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Abstract. Recently the connection between control and game prob-
lems and Backward Stochastic Di�erential Equations has been es-
tablished. This allows us to use an approximation scheme for such
equations in order to construct an e-optimal control.
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1. Introduction

In this paper we deal with the following game problem: r persons are
involved in a game whose state is described by the equation

dX u�t� � r�t;X u� dW �t� � b�t;X u; u�t;X u�� dt

where W is a d-dimensional Brownian motion and u is a r-dimensional
admissible control i.e. a progressively measurable process de®ned on
the canonical path space. The i'th player in¯uences the game by means
of the i'th component of the control u which appear in the drift term b.
He has to minimize a cost function de®ned by

Ji�u� � E ei
a�T ;X u�gi�X u� �

Z T

0

ei
a�s;X u�hi�s;X u; u�s;X u�� ds

� �
:

where g is a ®nal cost, h is a running cost on the game period and
ei
a�t;X u� :� exp �ÿai�t;X u�� is an actualization factor.

Probab. Theory Relat. Fields 111, 453±467 (1998)



One looks for a control u� which is optimal in the sense that it is a
saddle point for the problem i.e.

Ji�u�� � Ji�u�1; . . . ; u�iÿ1; u; u
�
i�1; . . . ; u�r �; 8 1 � i � r ;

for every admissible control u. This is the well known Nash equilib-
rium point.

If r � 1 this is a classical control problem and if r � 2 and J1 � ÿJ2
this is a zero-sum game problem. Both this situations are essentially
one dimensional in the sense that a single cost function appears. In
this case the Hamiltonian function associated to the problem is
Lipschitz continuous but in the multi-dimensional case it may be even
discontinuous. In the one-dimensional case reasonably general su�-
cient conditions for the existence and unicity of an optimal control are
known but in the multidimensional case this is an open problem. In
the Markov case and under the hypothesis that the Hamiltonian
function is continuous, an existence result has recently been given in
[HamadeÁ ne, Lepeltier, Peng]. Here we do not deal with optimal
controls but construct an e-optimal control ue i.e. a control such that

Ji�ue� � Ji�ue
1; . . . ; ue

iÿ1; u; u
e
i�1; . . . ; ue

r� � e; 8 1 � i � r :

The control ue appears as an explicit function of two sequences of
independent random variables ± Gaussian (respectively Poisson) dis-
tributed. This may be viewed as a starting point to construct a nu-
merical algorithm.

2. A priori inequalities

On a probability space �X; F ; P � a Brownian motion B � �B1; . . . ;Bd�
and a sequence of independent random variables rk; k 2 N are
given. Each rk is exponentially distributed with parameter k and is
independent of the Brownian motion B. We de®ne s0 � 0;
sk � r1 � � � � � rk and note that sk; k 2 N , are the jump times of a
Poisson process N which is independent of B. We consider this process
as starting from T and going backward to zero. So we de®ne

Tk :� max�0; T ÿ sk� :
Since the Brownian motion B runs forward and the Poisson process N
runs backward one can not use the stochastic calculus for the two
processes simultaneously. Anyway, since the two processes are inde-
pendent, one can use it twice separately. In order to do this we work
on a product probability space X � X0 � X00;x � �x0;x00�;B depends
on x0 and N depends on x00. �F 0t �t�0 is the ®ltration generated by B-(i.e.
F 0t is the completion of r�Bs : s � t)) and �F 00t �t�0 is the ®ltration
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generated by N-(i.e. F 00t is the completion of r�Ns : s � t��: Finally
G0t � F 0t � F 001 and G00t � F 0T � F 00Tÿt:

The main ingredient in our calculus is the evaluation in the fol-
lowing lemma. Consider some processes y�t�;u�t�;w�t�; b�t� 2 Rr and
z�t� 2 Rr�d which are right continuous, adapted to both the ®ltrations
�G0t�t�0 and �G00t �t�0; and satisfy the system of equations

y�t� �
Z T

t
z�s� dB�s� � n�

Z T

t
�b�s� � u�s�� ds

�
Z Tÿt

0

1

k
w�T ÿ s� d ~N�s�

� n�
Z T

t
�b�s� � u�s� � w�s�� ds

�
X
t�Tk

1

k
w�Tk� : �1�

Here

~N�s� � N�s� ÿ ks

is the compensated Poisson process and the second equality in (1) is
due to

P
t�Tk

1
k w�Tk� �

R Tÿt
0

1
k w�T ÿ s� d N�s� .

