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Abstract. Let Xt be a di�usion in Euclidean space. We initiate a study
of the geometry of smoothly bounded domains in Euclidean space
using the moments of the exit time for particles driven by Xt, as
functionals on the space of smoothly bounded domains. We provide a
characterization of critical points for each functional in terms of an
overdetermined boundary value problem. For Brownian motion we
prove that, for each functional, the boundary value problem which
characterizes critical points admits solutions if and only if the critical
point is a ball, and that all critical points are maxima.
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1. Introduction

In this paper we initiate a study of the geometry of smoothly bounded,
connected, open domains in Rd with compact closure, using di�usions
in Rd and properties of their exit times from these domains.

We begin by ®xing notation. Let Xt be a di�usion in Rd with
in®nitesimal generator L, a uniformly elliptic operator. We will be
particularly interested in operators of divergence form. Such operators
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act on C1�Rd� according to the rule Lf � div�aijrf � where the co-
e�cient matrix aij�x� is smooth and symmetric. Let D be the space of
smoothly bounded, connected open domains in Rd with compact
closure. Let Dv be the subset of D consisting of those domains D 2 D
such that the volume of D, denoted jDj, is v. For x0 2 Rd ®xed, let
Dv;x0 be the subset of Dv consisting of those domains that contain x0.
We note that each of the spaces D;Dv and Dv;x0 is a Frechet manifold.

For D 2 D, let s � s�x� � infft � 0 : Xt�x� j2Dg be the ®rst exit
time of Xt from D.

Given a domain D 2 Dv;x0 and a positive integer, k, we associate to
D two sequences of positive real numbers as follows. Let Ek;x0�D� be
given by

Ek;x0�D� � Ex0�sk� �1:1�
where Ex denotes expectation under the measure Px satisfying
PxfX0 � xg � 1, for all x 2 Rd . Similarly, for D 2 Dv and k a positive
integer, let Ek�D� be de®ned by

Ek�D� �
Z

D
Ex�sk� dx �1:2�

where dx is Lebesgue measure on Rd .
To concisely state our main results, we ®x a positive integer k and

view (1.1) and (1.2) as de®ning maps Ek;x0 : Dv;x0 ! R and
Ek : Dv ! R. These maps are smooth (cf section 2 below) with respect
to the natural Frechet space structure on the spaces Dv;x0 and Dv,
respectively. Our main result characterizes the critical points of these
maps in terms of overdetermined boundary value problems associated
to the operator L:

Theorem 1.1. Let D 2 Dv. Suppose that L is a smooth divergence form
operator, L � div�aijr�. For 1 � j � k, let uj be de®ned inductively by

Lu1 � 1 � 0 on D

u1 � 0 on @D

and

Luj � jujÿ1 � 0 on D

uj � 0 on @D :

Then D is a critical point of the functional Ek if and only if there is a
solution of the overdetermined boundary value problem consisting of the
above equations and
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Xk

j�1
cj
@uk�1ÿj

@m
huj; miL � C on @D �1:3�

where C is a constant, huj; miL � �ruj�Taijm is the conormal derivative
associated to L, and the constant cj is given by

cj � k!

�k � 1ÿ j�!j! :

Similarly, D 2 Dv;x0 is a critical point of the functional Ek;x0 if and only
if there is a solution of the overdetermined boundary value problem
consisting of the above equations and

@G
@m
�x0; ��hruk; miL �

Xkÿ1
j�1

dj
@ukÿj

@m
hrmj; miL � C0 on @D �1:4�

where C0 is a constant, huj; miL � �ruj�Taijm is the conormal derivative
associated to L, G is the Green's function for L, mj is de®ned inductively
by

Lm1 � G�x0; �� � 0 on D

m1 � 0 on @D

and

Lmj � mjÿ1 � 0 on D

mj � 0 on @D ;

and the constant dj is given by

dj � k!

