Exit time moments, boundary value problems, and the geometry of domains in Euclidean space

K.K.J. Kinateder ${ }^{1}$, Patrick McDonald, ${ }^{2}$ David Miller ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435, USA
${ }^{2}$ Division of Natural Science, New College of The University of South Florida, Sarasota, FL 34243, USA

Received: 23 January 1997 / Revised version: 21 January 1998

Abstract

Let X_{t} be a diffusion in Euclidean space. We initiate a study of the geometry of smoothly bounded domains in Euclidean space using the moments of the exit time for particles driven by X_{t}, as functionals on the space of smoothly bounded domains. We provide a characterization of critical points for each functional in terms of an overdetermined boundary value problem. For Brownian motion we prove that, for each functional, the boundary value problem which characterizes critical points admits solutions if and only if the critical point is a ball, and that all critical points are maxima.

Mathematics Subject Classification (1991): 60J65, 58G32

1. Introduction

In this paper we initiate a study of the geometry of smoothly bounded, connected, open domains in \mathbb{R}^{d} with compact closure, using diffusions in \mathbb{R}^{d} and properties of their exit times from these domains.

We begin by fixing notation. Let X_{t} be a diffusion in \mathbb{R}^{d} with infinitesimal generator L, a uniformly elliptic operator. We will be particularly interested in operators of divergence form. Such operators

Key words and phrases. diffusion, exit times, variational calculus, boundary value problems.
act on $C^{\infty}\left(\mathbb{R}^{d}\right)$ according to the rule $L f=\operatorname{div}\left(a_{i j} \nabla f\right)$ where the coefficient matrix $a_{i j}(x)$ is smooth and symmetric. Let \mathscr{D} be the space of smoothly bounded, connected open domains in \mathbb{R}^{d} with compact closure. Let \mathscr{D}_{v} be the subset of \mathscr{D} consisting of those domains $D \in \mathscr{D}$ such that the volume of D, denoted $|D|$, is v. For $x_{0} \in \mathbb{R}^{d}$ fixed, let $\mathscr{D}_{v, x_{0}}$ be the subset of \mathscr{D}_{v} consisting of those domains that contain x_{0}. We note that each of the spaces $\mathscr{D}, \mathscr{D}_{v}$ and $\mathscr{D}_{v, x_{0}}$ is a Frechet manifold.

For $D \in \mathscr{D}$, let $\tau=\tau(\omega)=\inf \left\{t \geq 0: X_{t}(\omega) \notin D\right\}$ be the first exit time of X_{t} from D.

Given a domain $D \in \mathscr{D}_{v, x_{0}}$ and a positive integer, k, we associate to D two sequences of positive real numbers as follows. Let $\mathscr{E}_{k, x_{0}}(D)$ be given by

$$
\begin{equation*}
\mathscr{E}_{k, x_{0}}(D)=E_{x_{0}}\left(\tau^{k}\right) \tag{1.1}
\end{equation*}
$$

where E_{x} denotes expectation under the measure P_{x} satisfying $P_{x}\left\{X_{0}=x\right\}=1$, for all $x \in \mathbb{R}^{d}$. Similarly, for $D \in \mathscr{D}_{v}$ and k a positive integer, let $\mathscr{E}_{k}(D)$ be defined by

$$
\begin{equation*}
\mathscr{E}_{k}(D)=\int_{D} E_{x}\left(\tau^{k}\right) d x \tag{1.2}
\end{equation*}
$$

where $d x$ is Lebesgue measure on \mathbb{R}^{d}.
To concisely state our main results, we fix a positive integer k and view (1.1) and (1.2) as defining maps $\mathscr{E}_{k, x_{0}}: \mathscr{D}_{v, x_{0}} \rightarrow \mathbb{R}$ and $\mathscr{E}_{k}: \mathscr{D}_{v} \rightarrow \mathbb{R}$. These maps are smooth (cf section 2 below) with respect to the natural Frechet space structure on the spaces $\mathscr{D}_{v, x_{0}}$ and \mathscr{D}_{v}, respectively. Our main result characterizes the critical points of these maps in terms of overdetermined boundary value problems associated to the operator L :

Theorem 1.1. Let $D \in \mathscr{D}_{v}$. Suppose that L is a smooth divergence form operator, $L=\operatorname{div}\left(a_{i j} \nabla\right)$. For $1 \leq j \leq k$, let u_{j} be defined inductively by

$$
\begin{aligned}
L u_{1}+1 & =0 \text { on } D \\
u_{1} & =0 \text { on } \partial D
\end{aligned}
$$

and

$$
\begin{aligned}
L u_{j}+j u_{j-1} & =0 \text { on } D \\
u_{j} & =0 \text { on } \partial D .
\end{aligned}
$$

Then D is a critical point of the functional \mathscr{E}_{k} if and only if there is a solution of the overdetermined boundary value problem consisting of the above equations and

$$
\begin{equation*}
\sum_{j=1}^{k} c_{j} \frac{\partial u_{k+1-j}}{\partial v}\left\langle u_{j}, v\right\rangle_{L}=C \text { on } \partial D \tag{1.3}
\end{equation*}
$$

where C is a constant, $\left\langle u_{j}, v\right\rangle_{L}=\left(\nabla u_{j}\right)^{\mathrm{T}} a_{i j} v$ is the conormal derivative associated to L, and the constant c_{j} is given by

$$
c_{j}=\frac{k!}{(k+1-j)!j!} .
$$

Similarly, $D \in \mathscr{D}_{v, x_{0}}$ is a critical point of the functional $\mathscr{E}_{k, x_{0}}$ if and only if there is a solution of the overdetermined boundary value problem consisting of the above equations and

$$
\begin{equation*}
\frac{\partial G}{\partial v}\left(x_{0}, \cdot\right)\left\langle\nabla u_{k}, v\right\rangle_{L}+\sum_{j=1}^{k-1} d_{j} \frac{\partial u_{k-j}}{\partial v}\left\langle\nabla m_{j}, v\right\rangle_{L}=C^{\prime} \text { on } \partial D \tag{1.4}
\end{equation*}
$$

where C^{\prime} is a constant, $\left\langle u_{j}, v\right\rangle_{L}=\left(\nabla u_{j}\right) \mathrm{T}_{i j} v$ is the conormal derivative associated to L, G is the Green's function for L, m_{j} is defined inductively by

$$
\begin{aligned}
L m_{1}+G\left(x_{0}, \cdot\right) & =0 \text { on } D \\
m_{1} & =0 \text { on } \partial D
\end{aligned}
$$

and

$$
\begin{aligned}
L m_{j}+m_{j-1} & =0 \text { on } D \\
m_{j} & =0 \text { on } \partial D,
\end{aligned}
$$

and the constant d_{j} is given by

$$
d_{j}=\frac{k!}{(k-j)!} .
$$

The overdetermined boundary value problems occurring in the statement of our theorem are closely related to a well studied collection of problems first investigated by Serrin [S]. Using our theorem and a technique developed in [FM], we obtain the following result:

Proposition 1.1. Let X_{t} be standard d-dimensional Brownian motion. Let \mathscr{E}_{k} and $\mathscr{E}_{k, x_{0}}$ be defined as above. Then $D \in \mathscr{D}_{v}$ is a critical point of \mathscr{E}_{k} if and only if D is a ball of volume v. Similarly, $D \in \mathscr{D}_{v, x_{0}}$ is a critical point of $\mathscr{E}_{k, x_{0}}$ if and only if D is a ball of volume v centered at x_{0}.

