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Abstract. Suppose K is a compact convex set in R2 and X i; 1 � i � n,
is a random sample of points in the interior of K. Under general
assumptions on K and the distribution of the X i we study the as-
ymptotic properties of certain statistics of the convex hull of the
sample.
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1. Introduction

Consider a compact convex set K � Rd and let X i; 1 � i � n, be a
random sample of points from K. Denote by Kn the convex hull of the
points X i; 1 � i � n, namely the smallest convex set containing the X i.
In ReÂ nyi and Sulanke (1963, 1964), the expected area and perimeter of
Kn were considered for the case where d � 2, K was either a polygon
or had a smooth boundary (referred to as polygonal and smooth cases
below) and the X i were assumed to be iid. uniform. In that vein, there
have been a series of papers since then investigating the various sta-
tistics of Kn for a number of di�erent settings. See Groeneboom (1988)
and references therein.
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In the present paper we assume d � 2 and that the X i are iid. with a
rather general distribution. Our goals are to investigate the means and
asymptotic distributions of the area and perimeter of Kn in the two
cases of K mentioned in the previous paragraph. The ®rst paper that
successfully treated the asymptotic distribution of a statistic of Kn was
Groeneboom (1988), in which the number of vertices was shown to be
normally distributed. Hsing (1994) and Cabo and Groeneboom
(1994), respectively, derived the asymptotic distributions of the area of
Kn for the disk and the polygonal cases. BraÈ ker, Hsing and Bingham
(1995) considered the asymptotic distribution of the Hausdor� dis-
tance between K and Kn for both the smooth and the polygonal cases.

A novelty of this paper is the derivation and application of two
very simple but powerful integral representations in which the area
and perimeter of Kn are written as the integrals of certain functions
de®ned on the boundary of Kn. The development of the representa-
tions along with the introduction of notation are the topics of Section
2. Another novelty is the introduction of certain point processes which
describe the local behavior of sample points close to the boundary and
therefore whose limiting behavior is intimately linked to that of the
area and perimeter of Kn. This is done in Section 3. The advantages of
using these tools will be obvious. Our main results in Sections 4 and 5
either extend existing results to much more general settings or spe-
ci®cally improve upon them. Our primary setting of interest will be the
smooth case where the boundary of K has curvature bounded away
from 0 and 1. Under that and the assumption that the density of X i

changes at a geometric rate when approaching the boundary, we show
in Section 5 that the area and perimeter of Kn are jointly normally
distributed. Moreover we derive the asymptotic behavior of the ex-
pected area and perimeter of Kn. We also consider the polygonal case
in section 4 where we derive the asymptotic distribution of the pe-
rimeter of Kn and the asymptotic behavior of the mean of the pe-
rimeter of Kn. In particular, Theorem 5 in Section 4 gives an improved
rate of convergence for the expected perimeter over what was given by
Buchta (1984).

2. Preliminaries

Throughout, let L and A, respectively, be the perimeter and area of the
bounded convex set K in R2 and let Ln and An be the corresponding
quantities of Kn, the convex hull of n iid. random points X 1; . . . ;X n in
K. Also write @K for the boundary of K. This section is primarily
devoted to the derivation of the identities (1), (5) and (8) below for
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Lÿ Ln and Aÿ An which will be our basis for deriving the asymptotic
properties of the two quantities.

First we consider Lÿ Ln. For ®xed p; h 2 R let `�p; h� be the
straight line

x cos h� y sin h � p; x; y 2 R :

A classical result in integral geometry (cf. SantaloÂ 1976, Chapter 1)
states that the perimeter of an arbitrary bounded convex set K can be
written as

L �
Z p

h�0

Z
p2IK�h�

dp dh ;

where IK�h� � fp : `�p; h� \ K 6� ;g. For every ®xed h, the set K has
two supporting lines, `�p1�h; K�; h� and `�p2�h; K�; h� say, for some
p1�h; K� < p2�h; K�. See Fig. 1. Since for every p; h the lines `�p; h� and
`�ÿp; h� p� coincide, we have p1�h� p; K� � ÿp2�h; K� and
p2�h� p; K� � ÿp1�h; K�. Since Kn is also convex, all of the above
applies and in fact one has

p1�h; K� � p1�h; Kn� � p2�h; Kn� � p2�h; K� :
Therefore,

Lÿ Ln �
Z p

h�0

�Z
p2IK �h�

dp ÿ
Z

p2IKn �h�
dp
�

dh

�
Z p

0

ÿ
p2�h; K� ÿ p1�h; K� ÿ �p2�h; Kn� ÿ p1�h; Kn��

�
dh

�
Z p

0

ÿ
p1�h; Kn� ÿ p1�h; K� � p1�h� p; Kn� ÿ p1�h� p; K�� dh

�
Z 2p

0

ÿ
p1�h; Kn� ÿ p1�h; K�� dh �1�

Actually, Efron (1965) used the same principle to compute ELn but, to
our knowledge, the approach has been overlooked since then. We also
note in passing that suph

ÿ
p1�h; Kn� ÿ p1�h; K�� is the Hausdor� dis-

tance between K and Kn and this was used to study the asymptotic
distribution of that measure in BraÈ ker, Hsing and Bingham (1995) (cf.
Brozius and De Haan, 1987).

For the rest of this section assume that K has a smooth boundary
@K in the following sense. First parameterize @K as

t 7! c�t�;
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where t measures the arc length from some starting point c�0� to c�t�
counterclockwise. Assume that c is twice continuously di�erentiable.
At c�t� de®ne the unit tangent vector e1�t� � _c�t� ( á denotes d=dt)
and let e2�t� be orthogonal to e1�t� such that �e1�t�; e2�t�� form a
positively orientated coordinate system. Assume without loss of gen-
erality that the starting point c�0� is such that e2�0� points to the
positive x-direction on the plane (cf. Fig. 1). By Frenet's equations for
plane curves,

e1
: �t� � j�t� e2�t�; e2

: �t� � ÿj�t� e1�t� ; �2�
where j�t� is the curvature at c�t�. Note that j�t� � 0 for all t 2 �0;L�
by convexity and since c is parameterized counterclockwise. Assume
that j�t� is bounded away from 0 and 1. Also let h�t� be the angle
between e1�0� and e1�t�. h and t are related through the equation

h
:

�t� � j�t� �3�
(cf. Klingenberg 1978, Chapter 1). Observe that the tangent at c�t� is
`�p1�h�t�; K�; h�t��. For t 2 �0;L� and 1 � i � n let �Xi�t�; Yi�t�� be the
coordinates of the point X i with respect to the coordinate system
�e1�t�; e2�t�� de®ned at c�t�, i.e.

Xi�t� � hX i ÿ c�t�; e1�t�i; Yi�t� � hX i ÿ c�t�; e2�t�i �4�
where h�; �i denotes inner product. Then clearly,

p1�h�t�; Kn� ÿ p1�h�t�; K� �
n̂

i�1
Yi�t� �: Mn�t� :

Therefore by (1) and (3),

Fig. 1. `�pi�K; h�; h�; i � 1; 2
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Lÿ Ln �
Z L

0

Mn�t�j�t� dt : �5�

Next we consider Aÿ An. As in Hsing (1994) we de®ne

Dn�t� � inffs > 0 : c�t� � s e2�t� 2 Kng :
Note that it is possible that the line c�t� � s e2�t�; s > 0, does not
intersect Kn at all, in which case Dn�t� � 1. However, as we will show
below, this event becomes increasing unlikely as n increases. We wish
to express Aÿ An in terms of the process fDn�t�; t 2 �0;L�g. A crucial
issue here is whether we can represent each point in K n Kn uniquely by
c�t� � s e2�t� for some t 2 �0; L� and s 2 �0;Dn�t��. The answer is
clearly negative in general, but we now illustrate how to construct an
event En which has probability tending to 1 and on which such a one-
one correspondence is possible. De®ne the curve

cd�t� � c�t� � de2�t�; t 2 �0; L� ;
for ®xed d 2 �0; 1=j1�, where j1 � maxfj�t� : t 2 �0; L�g, and choose
points 0 � s1 < s2 < s02 � s3 < s03 � � � � such that the linear segment
connecting c�sj� and c�s0j�1� is a tangent to cd. Let
k � supfj � 1 : s0j � Lg and de®ne s01 � s2 ^ �s0k�1 ÿ L�. The fan-
shaped region between @K and the linear segment connecting c�sj�
and c�s0j� is denoted by R�sj; s0j�. Illustrating graphically, the R�sj; s0j�'s
are the solid regions in Fig. 2.