We assume that

i) E
R T

t �jy�t�j2 � jz�t�j2 � jw�t�j2 � jb�t�j2 � ju�t�j2� ds <1
ii) hy�t�;u�t�i � cjy�t�j�jy�t�j � jz�t�j� (2)
iii) jb�t�j � ju�t�j � jw�t�j � c1=2�1� jy�t�j � jz�t�j� :

Lemma 1. Assume that kÿ1=2c � 1=16. Then

Ejy�t�j2 � E
Z T

t
jz�s�j2 ds

� C Ejnj2 �
Z T

t
jb�s�j2 ds� 1���

k
p 1� E

Z T

t
jw�s�j2 ds

� �� �
;

�3�

with C � C0 exp �3�c� 1�2T �;C0 depending on c in (2) iii) only.
ii) For any p 2 N there are some constants C;C0 which depend on p

and c in (2) iii) such that, for k � C;

Ejy�t�j2p � E
Z T

t
jz�s�j2 ds

� �p

� C0 Ejnj2p � 1
� �

: �4�

Remark. In order to get (4) the hypothesis (2) ii) and the control of b
in (2) iii) are not necessary.
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Remark. The above lemma appears in [Bally] under the stronger as-
sumption ju�t�j � K�jy�t�j � jz�t�j� which corresponds to the case
where the generator function in the BSDE is Lipschitz continuous.
The weakened hypothesis (2) ii) allows to work under monotonicity
assumptions only (see (13) iii)).

Proof. One writes (1) for t � S � T and takes the di�erence in order
to get

y�S� � J�S� ÿ I�S� with

J�S� � y�t� �
Z S

t
z�s� dB�s� ÿ

Z S

t
�b�s� � u�s�� ds �5�

I�S� �
Z Tÿt

TÿS

1

k
w�T ÿ s� d ~N�s� :

The isometry property yields

EjI�S�j2 � 1

k
E
Z S

t
jw�s�j2 ds ; �6�

and further, since J�S� � y�S� � I�S�,

EjJ�S�j2 � 2Ejy�S�j2 � 2

k
E
Z S

t
jw�s�j2 ds : �7�

We now look at S ! J�S�; S � t, as a semimartingale with respect to
the ®ltration �G0t�t�0 and use ItoÃ 's formula in order to get

EjJ�T �j2 � Ejy�t�j2 � E
Z T

t
jz�s�j2 dsÿ 2E

Z T

t
hJ�s�; b�s� � u�s�i ds

that is

Ejy�t�j2 � E
Z T

t
jz�s�j2 ds � EjJ�T �j2 � 2E

Z T

t
hJ�s�;b�s� � u�s�i ds :

�8�
By (7)

2E
Z T

t
jhJ�s�; b�s�ij ds � E

Z T

t
jJ�s�j2 ds� E

Z T

t
jb�s�j2 ds

� 2E
Z T

t
jy�s�j2 ds� 2T

k
E
Z T

t
jw�s�j2 ds

� E
Z T

t
jb�s�j2 ds :
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Further, since J�s� � y�s� � I�s�;

2E
Z T

t
hJ�s�;u�s�i ds � 2E

Z T

t
hy�s�;u�s�i ds

� 2E
Z T

t
hI�s�;u�s�i ds :� a� b:

Using (2) ii) and 2cjy�s�j jz�s�j � 4c2jy�s�j2 � 1
4 jz�s�j2 one gets

jaj � �4c2 � 2c�E
Z T

t
jy�s�j2 ds� 1

4
E
Z T

t
jz�s�j2 ds :

Using (2) iii) and the hypothesis 4kÿ1=2 c � 1=4 one gets

2jhI�s�;u�s�ij � k1=2jI�s�j2 � kÿ1=2ju�s�j2

� k1=2jI�s�j2 � 4kÿ1=2c� 1
4�jy�s�j2 � jz�s�j2�

and so, by (6)

jbj � T���
k
p E

Z T

t
jw�s�j2 ds� 4kÿ1=2cT

� 1

4
E
Z T

t
jy�s�j2 ds� 1

4
E
Z T

t
jz�s�j2 ds :

Coming back to (8) and noting that J�T � � y�T � � n one gets

Ejy�t�j2 � E
Z T

t
jz�s�j2 ds

O2Ejnj2 � E
Z T

t
jb�s�j2 ds� K���

k
p �1� E

Z T

t
jw�s�j2 ds�

� 4c2 � 2c� 1

4

� �
E
Z T

t
jy�s�j2 ds� 1

2
E
Z T

t
jz�s�j2 ds :

One cancels the term in z and then uses Gronwall's lemma in order to
prove (3).