�k ÿ j�! :

The overdetermined boundary value problems occurring in the
statement of our theorem are closely related to a well studied collec-
tion of problems ®rst investigated by Serrin [S]. Using our theorem
and a technique developed in [FM], we obtain the following result:

Proposition 1.1. Let Xt be standard d-dimensional Brownian motion. Let
Ek and Ek;x0 be de®ned as above. Then D 2 Dv is a critical point of Ek if
and only if D is a ball of volume v. Similarly, D 2 Dv;x0 is a critical point
of Ek;x0 if and only if D is a ball of volume v centered at x0:

Using symmetric rearrangement, Aizenman-Simon (cf [AS]) give a
short proof that the ball centered at x0 is a global maximum for the
map Ek;x0 . More precisely, they prove: Among Lebesgue measurable
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domains of a ®xed volume which contain x0 in their interiors, the ball
centered at x0 maximizes Ek;x0�D� for each value of k. Their argument
can be modi®ed to establish the same result for the sequence Ek�D�.
We have chosen to work in the context of smoothly bounded do-
mains. Our techniques require the existence of a C1-unit normal vector
and depend on results of Serrin for C2-domains. In this sense, the
results of [AS] are more general than those we prove in Proposition
1.1. On the other hand, our results give more detailed information
concerning the behavior of exit time moments from less general sets.

Our interest in the sequences de®ned by (1.1) and (1.2) is largely
motivated by the now classical work concerning the extent to which
the Dirichlet spectrum of a Euclidean domain determines the geom-
etry of the domain. An early result in this direction is the theorem of
Faber-Krahn: Among smooth domains of a ®xed volume, the ball
minimizes the principal Dirichlet eigenvalue. The theorem of Aizenman
and Simon cited above can be regarded as an analog of the result of
Faber-Krahn for the sequence Ek;x0�D�. This suggests a natural
problem: Given a smoothly bounded Euclidean domain, what geo-
metric parameters can be recovered from the sequences (1.1) and
(1.2)?

Before proceeding, a few additional words concerning related work
are in order. In [KM1], Kinateder and McDonald prove Theorem 1.1
for the special case k � 1. Similar results are established for the
variance of the exit time and the average variance of the exit time in
[KM2].

For D � R2, the quantity E1�D� is perhaps better known as the
torsional rigidity associated to a beam of uniform cross section D.
That E1�D� is maximized among domains of a ®xed area by a disk is
the content of the St. Venant torsion problem, an old problem with
extensive associated literature (cf [PS]). In particular, there are a
number of results providing bounds for E1�D� in terms of various
geometric quantities associated to a Euclidean domain. Among these
results are a number of estimates which bound E1�D� in terms of the
inner radius, sD, associated to D (the supremum of the radii over all
disks contained in the domain D) (cf [B]). There are similar estimates
for the functional E1;x0�D�. For example (cf [BC]), There is a universal
constant, b, such that if D is a simply connected planar domain, then

sup
x2D

Ex�s� � br2D :

Inequalities of this form allow one to use the expected lifetime of
Brownian motion in D to estimate a number of geometric invariants
associated to simply connected planar domains. This approach is
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introduced in [BC] (cf also [BCH]) where the authors use Brownian
motion and conformal mapping (including the schlicht Bloch-Landau
constant) to estimate the best constant, a, in Hayman's inequality:
There is a universal constant a such that if D is a simply connected
planar domain with principal Dirichlet eigenvalue kD, then

kD � a
r2D

:

Among the many geometric properties one might choose to study
using the sequences de®ned by (1.1) and (1.2), it would be interesting
to know to what extent it is possible to improve the estimates of
[BC].

The authors thank the referee for a careful reading of the manu-
script and a number of helpful suggestions which improved the ex-
position of the paper.

2. Basic results and de®nitions

Let �X;B� be a measurable space and fPxgx2Rd a family of prob-
ability measures on �X;B�: Let fXtgt�0 denote a d-dimensional dif-
fusion with generator L, a uniformly elliptic operator in divergence
form, Lf � div �aijrf � where the coe�cient matrix aij�x� is smooth
and symmetric, and for which PxfX0 � xg � 1; for x 2 Rd :

Let D be a smoothly bounded domain in Euclidean space. As in the
introduction, we de®ne the ®rst exit time for a particle driven by Xt

from D by s � s�x� � infft : Xt�x� j2Dg. For each x 2 Rd , we will
denote the expected value of a random variable Y under the proba-
bility measure Px by Ex�Y �.

There is a useful relationship between the solution of a certain
Poisson problem on the domain D 2 D and the expected value of the
kth power of the ®rst exit time of a particle driven by Xt from D
starting at x 2 D. Suppose uk solves the problem

Lkuk � �ÿ1�kÿ1k! � 0 on D

uk � Luk � � � � � Lkÿ1uk � 0 on @D :
�2:1�

Note that uk can be de®ned inductively by

Lu1 � 1 � 0 on D

u1 � 0 on @D
�2:2�

and
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Luk � kukÿ1 � 0 on D

uk � 0 on @D :
�2:3�

Using the generalized Dynkin formula [Ha] (cf also [AK] and [P]) we
have

Ex�uk�X0�� ÿ Ex�uk�Xs�� �
Xkÿ1
j�1

�ÿ1�j
j!

