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Abstract. We construct and study a continuous real-valued random
process, which is of a new type: It is self-interacting (self-repelling) but
only in a local sense: it only feels the self-repellance due to its occu-
pation-time measure density in the `immediate neighbourhood' of the
point it is just visiting. We focus on the most natural process with
these properties that we call `true self-repelling motion'. This is the
continuous counterpart to the integer-valued `true' self-avoiding walk,
which had been studied among others by the ®rst author. One of the
striking properties of true self-repelling motion is that, although the
couple �Xt; occupation-time measure of X at time t� is a continuous
Markov process, X is not driven by a stochastic di�erential equation
and is not a semi-martingale. It turns out, for instance, that it has a
®nite variation of order 3/2, which contrasts with the ®nite quadratic
variation of semi-martingales. One of the key-tools in the construction
of X is a continuous system of coalescing Brownian motions similar to
those that have been constructed by Arratia [A1, A2]. We derive
various properties of X (existence and properties of the occupation
time densities Lt�x�, local variation, etc.) and an identity that shows
that the dynamics of X can be very loosely speaking described as
follows: ÿdXt is equal to the gradient (in space) of Lt�x�, in a gener-
alized sense, even though x 7!Lt�x� is not di�erentiable.
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1. Introduction

1.1. General introduction

In the present paper, we construct and study a continuous real-valued
random process, which is of a new type: It is self-interacting (self-
repelling) but only in a local sense (we shall give a more precise
meaning to this later). We will focus on the most natural non-trivial
process with these properties that we call `true self-repelling motion'.
A more general approach to this class of processes will be developed in
a forthcoming paper.

One of the remarkable features of such processes and in particular
of ``true self-repelling motion'' X , is that they are (in general) not semi-
martingales; for instance, we shall see that X has a ®nite variation of
order 3/2, which contrasts with the ®nite quadratic variation of a non-
degenerate semi-martingale.

True self-repelling motion is the continuous counterpart of certain
self-interacting walks �Sn; n � 0� on Z, called `true self-avoiding walks'
(or sometimes also `myopic' self-avoiding walk; see a more precise
de®nition later in this introduction). It had been conjectured (see
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Amit-Parisi-Peliti [APP], Peliti-Pietronero [PP], Madras-Slade [MS])
that the correct asymptotic scaling is nÿ2=3Sn (i.e. Sn is of order n2=3).
In ToÂ th [T1], a limit theorem was proved in this scaling regime. We
believe that the true self-repelling motion constructed in the present
paper is the scaling limit of several other self-interacting walks or
processes (see for instance the example in Section 11, or the polymer
measure proposed by Durrett and Rogers in [DR]).

As we shall see, the true self-repelling motion (and our construction
will make this apparent) can be interpreted as the ®rst coordinate of a
process that explores a certain continuous planar random `generalized
labyrinth'. This `labyrinth' is in some sense the continuous limit of a
certain percolation in Z�N; see Section 11, especially Figures 1 and
2, for this discrete analog.

We focus in the present paper on the construction and the basic
properties of the continuous process X , and we do not derive invari-
ance principles (stating for instance that X is the weak limit of rescaled
true self-avoiding walks) for which delicate tightness arguments are
needed, but we plan to do so in future work. However, we remark here
that convergence of all ®nite dimensional distributions of the true self-
avoiding walk to those of X� constructed in the present work follows
from the arguments of [T1], where convergence of the one-dimen-
sional marginals is stated and proven. In Appendix B, we just give a
brief non-rigourous phenomenological motivation.

The asymptotic behaviour of various one-dimensional self-inter-
acting walks has been studied extensively. It has been shown that for
some `global' models where the self-interaction is `very' repulsive (such
as the Domb-Joyce model; see for instance [B,GH,K,MS] and the
references therein), the measure on self-repelling walks will asymp-
totically concentrate on ballistic motion (i.e. the continuous limit is a
linear function of time). On the other end of the spectrum, if the in-
teraction is `not too weakly' self-attracting, self-attracting walks will
eventually be stuck at some point or at some edge (i.e. the continuous
limit is constant) (see e.g. [D1]). Some other `weakly self-interacting
walks' do converge to semimartingales that can be constructed from
Brownian motion (for instance to perturbed Brownian motions, [D2,
W]). In all these cases, the dynamics of the limiting process after scaling
is either trivial or easy to understand; the self-interaction is either so
strong or so weak that the limiting process is `degenerate'. In the
present case, something completely di�erent happens. The self-inter-
action `passes to the limit' and gives rise to a completely new type of
process. The multi-dimensional problem is (as usual for this kind of
questions) much more di�cult, and not treated here.
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1.2. Properties of the true self-repelling motion

We now give a brief summary of the properties of the true self-re-
pelling motion X that we construct in the present paper:

Continuity, recurrence. Almost surely, X0 � 0, the process t 7!Xt is
continuous on �0;1� and for any x 2 R, ft � 0 : Xt � xg is unbounded.

Scaling. For all a > 0, �Xat; t � 0� and �a2=3Xt; t � 0� are identical in
law.

This scaling property shows that X is super-di�usive. The local
counterpart of this property is the ®nite variation of order 3/2 that we
have already mentioned:

Local variation. For all e > 0, de®ne by induction he
0 :� 0 and for all

n � 1,

he
n :� infft > he

nÿ1 : jXt ÿ Xhe
nÿ1 j � eg : �1:1�

Then, for all t � 0,

P- lim
e#0

e3=2 supfn � 0 : he
n � tg � 2���

p
p t : �1:2�

Here and throughout in the paper P-lim stands for limit in probability.

Occupation-time density. Almost surely, for all t � 0, the occupation-
time measure lt of X on the time-interval �0; t�, de®ned for all borelian
subset A of R by

lt�A� :�
Z t

0

1fXs2Agds �1:3�

has a bounded density with respect to the Lebesgue measure and this
density has a continuous version that we denote by Lt���.

L is the analog for X of local times for a semi-martingale. In the
sequel by a slight abuse of terminology, we will call Lt�x� the local time
of X at time t and level x (even if X is not a semi-martingale).

Markov property of �Xt;lt�. The process Xt; Lt���� �t�0 (or equivalently
the process Xt; lt� �t�0) is a Markov process.

In other words, the future of X after t depends only on the occu-
pation-time measure at time t (i.e. lt), and on the position of X at time
t. In this sense, this means that X is a self-interacting motion. So, the
process �Xt; Lt����t�0 can in fact be viewed as a continuous increasing
Markov process in the set of pointed continuous positive real-valued
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functions (that is in the set of pairs �x; f � where x 2 R and f is a
continuous positive real-valued function; see Section 10 for more on
this approach). The following property is crucial:

Locality. The self-interaction is local in the following sense: For all
t � 0, the law of X just after t depends only on Lt restricted to the
immediate neighbourhood of the point Xt. More precisely, we de®ne for
all open interval X the process X X (in short `X in X') as follows: For all
u � 0,

sX
u :� inf t > 0 :

Z t

0

1fXs2Xgds > u
� �

�1:4�

X X
u :� XsX

u
�1:5�

(in plain words: X X is obtained by glueing together the `excursions' of X
in X).

Then, if X and X0 are two disjoint open intervals in R, X X and X X0

are independent.
Moreover, if we introduce the occupation-time density LX

u ��� of X X

(so that for all u � 0 and x 2 X, LX
u �x� � LsX

u
�x�), then the process

�X X
u ; L

X
u ��� ÿ LX

u �X X
u ��u�0 is a Markov process.

An alternative ± maybe more enlightening ± formulation of this
property can be found at the end of subsection 5.2.

In other words, the process X is `feeling' only the self-interaction
due to its own past occupation-time measure at the points it is cur-
rently visiting. This could at ®rst glance suggest that X is the solution
of some sort of `stochastic di�erential equation' involving Xt and
(formally) grad�Lt�����Xt�: Loosely speaking, dXt does depend on the
`variation' of Lt in the `immediate neighbourhood' of Xt (roughly: the
`derivative' of Lt in the space-variable, at the point Xt).

The following result gives a more precise meaning to this state-
ment:

Dynamical driving mechanism. There exists a family of stopping times
T �x; h� indexed by the points of the halfplane, �x; h� 2 R�R�, such
that almost surely the Lebesgue measure of �0;1� n fT �x; h� :
�x; h� 2 R�R�g is 0, and such that for all �x; h� 2 R�R�:

P- lim
e#0

Z T �x;h�

0

Ls�Xs � e� ÿ Ls�Xs ÿ e�
2e

ds

� ÿXT �x;h�� 1
4

sup
0�s�T �x;h�

Xs � inf
0�s�T �x;h�

Xs

 !
: �1:6�
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Phenomenologically, this equation states that the motion is driven by
the negative gradient (in the space-variable) of the local time at the
actual position, as long as the moving point is in the interior of the
range swept in the past. This behaviour entitles us to call this process
`truely self-repelling'. In addition, at the edges of this range an in-
stantaneous partial re¯ection (moving boundary condition) is felt.
Indeed: writing (1.6) formally in di�erential form we ®nd:

dXt � ÿ @Lt�Xt�
@x

dt � boundary effects at sup
0�s�t

Xs and inf
0�s�t

Xs

� �
:

�1:7�
Strictly speaking, (1.7) does not make sense mathematically: the local
time process is so singular that a `di�erential equation' involving its
gradient can not be rigorously de®ned (we shall see that Lt��� has the
same regularity properties as Brownian motion). Nevertheless, this
formal way of writing may help the intuition about the dynamics of
the process.