Let us now prove (4). We ®x t � T and, for S 2 �t; T � we de®ne

/�S� � y�t� �
Z S

t
z�s� dB�s� � y�S� �

Z S

t
�b�s� � u�s�� ds

�
Z Tÿt

TÿS

1

k
w�s� d ~N�s� :
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By Ito's formula

Ej/�t � h�j2p � Ejy�t�j2p � 2p�2p ÿ 1�E
Z t�h

t
j/�s�j2pÿ2jz�s�j2 ds

� Ejy�t�j2p :

Then, by (1) and (2) iii)

Ejy�t�j2p �9�

� C1 Ejy�t � h�j2p � E
Z t�h

t
�b�s� � u�s�� ds

� �2p
(

� E
Z Tÿt

Tÿtÿh
kÿ1w�s� d ~N�s�

� �2p
)

� C1

�
Ejy�t � h�j2p � hp � E

Z t�h

t
�jb�s�j2 � ju�s�j2� ds

� �p

�kÿpE
Z Tÿt

Tÿtÿh
jw�s�j2 ds

� �p�
� C2

�
Ejy�t � h�j2p

� �hp � kÿp� � E
Z t�h

t
�1� jy�s�j2 � jz�s�j2� ds

� �p�
:

Using Burkholder's inequality and the equation (1) one gets

E
Z t�h

t
jz�s�j2 ds

� �p

� C3E
Z t�h

t
z�s� dB�s�

� �2p

� C3

�
Ejy�t�j2p � Ejy�t � h�j2p

� E
Z t�h

t
�b�s� � u�s�� ds

� �2p

� E
Z Tÿt

Tÿtÿh
kÿ1w�s� d ~N�s�

� �2p�
� C4

�
Ejy�t � h�j2p

� �hp � kÿp� � E
Z t�h

t
�1� jy�s�j2 � jz�s�j2� ds

� �p�
:
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Assume that C4�hp � kÿp� � 1=2: Then

1

2
E
Z t�h

t
jz�s�j2 ds

� �p

� C5

�
Ejy�t � h�j2p

� �hp � kÿp� � E
Z t�h

t
�1� jy�s�j2� ds

� �p�
: �10�

We plug this in the right hand side of (9) and get

Ejy�tj2p � C6 Ejy�t � h�j2p � E
Z t�h

t
�1� jy�s�j2� ds

� �p
( )

which by Gronwall's lemma yields

Ejy�tj2p � C7�Ejy�t � h�j2p � 1� :
Using iteration one gets Ejy�tj2p � C7�Ejn�j2p � 1� and further, using
(10) one gets the same inequality for z. (

3. Backward stochastic di�erential equations

We consider the equation E�n; f �

Y �t� �
Z T

t
Z�s� dB�s� � n�

Z T

t
f �s; Y �s�;Z�s�� ds �11�

where
n 2 L2�X0�r �12�

and f : �0; T � � X0 � Rr � Rr�d ! Rr is such that �t;x0� ! f �t;x0; y; z�
is progressively measurable with respect to �F 0t �t�0 and

i) E
Z T

0

jf �t;x0; 0; 0�j2 ds <1 ;

ii) jf �t;x0; y; z�j � C1�1� jyj � jzj� ;
iii) hy ÿ y0; f �t;x0; y; z� ÿ f �t;x0; y0; z�i � C2jy ÿ y0j2 ; �13�
iv) jf �t;x0; y; z� ÿ f �t;x0; y; z0�j � C2jzÿ z0j :