Ex�sjLjuk�Xs��

� �ÿ1�
k

�k ÿ 1�! Ex

Z s

0

skÿ1Lkuk�Xx� ds
� �

:

Using the de®nition of uk and s, this gives

uk�x� � Ex�sk� :
We now express Ek;x0 and Ek in terms of uk:

Ek;x0�D� � uk�x0� �2:4�

Ek�D� �
Z

D
uk�x� dx : �2:5�

The space D carries the structure of a Frechet manifold (see [H] for a
thorough survey of the geometry of Frechet manifolds). Each element
of D 2 D can be naturally identi®ed with its boundary @D. As @D is a
compact hypersurface, there is a di�eomorphism between a tubular
neighborhood of @D in Rd and a neighborhood of the zero section of
the normal bundle N@D of @D. A neighborhood D 2 D is identi®ed
with a neighborhood of the zero section in the Frechet space
C1�@D;N@D�. This identi®cation provides us with the required
Frechet structure.

Recall, a map F : D! R is smooth if for any point D 2 D we can
®nd charts around D in D such that the local representation of F with
respect to these charts is a smooth map of Frechet spaces. The de-
rivative of F at a point D 2 D is the induced linear map on the tangent
space at D 2 D, dDF : TDD! TF �D�R.

To see that (2.4) and (2.5) de®ne smooth maps onD, ®x D 2 D and
consider a neighborhood U � D identi®ed with a neighborhood of the
zero section of the normal bundle C1�@D;N@D�. An element h 2 U
can be smoothly extended to a vector ®eld on D in such a fashion that
the extension vanishes outside a collar neighborhood of @D in D. This
allows one to de®ne a (less than canonical) family of di�eomorphisms
D! Dt given by ¯owing in the direction of the extension of h. For the
case k � 1, we can pull back the boundary value problems (2.1) on Dt

to boundary value problems for a second order di�erential operator
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on D whose coe�cients depend smoothly on the di�eomorphism and
the choice of h. Hence, for k � 1 the maps de®ned by (2.4) and (2.5)
are smooth. Clearly, the argument extends to general k and we see that
the maps de®ned by (2.4) and (2.5) are smooth. A variant of this
argument, ®rst given by Hilbert in his study of the dependence of
Dirichlet eigenvalues on the underlying domain, was used to examine
a wide range of problems in the foundational paper of Garabedian
and Schi�er [GS]. A modern version of many of their results appears
in [EM].

Throughout this discussion we have focused on the space D.
Similar remarks apply to the space Dv (as well as for Dv;x0 ; which is an
open set in Dv�. The space Dv is a Frechet manifold. Near a point
D 2 Dv we have coordinate neighborhoods given by the Frechet space
C10 �@D;N@D� where

C10 �@D;N@D� � f 2 C10 �@D;N@D� :

Z
@D

f dr � 0

� �
: �2:6�

There is a natural identi®cation TDDv ' C10 �@D;N@D�. In the sequel
we will compute the derivatives of the maps de®ned by (2.4) and (2.5)
by computing the derivatives in the space D and restricting to tangent
vectors given by (2.6).

3. First variation

In this section we compute the Frechet derivative of each of the maps
(1.1) and (1.2) using the natural charts described in the previous
section.

Proposition 3.1. Suppose that L is a divergence form operator and that
Ek : Dv ! R is as de®ned in (1.2). Let D 2 Dv and suppose that
dDEk : TDDv ! R is the derivative of Ek at D. Then

dDEk�f � �
Xk

j�1
cj

Z
@D

f
@uk�1ÿj

@m
hruj; miL dr �3:1�

where f 2 C1 �@D� is a tangent vector, dr is surface measure on @D, m
is the outward pointing unit normal vector, uj�x� solves (2.3),
hruj; miL � �ruj�T�aij�m is the conormal derivative associated to L, and
the constant cj is given by

cj � k!