De®ne the event

En �
\

1�j�k

fX i; 1 � i � ng \ R�sj; s
0
j� 6� ;

� �
: �6�

Fig. 2. Construction of En

A random convex hull in a bounded convex set 521



Observe that on En, Dn�t� < 1=j1 for all t 2 �0; L� and if
P �X 1 2 R�sj; s0j�� > 0 for all 1 � j � k, which we assume, then P�Ec

n�
tends to 0 exponentially fast. It follows from Lemma 1 below that on
En any two linear segments c�t1� � s1 e2�t1�; s1 2 �0;Dn�t1�� and
c�t2� � s2 e2�t2�; s2 2 �0;Dn�t2�� are disjoint, which implies that on the
event En the transformation

�t; s� 7! x � c�t� � s e2�t�; t 2 �0; L�; s 2 �0;Dn�t��
is one-one. The Jacobian of this transformation is

@x
@t
� @x
@s

���� ���� � j�1ÿ j�t�s� e1�t� � e2�t�j � 1ÿ j�t�s;

0 � s < 1=j�t� :
�7�

Therefore,

�Aÿ An�IEn �
Z L

t�0

Z Dn�t�

s�0

ÿ
1ÿ j�t�s� ds dt

�
Z L

0

Dn�t� dt ÿ 1

2

Z L

0

j�t�D2
n�t� dt :

�8�

The fundamental identity (8) will be our basis for considering the
asymptotics of Aÿ An. We now deal with the crucial juncture in the
above derivation.

Lemma 1. Let t1; t2 2 �0;L� with t1 6� t2 and suppose

c�t1� � s1 e2�t1� � c�t2� � s2 e2�t2� : �9�
Then

max�s1; s2� � 1=j1 :

Proof. Assume that max�s1; s2� < 1=j1. Let

ci�t� � c�t� � si e2�t�; t 2 �0; L�; i � 1; 2 ;

be curves parallel to c. First we show that c1 and c2 are both convex.
Towards that we use the fact that a smooth closed curve with non-
negative curvature j�t� is convex if and only ifZ L

0

j�t� dt � 2p

(cf. Klingenberg, 1978, Chapter 2). It is easy to see that the curvature
of the i-th curve at ci�t� is

ji�t� � j�t�
1ÿ sij�t� ; i � 1; 2 ; �10�
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which by assumption is nonnegative for all t 2 �0; L�. Moreover, de-
noting the arc length of the i-th curve from ci�0� to ci�t� by u�t�, we
haveZ u�L�

u�0
ji�t�u�� du �

Z L

0

ji�t� j _ci�t�j dt �
Z L

0

ji�t��1ÿ sij�t�� dt

�
Z L

0

j�t� dt � 2p : �11�

Now (10) and (11) imply that ci is convex.
In the next step we show that s1 � s2. Assume s1 6� s2 and without

loss of generality that s1 < s2. For every ®xed t0 2 �0; L� the tangent at
c2�t0� de®nes two half-planes. Convexity of c2 and j2�t� � 0 imply
that c2 lies in the half-plane which does not contain c1�t0�. Since this
is true for every t0 2 �0; L�, we conclude c1 \ c2 � ;, which contra-
dicts c1�t1� � c2�t2�. Therefore we must have s1 � s2, which implies
that c1�t� � c2�t� for all t 2 �0; L�, in particular

c1�t2� � c2�t2� � c1�t1�

by (9). Since c1 is convex this equation can only hold if t1 � t2, which
contradicts the assumption of the lemma. Thus we conclude
max�s1; s2� � 1=j1. (

3. Vertex and boundary point processes

In this section we consider the asymptotic behavior of certain point
processes which, together with (1), (5) and (8), provide the basis for
obtaining the asymptotic distributions of An and Ln. For background
on point process theory, see Kallenberg (1983).

Suppose ®rst that K is a closed convex polygon with vertices
v1; . . . ; vr and angles d1; . . . ; dr, ordered counterclockwise. By con-
vexity, dj 2 �0;p� for each j. Assume also that K has area A. For
convenience, we shall restrict ourselves to the case where the points X i

are sampled from the uniform distribution. Other situations are easily
adapted. For 1 � j � r, let Cj be the cone fk1�vjÿ1 ÿ vj� � k2�vj�1
ÿvj� : ki � 0; i � 1; 2g, where vr�1 is understood to be v1 and v0 as vr.
Let Mj be the space of locally ®nite counting measures on Cj

endowed with the vague topology and the corresponding Borel
r-®eld. De®ne nnj to be the Mj-valued point process with points���

n
p �X i ÿ vj�; 1 � i � n.
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Theorem 2.

Under the assumptions stated above, as n!1,

�nn1; . . . ; nnr� ÿ!d �n1; . . . ; nr�
in M1 � � � � �Mr, where n1; . . . ; nr are mutually independent homoge-
neous Poisson processes each with intensity Aÿ1.

Proof. Since the X i are independent and uniformly distributed, it
su�ces (cf. Kallenberg (1983)) to prove that for all Borel sets B � Cj

and all j,

Ennj�B� ! En�B� � jBj=A as n!1 �12�
where jBj � area of B. For large n,

Enni�B� � nP�X 1 2 vj � nÿ1=2B� � jBj=A

where

vj � nÿ1=2B � fvj � �nÿ1=2x; nÿ1=2y� : �x; y� 2 Bg
and hence (12) is obvious. (

We next consider the smooth case. With the notation introduced in
section 2 for the smooth case, assume now that K has a twice con-
tinuously di�erentiable boundary c�t� with curvature j�t� bounded
away from 0 and 1. We will assume that the density of X i satis®es

lim
h#0

sup
t2�0;L�

f �c�t� � h e2�t��
ha

ÿ g�t�
���� ���� � 0 �13�

for some a > ÿ1 and some continuous function g bounded away from
0 and1. This is a rather general assumption and, in particular, covers
the uniform case by a � 0.

For any given t 2 �0;L�, both Dn�t� and Mn�t� are essentially de-
termined by points close to c�t�, and for distinct t1; . . . ; tk 2 �0; L�, the
point processes that describe the local behavior of points at
c�t1�; . . . ; c�tk� are asymptotically independent and hence the random
vectors �Dn�t1�;Mn�t1��; . . . ; �Dn�tk�;Mn�tk�� are asymptotically inde-
pendent. Therefore the process f�Dn�t�;Mn�t��; t 2 �0;L�g is weakly
dependent in some sense. The important thing is to ®nd the correct
time and space scaling factors for the process.

Throughout the rest of this paper write for convenience

c � 1=�3� 2a� : �14�
For t 2 �0; L� and a 2 R, let the point process nn;t;a consist of the
points �Tni�t; a�;Uni�t; a��; 1 � i � n, where
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Tni�t; a� �nc
�������������
j�t�=2

p
Xi�t � anÿc�;

Uni�t; a� �n2cYi�t � anÿc�; 1 � i � n :

For ®xed t 2 �0;L�, the process fnn;t;a; a 2 Rg describes the ``local''
behavior of points close to c�t�. By convexity the points
�Tni�t; a�;Uni�t; a��; 1 � i � n, are in �ÿ1;1�� �0;1�. We regard
nn;t;a as a random element in M, the space of locally ®nite counting
measures on �ÿ1;1� � �0;1� with the r-®eld generated by the va-
gue topology. For t 2 �0;L�, let nt;0 be a Poisson process on
�ÿ1;1�� �0;1� with intensity measure

lt�B� � g�t�
�������������
2=j�t�

p ZZ
B
�y ÿ x2�a1�x2 � y� dx dy;

B � �ÿ1;1�� �0;1� ;
and, denoting by �Ti;Ui�, i � 1, the points of nt;0, let nt;a be the point
process with points�

Ti ÿ a
�������������
j�t�=2

p
; Ui ÿ Tia

�����������
2j�t�

p
� a2j�t�=2

�
; i � 1 ;

for all a 2 R. It is straightforward to verify that each nt;a isM-valued
and has the same distribution as nt;0.

Theorem 3. Assume that K has a smooth boundary which has a curva-
ture bounded away from 0 and1. Also, assume that (13) holds for some
a > ÿ1 and continuous function g bounded away from 0 and 1. Then,
as n!1, for any t 2 �0;L� and a1; . . . ; ak 2 R,

�nn;t;aj
; 1 � j � k� ÿ!d �nt;aj

; 1 � j � k�
in the k-fold product space of M.