We also consider the equation Ek��n; �f �:
�Y �t� �

Z T

t

�Z�s� dB�s� � �n� 1

k

X
t�Tk

�f �Tk; �Y �Tk�; �Z�Tk��

� �n�
Z T

t

�f �s; �Y �s�; �Z�s�� ds

� 1

k

Z Tÿt

0

�f �Tÿs; �Y �Tÿs�; �Z�s�� d ~N�s� : �14�

Construction of asymptotically optimal controls 459



Theorem 2. i) Assume that n; �n satisfy (12) and f ; �f satisfy (13). Then,
for k � C,

E� sup
t�T
jY �t� ÿ �Y �t�j2� � E

Z T

0

jZ�t� ÿ �Z�t�j2 dt

� C0
�

E�jnÿ �nj2� � 1���
k
p � E

Z T

0

j �f �s; �Y �s�; �Z�s��:

ÿf �s; �Y �s�; �Z�s��j2 dt
�
; �15�

where C0 � C00 exp�C000C2
2T � with C;C00;C000 depending on C1 in (13)(ii).

ii) For any p 2 N there exist constants C;C0 depending on p and on
C1 such that

sup
t�T

E�j�Y �t�j2p� � E
Z T

0

j�Z�t�j2 dt
� �p

� C0�Ej�nj2p � 1� : �16�

Proof. (15) follows from (3) with y � Y ÿ �Y ; z � Z ÿ �Z and (16) fol-
lows from (4) with y � �Y ; z � �Z: (

Remark. It is proved in [Pardoux] that under (12), (13) and the ad-
ditional hypothesis that f is continuous in y; z; the equation E�n; f �
has a unique solution. Contrary to the initial existance result proved
in [Peng, Pardoux], f here is not assumed to be Lipschitz continuous
in y-the monotonicity assumption (13) iii) is su�cient. The proof in
[Pardoux] is based on an intricate L2-compactness argument. The
inequality (15) (actually an obvious variant of this inequality) pro-
vides a simple and natural alternative proof: one constructs the so-
lution �Y ; Z� as the limit of the solutions ��Y ; �Z� of the equations
Ek�n; f �; as k!1: Note that ��Y ; �Z� may be constructed using the
representation theorem on each of the intervals �Tk�1; Tk�:

On the other hand, if �n and x0 ! f �t;x0; y; z� are simple functionals
±i.e. depend on a ®nite number of increments of the Brownian motion
B-then ��Y ; �Z� may be explicitly calculated as a function of these in-
crements and of rk; k 2 N (see [Bally]). So one may look at ��Y ; �Z� as an
approximation scheme for �Y ;Z�:

4. The game problem

On the probability space X � X0 � X00 are given the Brownian motion
B which depends on x0 and a sequence of Poisson processes Nn; n 2 N
which depend on x00 and are independent of B.
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The admissible controls are functions u : �0; T � � C � X0 ! U
where C :� C��0; T �; Rd� and �U ; d� is a metric space. u is assumed to
be progressively measurable with respect to Ct � F 0t ; t � 0; where
Ct; t � 0; is the standard ®ltration on C (generated by the projections).

The coe�cients involved in the problem are

r : �0; T � � C ! Rd � Rd ;

a; h : �0; T � � C � Ur ! Rr;

b : �0; T � � C � Ur ! Rd ;

g : C ! Rr :

On C we consider the seminorms

jwjt � sup
s�t
jwtj

and assume that
(17) i) r; a; b; h are progressively measurable, bounded and for each

0 � t � T ;r�t; :�; a�t; �; ��; b�t; �; ��; h�t; �; �� ,g (�) are Lipschitz continu-
ous (with respect to jojt respectively to jojt � d�:

ii) r � cI for some constant c > 0 (as a consequence r is invertible
and rÿ1 has the same properties as r).