Using symmetric rearrangement, Aizenman-Simon (cf [AS]) give a short proof that the ball centered at x_{0} is a global maximum for the map $\mathscr{E}_{k, x_{0}}$. More precisely, they prove: Among Lebesgue measurable
domains of a fixed volume which contain x_{0} in their interiors, the ball centered at x_{0} maximizes $\mathscr{E}_{k, x_{0}}(D)$ for each value of k. Their argument can be modified to establish the same result for the sequence $\mathscr{E}_{k}(D)$. We have chosen to work in the context of smoothly bounded domains. Our techniques require the existence of a C^{1}-unit normal vector and depend on results of Serrin for C^{2}-domains. In this sense, the results of [AS] are more general than those we prove in Proposition 1.1. On the other hand, our results give more detailed information concerning the behavior of exit time moments from less general sets.

Our interest in the sequences defined by (1.1) and (1.2) is largely motivated by the now classical work concerning the extent to which the Dirichlet spectrum of a Euclidean domain determines the geometry of the domain. An early result in this direction is the theorem of Faber-Krahn: Among smooth domains of a fixed volume, the ball minimizes the principal Dirichlet eigenvalue. The theorem of Aizenman and Simon cited above can be regarded as an analog of the result of Faber-Krahn for the sequence $\mathscr{E}_{k, x_{0}}(D)$. This suggests a natural problem: Given a smoothly bounded Euclidean domain, what geometric parameters can be recovered from the sequences (1.1) and (1.2)?

Before proceeding, a few additional words concerning related work are in order. In [KM1], Kinateder and McDonald prove Theorem 1.1 for the special case $k=1$. Similar results are established for the variance of the exit time and the average variance of the exit time in [KM2].

For $D \subset \mathbb{R}^{2}$, the quantity $\mathscr{E}_{1}(D)$ is perhaps better known as the torsional rigidity associated to a beam of uniform cross section D. That $\mathscr{E}_{1}(D)$ is maximized among domains of a fixed area by a disk is the content of the St. Venant torsion problem, an old problem with extensive associated literature (cf [PS]). In particular, there are a number of results providing bounds for $\mathscr{E}_{1}(D)$ in terms of various geometric quantities associated to a Euclidean domain. Among these results are a number of estimates which bound $\mathscr{E}_{1}(D)$ in terms of the inner radius, τ_{D}, associated to D (the supremum of the radii over all disks contained in the domain D) (cf [B]). There are similar estimates for the functional $\mathscr{E}_{1, x_{0}}(D)$. For example (cf $\left.[\mathrm{BC}]\right)$, There is a universal constant, b, such that if D is a simply connected planar domain, then

$$
\sup _{x \in D} E_{x}[\tau] \leq b r_{D}^{2}
$$

Inequalities of this form allow one to use the expected lifetime of Brownian motion in D to estimate a number of geometric invariants associated to simply connected planar domains. This approach is
introduced in $[\mathrm{BC}]$ (cf also $[\mathrm{BCH}]$) where the authors use Brownian motion and conformal mapping (including the schlicht Bloch-Landau constant) to estimate the best constant, a, in Hayman's inequality: There is a universal constant a such that if D is a simply connected planar domain with principal Dirichlet eigenvalue λ_{D}, then

$$
\lambda_{D} \leq \frac{a}{r_{D}^{2}} .
$$

Among the many geometric properties one might choose to study using the sequences defined by (1.1) and (1.2), it would be interesting to know to what extent it is possible to improve the estimates of [BC].

The authors thank the referee for a careful reading of the manuscript and a number of helpful suggestions which improved the exposition of the paper.

2. Basic results and definitions

Let (Ω, \mathscr{B}) be a measurable space and $\left\{P_{x}\right\}_{x \in \mathbb{R}^{d}}$ a family of probability measures on (Ω, \mathscr{B}). Let $\left\{X_{t}\right\}_{t \geq 0}$ denote a d-dimensional diffusion with generator L, a uniformly elliptic operator in divergence form, $L f=\operatorname{div}\left(a_{i j} \nabla f\right)$ where the coefficient matrix $a_{i j}(x)$ is smooth and symmetric, and for which $P_{x}\left\{X_{0}=x\right\}=1$, for $x \in \mathbb{R}^{d}$.

Let D be a smoothly bounded domain in Euclidean space. As in the introduction, we define the first exit time for a particle driven by X_{t} from D by $\tau=\tau(\omega)=\inf \left\{t: X_{t}(\omega) \notin D\right\}$. For each $x \in \mathbb{R}^{d}$, we will denote the expected value of a random variable Y under the probability measure P_{x} by $E_{x}(Y)$.

There is a useful relationship between the solution of a certain Poisson problem on the domain $D \in \mathscr{D}$ and the expected value of the k th power of the first exit time of a particle driven by X_{t} from D starting at $x \in D$. Suppose u_{k} solves the problem

$$
\begin{align*}
L^{k} u_{k}+(-1)^{k-1} k! & =0 \text { on } D \\
u_{k}=L u_{k}=\cdots=L^{k-1} u_{k} & =0 \text { on } \partial D \tag{2.1}
\end{align*}
$$

Note that u_{k} can be defined inductively by

$$
\begin{align*}
L u_{1}+1 & =0 \text { on } D \\
u_{1} & =0 \text { on } \partial D \tag{2.2}
\end{align*}
$$

and

$$
\begin{align*}
L u_{k}+k u_{k-1} & =0 \text { on } D \tag{2.3}\\
u_{k} & =0 \text { on } \partial D .
\end{align*}
$$

Using the generalized Dynkin formula [Ha] (cf also [AK] and [P]) we have

$$
\begin{aligned}
E_{x}\left[u_{k}\left(X_{0}\right)\right]-E_{x}\left[u_{k}\left(X_{\tau}\right)\right]= & \sum_{j=1}^{k-1} \frac{(-1)^{j}}{j!} E_{x}\left[\tau^{j} L^{j} u_{k}\left(X_{\tau}\right)\right] \\
& +\frac{(-1)^{k}}{(k-1)!} E_{x}\left[\int_{0}^{\tau} s^{k-1} L^{k} u_{k}\left(X_{x}\right) d s\right]
\end{aligned}
$$

Using the definition of u_{k} and τ, this gives

$$
u_{k}(x)=E_{x}\left[\tau^{k}\right]
$$

We now express $\mathscr{E}_{k, x_{0}}$ and \mathscr{E}_{k} in terms of u_{k} :

$$
\begin{align*}
\mathscr{E}_{k, x_{0}}(D) & =u_{k}\left(x_{0}\right) \tag{2.4}\\
\mathscr{E}_{k}(D) & =\int_{D} u_{k}(x) d x \tag{2.5}
\end{align*}
$$

The space \mathscr{D} carries the structure of a Frechet manifold (see [H] for a thorough survey of the geometry of Frechet manifolds). Each element of $D \in \mathscr{D}$ can be naturally identified with its boundary ∂D. As ∂D is a compact hypersurface, there is a diffeomorphism between a tubular neighborhood of ∂D in \mathbb{R}^{d} and a neighborhood of the zero section of the normal bundle $N \partial D$ of ∂D. A neighborhood $D \in \mathscr{D}$ is identified with a neighborhood of the zero section in the Frechet space $C^{\infty}(\partial D, N \partial D)$. This identification provides us with the required Frechet structure.