Proof. Consider ®rst a � 0. Let t 2 �0;L� be ®xed. Again, since the Xi

are iid., it is su�cient to show that

lim
n!1Enn;t;0�B� � lt�B�

for arbitrary Borel sets B � �ÿ1;1�� �0;1�. The joint density of
�Tn1�t; 0�;Un1�t; 0�� is

nÿ3c
�������������
2=j�t�

p
f �c�t� � nÿc

�������������
2=j�t�

p
x e1�t� � nÿ2cy e2�t��;

x 2 R; y > 0 :

In view of Lemma 1, for large n there exist unique u 2 �0; L� and v 2 R
such that

c�t� � nÿc
�������������
2=j�t�

p
x e1�t� � nÿ2cy e2�t� � c�t � u� � v e2�t � u� :

�15�
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By a Taylor expansion of the right hand side (cf. (2)),

c�t� � nÿc
�������������
2=j�t�

p
x e1�t� � nÿ2cy e2�t�

� c�t� � u e1�t� � �u2j�t�=2� v� e2�t� � o�u2� � o�v�;
where o�h� is a vector of length o�h�. Therefore,

v � �nÿ2cy ÿ u2j�t�=2� � nÿ2c�y ÿ x2� : �16�
Note that if v < 0, the left hand side of (15) represents a point outside
of K, where f � 0. Thus it follows from (13), (15) and (16) that

Enn;t;0�B� � n
ZZ

B
nÿ3cf �c�t� � nÿc

�������������
2=j�t�

p
x e1�t� � nÿ2cy e2�t�� dx dy

� n1ÿc�3�2a�g�t�
�������������
2=j�t�

p ZZ
B
�y ÿ x2�a1�x2 � y� dx dy

� lt�B� :
Let now a 6� 0. Since

�Tni�t; a�;Uni�t; a�� �
�

Tni�t � anÿc; 0�
���������������������������������
j�t�=j�t � anÿc�

p
;

Uni�t � anÿc; 0�
�
;

it follows from the ®rst part and the continuous mapping theorem that

nn;t;a ÿ!d nt;0 ;

which has the same distribution as nt;a. Furthermore,

Tni�t; a� � nchX i ÿ c�t� ÿ anÿc e1�t� � o�nÿc�;
e1�t� � anÿcj�t� e2�t� � o�nÿc�i

�������������
j�t�=2

p
� Tni�t; 0� ÿ a

�������������
j�t�=2

p
� op�1�

and

Uni�t; a� � n2chX i ÿ c�t� ÿ anÿc e1�t� ÿ a2=2nÿ2cj�t� e2�t� � o�nÿ2c�;
e2�t� ÿ anÿcj�t� e1�t� � o�nÿc�i

� Uni�t; 0� ÿ Tni�t; 0�a
�����������
2j�t�

p
� a2j�t�=2� op�1� :

Since this representation holds simultaneously for ®nitely many a's,
the theorem follows by another application of the continuous map-
ping theorem. (

4. Asymptotic properties of L-Ln: polygonal case

Since the asymptotic distribution of Aÿ An was already derived by
Cabo and Groeneboom (1994), we focus on the asymptotic distribu-
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tion of Lÿ Ln and the rate of convergence of E�Lÿ Ln�. Moreover, as
in Section 3, we only consider the uniform case here and more general
cases can be treated with modi®cations.

Let Cj andMj be as de®ned in Section 3. For convenience assume
that the edge v1 ÿ vr points to the negative y-direction, i.e. it lies on the
straight line `�p1�0; K�; 0�. See section 2 for the de®nition of ` and p.
Split the interval �0; 2p� into subintervals �hjÿ1; hj�, 1 � j � r, where
h0 � 0 and hj � hjÿ1 � pÿ dj, 1 � j � r. For h 2 �hjÿ1; hj� de®ne the
mapping Nh : Mj ! �0;1� by

Nh : g 7! inffp : g�H1�p; h�� � g�H2�p; h�� > 0g ;
where H1�p; h� and H2�p; h� are the two half-planes de®ned by `�p; h�.
Theorem 4. Under the assumptions stated above in this section, we have���

n
p �Lÿ Ln� ÿ!d

Xr

j�1
Zj ;

with

Zj �
Z hj

hjÿ1
Nh�nj� dh

where n1; . . . ; nr are mutually independent homogeneous Poisson pro-
cesses on C1; . . . ;Cr, respectively, each with intensity Aÿ1.

Proof. By (1) we have

Lÿ Ln �
Xr

j�1
Wnj ;

where

Wnj �
Z hj

hjÿ1
�p1�h; Kn� ÿ p1�h; K�� dh :

By choice of the coordinate system, for h 2 �hjÿ1; hj�,���
n
p �p1�h; Kn� ÿ p1�h; K�� � Nh�nnj� ;

with nnj as de®ned in Theorem 2. HenceZ hj

hjÿ1
Nh�nnj� dh � ���

n
p

Wnj :

The theorem now follows from Theorem 2 by applying the continuous
mapping theorem. (

The following derives the rate of convergence of E�Lÿ Ln�. See
Buchta (1984) and also Cabo and Groeneboom (1994).
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Theorem 5. Under the assumptions of this section, as n!1,

���
n
p �Lÿ ELn� �

�����������
pA=2

p Xr

j�1

Z 1
ÿ1= tan dj

�u� 1= tan dj�1=2
�u2 � 1�3=2

du

�O�1= ���
n
p � :

�17�

Proof.We continue to use the notation developed in Section 3 and the
proof of Theorem 4. Fix j � 1; . . . ; r. For h 2 �hjÿ1; hj�, let

h�h� � 1

2A

ÿ
tan�p=2ÿ �hÿ hjÿ1�� � tan�dj ÿ p=2� hÿ hjÿ1�

�
:

By making the variable transformation u � tan�p=2ÿ �hÿ hjÿ1��, it is
readily seen thatZ hj

h�hjÿ1

Z 1
x�0

expfÿx2h�h�g dx dh �
Z hj

hjÿ1

1

2

��������������
p=h�h�

p
dh

�
�����������
pA=2

p Z 1
ÿ1= tan dj

�u� 1= tan dj�1=2
�u2 � 1�3=2

du :

Also it is clear that���
n
p

EWnj �
Z hj

h�hjÿ1

Z 1
x�0

P�Nh�nnj� > x� dx dh

and so it remains to show that

lim sup
n!1

n1=2
Z hj

h�hjÿ1

Z 1
x�0
jP �Nh�nnj� > x� ÿ expfÿx2h�h�gj dx dh <1 :

�18�
Let D�x; h� be the intersection of K and the half-space de®ned by
`�x; h� that contains vj and denote its area by jD�x; h�j. Also write
w�h� � p2�h; K� ÿ p1�h; K�. Then for any h and x 2 �0;w�h��,

P �Nh�nnj� > x� �P �nnj�D�x; h�� � 0� � 1ÿ jD�x= ���
n
p

; h�j=A
ÿ �n

:

Since
R hj

h�hjÿ1

R1
x�w�h� ��np expfÿx2h�h�g dx dh tends to 0 exponentially

fast, (18) follows if we prove

lim sup
n!1

n1=2
Z hj

h�hjÿ1

Z w�h� ��np
x�0

1ÿ jD�x= ���
n
p

; h�j=A
ÿ �n��

ÿ expfÿx2h�h�g�� dx dh <1 :

�19�

528 H. BraÈ ker, T. Hsing



Let

x�h� � inffx > 0 : vjÿ1 2 `�p1�h; K� � x; h� or vj�1 2 `�p1�h; K� � x; h�g
� min�jvjÿ1 ÿ vjj sin�hÿ hjÿ1�; jvj�1 ÿ vjj sin�hj ÿ h�� :

Observe that for x 2 �0; x�h��,
njD�x= ���

n
p

; h�j=A � x2h�h� :
Consequently,

n1=2
Z hj

h�hjÿ1

Z w�h� ��np
x�0

1ÿ jD�x= ���
n
p

; h�j=A
ÿ �nÿ expfÿx2h�h�g�� �� dx dh

� Bn � Cn

where

Bn � n1=2
Z hj

h�hjÿ1

Z x�h� ��np
x�0

1ÿ x2h�h�=n
ÿ �nÿ expfÿx2h�h�g�� �� dx dh ;

Cn � n1=2
Z hj

h�hjÿ1

Z w�h� ��np
x�x�h� ��np 1ÿjD�x= ���

n
p

; h�j=A
ÿ �nÿ expfÿx2h�h�g�� ��dx dh :

