g. By the assumed RSW lemma, the probability
for an open winding in this annulus is bounded away from zero.

Hence, FKG implies,
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cPf0$A Rg � Pf0$A 2R0gPfR0 $A Rg ; �3�
where c > 0 is some constant. Applying this with R0 � Ca�A1;A0�ÿ1,
and the BK estimate from Lemma 2, and Lemma 1, to (2), we get
infR P �WR > 0� > 0, as needed. (

Question 2 What is the Hausdor� dimension of the set of A 2 G4
2 such

that A \ xd�rd
c � percolates?

Proof of Theorem 1. What is missing in the ®rst proof is a good
replacement for (3). Our ®rst goal will be to obtain such a replace-
ment.

As above, let A;A0 � R4 � Rd be linear planes, set r � rd
c , and

P � Pr. Let R be much larger than r. Suppose that x is such that
R0 $ A R, where

R0 �
���
R
p

: �4�
Then there is a path in A \ x�r� that connects the circles of radii R0

and R about 0, and this path must cross the circle of radius
�3=2�R0. Therefore, the proof of Lemma 2, with slight adjustments,
gives,

PfR0 $ A Rg � ConstR0Pf0 $ A R0gPf0 $ A Rÿ 2R0g : �5�
We also know from the RSW lemma for vacant percolation (see [11],
Chap. 4) that supR>0 PfR $ A 9Rg < 1. If R > R0 � 2r, then the events
fR $ A 9Rg and fR0 $A 9R0g are independent. By considering a se-
quence of nested annuli, it follows that

Pf0 $A Rg � Rÿb �6�
for all su�ciently large R, and some b > 0. Hence, we get from (5),

Const Pf0$A Rÿ 2R0g � R0bÿ1PfR0 $A Rg : �7�
This is our substitute for (3) from the ``almost proof ''. The appear-
ance of Rÿ 2R0 in place of R on the left hand side will cause annoying
di�culties, which are tackled by considering a smooth ``gauge'', in
place of the indicator of the event f0$A Rg.

Let T �A� � T �A;x� be the largest t � 0 such that 0$A t. De®ne

/R�A;x� �
0; if T(A,x) � R,
Rÿ1T �A;x� ÿ 1; if R < T �A;x� < 2R,
1; if 2R � T �A;x�

8<: �8�
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Set

HR�x� �
Z

A2G4
2

/R�A;x�dl :

As in the ``almost proof '', is enough to show that infR P �HR > 0� > 0.
By Cauchy-Schwarz,

P �HR > 0� � �ExHR�2
Ex�H2

R�

� �Ex/R�A0;x��2R
A

R
A0

Ex�/R�A;x�/R�A0;x��dl dl

� �Ex/R�A0;x�2R
A

Ex�/R�A;x�/R�A0;x��dl
: �9�

Now ®x distinct A and A0 in G4
2. Set

R0 � Ca�A;A0�ÿ1 ; �10�

where the constant C > 0 is su�ciently large so that the processes
A \ x�r� and A0 \ x�r� are independent outside the ball of radius R0

around 0. Assume, for the moment, that (4) holds. Let

eT � eT �x� � supft � 0 : R0 $A tg;

and de®ne

w�x� �
0; if eT � R;

Rÿ1eT ÿ 1; if R < eT < 2R;
1; if 2R � eT :

8<: �11�

Note that the de®nition of w�x� is the same as that of /R�A;x�, except
that T is replaced by eT .

Because w�x� � /R�A;x�, and outside the ball of radius R0 about 0
the processes x�r� \ A and x�r� \ A0 are independent, we have,

Ex�/R�A;x�/R�A0;x�� � Ex�w�x�/R�A0;x�� � Exw�x�Ex/R�A0;x�:
�12�

In the following estimate of Exw, the inequalities (7) and (6) are used.
(The Const in di�erent rows may mean di�erent constants.)
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Exw � 1

R

Z2R

R

PfR0 $A tg dt

� ConstRÿ1R01ÿb
Z2R

R

Pf0$A t ÿ 2R0g dt

� ConstRÿ1R01ÿb
Z2R

R

Pf0$A tg dt

� ConstRÿ1R01ÿb
ZR

Rÿ2R0

Pf0$A tg dt

� ConstR01ÿbE/R�A;x� � Const Rÿ1R02ÿbRÿb : �13�
From Lemma 2, we have,

Ex/R�A;x� � Const Rÿ1=2 : �14�
Provided (4) holds, it now follows from (12)±(14) that