Before giving more details on X and its construction, we just
mention now that the ¯avour of some features of X recalls (even if
they are not really related) the results of Rogers-Walsh [RW1, RW2],
on certain functionals of linear Brownian motion B, involving the
local time of Brownian motion taken at time t and level Bt. Similarly,
let us mention that a special degenerate example of locally self-inter-
acting motions (which are of a di�erent nature than true self-repelling
motion) is given by the so-called `perturbed Brownian motions' that
only `feel' the boundary e�ect (this is Brownian motion perturbed
only when it is at its past maximum or minimum; see Carmona-Petit-
Yor [CPY], Davis [D2] and Perman-Werner [PW]).

1.3. Idea of the construction and structure of the paper

The law of the occupation-time measures of X at suitable stopping
times can be described in a way that can recall the celebrated Ray-
Knight Theorems for the local times of Brownian motion. Our con-
struction of the process X is actually based upon this crucial property.
The present paper does not technically rely on the results of ToÂ th [T1],
but it is conceptually strongly connected with that paper so that it is
relevant, before we explain how we construct X , to recall some results
on the so-called `true self-avoiding random walk' on Z, de®ned as
follows: Si is a nearest neighbour walk on Z starting from the origin,
li�z� : i 2 N; z 2 Z is its local time on edges, i.e.
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li�z� :� #fj 2 �0; iÿ 1� : fSj; Sj�1g � fz; z� 1gg �1:8�
(note that we use a di�erent notation than that used in ToÂ th [T1] to
have here di�erent symbols for the discrete walk and for the contin-
uous motion). The true self-avoiding walk is governed by the law

P�Si�1 � Si � 1jS0; . . . ; Si� � exp�ÿgli�Si��
exp�ÿgli�Si�� � exp�ÿgli�Si ÿ 1��

� 1ÿ P�Si�1 � Si ÿ 1jS0; . . . ; Si� �1:9�
where g is a positive constant. In plain words, S prefers to jump along
the neighbouring edge it has visited less often in the past. (For a wider
class of related self-interacting random walks and generalized Ray-
Knight theorems see also [T2, T3, T4].) The designation `true' comes
from the fact that this is a true walk in contrast to the polymer models
that are also called self-avoiding walks (e.g. Edwards model, Domb-
Joyce model etc.; these do not de®ne a consistent family of probability
measures). De®ne also for all z 2 Z and m 2 N, the stopping times
(inverse local times)

sz;m :� minfi � 0 : li�z� � m� 1g ; �1:10�
and the local time process stopped at the inverse local time sz;m

~lz;m��� :� lsz;m��� : �1:11�
The core of the results in ToÂ th [T1] was a compound Ray-Knight type
theorem proved for the properly scaled process ~l�;����. Let x 2 R and
h 2 �0;1� be ®xed. Denote by U�x;h��y� a Brownian motion in R�
de®ned for y 2 �x;1� starting at `time' x from level h obeying the
following boundary conditions at 0: in the time interval �x; x�� (here
and in the sequel, x� � maxfx; 0g), U�x;h���� is instantaneously re-
¯ected at 0 and in the time interval �x�;1�, U�x;h���� is absorbed at the
®rst hitting of 0. We shall call such a process re¯ected/absorbed
Brownian motion, abbreviated RAB. The compound Ray-Knight type
theorem states the following weak convergence: for any x 2 R and
h > 0 ®xed,

~l�Ax�;� ���Ap rh���Ay��
2r

���
A
p ) U�x;h��y�; y 2 �x;1� �1:12�

when A!1, as process in the time parameter y (the constant r is an
explicit function of g, see (1.23) of [T1]).

It is not explicitly stated, but the methods of the cited paper allow
for the proof of a more general, joint weak convergence: let ®nitely
many pairs of coordinates �x1; h1�; . . . ; �xp; hp� 2 R� �0;1� be ®xed,
then
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~l�Ax1�;�
���
A
p

rh1���Ay1��
2r

���
A
p ; . . . ;

~l�Axp�;�
���
A
p

rhp���Ayp��
2r

���
A
p

 !
)
�
U�x1;h1��y1�; . . . ;U�xp;hp��yp�

�
y1 2 �x1;1�; . . . ; yp 2 �xp;1� �1:13�

when A!1, where �U�x1;h1����; . . . ;U�xp;hp����� are independent co-
alescing Brownian motions re¯ected from 0 in the time intervals
�xk; x�k �; k � 1; . . . ; p and absorbed instanteneously at the ®rst hitting
of 0 in the time-intervals �x�k ;1�; k � 1; . . . ; p, respectively (in other
words, independent coalescing RABs, or shortly CRABs; see the
begining of Section 2 for a precise formal de®nition of CRABs).

Our construction of the process is based upon the previous ob-
servation. In Section 2, we will construct a random map �x; h�
7!K�x;h���� on R� �0;1� that generalizes the ®nite family of inde-
pendent CRABs described above. Loosely speaking K is an in®nite
family of independent CRABs started from each point of R� �0;1�.
Analogous types of `continuous families' of coalescing Brownian
motions or di�usions have been introduced by Arratia [A2] (see also
Arratia [A1] and Harris [H]). One of the important features of K, that
will be of importance in the construction of X is a certain `self-duality'
property, described in Section 2.2. This will allow to construct (de-
terministically from K) a natural `continuous family' of continuous
functions �K�x;h������x;h�2R��0;1� de®ned on R such that

1) For all �x; h� 2 R� �0;1� and y � x, K�x;h��y� � K�x;h��y�
2) For all �x; h� 6� �x0; h0� in R� �0;1�, the two curves y 7!K�x;h��y�

and y 7!K�x0;h0��y� never cross.
3) The law of �x; h; y� 7!K�x;h��y� and that of �x; h; y� 7!K�ÿx;h��ÿy�

are identical.

The complete proofs of the construction of K are postponed to Sec-
tions 8 and 9, in order to focus on the main point: the construction
and analysis of X .

We will see (in Section 3) that the non-crossing property implies
that this family of curves induces a (random) total ordering of the
halfplane R� �0;1�. For any �x1; h1� 6� �x2; h2� in R� �0;1�, either
K�x1;h1��x2� < h2 or K�x2;h2��x1� < h1. In particular, if we de®ne

T �x; h� �
Z �1
ÿ1

K�x;h��y� dy; �1:14�

then T is injective from R� �0;1� into �0;1�, and its range is
almost surely of full Lebesgue measure in �0;1�. When t � T �x; h�
for some �x; h�, we say that the position of X at time t is Xt � x.
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The true self-repelling motion �Xt; t � 0� is then extended for all
t � 0 by continuity.

We then check (this is done in Section 4) that the family of curves
K�x;h� indeed represents the family of occupation time densities of X .
More precisely, we will show that the density of the occupation time
measure of X at time t has a continuous version (for all t � 0) that we
denote by Lt��� and that for all �x; h� 2 R� �0;1�, T �x; h� corre-
sponds to the `inverse local time', i.e. that

T �x; h� � infft � 0 : Lt�x� � hg �1:15�
and ®nally that for any �x; h� 2 R� �0;1�, for all y 2 R,

K�x;h��y� � LT �x;h��y� : �1:16�
In Section 5, we derive the Markov property (and its local version)

of the process Xt;Lt���� �t�0.
Section 6 is devoted to the dynamical driving mechanism, i.e. to the

proof of (1.6).
In Section 7, we derive the local variation result (1.2) for X as well

as an approximation result for the `local times' via upcrossings by the
process X . Also, some other pathwise properties of the process are
stated in that section.

Sections 8 and 9 are devoted to the complete proofs of the results
presented in Section 2 (respectively, the construction of the continu-
ous family of coalescing re¯ected/absorbed Brownian motions, and
the duality properties).

In Section 10, we make some brief comments on the stationary
limit of the process and on other self-avoiding motions.

Finally, in Section 11, we present a discrete counterpart to our
construction, together with some pictures that will hopefully help to
the understanding of the construction of X .

In Appendix A, we derive estimates of collision times by re¯ected/
absorbed Brownian motions that are used throughout the paper.
Appendix B is devoted to a non-rigorous phenomenological deriva-
tion of the invariance principle and the dynamical driving mechanism
(1.6).