�k � 1ÿ j�!j! : �3:2�
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Proof. Let D 2 D and write S � @D. Suppose f 2 C1�@D� represents
an in®nitesimal variation of D. Let Ut be a one-parameter family of
di�eomorphisms associated to f , let St � Ut�S� and let Dt be the
corresponding one-parameter family of domains. Let uk be the solu-
tion of (2.3) and let ut

k be the solution of

Lut
k � kut

kÿ1 � 0 on Dt

ut
k � 0 on @Dt � St :

�3:3�

Then

dDEk�f � � d
dt

����
t�0

Z
Dt

ut
k ÿ

Z
D

uk

� �

� d
dt

����
t�0

Z
Dt\D
�ut

k ÿ uk� �
Z

DtnD
ut

k ÿ
Z

DnDt

uk

" #
:

Recall, uk vanishes on S and ut
k vanishes on St. Hence,

d
dt

��
t�0

R
DtnD ut

k ÿ
R

DnDt
uk

h i
� 0. We conclude that

dDEk�f � � d
dt

����
t�0

Z
Dt\D
�ut

k ÿ uk�
� �

: �3:4�

On Dt \ D, let

Pj � ujL�ut
k�1ÿj ÿ uk�1ÿj� ÿ �ut

k�1ÿj ÿ uk�1ÿj�Luj : �3:5�
A straight-forward computation yields

�ut
k ÿ uk� �

Xk

j�1
cjPj �3:6�

where the cj are the constants given in (3.2). By the divergence the-
orem, Z

Dt\D
Pj �

Z
@�Dt\D�

�ujhr�ut
k�1ÿj ÿ uk�1ÿj�; miL

ÿ �ut
k�1ÿj ÿ uk�1ÿj�hruj; miL� dz

where m is the outward normal vector to Dt \ D, hruj; miL is the co-
normal derivative associated to L, and dz is surface measure. We
conclude that

d
dt

����
t�0

Z
Dt\D

Pj � d
dt

����
t�0

Z
@�Dt\D�

�uk�1ÿj ÿ ut
k�1ÿj�hruj; miL dz :

The boundary @�Dt \ D� can be partitioned as @�Dt \ D� � S� [ Sÿt ,
where
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S� � fr 2 S : f �r� � 0g
Sÿ � fr 2 S : f �r� < 0g
Sÿt � fy � r� tf �r�m�r� 2 St : r 2 Sÿg :

We write

d
dt

����
t�0

Z
@�Dt\D�

�uk�1ÿj ÿ ut
k�1ÿj�hruj; miL dz

� d
dt

����
t�0

Z
S�
�uk�1ÿj ÿ ut

k�1ÿj�hruj; miL dr

�
�
Z

Sÿt

�uk�1ÿj ÿ ut
k�1ÿj�hruj; mtiL dz

�
;

where mt is the outward normal to St and dr is surface measure. Ex-
panding uk�1ÿj near t � 0

uk�1ÿj�Ut� ÿ uk�1ÿj�Uo� � t ruk�1ÿj;
d
dt

����
t�0

Ut

� �
� o�t�

� tf
@uk�1ÿj

@m
� o�t� : �3:7�

Let Jt be the Jacobian of the map Ut and note that Jt�r� � 1�O�t�.
Then,

d
dt

����
t�0

Z
Sÿt

�uk�1ÿj ÿ ut
k�1ÿj�hruj; miL dz

� d
dt

����
t�0

Z
Sÿ

uk�1ÿj�Ut�r��hruj�Ut�r��; m�Ut�r��iLJt�r� dr

and, using (3.7), we conclude that

d
dt

����
t�0

Z
Sÿt

�uk�1ÿj ÿ ut
k�1ÿj�hruj; miL dz �

Z
Sÿ

f
@uk�1ÿj

@m
hruj; miL dr :

Similarly,

d
dt

����
t�0

Z
S�
�uk�1ÿj ÿ ut

k�1ÿj�hruj; miL dr �
Z

S�
f
@uk�1ÿj

@m
hruj; miL dr :

Hence,

d
dt

����
t�0

Z
@�Dt\D�

�uk�1ÿj ÿ ut
k�1ÿj�hruj; miL dz

�
Z

S
f
@uk�1ÿj

@m
hruj; miL dr :

�3:8�
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Combining (3.4)±(3.6) and (3.8) completes the proof of the proposi-
tion.

Proposition 3.2. Suppose that L is a divergence form operator and that
Ek;x0 :Dv ! R is as de®ned in (1.1). Let D 2 Dv and suppose that
dDEk;x0 : TDDv ÿ! R is the derivative of Ek;x0 at D. Then

dDEk;x0�f � �
Z
@D

f
�
@G
@m
�x0; ��hruk; miL

�
Xkÿ1
j�1

dj
@ukÿj

@m
hrmj; miL

�
dr

�3:9�

where f 2 C1�@D� is a tangent vector, G is the Green's function for
the operator L on the domain D, dr is surface measure on @D, m
is the outward pointing unit normal vector, uj�x� solves (2.3),
hruj; v�L � �ruj�T�aij�m is the conormal derivative associated to L, the
function mj are de®ned inductively as the solutions of the boundary value
problems given by

Lm1 � G�x0; �� � 0 on D

m1 � 0 on @D

and

Lmj � mjÿ1 � 0 on D

mj � 0 on @D
�3:10�

and the constant dj is given by

dj � k!