Let X be the solution of the equation

X �t� � x�
Z t

0

r�s;X � dB�s� : �18�

We denote

eb;u�t� � exp ÿ
Z t

0

hrÿ1b�s;X ; u�s;X ��; dB�s�i
�
ÿ 1
2

Z t

0

jrÿ1b�s;X ; u�s;X ��j2 ds
�

dPu � eb;u�T � dP

Wu�t� � B�t� ÿ
Z t

0

rÿ1b�s;X ; u�s;X �� ds :

Wu is a Brownian motion under Pu and X solves the equation

X �t� � x�
Z t

0

r�s;X �s�� dWu�s� �
Z t

0

b�s;X ; u�s;X �� ds : �19�

The cost function associated to the r-dimensional control u is de®ned by

J�u� � Eu�ea;u�T ;X �g�X � �
Z t

0

ea;u�s;X �h�s;X ; u�s;X �� ds�

with

ea;u�t;X � :� exp

Z t

0

a�s;X ; u�s;X �� ds
� �

:
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The interpretation of the cost function is the following: under Pu; X is
the controlled di�usion associated to u; g�X � is a ®nal cost and
h�t; �; �� is a running cost; ea;u�t;X � is an actualization factor. One
looks for a control u� which is optimal in the sense that

Ji�u�� � inf
u

Ji��u; u��i�; 1 � i � r �20�

where the in®mum is taken over all the admissible controls and

�x; y�i :� �y1; . . . ; yiÿ1; x; yi�1; . . . ; yr� for x 2 R; y 2 Rr:

In fact we do not look for an optimal control but for an e-optimal
control i.e. ue such that

Ji�ue� � inf
u

Ji��u; ue�i� � e; 1 � i � r : �21�

5. The backward stochastic di�erential equation associated
to the game problem

Following [El-Karoui, Quenez, Peng] and [HamadeÂ ne, Lepeltier] we
associate to the above game problem a BSDE in the following way.
De®ne the Hamiltonian function H : �0; T � � C � Rr � Rr�d � Ur ! Rr

by

Hi�t;w; y; z; u� � hi�t;w; u� � hzi;r
ÿ1b�t;w; u�i � yiai�t;w; u�

where z � �z1; . . . ; zr�; zi 2 Rd :
Then, for an admissible control u we de®ne

fu�t;x; y; z� � H�t;X �x�; y; z; u�t;X �x���
and denote by �Yu; Zu� the solution of the equation

Yu�t� �
Z T

t
Zu�s� dB�s� � g�X � �

Z T

t
fu�s; Yu�s�; Zu�s�� ds : �22�

Then

Yu�0� � J�u� : �23�

Proof. We write the i'th equation in the system (22) in terms of Wu

Y i
u�t� �

Xd

j�1

Z T

t
Zij

u �s� dW j
u �s�

� gi�X � �
Z T

t
hi�s;X ; u�s;X �� � Y i

u�s�ai�s;X ; u�s;X �� ds :
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Then, using Ito's formula

ei
a�T ;X �Y i

u�T � � ei
a�0;X �Y i

u�0� �
Xd

j�1

Z T

0

ei
a�s;X �Zij

u �s� dW j
u �s�

ÿ
Z T

0

ei
a�s;X �hi�s;X ; u�s;X �� ds :

One takes expectation with respect to Pu and gets (23).

6. The compatibility hypothesis

In order to construct an e-optimal control we need the following as-
sumption. There exists a function ue�t;w; y; z� such that

�Ce� i� Hi�t;w; y; z; ~ue�t;w; y; z�� � Hi�t;w; y; z; �u; ~ue�t;w; y; z��i�
� K�1� jyj � jzj�ke3 ;

8u 2 U ; 1 � i � r;

ii� j~ue�t;w; y; z� ÿ ~ue�t;w0; y0; z0�j � Le jy ÿ y0j � jzÿ z0jf
� �1� jyj � jzj�jwÿ w0jt

	
:

Remark. Le may blow up as e! 0, eg. Le � 1=e.

Remark. �Ce� is a relaxed version of the condition ``H admits a saddle
point'': say that H depends on w by means of w(t) only and assume
that there exists a function u��t; x; y; z� such that

�C�� Hi�t; x; y; z; u��t; x; y; z�� � inf
u�U

Hi�t; x; y; z; �u; u��t; x; y; z��i� :

Assume also that u� is uniformly continuous. Then one may construct
the function ~ue by regularization of u�.