Recall, a map $F: \mathscr{D} \rightarrow \mathbb{R}$ is smooth if for any point $D \in \mathscr{D}$ we can find charts around D in \mathscr{D} such that the local representation of F with respect to these charts is a smooth map of Frechet spaces. The derivative of F at a point $D \in \mathscr{D}$ is the induced linear map on the tangent space at $D \in \mathscr{D}, \delta_{D} F: T_{D} \mathscr{D} \rightarrow T_{F(D)} \mathbb{R}$.

To see that (2.4) and (2.5) define smooth maps on \mathscr{D}, fix $D \in \mathscr{D}$ and consider a neighborhood $U \subset \mathscr{D}$ identified with a neighborhood of the zero section of the normal bundle $C^{\infty}(\partial D, N \partial D)$. An element $h \in U$ can be smoothly extended to a vector field on D in such a fashion that the extension vanishes outside a collar neighborhood of ∂D in D. This allows one to define a (less than canonical) family of diffeomorphisms $D \rightarrow D_{t}$ given by flowing in the direction of the extension of h. For the case $k=1$, we can pull back the boundary value problems (2.1) on D_{t} to boundary value problems for a second order differential operator
on D whose coefficients depend smoothly on the diffeomorphism and the choice of h. Hence, for $k=1$ the maps defined by (2.4) and (2.5) are smooth. Clearly, the argument extends to general k and we see that the maps defined by (2.4) and (2.5) are smooth. A variant of this argument, first given by Hilbert in his study of the dependence of Dirichlet eigenvalues on the underlying domain, was used to examine a wide range of problems in the foundational paper of Garabedian and Schiffer [GS]. A modern version of many of their results appears in [EM].

Throughout this discussion we have focused on the space \mathscr{D}. Similar remarks apply to the space \mathscr{D}_{v} (as well as for $\mathscr{D}_{v, x_{0}}$, which is an open set in \mathscr{D}_{v}). The space \mathscr{D}_{v} is a Frechet manifold. Near a point $D \in \mathscr{D}_{v}$ we have coordinate neighborhoods given by the Frechet space $C_{0}^{\infty}(\partial D, N \partial D)$ where

$$
\begin{equation*}
C_{0}^{\infty}(\partial D, N \partial D)=\left\{f \in C_{0}^{\infty}(\partial D, N \partial D): \int_{\partial D} f d \sigma=0\right\} . \tag{2.6}
\end{equation*}
$$

There is a natural identification $T_{D} \mathscr{D}_{v} \simeq C_{0}^{\infty}(\partial D, N \partial D)$. In the sequel we will compute the derivatives of the maps defined by (2.4) and (2.5) by computing the derivatives in the space \mathscr{D} and restricting to tangent vectors given by (2.6).

3. First variation

In this section we compute the Frechet derivative of each of the maps (1.1) and (1.2) using the natural charts described in the previous section.

Proposition 3.1. Suppose that L is a divergence form operator and that $\mathscr{E}_{k}: \mathscr{D}_{v} \rightarrow \mathbb{R}$ is as defined in (1.2). Let $D \in \mathscr{D}_{v}$ and suppose that $\delta_{D} \mathscr{E}_{k}: T_{D} \mathscr{D}_{v} \rightarrow \mathbb{R}$ is the derivative of \mathscr{E}_{k} at D. Then

$$
\begin{equation*}
\delta_{D} \mathscr{E}_{k}(f)=\sum_{j=1}^{k} c_{j} \int_{\partial D} f \frac{\partial u_{k+1-j}}{\partial v}\left\langle\nabla u_{j}, v\right\rangle_{L} d \sigma \tag{3.1}
\end{equation*}
$$

where $f \in C^{\infty}(\partial D)$ is a tangent vector, $d \sigma$ is surface measure on $\partial D, v$ is the outward pointing unit normal vector, $u_{j}(x)$ solves (2.3), $\left\langle\nabla u_{j}, v\right\rangle_{L}=\left(\nabla u_{j}\right)^{\mathrm{T}}\left(a_{i j}\right) v$ is the conormal derivative associated to L, and the constant c_{j} is given by

$$
\begin{equation*}
c_{j}=\frac{k!}{(k+1-j)!j!} . \tag{3.2}
\end{equation*}
$$

Proof. Let $D \in \mathscr{D}$ and write $S=\partial D$. Suppose $f \in C^{\infty}(\partial D)$ represents an infinitesimal variation of D. Let Φ_{t} be a one-parameter family of diffeomorphisms associated to f, let $S_{t}=\Phi_{t}(S)$ and let D_{t} be the corresponding one-parameter family of domains. Let u_{k} be the solution of (2.3) and let u_{k}^{t} be the solution of

$$
\begin{align*}
L u_{k}^{t}+k u_{k-1}^{t} & =0 \text { on } D_{t} \tag{3.3}\\
u_{k}^{t} & =0 \text { on } \partial D_{t}=S_{t} .
\end{align*}
$$

Then

$$
\begin{aligned}
& \delta_{D} \mathscr{E}_{k}(f)=\left.\frac{d}{d t}\right|_{t=0}\left[\int_{D_{t}} u_{k}^{t}-\int_{D} u_{k}\right] \\
& \quad=\left.\frac{d}{d t}\right|_{t=0}\left[\int_{D_{t} \cap D}\left(u_{k}^{t}-u_{k}\right)+\int_{D_{t} \backslash D} u_{k}^{t}-\int_{D \backslash D_{t}} u_{k}\right] .
\end{aligned}
$$

Recall, u_{k} vanishes on S and u_{k}^{t} vanishes on S_{t}. Hence, $\left.\frac{d}{d t}\right|_{t=0}\left[\int_{D_{t} \backslash D} u_{k}^{t}-\int_{D \backslash D_{t}} u_{k}\right]=0$. We conclude that

$$
\begin{equation*}
\delta_{D} \mathscr{E}_{k}(f)=\left.\frac{d}{d t}\right|_{t=0}\left[\int_{D_{t} \cap D}\left(u_{k}^{t}-u_{k}\right)\right] . \tag{3.4}
\end{equation*}
$$

On $D_{t} \cap D$, let

$$
\begin{equation*}
P_{j}=u_{j} L\left(u_{k+1-j}^{t}-u_{k+1-j}\right)-\left(u_{k+1-j}^{t}-u_{k+1-j}\right) L u_{j} . \tag{3.5}
\end{equation*}
$$