�k ÿ j�! : �3:11�

Proof. The proof is similar to the proof of the previous proposition.
Let D 2 D and write S � @D. Suppose f 2 C1�S� represents an in-
®nitesimal variation of D. Let Ut be a one-parameter family of di�e-
omorphisms associated to f , let St � Ut�S� and let Dt be the
corresponding one-parameter family of domains. Let uk be the solu-
tion of (2.3) and let ut

k be the solution of (3.3). Let G � G0 � G�x0; ��
be the Green's function for the operator L on the domain D and let
Gt � Gt�x0; �� be the Green's function for the operator L on the do-
main Dt. Then
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dDEk;x0�f � �
d
dt

����
t�0

k
Z

Dt

ut
kÿ1G

t ÿ k
Z

D
ukÿ1G

� �
� d

dt

����
t�0

k
Z

Dt\D
ut

kÿ1�Gt ÿ G� � �ut
kÿ1 ÿ ukÿ1�G

� �
� d

dt

����
t�0

k
Z

DtnD
ut

kÿ1G
t ÿ k

Z
DnDt

ukÿ1G

" #
:

Recall, ukÿ1 and Gt�x0; �� vanish on S and ut
kÿ1 and G�x0; �� vanish on

St. Hence,

d
dt

����
t�0

Z
DtnD

ut
kÿ1G

t ÿ
Z

DnDt

ukÿ1G

" #
� 0 :

We conclude that

dDEk;x0�f � �
d
dt

����
t�0

k
Z

Dt\D
ut

kÿ1�Gt ÿ G� � �ut
kÿ1 ÿ ukÿ1�G

� �
: �3:12�

Let mj be given as in (3.10) and suppose mt
j is de®ned inductively

by

Lmt
1 � Gt�x0; �� � 0 on Dt

mt
1 � 0 on @Dt

and

Lmt
j � mt

jÿ1 � 0 on Dt

mt
j � 0 on @Dt :

For x 2 Dt \ D, note that Gt�x0; �� ÿ G�x0; �� satis®es L�Gt ÿ G� � 0. In
particular,

ut
kÿ1�Gt ÿ G� � 1

k
�ut

kL�Gt ÿ G� ÿ �Gt ÿ G�Lut
k� : �3:13�

Let

Rj � mjL�ut
kÿj ÿ ukÿj� ÿ �ut

kÿj ÿ ukÿj�Lmj : �3:14�
Note that

k�ut
kÿ1 ÿ ukÿ1�G �

Xkÿ1
j�1

djRj �3:15�

where dj are the constants given in (3.11). By the divergence the-
orem,
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d
dt

����
t�0

Z
Dt\D

ut
kÿ1�Gt ÿ G� � d

dt

����
t�0

1

k

Z
@�Dt\D�

ut
khr�Gt ÿ G�; miL

ÿ �Gt ÿ G�hrut
k; miL dz

� d
dt

����
t�0
ÿ 1

k

Z
@�Dt\D�

�Gt ÿ G�hrut
k; miL dz

�3:16�
and

d
dt

����
t�0

Z
Dt\D

Rj � d
dt

����
t�0

Z
@�Dt\D�

mjhr�ut
kÿj ÿ ukÿj�; miL

ÿ �ut
kÿj ÿ ukÿj�hrmj; miL dz

� d
dt

����
t�0
ÿ
Z
@�Dt\D�

�ut
kÿj ÿ ukÿj�hrmj; miL dz

�3:17�

where m is the outward normal vector to Dt \ D and hrvj; miL is the
conormal derivative associated to L.

As in Proposition 3.1, the boundary @�Dt \ D� can be partitioned
as @�Dt \ D� � S� [ Sÿt , where

S� � fr 2 S : f �r� � 0g
Sÿ � fr 2 S : f �r� < 0g
Sÿt � fy � r� tf �r�m�r� 2 St : r 2 Sÿg :

Beginning with (3.16) and proceeding as in Proposition 3.1 we ob-
tain

d
dt

����
t�0

k
Z

Dt\D
ut

kÿ1�Gt ÿ G� �
Z

S
f
@G
@m
�x0; ��hruk; miL dr �3:18�

where m is the outward pointing unit normal vector to S. Similarly,
beginning with (3.17) and proceeding as in Proposition 3.1, we ob-
tain

d
dt

����
t�0

Z
Dt\D

Rj �
Z

S
f
@ukÿj

@m
hrmj; miL dr : �3:19�

Combining (3.12), (3.13), (3.15), (3.18) and (3.19) concludes the
proof of the proposition.