Finally we give an example in which the Hamiltonian function is
discontinuous but the hypothesis �Ce� holds. Two persons �r � 2� are
playing a game whose evolution equation is described by the one
dimensional (d = 1) controlled di�usion process

X u�t� � x� B�t� �
Z t

0

�u1�s� � u2�s�� ds

with u � �u1; u2� 2 �0; 1�2. The cost function is Ji�u� � E�gi�X u�T ��;
i � 1; 2. So h � a � 0. Then

Hi�t;x; y; z1; z2; u1; u2� � zi�u1 � u2�; i � 1; 2 :
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Note that infu1z1�u1 � u2� � ÿjz1j � z1u2 and the in®mum is achieved
in u�1�z� � ÿsign�z1�. From this and from a symmetric relation one
gets

H�t;x; y; z; u��z�� � �ÿjz1j ÿ z1sign�z2�;ÿjz2j ÿ z2sign�z1��
which is discontinuous on the axes z1 � 0; z2 � 0.

We construct the control ~ue which satis®es �Ce� in the following
way: ~ui

e�zi� � f �zi� with f �x� � exÿ1 � sign�x� if jxj � e and f �x� � 0 if
jxj � e. Note that xf �x� � eÿ jxj and consequently

z1�~u1e �z2� � ~u2e �z2�� � eÿ jz1j � z1~u2e �z2� � e� z1�u� ~u2e �z2��
for each u 2 �ÿ1; 1�. This and a symmetric relation prove �Ce; i�. The
Lipschitz constant in �Ce; ii� is of order eÿ1.

7. Construction of an e-optimal control

Let D be the space of Rd-valued, right continuous with left hand limit
functions and let rn : �0; T � � D! Rd ; n 2 N be a sequence of pro-
gressively measurable functions such that

i� jrn�t;w� ÿ rn�t;w0�j � Kjwÿ w0jt 8w;w0 2 D; n 2 N ;

ii� jrn�t;w� ÿ r�t;w�j � K=
���
n
p 8w 2 C; n 2 N :

�24�

We construct Xn to be the Euler approximation of X i.e.

Xn
k � 1

n

� �
� Xn

k
n

� �
� rn

k
n
;Xn

� �
B

k � 1

n

� �
ÿ B

k
n

� �� �
;

Xn�t� � Xn
k
n

� �
for

k
n
� t <

k � 1

n
:

�25�

Standard calculations give

E sup
t�T
jX �t� ÿ Xn�t�jp

� �
� K=np=2 8p � 1 : �26�

Further, we construct, �Yn;e;Zn;e� to be the solution of

Yn;e�t� �
Z T

t
Zn;e�s� dB�s� � g�Xn� � 1

kn

X
t�T n

k

fn;e�T n
k ; Yn;e�T n

k �; Zn;e; �T n
k ��

�27�
where T n

k ; k�N , are the jump times of the Poisson process Nn of
parameter kn, which starts from T and runs backward to zero (see
Section a) and
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fn;e�t;x; y; z� :� H�t;Xn�x�; y; z; ~ue�t;Xn�x�; y; z�� :
The e-optimal control is

un;e�t; x;x0;x00� :� ~ue�t; x; Yn;e�t;x0;x00�;Zn;e�t;x0;x00�� :

Remark. x00 represents an auxiliary parameter introduced by our ap-
proximation scheme. So, for each ®xed x00 the admissible control is
�t; x;x0� ! un;e�t; x;x0;x00� which we denote by un;e�x00�.

Remark. Yn;e and Zn;e (and consequently un;e) may be calculated ex-
plicitly as functions of the independent random variables
B�k�1n � ÿ B�kn�; k � nT and sn

k � T n
k ÿ T n

k�1 (see [Bally]). In this sense
this would be a starting point for an approximation scheme.

Theorem 3. We assume that (17), (24) and (Ce) hold and take n large
enough in order that

K
L2e
n
� 1���

k
p

n

� �
� e3 �28�

where Le is the Lipschitz constant of ~ue (see �Ce; ii��� and K depends on
the constants in (17) and (24).