1.4. Notation, preliminaries

D (resp. D�) denotes the set of dyadic rational numbers (resp. non-
negative dyadic rational numbers). We will use the notation R�� �
R� n f0g and D�� � D� n f0g. We also de®ne

E � R�R�� and ~E � D�D�� : �1:17�
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We also put
F� � f�x; h; y� 2 E�R : y � xg �1:18�

and
Fÿ � f�x; h; y� 2 E�R : y � xg : �1:19�

B denotes a one-dimensional Brownian motion started from h 2 R
under the probability measure Ph. For any x 2 R, we de®ne under the
probability measure Ph,

B��y� � jB�y ÿ x�j for all y � x �1:20�
and

s � inffy � max�x; 0� : B��y� � 0g : �1:21�
We then say that the law of �R�y�; y � x� de®ned by R�y� �
B��min�y; s�� is that of a re¯ected/absorbed Brownian motion (in the
sequel, we shall use the abreviation RAB) started from h at time x. In
plain words, R is a re¯ecting Brownian motion started from h at time x
and killed at its ®rst positive hitting time of 0.

More generally, when n � �xn; hn�n2I is a (possibly ®nite) sequence
in E (where I � N or I � f0; . . . ; pg for some p � 0), we de®ne a
sequence �Rn

�n��n2I of independent RABs such that for all n 2 I , Rn
�n� is

started from hn at time xn. We will drop the subscript �n� whenever
there is no possible confusion. Also, by a slight abuse of notation, and
in order to make some statement more explicit, we will sometime
denote Rn

�n� by Rn
�xn;hn�.

We will use several times in this paper estimates of hitting/collision
times probabilities for independent RABs. These estimates are stated
and derived in Appendix A, at the end of this paper.

For any real number x, bxc denotes the integer part of x and
dxe � bxc � 1.

2. The system of forward and backward lines

2.1. Forward lines: systems of coalescing RABs

Let us ®x for a while a (possibly ®nite) sequence n :� �xj; hj�j2I of
points in E. Recall that �Rj

�n��j2I (we will drop the subscript �n� when it
is not necessary) denotes a family of independent RABs such that for
each j 2 I , Rj is started from hj at time xj (in other words, Rj�x� is
de®ned for x � xj and Rj�xj� � hj).

We now de®ne C0
�n� :� R0

�n� and by induction, for all j � 1 in I :

xj :� inffx � xj : Rj�x� 2 fC0�x�; . . . ;Cjÿ1�x�gg �2:1�
mj :� minfk 2 f0; . . . ; jÿ 1g : Rj�xj� � Ck�xj�g �2:2�
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Cj�x� :� Rj�x� if xj � x � xj

Cmj�x� if xj � x <1

(
�2:3�

When I � f0; . . . ; pg, we call �C0
�n�; . . . ;Cp

�n�� a ®nite family of inde-
pendent coalescing RABs started from ��x0; h0�; . . . ; �xp; hp��.

In the sequel, the abreviation FICRAB will stand for `family of
independent coalescing re¯ected-absorbed Brownian motions'.

Note that the law of fC0
�n�; . . . ;Cp

�n�g is in fact independent of the
order in which we performed the coalescence. More precisely, if r
denotes a permutation of f0; . . . ; pg, and if �n � r� denotes the ®nite
sequence ��xr�0�; hr�0��; . . . ; �xr�p�; hr�p��� then the law of �Cr�0�

�n�r�; . . . ;

Cr�p�
�n�r�� is identical to that of �C0

�n�; . . . ;Cp
�n��: this can be viewed as a

simple consequence of the strong Markov property of the process
�R0
�n�; . . . ;Rp

�n��.
Note also that, if I � N, the family of processes �Cn

�n��n2N con-
structed in this way is such that for any ®nite set J � N, �Cj

�n��j2J is a
®nite FICRAB started from ��xj; hj��j2J . This leads us to the following
general de®nition:

De®nition. [In®nite family of independent coalescing re¯ected/ab-
sorbed Brownian motions] For any non-empty set f�xa; ha� : a 2 Ag
� E, we will say that the family �Ca�a2A is a family of independent
coalescing re¯ected-absorbed Brownian motions (FICRAB) started
from ��xa; ha��a2A, if and only if for any ®nite subset fa1; . . . ; apg of A,
the law of �Ca1 ; . . . ;Cap� is that of a FICRAB started from
��xa1 ; ha1�; . . . ; �xap ; hap��.

The inductive procedure described in (2.1)±(2.3) (when n is an in-
®nite sequence) constructs a countable FICRAB �Cn

�n��n�0 started

from ��xn; hn��n�0. Suppose now that r is a bijection between N
and N, and de®ne n � r :� �xr�n�; hr�n��n2N. Then, the law of �Cr�n�

�n�r��n�0
is identical to that of �Cn

�n��n�0 (as for all p � 1, the law of

�Cr�n�
�n�r��n2f0;...;pg is identical to that of �Cn

�n��n2f0;...;pg). In other words,
the law of a countable FICRAB started from given points is unique,
and independent of the chosen order of coalescence (see Arratia [A1,
A2] for analogous statements and a more detailed discussion of this).

The following statement shows, loosely speaking, existence and
unicity of the law of a certain FICRAB started from ��x; h���x;h�2E,
with certain regularity and monotonicity conditions. As E is not
countable, this is not straightforward. Note also that the order of the
quantors becomes important (one cannot interchange `almost surely'
and `for all �x; h� 2 E').
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Theorem 2.1. [Existence and unicity of the process of forward lines]

(i) There exists a random map F� 3 �x; h; y� 7!K�x;h��y� 2 R� such
that:
(i1) �K�x;h���x;h�2E is a FICRAB started from ��x; h���x;h�2E.
(i2) Almost surely, for all �x; h� 2 E, K�x;h��x� � h.
(i3) Almost surely, for all �x1; h1�, �x2; h2� in E and z � y � maxfx1; x2g:

K�x1;h1��y� < K�x2;h2��y�
� � �) K�x1;h1��z� � K�x2;h2��z�

� �
: �2:4�

(i4) Almost surely, for all x � y, the mapping h 7!K�x;h��y� is left-con-
tinuous on �0;1�.

(ii) If K0 :� �K0�x;h���x;h�2E is another family with these properties, then
K and K0 are identical in law.

Note that combining (i2) and (i3) shows that almost surely, for all
x � y, the mapping h 7!K�x;h��y� is non-decreasing on �0;1�.

A large part of the proof of this proposition is very close to that of
similar statements in Arratia [A1, A2]; we give in this subsection only
the fundamental ingredients of the construction of the process K��;�����
± for a complete proof of Theorem 2.1 see Section 8.

Sketch of construction and proof of (i3), (i4). The process K��;����� can
be explicitly de®ned as follows: Let ~n :� �~xn; ~hn�n2N denote an arbi-
trary ®xed bijection between N and ~E (this bijection will be ®xed and
used throughout the paper). We construct the countable FICRAB
�Cn
�~n��n�0 started from ��~xn; ~hn��n�0, by induction just as in (2.1)±(2.3).

During the rest of this paper, we will put

Fn�x� :� Cn
�~n��x� �2:5�

for all n � 0 and x � ~xn. Loosely speaking �Fn� is a `dense' system of
independent CRABs. We then de®ne, for all �x; h; y� 2 F�

K�x;h��y� :� supfFn�y� : n � 0; ~xn < x and Fn�x� < hg �2:6�
As we shall see in Section 8, it is easy to check that K is almost surely
well-de®ned for all �x; h; y� 2 F� simultaneously, as almost surely, for
all x 2 R,

inffFn�x� : n � 0 and ~xn < xg � 0 : �2:7�
By this de®nition, the mapping h 7!K�x;h��y� is monotone non-de-
creasing and left-continuous on �0;1� (for all ®xed x � y), so (i4) is
indeed satis®ed. The de®nition also implies almost immediately �i3�: If
y � max�x1; x2� and K�x1;h1��y� < K�x2;h2��y�, then there exists n 2 N
such that ~xn < x2, Fn�x2� < h2 and

Fn�y� 2 �K�x1;h1��y�;K�x2;h2��y�� : �2:8�
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The de®nition of K also implies that for all z � y, Fn�z� � K�x2;h2��z�.
As the Fn's are coalescing continuous processes, this also implies that
for any m such that Fm�y� � Fn�y� (and therefore also for any m such
that ~xm < x1 and Fm�y� � K�x1;h1��y�), one has

Fm�z� � Fn�z� �2:9�
for all z � y. Hence, as K�x1;h1��z� is the supremum of a set bounded
above by Fn�z�, for all z � y,

K�x1;h1��z� � Fn�z� � K�x2;h2��z� : �2:10�
This proves (i3). The proofs of (i1), (i2) and (ii) can be found in
Section 8.

(Theorem 2.1 (i3), (i4)

From now on we shall refer to K as the system of forward lines.

Remark 1: Conditions (i1), (i2) and (i3) essentially ®x the process K,
but still leave some freedom of choosing a regularity property. There
are three natural choices:

(1) left-continuity in the variable h (our choice so far).
(2) right-continuity in h (see remark 2 below).
(3) instead of (i4), requiring the following `perfect ¯ow condition':

(i4*) Almost surely, for any �x; h� 2 E and x � y � z

K�x;h��z� � K�y;K�x;h��y���z� �2:11�
and for all ®xed x < y, h 7!K�x;h��y� is almost surely left-continuous (or,
alternatively, right-continuous).