Proof of Theorem 1.1. Theorem 1.1 follows immediately from Prop-
osition 3.1, Proposition 3.2, and the characterization of the tangent
space given in (2.6).
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4. Brownian motion

Proof of Proposition 1.1. We begin by noting that for L � 1
2D, where

D is the Laplace operator, Theorem 1.1 implies that D is a critical
point for Ek if and only if there is a solution to the heirarchy of
boundary value problems

1

2
Du1 � 1 � 0 on D

u1 � 0 on @D ;

1

2
Duj � jujÿ1 � 0 on D

uj � 0 on @D; for j � 2; . . . ; kXk

j�1
cj
@uk�1ÿj

@m
@uj

@m
� C on @D :

�4:1�

Similarly, Theorem 1.1 implies that D is a critical point for Ek;x0 if
and only if there is a solution to the heirarchy of boundary value
problems

1

2
Du1 � 1 � 0 on D

u1 � 0 on @D ;

1

2
Duj � jujÿ1 � 0 on D

uj � 0 on @D; for j � 2; . . . ; k

@G
@m
�x0; �� @uk

@m
�
Xkÿ1
j�1

dj
@ukÿj

@m
@mj

@m
� C0 :

�4:2�

where G and mj are as in the statement of Theorem 1.1.
Suppose that D is a ball of volume v and radius r. Suppose that

k � 1. Then the solution to (4.1) is given by

u1�x� � r2 ÿP x2i
d

where the xi are Euclidean coordinates with origin at the center of the
ball. We can express uk in terms of ukÿ1 and the Green's function for
D:

uk�x� � ÿk
Z

D
ukÿ1�y�G�x; y� dy :
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In particular, if ukÿ1 is radial with respect to the center of D, then uk

is radial with respect to the center of D. This proves that a ball of
volume v is a critical point for each of the functional Ek and Ek;x0 for
every k.

The converse statement is much involved. The proof we give
follows the ideas developed in [FM] which in turn is inspired by
the beautiful paper of Serrin, [S]. The argument is by moving
planes.

Let D be a critical point for the function Ek. By Theorem 1.1, D is a
domain for which we have a solution, uk, of the overdetermined
boundary value problem (4.1).

In [S] Serrin uses the method of moving planes to prove the fol-
lowing fundamental result:

Theorem S. Suppose that D � Rd is a smoothly bounded, connected
domain with compact closure and that D is the Laplace operator. Sup-
pose that u solves

Du� 1 � 0 on D

u � 0 on @D

@u
@m
� k0on @D :

�4:3�

Then D is a ball and u is a radially symmetric function.

This establishes that D is a critical point for the functional Ek if and
only if D is a ball of volume v in the case k � 1. In [FM] the authors
use a moving planes argument to establish that D is a critical point for
the functional Ek if and only if D is a ball of volume v for the case
k � 2. It is also shown in [FM] that D is a critical point for the
functional Ek;x0 if only if D is a ball of volume v centered at x0 for the
case k � 1. In the sequel we will modify the proofs given in [FM] to
complete the proof of Proposition 1.1 for all k.

Fix a hyperplane H0 � Rd not intersecting D. Move the hyperplane
parallel to itself toward D. The hyperplane will eventually cut o� from
D an open cap, R�H�, where H is parallel to H0 and intersects D. (By
``cap'' we do not preclude the possibility that the region being cut o�
from D is disconnected, which may occur if D is not convex.) The
re¯ection of R�H� in H , denoted R0�H�, will initially lie in D. This will
remain true as H continues to move into D, until one of the following
two conditions occurs:

(i) R0�H� is internally tangent to @D at a point P not on H , or
(ii) H is orthogonal to @D at some point Q.
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Assume that H satis®es either (i) or (ii) above. De®ne a function Uk

in R0 � R0�H� by Uk�x� � uk�r�x��, where r is the re¯ection map about
H . Note that DUk�x� � ÿkUkÿ1 on R0 and that Uk satis®es the fol-
lowing boundary conditions in R0:

Uk � uk on H \ @R0
Uk � 0 on Hc \ @R0Xk

j�1
cj
@Uk�1ÿj

@m
@Uj

@m
� C

�4:4�

where the cj and C are as in (4.1), above.
To show that D is a sphere, if su�ces to show that D is sym-

metric about H for arbitrary initial data H0. To show that D is
symmetric about H , it su�cies to show that uj � Uj for some value
of j � k.