Then there exists X00e � X00 such that P �X00e � � 1ÿ 2e and, for
x00 2 X00e ;

Ji�un;e�x00�� ÿ e � J�i �x00� � Ji�un;��x00�� �29�
where

J �i �x00� : � inf
u

Ji��u; un;e�x00��i� :

Proof. De®ne

�f �t;x; y; z� � H�t;X �x�; y; z; un;e�t;X �x�;x��
and let ��Y ; �Z� be the solution of the eq. E�g�X �; �f �. We ®rst prove
that

EjYn;e�t� ÿ �Y �t�j2 � E
Z T

0

jZn;e�s� ÿ �Z�s�j2 ds � K
L2e
n
� 1���

k
p

n

� �
: �30�

We use Theorem 2.: �f satis®es (13) and by (26),
Ejg�Xn�ÿ g�X �j2 � K=n. Moreover

E
Z T

0

jfn;e�s;x; Yn;e�s�; Zn;e�s�� ÿ �f �s;x; Yn;e�s�;Zn;e�s��j2 ds
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� KL2e E
Z T

0

�1� jYn;e�s�j2 � jZn;e�s�j2� � jX ÿ Xnj2s ds

� KL2e E
Z T

0

�1� jYn;e�s�j2 � jZn;e�s�j2�2 ds
� �1=2

� E
Z T

0

jX ÿ Xnj4s ds
� �1=2

� KL2e=n

the last inequality being a consequence of (4) and of (26).
Now (30) follows from (15).
De®ne now

f �i �t; y; z� � inf
u�U

Hi�t;X ; y; z; �u; un;e�t;X ��i�
and let �Y �; Z�� be the solution of the equation E�g�X �; f ��.

We use Lemma 1.i) for y � �Y ÿ Y �; z � �Z ÿ Z� which satisfy (1)
with

ut � f ��t; �Y �t�; �Z�t�� ÿ f ��t; Y ��t�; Z��t��
bt � �f �t; �Y �t�; �Z�t�� ÿ f ��t; �Y �t�; �Z�t��
n � 0; w � 0 :

Clearly u satis®es (2) ii). Further we dominate jbj �P3
i�1 jbij with

b1t � �f �t; �Y �t�; �Z�t�� ÿ �f �t; Yn;e�t�;Zn;e�t��
b2t � f ��t; �Y �t�; �Z�t�� ÿ f ��t; Yn;e�t�; Zn;e�t��
b3t � �f �t; Yn;e�t�;Zn;e�t�� ÿ f ��t; Yn;e�t�; Zn;e�t�� :

Since �f and f � are Lipschitz continuous we may use (30) in order to
get

E
Z T

0

jb1s j2 � jb2s j2 ds � K
L2e
n
� 1���

k
p

n

� �
: �31�

Further, using the de®nition of ~ue one gets

Hi�t;X ; Yn;e�t�; Zn;e�t�; ~ue�t;X ; Yn;e�t�;Zn;e�t���
� inf

u
Hi�t;X ; Yn;e�t�; Zn;e�t�; �u; ~ue�t;X ; Yn;e�t�;Zn;e�t���i� � e3

� Hi�t;X ; Yn;e�t�;Zn;e�t�; ~ue�t;X ; Yn;e�t�;Zn;e�t��� � e3 :

So

j �f i�t; Yn;e�t�;Zn;e�t�� ÿ f �;i�t; Yn;e�t�; Zn;e�t��j � e3; 8 1 � i � r :

This, together with (31) yields
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E
Z T

0

jbsj2 ds � K
L2e
n
� 1���

k
p

n

� �
� e3 :

Now by Lemma 1. we get

EjY ��t� ÿ �Y �t�j2 � E
Z T

0

jZ��s� ÿ �Z�s�j2 ds � K
L2e
n
� 1���

k
p

n

� �
� e3 :

�32�
Finally we de®ne (recall that �Y �0� and Y ��0� depend on x00 but not on
x0)

X00e � fx00 : jY ��0;x00� ÿ �Y �0;x00�j � eg :
Use Chebyshev's inequality in order to get

P �XnX00e � � eÿ2EjY ��t� ÿ �Y �t�j2 � eÿ2K
L2e
n
� 1

kn

� �
� e � 2e :

Let us now prove (29). We ®x u�U ;x00 2 X00e and 1 � i � r, de®ne
ûi�x00� � �u; un;e�x00��i and take �Ŷ ; Ẑ� to be the solution of the equa-
tion (22) associated to the control ûi�x00�. We look to the i'th equation
of the system of equations (22) and use the comparison theorem in
order to get Ŷ i�0;x00� � Y �;i�0;x00�. Since x00 2 X00e it follows that

Ji�un;e�x00�� � �Y i�0;x00� � Y �;i�0;x00� � e � Ŷ i�0;x00� � e

� Ji��u; un;e�x00��i� � e :
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