It is easily seen that Bn � O�1� and, since both 1ÿ jD�x= ���
n
p

; h�j=A� �n
and expfÿx2h�h�g are bounded by expfÿnjD�x= ���

n
p

; h�j=Ag (as
x2h�h�=n > jD�x= ���

n
p

; h�j=A by convexity), (19) follows from proving

lim sup
n!1

n1=2
Z hj

h�hjÿ1

Z w�h� ��np
x�x�h� ��np expfÿnjD�x= ���

n
p

; h�j=Ag dx dh <1 ; �20�

which we now do. Fix a small � > 0 and write

n1=2
Z hj

h�hjÿ1

Z w�h� ��np
x�x�h� ��np expfÿnjD�x= ���

n
p

; h�j=Ag dx dh � Cn;1 � Cn;2 � Cn;3

where

Cn;1 � n1=2
Z hjÿ1��

h�hjÿ1

Z w�h� ��np
x�x�h� ��np expfÿnjD�x= ���

n
p

; h�j=Ag dx dh ;

Cn;2 � n1=2
Z hjÿ�

h�hjÿ1��

Z w�h� ��np
x�x�h� ��np expfÿnjD�x= ���

n
p

; h�j=Ag dx dh ;

Cn;3 � n1=2
Z hj

h�hj��

Z w�h� ��np
x�x�h� ��np expfÿnjD�x= ���

n
p

; h�j=Ag dx dh :

Observe that if h 2 �hjÿ1 � �; hj ÿ ��, then x�h� is bounded away from
zero and hence
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inf
h2�hjÿ1��;hjÿ��

x2�x�h� ��np ;w�h� ��np � jD�x=
���
n
p

; h�j > inf
h2�hjÿ1��;hjÿ��

D�x�h�; h� > 0 :

This implies that Cn;3 tends to zero exponentially fast. It remains to
consider Cn;1 and Cn;2. The two can be handled in the same manner
and so we focus on Cn;1. Make the observation that if � is small
enough, then there exist b1; b2 > 0 such that for h 2 �hjÿ1; hjÿ1 � ��,

x�h� � jvjÿ1 ÿ vjj sin�hÿ hjÿ1� � b1�hÿ hjÿ1�
and

inf
x2�x�h� ��np ;w�h� ��np � jD�x= ���

n
p

; h�j � jD�x�h�; h�j � Ax2�h�h�h�

� jvjÿ1 ÿ vjj2 sin�hÿ hjÿ1� cos�hÿ hjÿ1�
2

� b2�hÿ hjÿ1� :
These imply that

Cn;1 � n1=2
Z hjÿ1��

h�hjÿ1

Z w�h� ��np
x�b1�hÿhjÿ1�

��
n
p exp ÿnb2�hÿ hjÿ1�=A

� 	
dx dh

which is clearly bounded. This proves (20) and completes the proof.
(

Remark. Buchta (1984) also considered the remainder term in (17).
However, the rate he obtained was o�nÿ1=2��� for any � > 0, which is
less de®nitive than ours. Moreover, our proof appears to be consid-
erably simpler.

5. Asymptotic properties of Aÿ An and Lÿ Ln: smooth case

With the notation introduced in Sections 2 and 3 for the smooth case,
we will be concerned here with the case where the convex set K has a
twice continuously di�erentiable boundary c�t� with curvature j�t�
bounded away from 0 and 1. Also we will assume a very weak reg-
ularity condition to start with on the distribution of the X i, i.e., that
(13) holds for some a > ÿ1 and some continuous function g bounded
away from 0 and 1.

On the subspace

S :� fg 2M : g��0;1�� �0;1�� � g��ÿ1; 0� � �0;1�� 6� 0g ;
de®ne the mapping N � �N1;N2�, where N1 maps g 2S to the smallest
y-intercept of all lines connecting pairs of points of g whose x-coor-
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dinates have opposite signs and N2 maps g to the smallest y-coordinate
of the points of g. Note that the mapping N is ®nite and continuous at
each g 2S, and moreover

N�nn;t;a� � n2c�Dn�t � anÿc�;Mn�t � anÿc��; t 2 �0;L�; a 2 R : �21�
By de®nition, P �nt;a 2Sc� � 0 for all t 2 �0; L� and a 2 R, and hence
by (21) and the continuous mapping theorem we obtain

n2c�Dn�t�ajnÿc�;Mn�t�ajnÿc��; 1�j � k
ÿ �ÿ!d N�nt;aj

�; 1 � j � k
� �

;

�22�
for ®xed t 2 �0;L� and a1; . . . ; ak 2 R.

Theorem 6. Assume the conditions of Theorem 3 and let fnt;ag be as
de®ned there. As n!1, the distribution of n5c=2�An ÿ EAn;Ln ÿ ELn�
converges to the bivariate normal distribution with zero mean and co-
variance matrix R, where

Rij �
Z L

t�0

Z 1
a�ÿ1

j�t�i�jÿ2cov�Ni�nt;0�;Nj�nt;a�� da dt; i; j � 1; 2 ;

which are well-de®ned and ®nite.

Proof. Some technical details of this proof are omitted since they
essentially reproduce those in Hsing (1994). The proof comprises two
parts. First is the computation of the asymptotic covariance matrix.
We will show the computation of R12 only and the same principle
applies for the other entries in R in an obvious way. Since

cov�An;Ln� � cov
�

Aÿ An; Lÿ Ln

�
� cov

�
�Aÿ An�IEn ; Lÿ Ln

�
� cov

�
�Aÿ An��1ÿ IEn�; Lÿ Ln

�
�23�

where En is the event constructed in section 2, in view of (5) and (8) we
need to handle quantities such as

cov

Z L

0

w1�t�Dj
n�t� dt;

Z L

0

w2�s�Mk
n �s� ds

� �
�
Z L

t�0

Z t�L=2

s�tÿL=2
w1�t�w2�s�cov�Dj

n�t�;Mk
n �s�� ds dt

� nÿ�2�j�k��1�c
Z L

t�0

Z Lnc=2

a�ÿLnc=2

w1�t�w2�t � anÿc�

� cov�n2cjDj
n�t�; n2ckMk

n �t � anÿc�� da dt
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for bounded continuous functions w1;w2 and positive integers j; k,
where w1;w2;Dn and Mn are understood to be periodic functions with
period L. Now, by a standard uniform integrability argument (cf.
Hsing, 1994, Theorem 2.4) and (22), for arbitrary t 2 �0;L�, a1; . . . ; ak

2 R and r1; . . . ; rk; s1; . . . ; sk � 0,

lim
n!1E

Yk

j�1
fn2cDn�t � ajnÿc�grjfn2cMn�t � ajnÿc�gsj

 !

� E
Yk

j�1
fN1�nt;aj

�grjfN2�nt;aj
�gsj

 !
<1 :

By this and another uniform integrability argument (cf. Hsing 1994,
Lemma 3.5),

lim
n!1 n�2�j�k��1�ccov

Z L

0

w1�t�Dj
n�t� dt;

Z L

0

w2�s�Mk
n �s� ds

� �
�
Z L

t�0

Z 1
a�ÿ1

w1�t�w2�t�cov�fN1�nt;0�gj; fN2�nt;a�gk� da dt <1 :

So it follows from (23) and the fact that E�1ÿ IEn� ! 0 exponentially
fast, that the asymptotic covariance of An and Ln is obtained as that ofR L
0 Dn�t� dt and

R L
0 Mn�t�j�t� dt.