A straight-forward computation yields

$$
\begin{equation*}
\left(u_{k}^{t}-u_{k}\right)=\sum_{j=1}^{k} c_{j} P_{j} \tag{3.6}
\end{equation*}
$$

where the c_{j} are the constants given in (3.2). By the divergence theorem,

$$
\begin{aligned}
\int_{D_{t} \cap D} P_{j}= & \int_{\partial\left(D_{t} \cap D\right)}\left[u_{j}\left\langle\nabla\left(u_{k+1-j}^{t}-u_{k+1-j}\right), v\right\rangle_{L}\right. \\
& \left.-\left(u_{k+1-j}^{t}-u_{k+1-j}\right)\left\langle\nabla u_{j}, v\right\rangle_{L}\right] d z
\end{aligned}
$$

where v is the outward normal vector to $D_{t} \cap D,\left\langle\nabla u_{j}, v\right\rangle_{L}$ is the conormal derivative associated to L, and $d z$ is surface measure. We conclude that

$$
\left.\frac{d}{d t}\right|_{t=0} \int_{D_{t} \cap D} P_{j}=\left.\frac{d}{d t}\right|_{t=0} \int_{\partial\left(D_{t} \cap D\right)}\left(u_{k+1-j}-u_{k+1-j}^{t}\right)\left\langle\nabla u_{j}, v\right\rangle_{L} d z .
$$

The boundary $\partial\left(D_{t} \cap D\right)$ can be partitioned as $\partial\left(D_{t} \cap D\right)=S^{+} \cup S_{t}^{-}$, where

$$
\begin{aligned}
& S^{+}=\{\sigma \in S: f(\sigma) \geq 0\} \\
& S^{-}=\{\sigma \in S: f(\sigma)<0\} \\
& S_{t}^{-}=\left\{y=\sigma+t f(\sigma) v(\sigma) \in S_{t}: \sigma \in S_{-}\right\}
\end{aligned}
$$

We write

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} & \int_{\partial\left(D_{t} \cap D\right)}\left(u_{k+1-j}-u_{k+1-j}^{t}\right)\left\langle\nabla u_{j}, v\right\rangle_{L} d z \\
= & \left.\frac{d}{d t}\right|_{t=0}\left[\int_{S^{+}}\left(u_{k+1-j}-u_{k+1-j}^{t}\right)\left\langle\nabla u_{j}, v\right\rangle_{L} d \sigma\right. \\
& \left.+\int_{S_{t}^{-}}\left(u_{k+1-j}-u_{k+1-j}^{t}\right)\left\langle\nabla u_{j}, v_{t}\right\rangle_{L} d z\right]
\end{aligned}
$$

where v_{t} is the outward normal to S_{t} and $d \sigma$ is surface measure. Expanding u_{k+1-j} near $t=0$

$$
\begin{align*}
u_{k+1-j}\left(\Phi_{t}\right)-u_{k+1-j}\left(\Phi_{\mathrm{o}}\right) & =t\left\langle\nabla u_{k+1-j},\left.\frac{d}{d t}\right|_{t=0} \Phi_{t}\right\rangle+\mathrm{o}(t) \\
& =t f \frac{\partial u_{k+1-j}}{\partial v}+\mathrm{o}(t) \tag{3.7}
\end{align*}
$$

Let J_{t} be the Jacobian of the map Φ_{t} and note that $J_{t}(\sigma)=1+\mathrm{O}(t)$. Then,

$$
\begin{aligned}
& \left.\frac{d}{d t}\right|_{t=0} \int_{S_{t}^{-}}\left(u_{k+1-j}-u_{k+1-j}^{t}\right)\left\langle\nabla u_{j}, v\right\rangle_{L} d z \\
& \quad=\left.\frac{d}{d t}\right|_{t=0} \int_{S_{-}} u_{k+1-j}\left(\Phi_{t}(\sigma)\right)\left\langle\nabla u_{j}\left(\Phi_{t}(\sigma)\right), v\left(\Phi_{t}(\sigma)\right)\right\rangle_{L} J_{t}(\sigma) d \sigma
\end{aligned}
$$

and, using (3.7), we conclude that

$$
\left.\frac{d}{d t}\right|_{t=0} \int_{S_{t}^{-}}\left(u_{k+1-j}-u_{k+1-j}^{t}\right)\left\langle\nabla u_{j}, v\right\rangle_{L} d z=\int_{S_{-}} f \frac{\partial u_{k+1-j}}{\partial v}\left\langle\nabla u_{j}, v\right\rangle_{L} d \sigma
$$

Similarly,

$$
\left.\frac{d}{d t}\right|_{t=0} \int_{S^{+}}\left(u_{k+1-j}-u_{k+1-j}^{t}\right)\left\langle\nabla u_{j}, v\right\rangle_{L} d \sigma=\int_{S_{+}} f \frac{\partial u_{k+1-j}}{\partial v}\left\langle\nabla u_{j}, v\right\rangle_{L} d \sigma
$$

Hence,

$$
\begin{align*}
& \left.\frac{d}{d t}\right|_{t=0} \int_{\partial\left(D_{t} \cap D\right)}\left(u_{k+1-j}-u_{k+1-j}^{t}\right)\left\langle\nabla u_{j}, v\right\rangle_{L} d z \tag{3.8}\\
& \quad=\int_{S} f \frac{\partial u_{k+1-j}}{\partial v}\left\langle\nabla u_{j}, v\right\rangle_{L} d \sigma
\end{align*}
$$

Combining (3.4)-(3.6) and (3.8) completes the proof of the proposition.

Proposition 3.2. Suppose that L is a divergence form operator and that $\mathscr{E}_{k, x_{0}}: \mathscr{D}_{v} \rightarrow \mathbb{R}$ is as defined in (1.1). Let $D \in \mathscr{D}_{v}$ and suppose that $\delta_{D} \mathscr{E}_{k, x_{0}}: T_{D} \mathscr{V}_{v} \longrightarrow \mathbb{R}$ is the derivative of $\mathscr{E}_{k, x_{0}}$ at D. Then

$$
\begin{align*}
\delta_{D} \mathscr{E}_{k, x_{0}}(f)= & \int_{\partial D} f\left[\frac{\partial G}{\partial v}\left(x_{0}, \cdot\right)\left\langle\nabla u_{k}, v\right\rangle_{L}\right. \\
& \left.+\sum_{j=1}^{k-1} d_{j} \frac{\partial u_{k-j}}{\partial v}\left\langle\nabla m_{j}, v\right\rangle_{L}\right] d \sigma \tag{3.9}
\end{align*}
$$

where $f \in C^{\infty}(\partial D)$ is a tangent vector, G is the Green's function for the operator L on the domain $D, d \sigma$ is surface measure on $\partial D, v$ is the outward pointing unit normal vector, $u_{j}(x)$ solves (2.3), $\left\langle\nabla u_{j}, v\right)_{L}=\left(\nabla u_{j}\right)^{\mathrm{T}}\left(a_{i j}\right) v$ is the conormal derivative associated to L, the function m_{j} are defined inductively as the solutions of the boundary value problems given by

$$
\begin{aligned}
L m_{1}+G\left(x_{0}, \cdot\right) & =0 \text { on } D \\
m_{1} & =0 \text { on } \partial D
\end{aligned}
$$

and

$$
\begin{align*}
L m_{j}+m_{j-1} & =0 \text { on } D \tag{3.10}\\
m_{j} & =0 \text { on } \partial D
\end{align*}
$$