Ex�/R�A;x�/R�A0;x��
�Ex/R�A;x��2

� ConstR01ÿb � ConstRÿbÿ1=2R02ÿb

� ConstR01ÿb : �15�
Let X be the set of A 2 G4

2 such that R0 as given by (10) is at most
���
R
p

.
By (1), we have,

l�G4
2 ÿ X � � ConstRÿ1=2 : �16�

Lemma 1 and (15) give,Z
A2X

Ex�/R�A;x�/R�A0;x��
�Ex/R�A;x��2

dl � Const

Z
A

a�A;A0�bÿ1dl <1 :

On the other hand, by (16) and (14),Z
A2G4

2
ÿX

Ex�/R�A;x�/R�A0;x��
�Ex/R�A;x��2

dl �
Z

A2G4
2
ÿX

Ex�/R�A;x��
�Ex/R�A;x��2

dl

� Const l�G4
2 ÿ X �R1=2 � Const :

By (9), the proof is now complete. (
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Proof of Theorem 2. First observe that, at r � rd
c and for large R, the

probability of f0$ Rg in a quadrant of a ®xed plane, is bounded
from below by Rÿa, for some constant a > 0, and that holds both for
occupied and for vacant percolation. (This would be an easy conse-
quence of the RSW lemma, but, again, the RSW lemma is not known
yet for variable size disk occupied percolation.) To prove this, recall
that Lemma 3.3 of [11] shows that the probability for a left-right
crossing of an L� �3L� rectangle is bounded from below. Therefore, it
follows that the probability that 0 is connected to the segment
fLg � �0; 3L� inside the rectangle �0; L� � �ÿ3L; 3L� is at least
ConstLÿ1. An application of FKG now shows that the probability
that 0 is connected to �L; 0� inside the rectangle �0;L� � �ÿ3L; 3L� is at
least Const Lÿ2. From this, it is easy to deduce an asymptotic lower
bound of the form Rÿa for f0$ Rg in a quadrant. Similarly, one
concludes that the probability to join the two boundary rays of the
quadrant inside the intersection of the quadrant with an annulus of
the form R � jzj � 2R is asymptotically bounded below by Rÿa0 , for
some constant a0 > 0.

Let A be a 2-plane and let A � Q1 [ Q2 [ Q3 [ Q4 be a dissection of
A into quadrants, where Q1;Q2;Q3;Q4 are in cyclic order. The prob-
ability that there is an open crossing f3r$ Rg in each of Q1;Q3 and
there is a closed crossing f0$ Rg in each of Q2;Q4 is at least
ConstRÿ4a. If that holds for arbitrarily large R, then there are at least
two unbounded open clusters in A. The ``almost proof'' of Theorem 1
adapted to this situation shows that it is enough to prove thatZ

Gd
2

a�A;A0�ÿ4aÿ4a0dl <1 ;

where Gd
2 is the space of all linear 2-planes in Rd , and l denotes the

uniform measure on Gd
2. A higher dimensional analog of Lemma 1

shows that this is valid once d > 3� 4a� 4a0. (
Here are some heuristic bounds for the least d satisfying Theorem

2. The actual estimate obtained from RSW (in the discrete setting) for
the constant a is about 9:09. Of course, the constant a0 should be zero.
It is known that in the discrete setting the probability for f0$ Rg in a
half-plane is at least ConstRÿ1=2 for large R. One way to see this is to
observe that there is probability bounded away from zero that the
lowest crossing of an R� R square will hit the left edge inside its
middle third. Hence, with probability at least Const = R there is both
an open and a closed crossing in a half-plane from 0 to distance R=3.
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Then the bound ConstRÿ1=2 follows from FKG. The map z! z2

takes a quadrant conformally to a half space. Conjecturally, crossing
probabilities for percolation are asymptotically conformally invariant
(see [10] and [3]). With this conjecture, the above bound translates to a
lower bound of ConstRÿ1 for f0$ Rg in a quadrant. The exponent
ÿ1 is probably not sharp; that is, a < 1. Therefore, presumably,
Theorem 2 is valid already for d � 7.

Question 3 Is there a dimension d such that for any ®nite n a.s. there is a
2 dimensional section of xc�rd

c � with at least n distinct unbounded open
clusters?

3 Away from criticality

We turn to the proof of Theorem 3, starting with the sub-critical case.
Assume r < rd

c , and let r0 � �r � rd
c �=2. Write f0$r

B Rg, for the
event that there is an open connection from 0 to the R-sphere in
xd�r� \ B.

The following two standard de®nitions are needed below. Given
two planes A;B 2 Gd

2, the maximal angle between A and B is

sup
v
inf

u
fangle between v and ug ;

where u and v are unit vectors in A and B, respectively. The maximal
angle provides a metric on Gd

2. Recall that an �-net N in a metric space
X is a set of points N � X , such that the distance between any two
points in N is bounded below by �, but any point in X is within
distance 2� from N .

Lemma 3 There is m > 0, so that for any large R, there is a set N of at
most Rm 2-planes, so that if for some A, f0$r

A Rg, then there is a B 2 N
satisfying f0$r0

B Rg.