The second step in the proof is to use a blocking argument. The
idea is to divide up the interval �0;L� into big and small intervals in
such a way that the contribution of �Dn�t�;Mn�t�� to �

R L
0 Dn�t� dt;R L

0 Mn�t�j�t� dt� for t in the small intervals is asymptotically negligible
and the contributions of �Dn�t�;Mn�t�� to �

R L
0 Dn�t� dt;

R L
0 Mn�t�j�t� dt�

for t in distinct big intervals are asymptotically independent. The
details of the proof of Theorem 4.1. in Hsing (1994) are readily
adapted in the present context and are not reproduced here to con-
serve space. (

We now turn to the rates of convergence of the expectations. For
that we need to have more information about the convergence rate in
(13). To illustrate this, in the remaining part of this section assume
that there exist a > ÿ1, g > 0 and a function g bounded away from 0
and 1 such that the density of X i satis®es

lim sup
h#0

sup
t2�0;L�

1

hg

f �c�t� � h e2�t��
ha

ÿ g�t�
���� ���� <1 : �24�

Note that for the uniform case a � 0 and g may be chosen arbitrarily.
The results below extend the original results by ReÂ nyi and Sulanke.
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Theorem 7. Assume that (24) holds. Then

n2c�Lÿ ELn� � c�O nÿc�1^2g^�a�1��
� �

as n!1 ; �25�
where

c � C�1� 2c� 23=2cB�1=2; a� 1�
� �ÿ2cZ L

0

j�t�1�c

g�t�2c dt :

Proof. Let

a�t� � B�1=2; a� 1�g�t�
��������
2

j�t�

s
:

By calculus,

c �
Z L

t�0

Z 1
x�0

j�t� expfÿ2ca�t�x 1
2cg dx dt : �26�

On the other hand, by (5),

n2cE�Lÿ Ln� �
Z L

t�0
E�n2cMn�t��j�t� dx dt

�
Z L

t�0

Z 1
x�0

P �Mn�t� > nÿ2cx�j�t� dx dt : �27�

Let xn � �B log n�2c where B is a ®nite constant satisfying

2B inf
t

a�t�
� �

ÿ 2 >
�
1 ^ 2g ^ �a� 1�

�
: �28�

By (26) and (27),

n2cE�Lÿ Ln� ÿ c �
Z L

t�0
Bn;1�t� � Bn;2�t�
ÿ �

j�t� dt �29�

where

Bn;1�t� �
Z xn

0

P �Mn�t� > nÿ2cx� ÿ expfÿ2ca�t�x 1
2cg

� �
dx

and

Bn;2�t� �
Z 1

xn

P �Mn�t� > nÿ2cx� ÿ expfÿ2ca�t�x 1
2cg

� �
dx :

We ®rst analyze Bn;1�t�. Let Yi�t� be de®ned by (4). By Lemma 9 below,
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Bn;1�t�

�
Z xn

x�0
1ÿ P�Y1�t� � xnÿ2c�ÿ �nÿ expfÿ2ca�t�x 1

2cg
h i

dx

�
Z xn

x�0
1ÿ 2ca�t��xnÿ2c� 12c 1�O �xnÿ2c�12^a�1

2 ^g
� �� �n onh

ÿ expfÿ2ca�t�x 1
2cg
i

dx

�
Z xn

x�0
exp ÿ2ca�t�x 1

2c 1�O �xnÿ2c�12^a�1
2 ^g

� �� �
�O nÿ1x

1
c

� �n oh
ÿ expfÿ2ca�t�x 1

2cg
i

dx

and so

jBn;1�t�j � O nÿc�1^2g^�a�1��
� �

uniformly in t : �30�
Next we consider Bn;2�t�. By the inequality log�1ÿ k� < ÿk; k 2 �0; 1�,
the fact that supt supy>y0 P�Y1�t� > y� � 0 for some y0 <1 and the
derivations on Bn;1�t� above, we obtainZ 1

xn

1ÿ P �Y1�t� � xnÿ2c�ÿ �n
dx

�
Z y0n2c

xn

exp n log 1ÿ P �Y1�t� � xnÿ2c�ÿ �� 	
dx

�
Z y0n2c

xn

exp ÿnP�Y1�t� � xnnÿ2c�� 	
dx

� y0n2c exp ÿnP�Y1�t� � xnnÿ2c�� 	
� y0n2c exp ÿ2ca�t�x

1
2c
n �1� o�1��

� �
by Lemma 9 below

� y0n2c exp ÿ2ca�t�B�log n��1� o�1��f g
which tends to 0 faster than nÿc�1^�a�1�^2g� by (28). The same can
obviously be said for

R1
xn
expfÿ2ca�t�x 1

2cg dx and so

jBn;2�t�j � O nÿc�1^2g^�a�1��
� �

uniformly in t : �31�
The result therefore follows from (29), (30) and (31). (

Next we consider the expected area.
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Theorem 8. Assume that (24) holds. Then we have

n2c�Aÿ EAn�
� 21ÿ3cB�1=2; a� 1�ÿ2c�1� c�c1ÿ2cC�2c�

�
Z L

0

��������
j�t�p

g�t�

 !2c

dt �O nÿc�1^2g^�a�1��
� �

:

Proof. Let En be the event de®ned in (6). By (8) and the fact that P�En�
tends to 0 exponentially fast, it su�ces to prove that uniformly for
t 2 �0; L�,

n2cEDn�t� �21ÿ3cB�1=2; a� 1�ÿ2c�1� c�c1ÿ2cC�2c���������
j�t�p

g�t�

 !2c

�O nÿc�1^2g^�a�1��
� �

;

which we now do. Fix t 2 �0; L�. Let z0 > 0 and h0 > 0 be de®ned by

c�t� � z0 e2�t� � c�t � h0� :
Clearly,

EDn�t� �
Z z0

z�0
P�Dn�t� > z� dz

Now, focus on the event �Dn�t� > z�. For 0 � h < L, de®ne the set

G�t; z; h� � K \ the right half-plane determined by the directional

line from c�t� � z e2 to c�t � h� :
Ignoring the probability zero event of having points on the line
fc�t� � u e2�t�;ÿ1 < u <1g, Dn�t� > z if and only if for some
h 2 �0; ho�, G�t; z; h� contains none of X i; 1 � i � n. Since G�t; z; h� is
monotone in h, we can write

EDn�t� �
Z z0

z�0
P�Dn�t� > z� dz �

Z z0

z�0

Z h0

h�0
dhP�Hn�z� � h� dz �32�

where Hn�z� � supf0 � h � h0 : G�t; z; h� contains none of Xi; 1 �
i � ng (sup(null set) � 1). By (32), for any positive constant c,

EDn�t� ÿ
Z z0

z�0

Z h0

h�0
I h� 2

j�t�
z
h
� cnÿc�log n�c

� �
dhP �Hn�z� � h� dz

���� ����
�
Z z0

z�0

Z h0

h�0
I h� 2

j�t�
z
h
> cnÿc�log n�c

� �
dhP �Hn�z� � h� dz

���� ����
� En;1 � En;2 � En;3
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where

En;1 �
Z z0

z�0

Z h0

h�0
I z >

c2j�t�
8

nÿ2c�log n�2c
� �

dhP �Hn�z� � h� dz ;

En;2 �
Z z0

z�0

Z h0

h�0
I h >

c
2

nÿc�log n�c
� �

dhP �Hn�z� � h� dz ;

En;3 �
Z z0

z�0

Z h0

h�0
I

 
z � c2j�t�

8
nÿ2c�log n�2c; h � c

2
nÿc�log n�c;

z
h
>

cj�t�
4

nÿc�log n�c
!

dhP �Hn�z� � h� dz :

By arguments similar to those in Lemma 9 below, for any � > 0 there
exists some c 2 �0;1� such that

En;1 � o nÿ�� � :
Applying Lemma 10 below, it is easy to verify that for any � > 0 there
exists some constant c 2 �0;1� such that

En;2 � z0P n
�

X 1 62 R�t; t � c2ÿ1nÿc�log n�c�
�
� o nÿ�� �

where R��; �� was de®ned in Section 2. By Lemma 13 below and the
symmetry of the roles of h and ~h de®ned there, we conclude in the
same way as for En;2 that for any � > 0 there exists some c 2 �0;1�
such that

En;3 � o nÿ�� � :
Also, observe that

dhP �Hn�z� � h� � P nÿ1�X 1 62 G�t; z; h��ndhP�X 1 2 H�t; z; h��
where

H�t; z; h� � G�t; z; h� \ the right half-plane determined

by the normal of @K at c�t�:
So for any � > 0 there exists some c 2 �0;1� such that

EDn�t� �
ZZ

I h� 2

j�t�
z
h
� cnÿc�log n�c

� �
P nÿ1�X 1 62 G�t; z; h��

� ndhP �X 1 2 H�t; z; h�� dz� o nÿ�� � :
Changing variables from �z; h� to �x; u� in the integral on the right
hand side, where z�x� � nÿ2cx and h�u� � nÿc

�������������
2=j�t�p

u, we conclude
from the preceding line of discussions that there exists some c > 0
such that
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n2cEDn�t� �
Z Z

I�u� x=u � c�log n�c�P nÿ1�X 1 62 Gn�t; x; u��

� nduP �X 1 2 Hn�t; x; u�� dx� o nÿc�1^2g^�a�1��
� �

�33�

where

Gn�t; x; u� �G�t; nÿ2cx; nÿc
�������������
2=j�t�

p
u� ;