and the constant d_{j} is given by

$$
\begin{equation*}
d_{j}=\frac{k!}{(k-j)!} . \tag{3.11}
\end{equation*}
$$

Proof. The proof is similar to the proof of the previous proposition. Let $D \in \mathscr{D}$ and write $S=\partial D$. Suppose $f \in C^{\infty}(S)$ represents an infinitesimal variation of D. Let Φ_{t} be a one-parameter family of diffeomorphisms associated to f, let $S_{t}=\Phi_{t}(S)$ and let D_{t} be the corresponding one-parameter family of domains. Let u_{k} be the solution of (2.3) and let u_{k}^{t} be the solution of (3.3). Let $G=G^{0}=G\left(x_{0}, \cdot\right)$ be the Green's function for the operator L on the domain D and let $G^{t}=G^{t}\left(x_{0}, \cdot\right)$ be the Green's function for the operator L on the domain D^{t}. Then

$$
\begin{aligned}
\delta_{D} \mathscr{E}_{k, x_{0}}(f)= & \left.\frac{d}{d t}\right|_{t=0}\left[k \int_{D_{t}} u_{k-1}^{t} G^{t}-k \int_{D} u_{k-1} G\right] \\
= & \left.\frac{d}{d t}\right|_{t=0}\left[k \int_{D_{t} \cap D} u_{k-1}^{t}\left(G^{t}-G\right)+\left(u_{k-1}^{t}-u_{k-1}\right) G\right] \\
& +\left.\frac{d}{d t}\right|_{t=0}\left[k \int_{D_{t} \backslash D} u_{k-1}^{t} G^{t}-k \int_{D \backslash D_{t}} u_{k-1} G\right] .
\end{aligned}
$$

Recall, u_{k-1} and $G^{t}\left(x_{0}, \cdot\right)$ vanish on S and u_{k-1}^{t} and $G\left(x_{0}, \cdot\right)$ vanish on S_{t}. Hence,

$$
\left.\frac{d}{d t}\right|_{t=0}\left[\int_{D_{t} \backslash D} u_{k-1}^{t} G^{t}-\int_{D \backslash D_{t}} u_{k-1} G\right]=0
$$

We conclude that

$$
\begin{equation*}
\delta_{D} \mathscr{E}_{k, x_{0}}(f)=\left.\frac{d}{d t}\right|_{t=0}\left[k \int_{D_{t} \cap D} u_{k-1}^{t}\left(G^{t}-G\right)+\left(u_{k-1}^{t}-u_{k-1}\right) G\right] \tag{3.12}
\end{equation*}
$$

Let m_{j} be given as in (3.10) and suppose m_{j}^{t} is defined inductively by

$$
\begin{aligned}
L m_{1}^{t}+G^{t}\left(x_{0}, \cdot\right) & =0 \text { on } D_{t} \\
m_{1}^{t} & =0 \text { on } \partial D_{t}
\end{aligned}
$$

and

$$
\begin{aligned}
L m_{j}^{t}+m_{j-1}^{t} & =0 \text { on } D_{t} \\
m_{j}^{t} & =0 \text { on } \partial D_{t} .
\end{aligned}
$$

For $x \in D_{t} \cap D$, note that $G^{t}\left(x_{0}, \cdot\right)-G\left(x_{0}, \cdot\right)$ satisfies $L\left(G^{t}-G\right)=0$. In particular,

$$
\begin{equation*}
u_{k-1}^{t}\left(G^{t}-G\right)=\frac{1}{k}\left[u_{k}^{t} L\left(G^{t}-G\right)-\left(G^{t}-G\right) L u_{k}^{t}\right] \tag{3.13}
\end{equation*}
$$

Let

$$
\begin{equation*}
R_{j}=m_{j} L\left(u_{k-j}^{t}-u_{k-j}\right)-\left(u_{k-j}^{t}-u_{k-j}\right) L m_{j} \tag{3.14}
\end{equation*}
$$

Note that

$$
\begin{equation*}
k\left(u_{k-1}^{t}-u_{k-1}\right) G=\sum_{j=1}^{k-1} d_{j} R_{j} \tag{3.15}
\end{equation*}
$$

where d_{j} are the constants given in (3.11). By the divergence theorem,

$$
\begin{align*}
\left.\frac{d}{d t}\right|_{t=0} \int_{D_{t} \cap D} u_{k-1}^{t}\left(G^{t}-G\right)= & \left.\frac{d}{d t}\right|_{t=0} \frac{1}{k} \int_{\partial\left(D_{t} \cap D\right)} u_{k}^{t}\left\langle\nabla\left(G^{t}-G\right), v\right\rangle_{L} \\
& -\left(G^{t}-G\right)\left\langle\nabla u_{k}^{t}, v\right\rangle_{L} d z \\
= & \left.\frac{d}{d t}\right|_{t=0}-\frac{1}{k} \int_{\partial\left(D_{t} \cap D\right)}\left(G^{t}-G\right)\left\langle\nabla u_{k}^{t}, v\right\rangle_{L} d z \tag{3.16}
\end{align*}
$$

and

$$
\begin{align*}
\left.\frac{d}{d t}\right|_{t=0} \int_{D_{t} \cap D} R_{j}= & \left.\frac{d}{d t}\right|_{t=0} \int_{\partial\left(D_{t} \cap D\right)} m_{j}\left\langle\nabla\left(u_{k-j}^{t}-u_{k-j}\right), v\right\rangle_{L} \\
& -\left(u_{k-j}^{t}-u_{k-j}\right)\left\langle\nabla m_{j}, v\right\rangle_{L} d z \tag{3.17}\\
= & \left.\frac{d}{d t}\right|_{t=0}-\int_{\partial\left(D_{t} \cap D\right)}\left(u_{k-j}^{t}-u_{k-j}\right)\left\langle\nabla m_{j}, v\right\rangle_{L} d z
\end{align*}
$$

where v is the outward normal vector to $D_{t} \cap D$ and $\left\langle\nabla v_{j}, v\right\rangle_{L}$ is the conormal derivative associated to L.

As in Proposition 3.1, the boundary $\partial\left(D_{t} \cap D\right)$ can be partitioned as $\partial\left(D_{t} \cap D\right)=S^{+} \cup S_{t}^{-}$, where

$$
\begin{aligned}
& S^{+}=\{\sigma \in S: f(\sigma) \geq 0\} \\
& S^{-}=\{\sigma \in S: f(\sigma)<0\} \\
& S_{t}^{-}=\left\{y=\sigma+t f(\sigma) v(\sigma) \in S_{t}: \sigma \in S_{-}\right\} .
\end{aligned}
$$

Beginning with (3.16) and proceeding as in Proposition 3.1 we obtain

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} k \int_{D_{t} \cap D} u_{k-1}^{t}\left(G^{t}-G\right)=\int_{S} f \frac{\partial G}{\partial v}\left(x_{0}, \cdot\right)\left\langle\nabla u_{k}, v\right\rangle_{L} d \sigma \tag{3.18}
\end{equation*}
$$

where v is the outward pointing unit normal vector to S. Similarly, beginning with (3.17) and proceeding as in Proposition 3.1, we obtain

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} \int_{D_{t} \cap D} R_{j}=\int_{S} f \frac{\partial u_{k-j}}{\partial v}\left\langle\nabla m_{j}, v\right\rangle_{L} d \sigma \tag{3.19}
\end{equation*}
$$

Combining (3.12), (3.13), (3.15), (3.18) and (3.19) concludes the proof of the proposition.
Proof of Theorem 1.1. Theorem 1.1 follows immediately from Proposition 3.1, Proposition 3.2, and the characterization of the tangent space given in (2.6).