Assume that uj 6� Uj for all j � k. We require the following lem-
ma:

Lemma 4.1. Suppose that uk satis®es (4.1). Suppose that R0 � R0�H� and
Uk are de®ned as above and that uj 6� Uj for all j � k. Then uk > Uk on
the interior of R0.

Proof. Suppose that k � 1. Then D�uk ÿ Uk� � 0. From (4.4) Uk � 0
on Hc \ @R0 and, by the maximum principle, uk � 0 on R0. Hence, by
the maximum principle and the assumption that uk 6� Uk, uk > Uk on
R0 when k � 1. Suppose that ukÿ1 > Ukÿ1 on R0. Then
D�uk ÿ Uk� � ÿk�ukÿ1 ÿ Ukÿ1� < 0 on R0. Since uk ÿ Uk � 0 on @R0,
we get that uk > Uk on the interior of R0 for all k by the maximum
principle.

Suppose now that H satis®es condition (i). Then by the boundary
point maximum principle (cf [PW]),

@

@m
�uj ÿ Uj� > 0 at P

for each value of j � k. This contradicts the fact that at P ,Xk

j�1
cj
@uk�1ÿj

@m
@uj

@m
�
Xk

j�1
cj
@Uk�1ÿj

@m
@Uj

@m
;

where the cj are the positive constants occuring in Proposition
3.1.

Next, suppose that H satis®es condition (ii). We can not apply the
standard version of the Hopf boundary point maximum principle (as
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we did above) as the exterior sphere condition fails at Q. We will use a
sharpening of the theorem due to Serrin.

Choose coordinates in Rd such that the origin is at Q, the positive
xn-axis has the same direction as the inward normal to @D at Q, and
the positive x1-axis is normal to H , pointing away from R0. Let s be a
vector at Q which is nontangential with respect to @R0, and let @

@s be the
corresponding directional derivative. We will apply the following
lemma (essentially Lemma 1 of [S], cf also [FM]):

Lemma 4.2 Suppose that w 2 C2�R0�, Dw � 0 it and w � 0 at Q. Then if
w 6� 0, either

@w
@s

> 0 or
@2w
@s2

> 0 at Q :

As in [FM], we apply this lemma to uj ÿ Uj, j � k, with
@
@s � @

@x1
� @

@xn
. Note that near Q,

Uj�x1; x2; . . . :xn� � uj�ÿx1; x2; . . . ; xn�; for all j � k : �4:5�
From this it follows that at Q, @uj

@xn
� @Uj

@xn
, j � k. Since uj is zero on @D

and x1 is a tangential direction at Q, @uj

@x1
� 0, j � k, at the point Q.

Hence,
@uj

@x1
� @Uj

@x1
, j � k, and we obtain @�ujÿUj�

@s � 0 at Q. Using Lemma

4.2, we conclude that

@2

@s2
�uj ÿ Uj� > 0 at Q for all j � k : �4:6�

Now we compute:

@2

@s2
� @2

@x21
� @

@x2n
ÿ 2

@2

@x1@xn
:

From (4.5) we conclude

@2uj

@x21
� @

2Uj

@x21
for all j � k

@2uj

@x2n
� @

2Uj

@x2n
for all j � k :

Since uj, 1 � j � k, vanishes on @D, ruj is normal to @D and we can
write the boundary condition given in (4.1) asXn

i�1

Xk

j�1
cj
@uj

@xi

@uk�1ÿj

@xi
� C :

If we di�erentiate this in the tangential direction x1 we obtain
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Xn

i�1

Xk

j�1
cj

@2uj

@xi@x1

@uk�1ÿj

@xi
� @uj

@xi

@2uk�1ÿj

@xi@x1

� �
� 0 : �4:7�

But, at Q; @uj

@xi
� 0 for j � k; 1 � i � nÿ 1. Hence, (4.7) becomesXk

j�1
cj

@2uj

@xn@x1

@uk�1ÿj

@xn
� @uj

@xn

@2uk�1ÿj

@xn@x1

� �
� 0 at Q :

Similar reasoning allows us to concludeXk

j�1
cj

@2Uj

@xn@x1

@Uk�1ÿj

@xn
� @Uj

@xn

@2Uk�1ÿj

@xn@x1

� �
� 0 at Q :