Hn�t; x; u� �H�t; nÿ2cx; nÿc
�������������
2=j�t�

p
u� :

WriteZ Z
I�u� x=u � c�log n�c�
� P nÿ1�X1 62 Gn�t; x; u��nduP�X 1 2 Hn�t; x; u�� dx

� g�t�
�������������
2=j�t�

p Z 1
x�0

Z 1
u�0

Z u

y�0
expfÿb�u� x=u�1=cg y�u2 � x�

u2

� y�u2 ÿ x�
u

� xÿ y2
� �a

dy du dx� Dn;1 � Dn;2 � Dn;3 �34�

where b � g�t�
������
2

j�t�
q

c21ÿ1=cB�1=2; a� 1� and

Dn;1 �
Z Z

I�u� x=u � c�log n�c�P nÿ1�X 1 62 Gn�t; x; u��ndu

� P �X1 2 Hn�t; x; u�� dxÿ g�t�
�������������
2=j�t�

p
�
Z

x

Z
u

Z u

y�0
I�u� x=u � c�log n�c�P nÿ1�X 1 62 Gn�t; x; u��

� y�u2 � x�
u2

y�u2 ÿ x�
u

� xÿ y2
� �a

dy du dx;

Dn;2 � g�t�
�������������
2=j�t�

p Z
x

Z
u

Z u

y�0
I�u� x=u � c�log n�c�

� P nÿ1�X 1 62 Gn�t; x; u��� y�u2� x�
u2

y�u2ÿ x�
u

� xÿ y2
� �a

dy du dx

ÿ g�t�
�������������
2=j�t�

p Z
x

Z
u

Z u

y�0
I�u� x=u � c�log n�c�

� expfÿb�u� x=u�1=cg� y�u2� x�
u2

y�u2ÿ x�
u

� xÿ y2
� �a

dy du dx ;
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Dn;3 � g�t�
�������������
2=j�t�

p Z
x

Z
u

Z u

y�0
I�u� x=u > c�log n�c�

� expfÿb�u� x=u�1=cg y�u2 � x�
u2

y�u2 ÿ x�
u

� xÿ y2
� �a

dy du dx :

In view of Lemma 11, (33) and (34), it su�ces to show that
Dn;i � O nÿc�1^2g^�a�1��ÿ �

for i � 1; 2; 3. The proof for i � 3 can be seen
from that of Lemma 11 and is therefore omitted. The proofs for i � 1
and i � 2 are given in Lemmas 16 and 15, respectively. (

The lemmas below provide some of the details required in the
proofs of Theorems 7 and 8. The assumptions and notations of the
theorems will therefore be assumed without further mention.

Lemma 9. Let Y1�t� be de®ned by (4). Uniformly for t 2 �0;L�, the
density of Y1�t� has the form

hY1�t��y� � a�t�ya�1=2�1�O�yg0 �� as y # 0 ;

where

a�t� � B�1=2; a� 1�g�t�
�������������
2=j�t�

p
and

g0 � min
1

2
;
a� 1

2
; g

� �
:

Proof. Let X1�t�; Y1�t� be de®ned by (4). Write X1�t� � Z1�t������������������������
2Y1�t�=j�t�

p
. Then the joint density of Y1�t� and Z1�t� is

hY1�t�;Z1�t��y; z� � f �c�t� � z
���������������
2y=j�t�

p
e1�t� � y e2�t��

���������������
2y=j�t�

p
:

Integrating z out gives

hY1�t��y� �
Z z2

z1
hY1�t�;Z1�t��y; z� dz ;

where zi � zi�y�; i � 1; 2 are de®ned through

c�t� � zi

���������������
2y=j�t�

p
e1�t� � y e2�t� 2 @K :

Write

c�t� � z
���������������
2y=j�t�

p
e1�t� � y e2�t�

� c�t � u� � v e2�t � u�
� c�t� � �uÿ uvj�t�� e1�t� � �u2j�t�=2� v� e2�t� �O�u3 � vu2� ;

�35�
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where u � u�y; z� and v � v�y; z�. Observe that
u � z

���������������
2y=j�t�

p
;

which implies

u � O�y1=2� ; �36�
uniformly in z. Therefore by assumption and since v � y,

hY1�t�;Z1�t��y; z� � g�t�
�������������
2=j�t�

p
�1�O�y1=2��y1=2v�y; z�a�1� O�yg�� :

Hence the proof is complete upon showing

yÿa
Z z2

z1
v�y; z�a dz � B�1=2; a� 1� � O�y1=2 � y�a�1�=2� : �37�

From (35) we obtain

z2y � u2j�t�=2�O�u4 � vu2�;
y � u2j�t�=2� v�O�u3 � vu2� :

Hence

�1ÿ z2�y � v�O�u3 � vu2� ; �38�
which implies

v�y; z� � �1ÿ z2 � D�y; z��y
with

D�y; z� � O�y1=2� ;
uniformly in z. Since v�y; zi� � 0; i � 1; 2, it is readily seen from (38)
and (36) that

1ÿ z2i � O�y1=2�; i � 1; 2 :

Now in (37) consider the range of integration z 2 �0; z2�. Write
D1�y� � minfD�y; z� : 0 � z � z2g and D2�y� � maxfD�y; z� : 0 �
z � z2g. ThenZ z2^

�������������
1�D1�y�
p

0

�1ÿ z2 � D1�y��a dz

�
Z z2

0

�1ÿ z2 � D�y; z��a dz � yÿa
Z z2

0

v�y; z�a dz

�
Z z2

0

�1ÿ z2 � D2�y��a dz : �39�

First consider the upper bound in (39). Writing w � z=
��������������������
1� D2�y�

p
and using the fact that z2 �

��������������������
1� D2�y�

p
, we obtain
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Z z2

0

�1ÿ z2 � D2�y��a dz

�
Z z2=

�������������
1�D2�y�
p

0

�1� D2�y��a�1=2�1ÿ w2�a dw

� �1�O�y1=2��
Z 1

0

�1ÿ w2�a dz

� 1

2
B�1=2; a� 1� �O�y1=2� :

Next consider the lower bound in (39).Z z2^
�������������
1�D1�y�
p

0

�1ÿ z2 � D1�y��a dz

�
Z z2=

�������������
1�D1�y�
p

^1

0

�1� D1�y��a�1=2�1ÿ w2�a dw

� �1�O�y1=2��
� 1
2

B�1=2; a� 1� ÿ
Z 1

z2=
�������������
1�D1�y�
p

^1
�1ÿ w2�a dw

�
� 1

2
B�1=2; a� 1� �O�y1=2� ÿ

����1ÿ z2��������������������
1� D1�y�

p ��������1ÿ z22
1� D1�y�

����a
� 1

2
B�1=2; a� 1� �O�y1=2 � y�a�1�=2� :

By symmetry we also have

yÿa
Z 0

z1
v�y; z�a dz � 1

2
B 1=2; a� 1� �O�y1=2 � y�a�1�=2
� �

which concludes the proof. (

Lemma 10. Let R��; �� be as de®ned in Section 2. Then

P�X1 2 R�w0;w�� � b�t��wÿ w0�1=c�1�O��wÿ w0�m��
as w0;w! t �w0 � t � w�;

where b�t��B�1=2; a� 1�cg�t��j�t�=2� 12cÿ1
221ÿ1=c and m � min�1; a� 1;

2g�.
Proof. Let ~t 2 �w0;w� be such that e1�~t� is parallel to c�w� ÿ c�w0�,
i.e.

c�w� � c�~t� � y e2�~t� � p e1�~t�
for some y and p. Clearly, ~t ÿ t � wÿ w0. By Lemma 9 we have

P �X 1 2 R�w0;w�� � P �Y �~t� � y� � 2ca�t�y 1
2c�1�O�yg0 �� :
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Along similar lines as in Lemma 9 it is seen that wÿ ~t and ~t ÿ w0 can
both be written as ��������

2y
j ~t� �

s
1�O y1=2

� �� �
and therefore

wÿ w0 � 2

��������
2y
j�~t�

s
1�O y1=2

� �� �
:

From this we conclude

y � j�~t�
8
�wÿ w0�2�1�O�wÿ w0��

and, since j and g have bounded derivatives,

P �X1 2 R�w0;w�� � 2ca�~t�
� j�~t�

8

� 1
2c�wÿ w0�1=c�1�O�wÿ w0��

�1�O��wÿ w0�2g0 ��
� b�t��wÿ w0�1=c�1�O�wÿ w0� �O��wÿ w0�2g0 ��:

(

Lemma 11. For each t 2 �0;L�,

g�t�
�������������
2=j�t�

p Z 1
x�0

Z 1
u�0

Z u

y�0
expfÿb�u� x=u�1=cg y�u2 � x�

u2

� y�u2 ÿ x�
u

� xÿ y2
� �a

dy du dx

� 21ÿ3cB�1=2; a� 1�ÿ2c�1� c�c1ÿ2cC�2c�
��������
j�t�p

g�t�

 !2c

:

Proof. Write

k � k�t� � g�t�
��������
2

j�t�

s
:

Then
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k
Z u

0

y�u2 � x�
u2

u2 ÿ x
u

y � xÿ y2
� �a

dy

� k
u2 � x
2u2

Z u

0

u2 � x
2u

� �2

ÿ y ÿ u2 ÿ x
2u

� �2
 !a

2y dy

� k
u2 � x
2u

� �2a�1
1

u

Z u

0

1ÿ y ÿ �u2 ÿ x�=�2u�
�u2 � x�=�2u�

� �2
 !a

2y dy

� k
u2 � x
2u

� �2a�2
1

u

Z 1

�xÿu2�=�x�u2�
�1ÿ v2�a2 u2 � x

2u
v� u2 ÿ x

2u

� �
dv

� k
u2 � x
2u

� �2a�3
1

u

Z 1

�xÿu2�=�x�u2�
�1ÿ v2�a2v dv

� k
u2 � x
2u

� �2a�2u2 ÿ x
u2

Z 1

1ÿ2u2=�x�u2�
�1ÿ v2�a dv

� k
a� 1

u2 � x
2u2

xa�1 � k2ÿ�2a�2�
u2 � x

u

� �2a�2

� u2 ÿ x
u2

Z 1

1ÿ2u2=�x�u2�
�1ÿ v2�adv :

Write

k
Z 1

x�0

Z 1
u�0

Z u

y�0
exp ÿb�u� x=u�1=c
n o

� y�u2 � x�
u2

y�u2 ÿ x�
u

� xÿ y2
� �a

dy du dx

� I1 � I2 ;

where

I1 � k
Z 1

x�0

Z ��
x
p

u�0

Z u

y�0
exp ÿb�u� x=u�1=c
n o

� y�u2 � x�
u2

y�u2 ÿ x�
u

� xÿ y2
� �a

dy du dx

and

I2 � k
Z 1

x�0

Z 1
u� ��xp

Z u

y�0
exp ÿb�u� x=u�1=c
n o

� y�u2 � x�
u2

y�u2 ÿ x�
u

� xÿ y2
� �a

dy du dx :

Let s � u� x=u. Then
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u � 1
2

ÿ
s�

���������������
s2 ÿ 4x
p �

and du � 1
2 �1� s=

���������������
s2 ÿ 4x
p

� ds ;

where the ÿ and � signs apply for I1 and I2, respectively. First we
compute I1.

I1 �
Z 1

x�0

Z 1
s�2 ��xp expfÿbs1=cg k

2�a� 1�
s

sÿ
���������������
s2 ÿ 4x
p xa�1

�
� k2ÿ�2a�3�s2a�2

2s

sÿ
���������������
s2 ÿ 4x
p ÿ 8x

�sÿ
���������������
s2 ÿ 4x
p

�2
 !

Z 1

v�
���������
s2ÿ4x
p

=s
�1ÿ v2�adv

#
� sÿ

���������������
s2 ÿ 4x
p���������������
s2 ÿ 4x
p ds dx :

Now interchanging the order of the two integrations and writing
w �

���������������
s2 ÿ 4x
p

, we obtain

I1 �
Z 1

s�0

Z s

w�0
exp

�ÿ bs1=c
	" k

4�a� 1� s
s2 ÿ w2

4

� �a�1

� k2ÿ1=cs2a�2 sÿ s2 ÿ w2

sÿ w

� �Z 1

v�w=s
�1ÿ v2�adv

#
dw ds :

Similar calculations give

I2 �
Z 1

s�0

Z s

w�0
exp

�ÿ bs1=c
	" k

4�a� 1� s
s2 ÿ w2

4

� �a�1

� k2ÿ1=cs2a�2 sÿ s2 ÿ w2

s� w

� �Z 1

v�ÿw=s
�1ÿ v2�adv

#
dw ds :

Combining the two gives

I1 � I2 � k2ÿ1=c
 Z 1

s�0

Z s

w�0

1

a� 1
expfÿbs1=cgs2a�3�1ÿ w2=s2�a�1dw ds

�
Z 1

s�0

Z s

w�0
ws2a�2 exp

�ÿ bs1=c
	

�
h Z 1

v�ÿw=s
�1ÿ v2�advÿ

Z 1

v�w=s
�1ÿ v2�adv

i
dw ds

!
:

It is easy to check thatZ s

w�0
�1ÿ w2=s2�a�1dw � c�a� 1�sB�1=2; a� 1� :
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Moreover, by partial integrationZ s

w�0

Z 1

v�ÿw=s
w�1ÿ v2�a dv dwÿ

Z s

w�0

Z 1

v�w=s
w�1ÿ v2�a dv dw

� s2

2
B�1=2; a� 1� ÿ

Z s

w�0

w2

2
1ÿ w2

s2

� �a
1

s
dw

ÿ
Z s

w�0

w2

2
1ÿ w2

s2

� �a
1

s
dw

� s2

2
B�1=2; a� 1� ÿ

Z s

w�0

w2

s
1ÿ w2

s2

� �a

dw

� s2

2
B�1=2; a� 1��1ÿ c� :

Therefore,

I1 � I2 � k2ÿ1=cB�1=2; a� 1� c� 1ÿ c
2

� �Z 1
s�0

exp
�ÿ bs1=c

	
s2a�4 ds

� k2ÿ1ÿ1=cB�1=2; a� 1��1� c�cbÿ1ÿ2cC��2a� 5�c�

� 21ÿ3cB�1=2; a� 1�ÿ2c�1� c�c1ÿ2cC�2c�
��������
j�t�p

g�t�

 !2c

: (

For small positive h and z de®ne ~h � ~h�h; z� to be the point such
that c�t ÿ ~h�; c�t � h� and c�t� � z e2�t� lie on the same line.

Lemma 12. Suppose h and z are positive and such that h� z=h is small
enough. We have

1

j1
z
h
< ~h�h; z� < 4

j0

z
h
; �40�

where j0 � inf j�t� and j1 � sup j�t�, and moreover,

~h�h; z� � 2

j�t�
z
h
�O h� z

h

� �2� �
: �41�
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Proof. Consider the parabola y � ax2, where a > 0, and for given
positive x and z de®ne x0 to be the point such that �x0; ax02�; �x; ax2� and
�0; z� are on the same line. It is easy to show that

x0 � 1

a
z
x
: �42�

Now by Taylor expansion and (2),

hc�t � h� ÿ c�t�; e1�t�i � h�O�h3�;

hc�t � h� ÿ c�t�; e2�t�i � j�t�
2

h2 �O�h3� �43�
for small h. Hence (40) follows at once from (42) and the fact that the
curve c is sandwiched locally between the two parabolas
f�x; �j0=4�x2�g and f�x; j1x2�g. Next, observe that

hc�t � h� ÿ c�t ÿ ~h�; e2�t�i
hc�t � h� ÿ c�t ÿ ~h�; e1�t�i

� h c�t � h� ÿ c�t�; e2�t�i ÿ z
h c�t � h� ÿ c�t�; e1�t�i :

By (43), this gives

j�t�
2 �h2 ÿ ~h2� �O�h3 � ~h3�

h� ~h�O�h3 � ~h3� �
j�t�
2 h2 ÿ z�O�h3�

h�O�h3� :

Using (40) and collecting terms give (41). (

Lemma 13. For large n and c > 0,

inf

�
~h�h; z� : 0 < z � cj�t�

8
nÿ2c�log n�2c;

0< h� c
2

nÿc�log n�c; z
h
>

cj�t�
4

nÿc�log n�c
�
� j0

j1
c
4

nÿc�log n�c : �44�

Proof. Fix z in �0; cj�t�
8 nÿ2c�log n�2c� and then observe that

inf ~h�h; z� :
z
h
>

cj�t�
4

nÿc�log n�c
� �

� ~h z
4

cj�t� n
c�log n�ÿc; z

� �
:

Since both z 4
cj�t� n

c�log n�ÿc and cj�t�
4 nÿc�log n�c are small for large n

and for z in the described set, the preceding right hand side is bounded
below by the right hand side of (44) according to Lemma 12. h

Lemma 14. If

u� x
u
� c�log n�c ;
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then uniformly for t 2 �0;L�,
P�X 1 2 Gn�t; x; u�� � b�t�

n
u� x

u

� �1=c
1�O u� x

u

� �
nÿc

h im� �� �
;

with m � min�1; a� 1; 2g� and

b�t� � 2

j�t�
� � 1

2c

b�t� � B�1=2; a� 1�g�t�
�������������
2=j�t�

p
21ÿ1=c :

Proof. Clearly

Gn�t; x; u� � R t ÿ ~h nÿc

��������
2

j�t�

s
u; nÿ2cx

 !
; t � nÿc

��������
2

j�t�

s
u

 !
:

By (41) of Lemma 12,

nÿc

��������
2

j�t�

s
u� ~h nÿc

��������
2

j�t�

s
u; nÿ2cx

 !