4. Brownian motion

Proof of Proposition 1.1. We begin by noting that for $L=\frac{1}{2} \Delta$, where Δ is the Laplace operator, Theorem 1.1 implies that D is a critical point for \mathscr{E}_{k} if and only if there is a solution to the heirarchy of boundary value problems

$$
\begin{align*}
& \frac{1}{2} \Delta u_{1}+1=0 \text { on } D \\
& u_{1}=0 \text { on } \partial D, \\
& \frac{1}{2} \Delta u_{j}+j u_{j-1}=0 \text { on } D \tag{4.1}\\
& u_{j}=0 \text { on } \partial D, \quad \text { for } j=2, \ldots, k \\
& \sum_{j=1}^{k} c_{j} \frac{\partial u_{k+1-j}}{\partial v} \frac{\partial u_{j}}{\partial v}=C \text { on } \partial D .
\end{align*}
$$

Similarly, Theorem 1.1 implies that D is a critical point for $\mathscr{E}_{k, x_{0}}$ if and only if there is a solution to the heirarchy of boundary value problems

$$
\begin{align*}
& \frac{1}{2} \Delta u_{1}+1=0 \text { on } D \\
& u_{1}=0 \text { on } \partial D \\
& \frac{1}{2} \Delta u_{j}+j u_{j-1}=0 \text { on } D \tag{4.2}\\
& u_{j}=0 \text { on } \partial D, \quad \text { for } j=2, \ldots, k \\
& \frac{\partial G}{\partial v}\left(x_{0}, \cdot\right) \frac{\partial u_{k}}{\partial v}+\sum_{j=1}^{k-1} d_{j} \frac{\partial u_{k-j}}{\partial v} \frac{\partial m_{j}}{\partial v}=C^{\prime}
\end{align*}
$$

where G and m_{j} are as in the statement of Theorem 1.1.
Suppose that D is a ball of volume v and radius r. Suppose that $k=1$. Then the solution to (4.1) is given by

$$
u_{1}(x)=\frac{r^{2}-\sum x_{i}^{2}}{d}
$$

where the x_{i} are Euclidean coordinates with origin at the center of the ball. We can express u_{k} in terms of u_{k-1} and the Green's function for D:

$$
u_{k}(x)=-k \int_{D} u_{k-1}(y) G(x, y) d y
$$

In particular, if u_{k-1} is radial with respect to the center of D, then u_{k} is radial with respect to the center of D. This proves that a ball of volume v is a critical point for each of the functional \mathscr{E}_{k} and $\mathscr{E}_{k, x_{0}}$ for every k.

The converse statement is much involved. The proof we give follows the ideas developed in [FM] which in turn is inspired by the beautiful paper of Serrin, $[\mathrm{S}]$. The argument is by moving planes.

Let D be a critical point for the function \mathscr{E}_{k}. By Theorem $1.1, D$ is a domain for which we have a solution, u_{k}, of the overdetermined boundary value problem (4.1).

In [S] Serrin uses the method of moving planes to prove the following fundamental result:
Theorem S. Suppose that $D \subset \mathbb{R}^{d}$ is a smoothly bounded, connected domain with compact closure and that Δ is the Laplace operator. Suppose that u solves

$$
\begin{align*}
\Delta u+1 & =0 \text { on } D \\
u & =0 \text { on } \partial D \tag{4.3}\\
\frac{\partial u}{\partial v} & =k^{\prime} \text { on } \partial D .
\end{align*}
$$

Then D is a ball and u is a radially symmetric function.
This establishes that D is a critical point for the functional \mathscr{E}_{k} if and only if D is a ball of volume v in the case $k=1$. In [FM] the authors use a moving planes argument to establish that D is a critical point for the functional \mathscr{E}_{k} if and only if D is a ball of volume v for the case $k=2$. It is also shown in [FM] that D is a critical point for the functional $\mathscr{E}_{k, x_{0}}$ if only if D is a ball of volume v centered at x_{0} for the case $k=1$. In the sequel we will modify the proofs given in [FM] to complete the proof of Proposition 1.1 for all k.

Fix a hyperplane $H_{0} \subset \mathbb{R}^{d}$ not intersecting D. Move the hyperplane parallel to itself toward D. The hyperplane will eventually cut off from D an open cap, $\Sigma(H)$, where H is parallel to H_{0} and intersects D. (By "cap" we do not preclude the possibility that the region being cut off from D is disconnected, which may occur if D is not convex.) The reflection of $\Sigma(H)$ in H, denoted $\Sigma^{\prime}(H)$, will initially lie in D. This will remain true as H continues to move into D, until one of the following two conditions occurs:
(i) $\Sigma^{\prime}(H)$ is internally tangent to ∂D at a point P not on H, or
(ii) H is orthogonal to ∂D at some point Q.

Assume that H satisfies either (i) or (ii) above. Define a function U_{k} in $\Sigma^{\prime}=\Sigma^{\prime}(H)$ by $U_{k}(x)=u_{k}(\sigma(x))$, where σ is the reflection map about H. Note that $\Delta U_{k}(x)=-k U_{k-1}$ on Σ^{\prime} and that U_{k} satisfies the following boundary conditions in Σ^{\prime} :

$$
\begin{align*}
& U_{k}=u_{k} \text { on } H \cap \partial \Sigma^{\prime} \\
& U_{k}=0 \text { on } H^{c} \cap \partial \Sigma^{\prime} \\
& \qquad \sum_{j=1}^{k} c_{j} \frac{\partial U_{k+1-j}}{\partial v} \frac{\partial U_{j}}{\partial v}=C \tag{4.4}
\end{align*}
$$

where the c_{j} and C are as in (4.1), above.
To show that D is a sphere, if suffices to show that D is symmetric about H for arbitrary initial data H_{0}. To show that D is symmetric about H, it sufficies to show that $u_{j}=U_{j}$ for some value of $j \leq k$.

Assume that $u_{j} \neq U_{j}$ for all $j \leq k$. We require the following lemma:

Lemma 4.1. Suppose that u_{k} satisfies (4.1). Suppose that $\Sigma^{\prime}=\Sigma^{\prime}(H)$ and U_{k} are defined as above and that $u_{j} \neq U_{j}$ for all $j \leq k$. Then $u_{k}>U_{k}$ on the interior of Σ^{\prime}.

Proof. Suppose that $k=1$. Then $\Delta\left(u_{k}-U_{k}\right)=0$. From (4.4) $U_{k}=0$ on $H^{c} \cap \partial \Sigma^{\prime}$ and, by the maximum principle, $u_{k} \geq 0$ on Σ^{\prime}. Hence, by the maximum principle and the assumption that $u_{k} \neq U_{k}, u_{k}>U_{k}$ on Σ^{\prime} when $k=1$. Suppose that $u_{k-1}>U_{k-1}$ on Σ^{\prime}. Then $\Delta\left(u_{k}-U_{k}\right)=-k\left(u_{k-1}-U_{k-1}\right)<0$ on Σ^{\prime}. Since $u_{k}-U_{k} \geq 0$ on $\partial \Sigma^{\prime}$, we get that $u_{k}>U_{k}$ on the interior of Σ^{\prime} for all k by the maximum principle.