Arratia [A1, A2] is interested in random ¯ows and therefore chooses
this third option. All three versions could be constructed via Fn's: If,
we suppose for a moment that Fn's are independent coalescing
Brownian motions (no re¯ection nor absorbtion) started from a dense
subset of R2, then Arratia's ¯ow would correspond to the de®nition
(2.6) just replacing Fn�x� < h by Fn�x� � h

Remark 2: We will sometimes use the right-continuous version (i.e. the
second option mentioned above). For all �x; h� 2 E and y � x (note
that h � 0 is allowed here), we de®ne

K��x;h��y� :� inffFn�y� : n � 0; ~xn < x and Fn�x� > hg �2:12�
Using the results that we will derive for K, it is then easy to see that K�

satis®es (i1), (i2), (i3) and that almost surely, for all x � y, the map-
ping h 7!K��x;h��y� is right-continuous on R�. Exactly as for K (i.e. in
Theorem 2.1-(ii)), one can see that the law of K� is the unique one
such that these four properties are almost surely satis®ed.
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Remark 3: All four conditions (i1)±(i4) are needed to ensure (ii):
Consider for instance a family K0 such that K�x;h� � K0�x;h� for all
�x; h� 2 E except when x belongs to a random Poissonian set (of zero
Lebesgue measure) in which case we put K0�x;h��y� � h for all y � x.
Then K0 is also a FICRAB, it satis®es (i1), (i2), (i4) but not (i3).

Next we are going to summarize the main properties of the process
K which will be used in the construction and analysis of true self-
repelling motion. Similar features also appear in [A1, A2, H] and the
proofs will be given in Section 8; the main ingredients in these proofs
are meeting time estimates for independent RAB's.

For any x � y in R, we de®ne:

M�x; y� :� fK�z;h��y� : �z; h� 2 E and z < xg : �2:13�
In plain words: M�x; y� denotes the trace at y of forward lines which
start before x. We also de®ne

M�y� :� M�y; y� : �2:14�

Proposition 2.2. [Some properties of the forward lines] The following
properties of the process K hold almost surely:

(i) For all x 2 R, M�x� is dense in R�.
(ii) For all x < y in R, the set M�x; y� is locally ®nite and unbounded.
(iii) For all ®xed x1 < x2 in R,

M�x1; x2� � fK�x1;h��x2� : h 2 D��g : �2:15�
(iv) For all �x; h� 2 E and for all e > 0, there exists n � 0 such that

~xn < x, Fn�x� 2 �hÿ e; h�, and for all y � x� e,

K�x;h��y� � Fn�y� : �2:16�
In particular, for all x � y,

M�x; y� � fFn�y� : n � 0 and ~xn < xg : �2:17�
(v) For all �x; h� 2 E, the mapping y 7!K�x;h��y� is continuous on

�x;1�.
The essential feature (ii) shows for instance that all forward lines

that are born at time x between level 0 and h coalesce into ®nitely
many CRABS immediately after x; `there is not enough space' for
in®nitely many particles not to coalesce.

The results presented in the next subsection (the `topological
structure of the forward lines') can be used to show that (iii) holds in
fact almost surely for all x1 < x2 in R simultaneously, but we will not
need this stronger result.
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In other words, (iv) means that almost surely, for all �x; h� 2 E,
there exists a sequence yn decreasing to x and a sequence �m�n��n�0 in
N, such that

K�x;h��y� � Fm�n��y� �2:18�
for all y � yn and all n � 0. Loosely speaking, every forward line meets
one of the countably many lines Fn `immediately' after its birth (and it
then follows Fn after this meeting time).

2.2. Backward lines and topological structure

We de®ne for all �x; h; y� 2 Fÿ

K��x;h��y� :� supfh0 > 0 : K�y;h0��x� < hg �2:19�
(with the notation sup ; :� 0). Clearly, the process K can be recovered
from K� by a similar formula: for all �x; h; y� 2 F�

K�x;h��y� � supfh0 > 0 : K��y;h0��x� < hg : �2:20�
Given the de®nition (2.6) of the process K, and using Proposition 2.2-
(i), for all �x; h; y� 2 Fÿ,

K��x;h��y� � supfFn�y� : n � 0; ~xn < y and Fn�x� < hg : �2:21�
We shall refer to the process Fÿ 3 �x; h; y� 7!K��x;h��y� 2 R� as the
system of backward lines.

We will see in Section 9 that this de®nition implies readily that
forward and backward lines never cross. The family of backward lines
is loosely speaking the generalization of a `dual graph' of the family of
forward lines.

Theorem 2.3. [Duality of forward and backward lines.] The two pro-
cesses F� 3 �x; h; y� 7!K�x;h��y� 2 R� and F� 3 �x; h; y� 7!K��ÿx;h��ÿy�
2 R� are identical in law.

For a complete proof of this result, see Section 9. See also Section
11 for an enlightening picture in a discrete case.

Let us stress here that, although these two processes are identical in
law, they are by no means independent as K� (resp. K) can be con-
structed deterministically from K (resp. K�).

However, some independence results can be stated: Suppose for
instance that z 2 R is ®xed. De®ne the sigma algebraFz generated by

fK�x;h��y� : x � y � z; h > 0g �2:22�
i.e. by

fFn�y� : n � 0; ~xn < y � zg : �2:23�
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The family �Fn����n�0 inherits the Markov property from the family of
independent RABs. Consequently, we will see (and this is easy using
Proposition 2.2) that for any x � z, for all h > 0, K�x;h���� is indepen-
dent ofFz. An immediate consequence of this is that, keeping z ®xed,
the family

fK��x;h��y� : z � y � x; h > 0g �2:24�
is independent fromFz. We will denoteF�z , the sigma ®eld generated
by this family. In plain words: for z 2 R ®xedFz, respectivelyF

�
z , is

the sigma algebra generated by the information to the left, respectively
to the right, of the coordinate z.

For all n � 0, we de®ne for any y � ~xn,

F �n �y� :� K��~xn;~hn��y� : �2:25�

Theorem 2.3 shows that the family of functions �y 7! F �n �ÿy��n�0 is a
FICRAB starting from �ÿ~xn; ~hn�n�0. Theorem 2.1 and Theorem 2.3
show that K� can be recovered from the family �F �n � almost (just
re¯ecting the `time'-direction) as K has been de®ned from the Fn's.
Hence, F�z is in fact generated by

fF �n �y� : n � 0; z � y < ~xng : �2:26�
The independence betweenFz and F

�
z then implies immediately that

for all n and n0 such that ~xn < z < ~xn0 , the two random variables Fn�z�
and F �n0 �z� are independent. As their laws have no atoms, this shows
the following useful fact: For any ®xed z such that ~xn < z < ~xn0 ,

Fn�z� 6� F �n0 �z� �2:27�
almost surely.

For all �x; h� 2 E, we de®ne the number I�x; h� of incoming for-
ward lines at �x; h� as follows:
I�x; h� :� lim

y"x
sup#

n
p 2 N : 9�x1; h1�; . . . ; �xp; hp� 2 E such that

8i � 1; . . . ; p : xi � y; K�xi;hi��x� � h and

8z 2 �y; x�; K�x1;h1��z� < . . . < K�xp;hp��z�
o

� lim
y"x

sup#
n

p 2 N : 9n1; . . . ; np 2 N such that

8i � 1; . . . ; p : ~xi � y; Fni�x� � h and

8z 2 �y; x�; Fn1�z� < � � � < Fnp�z�
o
: �2:28�

In plain words, I�x; h� is the number of disjoint forward lines that
coalesce exactly at time x and level h. Similarly, we de®ne the number
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I��x; h� of incoming (from the right) backward lines at �x; h�. The
previous remark (2.27) implies that for all ®xed x 2 R, almost surely,
for all h > 0, either I�x; h� � 0 or I��x; h� � 0.

For all �x; h� 2 E, the pair of integers �I�x; h�; I��x; h�� will be called
the type of �x; h� and the integer I�x; h� � I��x; h� � 1 will be called its
multiplicity (for reasons that will become apparent later). The fol-
lowing result gives a more detailed description of the di�erent possible
types of points.

Proposition 2.4. (i) Any ®xed �x; h� 2 E almost surely has multiplicity 1,
i.e. it is of type �0; 0�.

(ii) Let x be ®xed in R. Then almost surely, for any h � 0, the point
�x; h� has multiplicity at most 2, i.e. it is of type �0; 0�, �1; 0� or �0; 1�.

(iii) Almost surely, any point �x; h� 2 E has multiplicity at most 3, i.e.
it is of one of the following six types: �0; 0�, �1; 0�, �0; 1�, �2; 0�, �1; 1�,
�0; 2�.

The way we just presented these results seem to indicate that
Proposition 2.4 is a consequence of Theorem 2.3. In fact, we will ®rst
prove Proposition 2.4±(iii), using collision times estimates for RABs
and then use this fact to derive Theorem 2.3. See Section 9, for the
complete proofs of these results.