�
��������
2

j�t�

s
nÿc u� x

u

� �
� nÿ2cO u� x

u

� �2� �
:

The result now follows easily from Lemma 10. h

Lemma 15. Uniformly in t 2 �0;L�,

g�t�
�������������
2=j�t�

p Z
x

Z
u

Z u

y�0
I�u� x=u � c�log n�c�

�
P nÿ1�X 1 62 Gn�t; x; u��

ÿ expfÿb�u� x=u�1=c
�

y�u2 � x�
u2

y�u2 ÿ x�
u

� xÿ y2
� �a

dy du dx

� O nÿc�1^�a�1�^2g�
� �

:

Proof. The proof follows as a straightforward application of Lemma
14. h

Lemma 16. Uniformly in t 2 �0;L�,Z
x

Z
u

I�u� x=u � c�log n�c�P nÿ1�X1 62 Gn�t; x; u�� 
n

d
du

P X 1 2 Hn�t; x; u�� � ÿ g�t�
�������������
2=j�t�

p
�
Z u

y�0

y�u2 � x�
u2

y�u2 ÿ x�
u

� xÿ y2
� �a

dy

!
du dx

� O nÿc�1^2g^�a�1��
� �

:
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Proof. De®ne ln�x; u; v� to be the length of the linear segment

f c�t � v� � q e2�t � v� : q � 0g \ Hn�t; u; x� ;
i.e.

c�t � v� � ln�x; u; v� e2�t � v� � z c�t � nÿc
�������������
2=j�t�

p
u�

� �1ÿ z�� c�t� � nÿ2cx e2�t��
�45�

for some z 2 �0; 1�. First, it is clear that (cf. (7))
P�X 1 2 Hn�t; x; u��

�
Z nÿc

���������
2=j�t�
p

u

v�0

Z ln�x;u;v�

q�0
f
ÿ
c�t � v� � q e2�t � v���1ÿ qj�t � v�� dq dv

and so

d
du

P X1 2 Hn�t; x; u�� �

�
Z nÿc

���������
2=j�t�
p

u

v�0

@

@u
ln x; u; v� �f ÿ c�t � v� � ln�x; u; v� e2�t � v��

�1ÿ ln�x; u; v�j�t � v�� dv

� g�t�
Z nÿc

���������
2=j�t�
p

u

v�0

@

@u
ln x; u; v� ��ln�x; u; v��a

�1�O�v� �ln�x; u; v��g^1�� dv ; �46�
where we used (24). Now solve (45) for ln�x; u; v�. By Taylor expansion
with (2), we obtain

c�t� �
�

vÿ lnvj�t�
�
e1�t� �

�
v2

2
j�t� � ln

�
e2�t� �O�v3 � lnv2�

� z
�
c�t� � nÿc

�������������
2=j�t�

p
u e1�t� � nÿ2cu2 e2�t� �O�nÿ3cu3�

�
� �1ÿ z��c�t� � nÿ2cx e2�t�� ;

from which it follows

z � nc
�������������
j�t�=2

p
vuÿ1�1�O�ln � nÿ2cu2��

and

v2

2
j�t� � ln �O�v3 � lnv2� � znÿ2c�u2 ÿ x� � nÿ2cx�O�nÿ3cu3� :

Now let y � nc
�������������
j�t�=2p

v. Then
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ln�x; u; nÿc
�������������
2=j�t�

p
y�

� nÿ2c�ÿy2 � z�u2 ÿ x� � x� �O nÿ3cu3 � nÿ2cy2ln
ÿ �

� nÿ2c�ÿy2 � y�uÿ x=u� � x� � nÿ2cO�ln � nÿ2cu2�
� �u2 ÿ x� �O�nÿ3cu3 � nÿ2cy2ln� :

Observe that y � u and the expression in brackets is bounded by
�u� x=u�2=4. Therefore

ln�x; u; nÿc
�������������
2=j�t�

p
y� � nÿ2c�y�uÿ x=u� ÿ y2 � x� R1� ;

where

R1 � O
ÿ
nÿc�u� x=u�3� �47�

and similarly by di�erentiating (45),

@

@u
ln
ÿ
x; u; nÿc

�������������
2=j�t�

p
y
� � nÿ2c

y�u2 � x�
u2

� R2

� �
�48�

where

R2 � O
ÿ
nÿc�u� x=u�2� : �49�

Combining (46) and (48), we obtain

n
d
du

P X1 2 Hn�t; x; u�� � ÿ g�t�
��������
2

j�t�

s
�
Z u

y�0

y�u2 � x�
u2

y�u2 ÿ x�
u

� xÿ y2
� �a

dy

� g�t�
��������
2

j�t�

s Z u

y�0

y�u2 � x�
u2

� R2

� �
y�u2 ÿ x�

u
� xÿ y2 � R1

� �a

�O nÿcy � ln�x; u; nÿc
�������������
2=j�t�

p
y�g^1

� �
dy

� g�t�
��������
2

j�t�

s Z u

y�0
R2

y�u2 ÿ x�
u

� xÿ y2 � R1

� �a

dy

� g�t�
��������
2

j�t�

s Z u

y�0

y�u2 � x�
u2

"
y�u2 ÿ x�

u
� xÿ y2 � R1

� �a

ÿ y�u2 ÿ x�
u

� xÿ y2
� �a

#
dy

�: E1 � E2 � E3 :

By Lemma 14, it su�ces to show that
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Z
x

Z
u

I�u� x=u � c�log n�c� expfÿb�u� x=u�1=cg Ei du dx

� O
ÿ
nÿc�1^2g^�a�1��� �50�

for i � 1; 2; 3. For i � 1; 2 this follows in a straightforward manner
using (47) and (49). For i � 3 we use a variable transformation similar
to the one in Lemma 9 Let R11 � minfR1 : 0 � y � ug and
R12 � maxfR1 : 0 � y � ug. Since R1�y � 0� � 0, it is clear that
R11 � 0 � R12. First we ®nd an upper bound for E3. Let

w�y� � y ÿ u2 ÿ x
2u

� �
1� 4R12

�u� x=u�2
 !ÿ1=2

� u2 ÿ x
2u

:

ThenZ u

y�0
y

y�u2 ÿ x�
u

� xÿ y2 � R1

� �a

dy

�
Z u

y�0
y

y�u2 ÿ x�
u

� xÿ y2 � R12

� �a

dy

� 1� 4R12

�u� x=u�2
 !a�1=2Z w�u�

w�w�0�
wÿ u2 ÿ x

2u

� ��

� 1� 4R12

�u� x=u�2
 !1=2

� u2 ÿ x
2u

�
w�u2 ÿ x�

u
ÿ w2 � x

� �a

dw : �51�

Observe that

4R12

�u� x=u�2 � O
ÿ
nÿc�u� x=u��

and so

w�0� � O
ÿ
nÿc�u� x=u�2�:

Also observe that w�u� � u. Hence (51) is bounded by

�1�O�nÿc�u� x=u���
�Z u

w�0
w

w�u2 ÿ x�
u

ÿ w2 � x
� �a

dw

�O�nÿ2c�u� x=u�4xa�
�
:
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Similar calculations for the lower bound show that E3 has the same
order of magnitude as

nÿc�u� x=u�
Z u

0

w
�

w�uÿ x=u� ÿ w2 � x
�a

dw� nÿ2c�u� x=u�4xa

which su�ces to verify (50). (
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