Suppose now that H satisfies condition (i). Then by the boundary point maximum principle (cf [PW]),

$$
\frac{\partial}{\partial v}\left(u_{j}-U_{j}\right)>0 \text { at } P
$$

for each value of $j \leq k$. This contradicts the fact that at P,

$$
\sum_{j=1}^{k} c_{j} \frac{\partial u_{k+1-j}}{\partial v} \frac{\partial u_{j}}{\partial v}=\sum_{j=1}^{k} c_{j} \frac{\partial U_{k+1-j}}{\partial v} \frac{\partial U_{j}}{\partial v},
$$

where the c_{j} are the positive constants occuring in Proposition 3.1.

Next, suppose that H satisfies condition (ii). We can not apply the standard version of the Hopf boundary point maximum principle (as
we did above) as the exterior sphere condition fails at Q. We will use a sharpening of the theorem due to Serrin.

Choose coordinates in \mathbb{R}^{d} such that the origin is at Q, the positive x_{n}-axis has the same direction as the inward normal to ∂D at Q, and the positive x_{1}-axis is normal to H, pointing away from Σ^{\prime}. Let s be a vector at Q which is nontangential with respect to $\partial \Sigma^{\prime}$, and let $\frac{\partial}{\partial s}$ be the corresponding directional derivative. We will apply the following lemma (essentially Lemma 1 of [S], cf also [FM]):
Lemma 4.2 Suppose that $w \in C^{2}\left(\Sigma^{\prime}\right), \Delta w \leq 0$ it and $w \geq 0$ at Q. Then if $w \neq 0$, either

$$
\frac{\partial w}{\partial s}>0 \text { or } \frac{\partial^{2} w}{\partial s^{2}}>0 \text { at } Q
$$

As in [FM], we apply this lemma to $u_{j}-U_{j}, j \leq k$, with $\frac{\partial}{\partial s}=\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{n}}$. Note that near Q,

$$
\begin{equation*}
U_{j}\left(x_{1}, x_{2}, \ldots x_{n}\right)=u_{j}\left(-x_{1}, x_{2}, \ldots, x_{n}\right), \quad \text { for all } j \leq k \tag{4.5}
\end{equation*}
$$

From this it follows that at $Q, \frac{\partial u_{j}}{\partial x_{n}}=\frac{\partial U_{j}}{\partial x_{n}}, j \leq k$. Since u_{j} is zero on ∂D and x_{1} is a tangential direction at $Q, \frac{\partial u_{j}}{\partial x_{1}}=0, j \leq k$, at the point Q. Hence, $\frac{\partial u_{j}}{\partial x_{1}}=\frac{\partial U_{j}}{\partial x_{1}}, j \leq k$, and we obtain $\frac{\partial\left(u_{j}-U_{j}\right)}{\partial s}=0$ at Q. Using Lemma 4.2, we conclude that

$$
\begin{equation*}
\frac{\partial^{2}}{\partial s^{2}}\left(u_{j}-U_{j}\right)>0 \text { at } Q \text { for all } j \leq k \tag{4.6}
\end{equation*}
$$

Now we compute:

$$
\frac{\partial^{2}}{\partial s^{2}}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial}{\partial x_{n}^{2}}-2 \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} .
$$

From (4.5) we conclude

$$
\begin{aligned}
& \frac{\partial^{2} u_{j}}{\partial x_{1}^{2}}=\frac{\partial^{2} U_{j}}{\partial x_{1}^{2}} \text { for all } j \leq k \\
& \frac{\partial^{2} u_{j}}{\partial x_{n}^{2}}=\frac{\partial^{2} U_{j}}{\partial x_{n}^{2}} \text { for all } j \leq k .
\end{aligned}
$$

Since $u_{j}, 1 \leq j \leq k$, vanishes on $\partial D, \nabla u_{j}$ is normal to ∂D and we can write the boundary condition given in (4.1) as

$$
\sum_{i=1}^{n} \sum_{j=1}^{k} c_{j} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial u_{k+1-j}}{\partial x_{i}}=C
$$

If we differentiate this in the tangential direction x_{1} we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{k} c_{j}\left(\frac{\partial^{2} u_{j}}{\partial x_{i} \partial x_{1}} \frac{\partial u_{k+1-j}}{\partial x_{i}}+\frac{\partial u_{j}}{\partial x_{i}} \frac{\partial^{2} u_{k+1-j}}{\partial x_{i} \partial x_{1}}\right)=0 \tag{4.7}
\end{equation*}
$$

But, at $Q, \frac{\partial u_{j}}{\partial x_{i}}=0$ for $j \leq k, 1 \leq i \leq n-1$. Hence, (4.7) becomes

$$
\sum_{j=1}^{k} c_{j}\left(\frac{\partial^{2} u_{j}}{\partial x_{n} \partial x_{1}} \frac{\partial u_{k+1-j}}{\partial x_{n}}+\frac{\partial u_{j}}{\partial x_{n}} \frac{\partial^{2} u_{k+1-j}}{\partial x_{n} \partial x_{1}}\right)=0 \text { at } Q .
$$

Similar reasoning allows us to conclude

$$
\sum_{j=1}^{k} c_{j}\left(\frac{\partial^{2} U_{j}}{\partial x_{n} \partial x_{1}} \frac{\partial U_{k+1-j}}{\partial x_{n}}+\frac{\partial U_{j}}{\partial x_{n}} \frac{\partial^{2} U_{k+1-j}}{\partial x_{n} \partial x_{1}}\right)=0 \text { at } Q .
$$

As we saw above, $\frac{\partial U_{j}}{\partial x_{n}}=\frac{\partial u_{j}}{\partial x_{n}}$ at Q. Subtracting we obtain

$$
\begin{aligned}
& \sum_{j=1}^{k} c_{j}\left(\left(\frac{\partial^{2} u_{j}}{\partial x_{n} \partial x_{1}}-\frac{\partial^{2} U_{j}}{\partial x_{n} \partial x_{1}}\right) \frac{\partial u_{k+1-j}}{\partial x_{n}}\right. \\
& \quad+\frac{\partial u_{j}}{\partial x_{n}}\left(\frac{\partial^{2} u_{k+1-j}}{\partial x_{n} \partial x_{1}}-\frac{\partial^{2} U_{k+1-j}}{\partial x_{n} \partial x_{1}}\right)=0 \text { at } Q
\end{aligned}
$$

This contradicts (4.6), the fact that the constants c_{j} are positive, and the fact that $\frac{\partial u_{j}}{\partial x_{n}}$ is positive at Q. This concludes the proof that critical points for the functional \mathscr{E}_{k} must be balls of the appropriate volume.