As we saw above,
@Uj

@xn
� @uj

@xn
at Q. Subtracting we obtainXk

j�1
cj

@2uj

@xn@x1
ÿ @2Uj

@xn@x1

� �
@uk�1ÿj

@xn

�

� @uj

@xn

@2uk�1ÿj

@xn@x1
ÿ @

2Uk�1ÿj

@xn@x1

� �
� 0 at Q :

This contradicts (4.6), the fact that the constants cj are positive, and
the fact that

@uj

@xn
is positive at Q. This concludes the proof that critical

points for the functional Ek must be balls of the appropriate volume.
To treat the functional nk;x0 , we assume that D is a critical point for

Ek;x0 and that H is a hyperplane satisfying either condition (i) or (ii)
above. Let G be the Green's function for the Laplace operator on D,

DG � ÿdx0 on D

G � 0 on @D

where dx0 is the delta mass at x0. For notational convenience we will
write G � m0. As above, let R � R�H� be the cap de®ned by H and let
R0 � R0�H� be the re¯ection of R about H . De®ne a function Mk in
R0 � R0�H� by Mk�x� � mk�r�x��, where r is the re¯ection map about
H . Note that DMk�x� � ÿMkÿ1 on R0 and that Mk satis®es the fol-
lowing boundary conditions in R0:

Mk � mk on H \ @R0
Mk � 0 on Hc \ @R0Xkÿ1

j�0
dj
@Ukÿj

@m
@Mj

@m
� C0on @D \ @R0 �4:8�

where the dj and C0 are as in (1.4) and Ukÿj satisfy (4.4), as above.
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We will show that D is symmetric about H for arbitrary initial data
H0 and, in addition, that x0 2 H . To show that D is symmetric about
H , it su�ces to show that uj � Uj or that mj � Mj for some value of
j � k.

To begin, assume that x0 2 H . Then, as in Lemma 4.1, mj ÿMj is
superharmonic on R0 and nonnegative on Hc \ @R0: Hence, applying
the proof given above to the pairs mj, ukÿj and Mj, Ukÿj we conclude
that D is symmetric about H .

Next, assume that x0 j2H . There are three possibilities:
Case 1: x0 2 R0. Note than mj ÿMj is still superharmonic for all j.
Hence, the argument given above leads immediately to a contradic-
tion.
Case 2: x0 j2R0 [ H [ R. As above, mj ÿMj is superharmonic on R0.
Hence, by the above argument, D is symmetric about H and
D � R0 [ �D \ H� [ R, contradicting the fact that x0 2 D.
Case 3: x0 2 R. In this case, mj ÿMj is no longer superharmonic. To
obtain a contradiction, consider the family of planes parallel to H0 but
starting on the opposite side of D. These planes eventually reach a
stopping plane, H�, which de®nes a cap R�H�� and its re¯ection,
R0�H��. Note that the moving planes de®ning H� never pass the plane
H because R0�H� � D and R0�H�� � D. Since x0 2 R, it follows that
x0 j2R�H��. Hence, either case 1 or case 2, above, holds for the case
where the plane H is replaced by the plane H� and we obtain a con-
tradiction.

This proves that D is a critical point for the functional nk;x0 if and
only if D is a ball of volume m centered at x0.

This concludes the proof of Proposition 1.1.

Remark 4.1: It would be natural to hope that these results could be
generalized and extended to the case of non-constant coe�cient op-
erators. One natural direction in which to proceed would be to con-
sider those di�usions with associated in®nitesimal generator given by
the Laplace operator with respect to some Riemannian metric on Rn

(these operators will in general not fall into the class of divergence
form operators, as de®ned in the introduction). In this context, one
would hope that the exit time moments and the averaged (with respect
to the associated induced volume form) exit time moments would be
maximized at geodesic balls and that the critical points of the asso-
ciated functionals could be characterized by overdetermined boundary
value problems which ``rigidly'' determine the domain. There are a
number of obstructions to carrying out such a program. First, the
boundedness of the functionals determined by the exit time moments
on the set of domains of constant volume must be established. There
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are a number of restrictions which will assure that this is the case. For
example, if the metric satis®es a classic isoperimetric inequality (not
automatically satis®ed), the functionals will be bounded. Next, one
must establish powerful results analogous to Serrin's theorem. While
such theorems are not true in the general case, there are contexts (such
as constant curvature space forms) for which there is hope that such
results hold. This will be treated in another paper.
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