Before proceeding to the actual construction of true self-repelling
motion, let us stress some facts: As we have already mentioned, the
two systems K and K� are not independent; one of the main ingredi-
ents in the forthcoming construction is that we will use both systems
simultaneously.

In particular, we now de®ne for all �x; h� 2 E and y 2 R,

K�x;h��y� :� K�x;h��y� if �x; h; y� 2 F�

K��x;h��y� if �x; h; y� 2 Fÿ

�
�2:29�

Theorem 2.3 shows that the two processes E�R 3 �x; h; y� 7!
K�x;h��y� 2 R� and E�R 3 �x; h; y� 7!K�ÿx;h��ÿy� 2 R� are identical
in law.

When �x; h� 2 E is ®xed, then using the independence between Fx

and F�x, the law of K�x;h���� can be easily described: K�x;h���� and
K��x;h���� are independent RABs (more precisely, K��x;h� is a `backward
RAB').

The de®nition of forward and backward lines and the results pre-
sented in this section show that:

(1) Any two forward lines coalesce when they meet
(2) Any two backward lines coalesce when they meet
(3) Any forward line never crosses a backward line

The true self-repelling motion 391



(1), (2) and (3) imply that for all �x; h� and �x0; h0� in E, the whole
curves K�x;h� and K�x0;h0� never cross (they can collide and/or stick to-
gether). This will be a key-remark in the next section.

3. Construction and ®rst properties of true self-repelling motion

For any �x; h� in E, we de®ne the set

D�x; h� :� f�x0; h0� 2 E : h0 � K�x;h��x0�g �3:1�
It is straightforward to check that this is almost surely a bounded set
for any �x; h� 2 E.

Proposition 3.1. [Ordering of E.] Almost surely, for all �x1; h1� 6�
�x2; h2� in E, exactly one of the following two events occurs:

� either �x1; h1� 2 D�x1; h1� � D�x2; h2�, �x2; h2� j2D�x1; h1� and
D�x2; h2� n D�x1; h1� contains a non-empty open set.

� or �x2; h2� 2 D�x2; h2� � D�x1; h1�, �x1; h1� j2D�x2; h2� and D�x1; h1�n
D�x2; h2� contains a non-empty open set.

In particular, if we de®ne the relation � on E�E as follows:

��x1; h1� � �x2; h2�� () ��x1; h1� 2 D�x2; h2�� ; �3:2�
then � is a total ordering of E.

Proof.Without loss of generality we may assume x1 � x2 and �x1 � x2�
) �h1 < h2�. There are two cases to be treated separately:

CASE 1:
x1 � x2 and K�x1;h1��x2� < h2 : �3:3�

(In particular, this case includes the possibility of x1 � x2 and h1 < h2.)
By de®nition of the backward lines we have

K��x2;h2��x1� � h1 : �3:4�
The non-crossing property of the lines K�x1;h1���� and K�x2;h2����, com-
bined with (3.3) shows that D�x1; h1� � D�x2; h2�. Moreover, as
K�x1;h1��x2� < K�x2;h2��x2�, the continuity of K�x1;h1� and K�x2;h2� shows
that D�x2; h2� n D�x1; h1� contains a non-empty open set.

This implies the ®rst alternative of the Proposition.
CASE 2:

x1 < x2 and K�x1;h1��x2� � h2 : �3:5�
By left-continuity of h 7!K�x1;h��x2� and local ®niteness of M�x1; x2�
there is an e > 0 such that for all h 2 �h1 ÿ e; h1� we have
K�x1;h��x2� � K�x1;h1��x2� � h2 and thus, again by de®nition of the
backward lines we have
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K��x2;h2��x1� < h1 : �3:6�
Then, combining (3.5), (3.6) with the non-crossing property and
continuity of the lines implies the second alternative.

(Proposition 3.1:

We now de®ne

T �x; h� :� D�x; h�j j �
Z 1
ÿ1

K�x;h��y�dy : �3:7�

From the previous proposition it follows that T : E! R� is almost
surely injective.

Lemma 3.2. Almost surely, the range of the map T : E! R� is dense in
R�.

Remark: More subtle properties of the map T : E! R� will be
summarized in Propositions 4.1 and 4.4: It turns out that T is lower
semicontinuous (in particular Borel), it is (Lebesgue) measure pre-
serving and almost surjective, i.e. the complement of its range has zero
Lebesgue measure in R�.

Proof. Assume that for some a < a0 in R�, T �E� \ �a; a0� � ;. De®ne
then b :� sup��0; a� \ T �E�� and b0 :� inf��a0;1� \ T �E�� (b and b0

exist because almost surely limh#0 T �0; h� � 0 and limh"1 T �0; h� � 1).
Clearly, 0 � b < b0 <1 and there exist two sequences �xn; hn� and
�x0n; h0n� in E such that

lim
n"1

T �xn; hn� � b and lim
n"1

T �x0n; h0n� � b0 : �3:8�

By monotone convergence it is then immediate that the Lebesgue
measure of the Borel sets D :� [n�0D�xn; hn� and D0 :� \n�0D�x0n; h0n�
is b and b0, respectively. Proposition 3.1 then also implies immediately
that D � D0 and that the Lebesgue measure of D0 n D is b0 ÿ b > 0.
Hence, D0 n D contains at least three di�erent points in E and for any
of these points, T �x; h� 2 �b; b0�. But as T is injective, this implies that
there exists �x; h� 2 D0 n D such that T �x; h� 2 �b;b0�, which contra-
dicts the de®nition of b and b0. Hence, T �E� is dense in R�.

(Lemma 3.2.

We state and prove now a technical Lemma to be used in the proof
of the forthcoming statements.
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Lemma 3.3. Suppose that �x; h� 6� �x0; h0� are two di�erent points in E
such that there exist two sequences �xn; hn�n�0 and �x0n; h0n�n�0 in E and
two real numbers t and t0, such that

lim
n"1
�xn; hn� � �x; h�; lim

n"1
�x0n; h0n� � �x0; h0� �3:9�

and

lim
n"1

T �xn; hn� � t; lim
n"1

T �x0n; h0n� � t0 : �3:10�

Then: t 6� t0.

Proof. Assume (3.9) and (3.10):

CASE 1: If x � x0 and h� e < h0 ÿ e then clearly there is an n0 <1
such that for any n � n0, �xn; hn� 2 D�x; h� e� and �x0n; h0n� j2
D�x; h0 ÿ e�, thus by Proposition 3.1 �x; h0 ÿ e� 2 D�x0n; h0n�. Hence we
conclude that for n � n0 T �xn; hn� < T �x; h� e� < T �x; h0 ÿ e� <
T �x0n; h0n� and this implies t 6� t0

CASE 2: Suppose x < r < q < q0 < r0 < x0 with r; q; q0; r0 2 D��. We
assume (possibly choosing subsequences) that T �xn; hn� and T �x0n; h0n�
are monotone sequences and that xn < r and x0n > r0 for all n 2 N. As
T �xn; hn� and T �x0n; h0n� are monotone, due to Proposition 3.1 so are the
sequences K�xn;hn��y� and K�x0n;h0n��y� for all y 2 R. In particular, as
M�r; q� and M��r0; q0� are a.s. locally ®nite, using Proposition 2.2 this
implies that there exist n0 � 0, k � 0 and k0 � 0 such that ~xk � r and
~xk0 � r0 and that for all n � n0,

K�xn;hn��y� � Fk�y�; for y 2 �q;1� ; �3:11�
K��x0n;h0n��y� � F �k0 �y�; for y 2 �ÿ1; q0� : �3:12�

(2.27) implies that a.s. Fk�q� 6� F �k0 �q� (because this is true simulta-
neously for all q 2 D, k and k0 in N such that ~xk < q < ~xk0).

Suppose for instance that Fk�q� > F �k0 �q� (the opposite case is
treated similarly). Using Proposition 3.1 once again, this implies that
for n � n0, D�x0n; h0n� � D�xn; hn�, and that

T �xn; hn� ÿ T �x0n; h0n� �
Z 1
ÿ1

K�xn;hn��y� ÿ K�x0n;h0n��y�
ÿ �

dy

�
Z q0

q
�Fk�y� ÿ F �k0 �y�� dy > 0 : �3:13�

This implies indeed t � limn"1 T �xn; hn� 6� limn"1 T �x0n; h0n� � t0.

(Lemma 3.3.
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We are ready now to de®ne the main object of the present paper:
the true self-repelling motion. For any t � 0, we de®ne the set

Pt :�
\
e>0

f�x; h� 2 E : T �x; h� 2 �t ÿ e; t � e�g : �3:14�

Lemma 3.4. Almost surely, for all t 2 �0;1�, Pt is a singleton.

Proof. Since Pt is the intersection of a family of nested compact sets, it
contains at least one point. By de®nition (3.14) of Pt, for any �x; h� 2 Pt

there exists a sequence �xn; hn� converging to �x; h� with limn"1 T
�xn; hn� � t. Hence, by Lemma 3.3, Pt can not contain more than one
point. hLemma 3.4.