To treat the functional $\xi_{k, x_{0}}$, we assume that D is a critical point for $\mathscr{E}_{k, x_{0}}$ and that H is a hyperplane satisfying either condition (i) or (ii) above. Let G be the Green's function for the Laplace operator on D,

$$
\begin{aligned}
\Delta G & =-\delta_{x_{0}} \text { on } D \\
G & =0 \text { on } \partial D
\end{aligned}
$$

where $\delta_{x_{0}}$ is the delta mass at x_{0}. For notational convenience we will write $G=m_{0}$. As above, let $\Sigma=\Sigma(H)$ be the cap defined by H and let $\Sigma^{\prime}=\Sigma^{\prime}(H)$ be the reflection of Σ about H. Define a function M_{k} in $\Sigma^{\prime}=\Sigma^{\prime}(H)$ by $M_{k}(x)=m_{k}(\sigma(x))$, where σ is the reflection map about H. Note that $\Delta M_{k}(x)=-M_{k-1}$ on Σ^{\prime} and that M_{k} satisfies the following boundary conditions in Σ^{\prime} :

$$
\begin{gather*}
M_{k}=m_{k} \text { on } H \cap \partial \Sigma^{\prime} \\
M_{k}=0 \text { on } H^{c} \cap \partial \Sigma^{\prime} \\
\sum_{j=0}^{k-1} d_{j} \frac{\partial U_{k-j}}{\partial v} \frac{\partial M_{j}}{\partial v}=C^{\prime} \text { on } \partial D \cap \partial \Sigma^{\prime} \tag{4.8}
\end{gather*}
$$

where the d_{j} and C^{\prime} are as in (1.4) and U_{k-j} satisfy (4.4), as above.

We will show that D is symmetric about H for arbitrary initial data H_{0} and, in addition, that $x_{0} \in H$. To show that D is symmetric about H, it suffices to show that $u_{j}=U_{j}$ or that $m_{j}=M_{j}$ for some value of $j \leq k$.

To begin, assume that $x_{0} \in H$. Then, as in Lemma 4.1, $m_{j}-M_{j}$ is superharmonic on Σ^{\prime} and nonnegative on $H^{c} \cap \partial \Sigma^{\prime}$. Hence, applying the proof given above to the pairs m_{j}, u_{k-j} and M_{j}, U_{k-j} we conclude that D is symmetric about H.

Next, assume that $x_{0} \notin H$. There are three possibilities:
Case 1: $x_{0} \in \Sigma^{\prime}$. Note than $m_{j}-M_{j}$ is still superharmonic for all j. Hence, the argument given above leads immediately to a contradiction.
Case 2: $x_{0} \notin \Sigma^{\prime} \cup H \cup \Sigma$. As above, $m_{j}-M_{j}$ is superharmonic on Σ^{\prime}. Hence, by the above argument, D is symmetric about H and $D=\Sigma^{\prime} \cup(D \cap H) \cup \Sigma$, contradicting the fact that $x_{0} \in D$.
Case 3: $x_{0} \in \Sigma$. In this case, $m_{j}-M_{j}$ is no longer superharmonic. To obtain a contradiction, consider the family of planes parallel to H_{0} but starting on the opposite side of D. These planes eventually reach a stopping plane, H^{*}, which defines a cap $\Sigma\left(H^{*}\right)$ and its reflection, $\Sigma^{\prime}\left(H^{*}\right)$. Note that the moving planes defining H^{*} never pass the plane H because $\Sigma^{\prime}(H) \subset D$ and $\Sigma^{\prime}\left(H^{*}\right) \subset D$. Since $x_{0} \in \Sigma$, it follows that $x_{0} \notin \Sigma\left(H^{*}\right)$. Hence, either case 1 or case 2 , above, holds for the case where the plane H is replaced by the plane H^{*} and we obtain a contradiction.

This proves that D is a critical point for the functional $\xi_{k, x_{0}}$ if and only if D is a ball of volume v centered at x_{0}.

This concludes the proof of Proposition 1.1.
Remark 4.1: It would be natural to hope that these results could be generalized and extended to the case of non-constant coefficient operators. One natural direction in which to proceed would be to consider those diffusions with associated infinitesimal generator given by the Laplace operator with respect to some Riemannian metric on \mathbb{R}^{n} (these operators will in general not fall into the class of divergence form operators, as defined in the introduction). In this context, one would hope that the exit time moments and the averaged (with respect to the associated induced volume form) exit time moments would be maximized at geodesic balls and that the critical points of the associated functionals could be characterized by overdetermined boundary value problems which "rigidly" determine the domain. There are a number of obstructions to carrying out such a program. First, the boundedness of the functionals determined by the exit time moments on the set of domains of constant volume must be established. There
are a number of restrictions which will assure that this is the case. For example, if the metric satisfies a classic isoperimetric inequality (not automatically satisfied), the functionals will be bounded. Next, one must establish powerful results analogous to Serrin's theorem. While such theorems are not true in the general case, there are contexts (such as constant curvature space forms) for which there is hope that such results hold. This will be treated in another paper.

References

[AS] Aizenman, M., Simon, B.: Brownian motion and Harnack inequalities for Schrodinger operators, Comm. Pure and Appl. 35, 209-273 (1982)
[AK] Athreya, K.B., Kurtz, T.G.: A generalization of Dynkin's identity, Ann. of Prob. 1, 570-579 (1973)
[B] Bandle, C., Isoperimentric Inequalities and Applications, Pitman Publishing Inc., Marshfield, Mass (1980)
[BC] Banuelos, R., Carroll, T.: Brownian Motion and the Fundamental Frequency of a Drum, Duke Math. J. 75, 575-602 (1994)
[BCH] Banuelos, R., Carroll, T., Housworth, E. (To appear), Inradius and Integral Means for Green's Functions and Conformal Mappings, Proc. Amer. Math. Soc.
[EM] Elcrat, A.R., and Miller, K.G. Variational formulas on Lipschitz domains, Trans. AMS. 347, 2667-2689 (1995).
[FM] Fromm, S.J., McDonald, P. (To appear), A symmetry problem from probability, Proc. Amer. Math. Soc.
[GS] Garabedian, P.R., Schiffer, M, Convexity of domain functionals, J. Analyse Math. 2, 281-368 (1953)
[H] Hamilton, R.S. The inverse function theorem of Nash and Moser, Bull. AMS. 7, 65-222 (1982)
[Ha] Ha'sminskii, R.Z. Probabilistic representation of the solution of some differntial equations, Proc. 6th All Union Conf. on Theor. Probability and Math. Statist. (Vilnius 190) (See Math Rev. 3127) v. 32, (1966) pg. 632 (1960).
[KM1] Kinateder, K.K.J., McDonald, P. Brownian functionals on hypersurfaces in Euclidean space, Proc. Amer. Math. Soc. 125, 1815-1822 (1997).
[KM2] Kinateder, K.K.J., McDonald, P. Hypersurfaces in \mathbb{R}^{d} and the variance of exit times for Brownian motion, Proc. Amer. Math. Soc. 125, 2453-2462 (1997)
[P] Pinsky, M., Stochastic Processes - Mathematics and Physics, Lecture Notes in Mathematics, vol. 1158, Springer Verlag, New York, pp. 216-233
[PS] Polya, G., Szego, G. Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, N.J. (1951)
[PW] Protter, M., Weinberger, H. Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, N.J. (1967)
[S] Serrin, J., A symmetry problem in potential theory, Arch. Rat. Mech. and Anal. 43, 304-318 (1971)