Proof. Consider two planes, A;B, and suppose that the maximal angle
between them is at most �r0 ÿ r�=2R. Then f0$r

A Rg implies
f0$r0

B Rg, because for any point x 2 A, with distance less than R to 0,
there is a point y 2 B, with distance less than r0 ÿ r to x. The space Gd

2,
of two dimensional linear subspaces in Rd , were the distance between
two planes is the maximal angle between them, is a compact ®nite
dimensional Riemannian manifold. Hence for any small �, any �-net in
Gd
2 has less then �

ÿm elements for some constant m > 0. Take N to be
an �r0 ÿ r�=4R-net. The Lemma follows. (
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Proof of Theorem 3. As before, assume r < rd
c , and set r0 � �r � rd

c �=2.
Since r0 < rd

c , for any ®xed plane A, the probability Pf0$r0
A Rg decays

exponentially in R. (See Theorems 2.4 and 3.5 from [11].) Because the
size of N from Lemma 3 is bounded by polynomial in R, the sub-
critical case follows.

So assume now that r > rd
c . Fix a plane, A, and look at the ball

fz 2 A : jzj � Rg � A. If this R-ball does not intersect an unbounded
open cluster in A \ x�r�, then there is a vacant cut-set in A which
intersects some ball of minimal radius R0 > R centered at 0, and has
diameter bigger than R0. This has probability which is exponentially
small in R0, since the vacant process is sub-critical. (See Lemma 4.1
and Theorem 4.3 from [11].) The proof is now completed as in the sub-
critical case. (

Note that with only minor modi®cations, the same proof shows
that away from criticality, there are no exceptional a�ne planes.

Problem 4 The proof of the supercritical case uses planarity in an es-
sential way. Show that the analogous result holds for higher dimensional
sections.

4 Extensions and remarks

1. It is believed that critical percolation dies in any dimension greater
than 1. It is possible to show that for some b � b�n�,

PrfR0 $A Rg
Prf0$A Rg � ConstR0b;

where A is an n-dimensional linear subspace of Rd , and r � rd
c �n� is the

critical radius for percolation in a ®xed n dimensional linear subspace.
Therefore, the proof of Theorem 1 can be modi®ed to show that given
any integer n > 1, there is some d such that a.s. xd�rd

c �n�� percolates in
some n dimensional linear subspace A � Rd . An interesting problem is
to understand the dependence of d on n.

2. There are ways to get an analogous model that provides similar
properties for bond percolation on the Zn lattice. Consider a random
coloring of Rd by two colors (black and white), so that the probability
of any point to be white is p, and if the distance between two points is
bigger than a half, then their colors are independent. Now embed
isometrically the lattice Z2 in Rd , and decide whether a bond is open
according to the color of its midpoint. The theorems above translate
easily to this model.

We now describe such a coloring with additional useful properties.
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Confetti percolation. Before the formal de®nition, here is a loose de-
scription. Throw confetti discs on Rd ; each piece is either white or
black. The color of a point will be determined by the color of the top
piece. (See Fig. 1.) Planar confetti percolation is an isotropic self dual
model, as the Voronoi percolation model. (See [3] for a description of
the Voronoi model.) Yet it has the advantage that the colors of points
with distance bigger then the radius of the confetti discs are inde-
pendent. An interesting problem might be to prove some of the known
properties of other models for confetti percolation. The confetti model
is also known as the dead leaves model; see [9].

Problem 5 Prove the RSW-lemma for confetti percolation on R2, and
show that pc � 1=2.

Here is a more formal description of confetti percolation. Perform
a Poisson process in Rd�1 � Rd �R with some intensity. Color each
site in the process black with probability p or white otherwise, inde-
pendently. To decide the color of a point x 2 Rd , move the d-di-
mensional disc of radius 1=2 in Rd , centered at x, in the direction
orthogonal to Rd . If the ®rst site of the Poisson process it intersects is
white, color x white, and otherwise black.

Fig. 1.
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Note that for each translation of Rd inside Rd�1, we get a coloring.
This gives another natural dynamic percolation model.

3. The paper of Adelman, Burdzy and Pemantle [1] studies ex-
ceptional planes for projections of three dimensional Brownian mo-
tion. The paper of van den Berg, Meester and White [5] contains
another continuous variant on dynamic percolation.

4. We end with a question that arose in trying to understand the
case d � 3 in Theorem 1. Let G be the graph obtained by identifying
two copies of Z2 along the x-axis. Denote the two Z2 copies by A and
B, and consider critical percolation on G.

Question 6 Is percolation to distance R in A and B asymptotically
independent; that is, does

lim
R!1

P�f0$A Rg \ f0$B Rg�
�Pf0$A Rg�2 � 1?
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