De®nition. For all t � 0, we denote

Pt �: fÿXt;Ht
�g �3:15�

and call R� 3 t 7!Xt 2 R the true self-repelling motion.

Remark: As we shall soon see

Ht � Lt�Xt� �3:16�
where Lt�x� is the occupation time density of X�.

In the next Proposition we summarize the ®rst important proper-
ties of true self-repelling motion:

Proposition 3.5. [First properties of Xt]

(i) Almost surely, t 7! ÿXt;Ht
�
is continuous on �0;1� and ÿX0;H0

�
� �0; 0�.

(ii) Almost surely, the set ft 2 R� : Xt � xg is unbounded for any
x 2 R.

(iii) The processes t 7! ÿXt;Ht
�
and t 7! ÿÿ Xt;Ht

�
are identical in

law.
(iv) For any a > 0, the processes t 7! ÿXat;Hat

�
and t 7! ÿa2=3Xt;

a1=3Ht
�
are identical in law.

Proof. (i) Suppose that there exist two sequences �tn�n2N and �t0n�n2N
in R�, both converging to t � 0 and that limn"1

ÿ
Xtn ;Htn

�
and

limn"1
ÿ
Xt0n ;Ht0n

�
exist. Then, the de®nition of

ÿ
Xt;Ht

�
implies that for

any n ®xed there exist two sequences �xn;k; hn;k�k2N and �x0n;k; h0n;k�k2N
such that

lim
k"1
�xn;k; hn;k� �

ÿ
Xtn ;Htn

�
; lim

k"1
T �xn;k; hn;k� � tn �3:17�

lim
k"1
�x0n;k; h0n;k� �

ÿ
Xt0n ;Ht0n

�
; lim

k"1
T �x0n;k; h0n;k� � t0n �3:18�
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Hence, by a `diagonal subsequence trick' we ®nd two sequences
�kn�n2N and �k0n�n2N so that

lim
n"1
�xn;kn ; hn;kn� � lim

n"1
ÿ
Xtn ;Htn

�
; lim

n"1
�x0n;kn

; h0n;kn
� � lim

n"1
ÿ
Xt0n ;Ht0n

�
;

�3:19�
and

lim
n"1

T �xn;kn ; hn;kn� � t � lim
n"1

T �x0n;kn
; h0n;kn

� �3:20�

Using Lemma 3.3, this implies that

lim
n"1

ÿ
Xtn ;Htn

� � lim
n"1

ÿ
Xt0n ;Ht0n

�
: �3:21�

Hence, t 7! ÿXt;Ht
�
is almost surely continuous on �0;1�.

(ii) is a simple consequence of the fact that almost surely, for all
x 2 R, limh"1 T �x; h� � �1, which can be easily derived and is safely
left to the reader. (iii) is a simple consequence of Proposition 2.2, and
(iv) follows immediately from the scaling property of Brownian mo-
tion (and hence that of K).

(Proposition 3.5.

4. Occupation-time density

For all t 2 �0;1� we de®ne the set
Dt :� Tÿ1��0; t�� � f�x; h� 2 E : T �x; h� 2 �0; t�g : �4:1�

We clearly have almost surely for all �x; h� 2 E

DT �x;h� � D�x; h� : �4:2�
Indeed: �x0; h0� 2 DT �x;h�

� � , T �x0; h0� � T �x; h�� � , �x0; h0� 2 D�x; h�� �.
We already know some simple regularity properties of the map

T : E! R�: it is injective and its range is dense in R�. Propositions
4.1 and 4.4 summarize the most important properties of T :

Proposition 4.1. [Further properties of the map T : E! R�.]

The map T : E! R� almost surely has the following properties:
(i) T is injective; for all x 2 R, h 7! T �x; h� is strictly increasing and
continuous from the left.
(ii) T is lower semicontinuous; in particular, it is Borel.
(iii) T preserves Lebesgue measure, that is, for all t 2 R�

jDtj � t : �4:3�
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Proof. (i) follows immediately from Proposition 3.1 and from left-
continuity of h 7!K�x;h��y�, for all x; y 2 R.

The proof of (ii) and (iii) relies on Lemma 3.2:
(ii) We prove

Dt �
\

T �x;h�>t

D�x; h� �: eDt : �4:4�

Since D�x; h� is closed for all �x; h� 2 E (in the euclidean topology

restricted to E), lower semicontinuity of T follows from (4.4). Dt � eDt

is straightforward. �x0; h0� 2 eD�t� if and only if T �x0; h0� � inffT �x; h� :
T �x; h� > tg. Due to the density of T �E� in R� (Lemma 3.2) this is
equivalent to T �x0; h0� � t. Hence eDt � Dt.

(iii) Applying (4.4), the monotone class theorem and Lemma 3.2,
we get:

jDtj � inffjD�x; h�j : T �x; h� > tg
� inffT �x; h� : T �x; h� > tg � t : �4:5�

(Proposition 4.1.

Before stating the main results of the present section we have to
de®ne some relevant quantities related to the `occupation time mea-
sure' of Xt: Beside T �x; h� we shall need later also for all �x; h� 2 E,

T��x; h� :� lim
e#0

T �x; h� e� : �4:6�

For all t � 0 and y 2 R, we now de®ne

Lt�y� :� supfh > 0 : T �y; h� < tg �4:7�
with the convention sup ; � 0. Since almost surely, for all y 2 R,
h 7! T �y; h� is strictly increasing, t 7! Lt�y� is necessarily continuous,
and of course, also monotone non-decreasing. In particular, for all
t � 0 and y 2 R,

Lt�y� � inffh > 0 : T �y; h� � tg : �4:8�
Inverting (4.7) and (4.8), we get:

T �x; h� � supft 2 �0;1� : Lt�y� < hg � infft 2 �0;1� : Lt�x� � hg
�4:9�

and

T��x; h� � supft 2 �0;1� : Lt�y� � hg � infft 2 �0;1� : Lt�x� > hg
�4:10�

Note that the de®nition of Lt implies that for all t � 0,

Ht � Lt�Xt� : �4:11�
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We de®ne for all t � 0 the occupation-time measure lt as in the in-
troduction: For all Borel set A � R,

lt�A� :�
Z t

0

1fXs2Ag ds : �4:12�

The following statement shows that Lt��� is indeed the Radon-Niko-
dym derivative of the occupation time measure of lt with respect the
Lebesgue measure, i.e. it is the `occupation-time density'.

Theorem 4.2. [Existence and continuity of occupation-time density.]

The following statements hold almost surely:
(i) For all t � 0, lt is absolutely continuous with respect to the Le-

besgue measure and its density is Lt���. In other words, for any mea-
surable, bounded, real-valued function f : R! RZ t

0

f �Xs� ds �
Z 1
ÿ1

f �y�Lt�y� dy : �4:13�

(ii) More generally: for any measurable, bounded, real-valued func-
tion g : R� �R! R and for any time t � 0,Z t

0

g�s;Xs� ds �
Z 1
ÿ1

Z t

0

g�s; y� dsLs�y�
� �

dy : �4:14�

(iii) The mapping t 7!Lt��� is non-decreasing continuous from �0;1�
into the space of continuous real-valued functions with compact support,
with topology induced by uniform convergence on compact intervals.

Proof. (i) We ®rst check (4.13) in the case when f � vA is the indicator
function of an open set A � R. As X is continuous, It�A� :�
fs 2 �0; t� : Xs 2 Ag is an open subset of �0;1�. Hence, there exists a
®nite or countable family of disjoint open intervals

ÿ�ai; bi�
�

i2J such
that It�A� � [i2J �ai; bi�. The de®nition of Dt and It�A� implies that

f�x; h� 2 E : x 2 A and T �x; h� � tg �
[
i2J

Dbi
n Dai

ÿ �
: �4:15�

Hence, the Lebesgue area of these two sets are equal, so that almost
surely,Z

vA�y�Lt�y� dy � f�x; h� 2 E : x 2 A and Lt�x� � hgj j

�
[
i2J

Dbi
n Dai

ÿ ������
����� : �4:16�

But Proposition 3.1 implies that the sets Dbi
n Dai for i 2 J are disjoint

so that
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Z
vA�y�Lt�y� dy �

X
i2J

jDbi
nDai j

�
X
i2J

�bi ÿ ai�

�
Z t

0

1fXs2Ag ds : �4:17�

Using this result, it is then very easy derive (4.13) for arbitrary
bounded and measurable f .

(ii) First note that (4.14) for g�s; y� � h�s�f �y�, with h and f
measurable functions, follows directly from (4.13). For general,
measurable g�s; y� apply approximation by linear combination of
factorizable ones. This procedure is standard, we leave the details for
the reader. (See e.g. Exercise VI.1.15 in [RY])

(iii) This is simply due to the fact that almost surely, Lt is a non-
decreasing family of continuous functions with compact support, such
that for all y 2 R, t 7!Lt�y� is continuous.

(Theorem 4.2.

Lt��� being identi®ed as the occupation-time density, or local time
of our process, (4.9) and (4.10) show that T �x; h�, respectively, T��x; h�
are actually the left-continuous, respectively, right-continuous ver-
sions of the so-called inverse local time. This implies the general Ray-
Knight Theorem for the occupation-time density of X :

Theorem 4.3. [Ray-Knight theorems.]

(i) Almost surely, for all �x; h� 2 E and y 2 R

LT �x;h��y� � K�x;h��y� �4:18�
(ii) Almost surely, for all �x; h� 2 E and y 2 R

LT��x;h��y� � K
�
�x;h��y� :� lim

e#0
K�x;h�e��y� ; �4:19�

Proof. These are direct consequences of the de®nition (4.7) of Lt���.
(Theorem 4.3.

Remark 1: Let us stress here that (i) and (ii) are much `stronger' than
the `usual' Ray-Knight Theorems in the sense that we have a de-
scription of all LT �x;h� (respectively LT��x;h�) simultaneously for all
�x; h� 2 E.
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Remark 2: Note that in fact, it is easy to notice that for all ®xed x 2 R, if

sx :� infft � 0 : Xt � xg �4:20�
denotes the ®rst hitting time of x by X then almost surely sx �
T��x; 0�, so that (ii) contains also a `Ray-Knight theorem' at ®rst
hitting times. But, of course, there exist in®nitely many (random)
points such that sx 6� T��x; 0� (for instance if x � supfXt : t 2
�0; T �0; h��g).

Before proceeding to the next section, we complete the list of
properties of the function T : E! R�:

Proposition 4.4. Almost surely the Lebesgue measure of the set
R� n T �E� is 0.

Proof.We will use Theorem 4.2: Clearly, if t j2 T �E�, then either Ht � 0
or t 6� T �Xt;Ht�. In the second case, as t 2 �T �Xt;Ht�; T��Xt;Ht��, it
implies that T��Xt;Ht� 6� T �Xt;Ht�: HenceZ 1

0

1ft 62T �E�g dt �
Z 1
0

1fHt�0gdt �
Z 1
0

1fT �Xt;Lt�Xt��6�T��Xt;Lt�Xt��g dt :

�4:21�
But Theorem 4.2(ii) readily shows thatZ 1

0

1fLt�Xt��0g dt �
Z

R
0 dy � 0 �4:22�

and thatZ 1
0

1fT �Xt;Lt�Xt��6�T��Xt;Lt�Xt��g dt �
Z

E
1fT �y;h�6�T��y;h�g dy dh: �4:23�

But for all �y; h� 2 E, almost surely, T �y; h� � T��y; h�. Hence,Z
E

1fT �y;h�6�T��y;h�g dy dh � 0 �4:24�

almost surely. Finally, Z 1
0

1ft 62T �E�g dt � 0 �4:25�

almost surely.

(Proposition 4.4.
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5. Markov properties

5.1. Markov property of �Xt; Lt����

In this subsection, we are going to derive the Markov property of the
process �Xt; Lt����. We start with a Markov Property `in space':

We ®rst need to put down some notation. Denote by C0 the space
of continuous functions with compact support k : R! R�. For
k 2 C0 we de®ne Bk (respectivelyAk) the sigma-algebra generated by
the data below (resp. above) the curve k. More precisely, for all n 2 N
and k 2 C0 we de®ne the stopping time

qk;n :� inffx � ~xn : Fn�x� � k�x�g : �5:1�
Then,

Bk :� r
�

Fn�x� : n � 0; ~hn < k�~xn� and x 2 �~xn; qk;n�
	ÿ � �5:2�

Ak :� r
�

Fn�x� : n � 0; ~hn > k�~xn� and x 2 �~xn; qk;n�
	ÿ �

: �5:3�
For all �x; h� 2 E, we de®ne the `past' and `future' algebras with res-
pect to T �x; h� as follows (we use respectively the notation B and A
for `before/below' and `after/above'):

B�x;h� :� �E 2 r�K� : 8k 2 C0 such that k�x� > h;

E \ fK�x;h� � kg 2 Bk
	 �5:4�

A�x;h� :� �E 2 r�K� : 8k 2 C0 such that k�x� < h;

E \ fK�x;h� � kg 2Ak
	 �5:5�

One can easily check that B�x;h� andA�x;h� are indeed sigma algebras.
B�x;h� (respectively A�x;h�) contains the information below (respec-
tively, above) the (random) curve K�x;h�. Note that K�x;h� and conse-
quently T �x; h� are A�x;h� \B�x;h� measurable.
Proposition 5.1. Let �x0; h0� 2 E and k 2 C0 be ®xed. Then, given
K�x0;h0� � k, the algebras B�x0;h0� and A�x0;h0� are independent.

Proof. This result is intuitively clear: The law of �Xt; t � T �x0; h0��
depends only on the lines `above' K�x0;h0� and the law of the system of
lines above this curve depends only on this curve as the forward lines
(resp. backward lines) coalesce with K�x0;h0� (resp. K��x0;h0�). To make
this more rigourous, it su�ces (�x0; h0� being ®xed) to de®ne the
process X in the following way: De®ne ®rst a family of coalescing
independent RAB's �En; n � 0� by induction just as the Fn's except
that it is started from �x̂n; ĥn�n�0 where �x̂0; ĥ0� � �x0; h0� and �x̂n; ĥn� is
dense in �x0;1�� �0;1�.
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Similarly, de®ne a family �E0n; n � 0� of backward lines started
from �x̂0n; ĥ0n�, where �x̂00; ĥ00� � �x0; h0� and �x̂0n; ĥ0n� is dense in �ÿ1;
x0� � �0;1�.

Theorem 2.1 and Proposition 2.2 show that if we de®ne for all
y0 � x0 < x0 < x � y and h > 0,

K1
�x;h��y� � supfEn�y� : En�x� < h; n � 0 and x̂n < xg �5:6�

K2
�x0;h��y0� � supfE0n�y0� : E0n�x0� < h; n � 0 and x̂0n > x0g �5:7�

then the law of K1 (resp. K2) de®ned on F1 � f�x; h; y� 2 F� : x > x0g
(resp. F2 � f�x; h; y� 2 Fÿ : x < x0g) is identical to that of the re-
striction to this set of K (resp. K�). In particular, using the duality
property (and the independence between Fx0 and F

�
x0 ), there exists a

unique version of K (with the law described in Theorem 2.1) such that
K � K1 and K� � K2 on F1 and F2 respectively. Note that with this
construction, we can de®ne ®rst E0 and E00 (i.e. K�x0;h0�) and then K�x;h�
for the other values of �x; h�: We have explicitly the law of K condi-
tional on K�x0;h0�.

As �En�'s (and �E0n�) are independent coalescing processes, it is clear
that the law of �En : n � 0 and E0�x̂n� � ĥn� (and that of
�E0n : n � 0 and E0�x̂0n� � ĥ0n�) depends only on E0 (and E00). In par-
ticular, conditionally on E0 and E00, these processes are independent
from �En : n � 0 and E0�x̂n� � ĥn� and �E0n : n � 0 and E0�x̂0n� � ĥ0n�.
But the de®nitions of K1, K2 and K show that

B�x0;h0� � r
�
fEn : n � 0 and E0�x̂n� � ĥng

[ fE0n : n � 0 and E0�x̂0n� � ĥ0ng
�

�5:8�

A�x0;h0� � r
�
fEn : n � 0 and E0�x̂n� � ĥng

[ fE0n : n � 0 and E0�x̂0n� � ĥ0ng
�
: �5:9�

Hence, conditionally on E0 and E00 (i.e. on K�x0;h0�), the two sigma-
®elds A�x0;h0� and B�x0;h0� are independent.

(Proposition 5.1

We now introduce the past and future algebras with respect to
deterministic time t � 0:

Bt :� �E 2 r�K� : 8�x; h� 2 E; E \ fT �x; h� � tg 2 B�x;h�
	 �5:10�

At :� �E 2 r�K� : 8�x; h� 2 E; E \ fT �x; h� � tg 2A�x;h�
	 �5:11�
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Proposition 5.2. Let t � 0 be ®xed. Then

r
�

Xs : 0 � s � t
	ÿ � � Bt �5:12�

r
�

Xt;Lt���g
ÿ � _ r

�
Xs : s > t

	ÿ � �At : �5:13�

Proof. We prove (5.12), the proof of (5.13) is identical. Let k 2 C0.
Then T �x; h� � t and K�x;h� � k imply that

Tÿ1�0; t� � f�x; h� 2 E : h � k�x�g : �5:14�
Hence, given the construction (3.14) it follows that for any
0 � s1 � � � � � sp � t and any intervals �ai; bi� � R (i 2 f1; . . . ; pg)\

i2f1;...;pg

�
Xsi 2 �ai; bi�

	 \ �T �x; h� � t
	 \ �K�x;h� � k

	 2 Bk �5:15�

and this readily implies (5.12).

(Proposition 5.2

Theorem 5.3. Let t � 0, x 2 R and k 2 C0 withZ 1
ÿ1

k�y� dy � t �5:16�

be ®xed. Then, conditionally on Xt � x and Lt��� � k���, the algebras Bt

and At are independent.

Proof. Denote
h :� k�x� : �5:17�

For any �x; h� 2 E ®xed we de®ne the event

B�x;h� :� fT �x; h� � T��x; h�g : �5:18�
Similarly for t � 0 ®xed, we de®ne the event

Bt :� fT �Xt;Ht� � T��Xt;Ht�g : �5:19�
These events are of full measure:

P�B�x;h�� � 1 � P�Bt� �5:20�
and

fXt � x and Lt � kg \ Bt � fK�x;h� � kg \ B�x;h� : �5:21�
Note also that

fK�x;h� � kg � fT �x; h� � tg � fT �x; h� � tg \ fT �x; h� � tg �5:22�
Let E 2 Bt and F 2At two arbitrary events. Then the following chain
of equalities holds
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P�E \ F jXt � x; Lt � k�
� P�E \ F jK�x;h� � k� �5:23�
� P��E \ fT �x; h� � tg� \ ÿF \ fT �x; h� � tg�jK�x;h� � k� �5:24�
� P�E \ fT �x; h� � tgjK�x;h� � k�

P�F \ fT �x; h� � tgjK�x;h� � k� �5:25�
� P�EjK�x;h� � k�P�F jK�x;h� � k� �5:26�
� P�EjXt � x; Lt � k�P�F jXt � x; Lt � k� �5:27�

In (5.23) and (5.27) we use (5.20) and (5.21). In (5.24) and (5.26) we
use (5.22). Finally, in (5.25) we use Proposition 5.1 and the fact that
by de®nitions (5.10), respectively (5.11), of Bt, respectively At:

E \ fT �x; h� � tg 2 B�x;h� ; �5:28�
F \ fT �x; h� � tg 2A�x;h� : �5:29�

(Theorem 5.3

5.1. `Local Markov property'

In this subsection, we derive the locality property stated in the in-
troduction and some other related results.

We ®rst introduce some new sigma-algebras: For all x < y in R, we
de®ne

F�x;y� :� r
�
fFn�x0� : n � 0 and x < ~xn � x0 < yg

�
�Fy \F�x :

�5:30�
In plain words: F�x;y� contains the data between the `times' x and y;
the sigma algebras Fx and F

�
x de®ned in section 2 correspond res-

pectively to F�ÿ1;x� and F�x;1�. This de®nition implies immediately
that if X1; . . . ;Xp are p disjoint open intervals in R, thenFX1

; . . . ;FXp

are p independent sigma-®elds.
Suppose now that X � R is an open interval. De®ne as in the

introduction, for all t � 0 and u > 0,

AX
t :�

Z t

0

1fXs2Xgds �5:31�

sX
u :� infft > 0 : AX

t > ug �5:32�
X X

u :� XsX
u
: �5:33�

We say that X X is re¯ecting true self-repelling motion in the interval X
started from X X

0 . Using Proposition 2.2, It is easy (and left to the
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reader) to see that X X can be described as follows: Introduce for all
x 2 X, h > 0,

T X�x; h� :�
Z

X
K�x;h��y� dy �5:34�

and then de®ne �X X
u ;H

X
u �u�0 using T X exactly as �Xu;Hu�u�0 has been

derived from T . In particular, this shows that the process X X is FX

measurable. Hence, if X1; . . . ;Xp are disjoint open intervals in R, then
the processes �X X1 ; . . . ;X Xp� are independent.

Suppose now that the open interval X is ®xed. Almost exactly as
for X , one can derive Markov properties for re¯ecting true self-re-
pelling motion X X. De®ne ®rst the occupation-time densities corre-
sponding to X X: For all u � 0 and x 2 X,

LX
u �x� :� LsX

u
�x� �5:35�

(Theorem 4.2 implies that LX
u is exactly the occupation-time density of

X X).

Proposition 5.4. �X X;LX� is a Markov process.

The proof goes along exactly the same lines as that of Theorem 5.3
and we leave it to the reader. In fact, it is also immediate to notice that
if we de®ne

DLX
u �x� :� LX

u �x� ÿ LX
u �X X

u � �5:36�
then �X X

u ;DLX
u �u�0 is also a Markov process. Combining this with the

independence stated above yields the locality property stated in the
introduction.

Remark- As a byproduct of the proof, we also get the following
counterpart of Proposition 5.1:

Proposition 5.5. For all x 2 R and h > 0, conditionally on DLX
T X�x;h�,�X X

u ; u � T X�x; h�� and �X X
u ; u � T X�x; h�� are independent.

One could then use this and a similar proof as that of Theorem 5.3
to show that for all t0 � 0 and e > 0, if we de®ne

te0 :� infft � t0 : jXt ÿ Xt0 j � eg ; �5:37�
then the law of

�Xt ÿ Xt0 ; t 2 �t0; te0�� �5:38�

depends only on �Lt0�Xt0 � x� ÿ Lt0�Xt0�; x 2 �ÿe; e�� .
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6. Dynamics

We derive the dynamical driving mechanism of true self repelling
motion. A non-rigorous, but still instructive phenomenological der-
ivation is presented in Appendix B. Consulting that argument before
reading the forthcoming rather technical proof might be illumi-
nating.

In this section, to avoid heavy notation, as there is no danger of
confusion, we will write K instead of K.

Theorem 6.1. For any �x0; h0� 2 E ®xed

P- lim
e#0

Z T�x0 ;h0�

0

Ls�Xs � e� ÿ Ls�Xs ÿ e�
2e

ds

� ÿXT�x0 ;h0�
� 1

4
sup

0�s�T�x0 ;h0�
Xs � inf

0�s�T�x0 ;h0�
Xs

 !
�6:1�

Proof of Theorem 6.1. De®ne

a � a�x0;h0� :� inffy : K�x0;h0��y� > 0g �6:2�
x � x�x0;h0� :� supfy : K�x0;h0��y� > 0g : �6:3�

Clearly:

a � inf fXs : 0 � s � T�x0;h0�g ; �6:4�
x0 � XT�x0 ;h0�

�6:5�
x � supfXs : 0 � s � T�x0;h0�g : �6:6�

From Theorem 4.2(ii) we know that almost surely for any bounded
Borel function R� �R 3 �s; x� 7! f �s; x� the following identity holds:Z t

0

f �s;Xs� ds �
Z 1
ÿ1

Z t

0

f �s; y� dsLs�y�
� �

dy : �6:7�

On the other hand, we know that almost surely and for almost all
�y; h� 2 E (with respect to the Lebesgue measure in E) T �y; h� �
T��y; h�, so that a change of variable yields that almost surely, for all
bounded Borel function f on R� �RZ 1
ÿ1

Z t

0

f �s; y� dsLs�y�
� �

dy �
Z 1
ÿ1

Z Lt�y�

0

f �T�y;h�; y� dh

( )
dy : �6:8�

Applying (6.7)±(6.8) to f �s; x� :� Ls�x� e�, due to Theorem 4.3 we
get:
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Z T�x0 ;h0�

0

Ls�Xs � e� ds �
Z 1
ÿ1

Z LT�x0 ;h0�
�y�

0

LT�y;h� �y � e� dh

( )
dy

�
Z 1
ÿ1

Z K�x0 ;h0��y�

0

K�y;h��y � e� dh

( )
dy : �6:9�

By use of (6.4)±(6.6) and (6.9), (6.1) transforms to

P- lim
e#0

1

2e

Z 1
ÿ1

(Z K�x0 ;h0��y�

0

K�y;h��y � e� ÿ K�y;h��y ÿ e�ÿ �
dh

)
dy

� 1

4
�a� x� ÿ x0 : �6:10�

and this is what we are going to prove now.
We write the integral on the left hand side of (6.10) asZ 1
ÿ1

Z K�x0 ;h0��y�

0

K�y;h��y � e� ÿ K�y;h��y ÿ e�ÿ �
dh

( )
dy � I1 � I2 �6:11�

where

I1 :�
Z x0

a

Z K�x0 ;h0��y�

0

K�y;h��y � e� ÿ K�y;h��y ÿ e�ÿ �
dh

( )
dy

�ÿ
Z x0

a

Z K�x0 ;h0��y�

0

K�y;h��y ÿ e� dhÿ
Z K�x0 ;h0��yÿe�

0

K�yÿe;h��y� dh

( )
dy

�
Z x0

x0ÿe

Z K�x0 ;h0��y�

0

K�y;h��y � e� dh dy �6:12�

I2 :�
Z x

x0

Z K�x0 ;h0��y�

0

K�y;h��y � e� ÿ K�y;h��y ÿ e�ÿ �
dh

( )
dy

�
Z x

x0

Z K�x0 ;h0��y�

0

K�y;h��y � e� dhÿ
Z K�x0 ;h0��y�e�

0

K�y�e;h��y� dh

( )
dy

ÿ
Z x0�e

x0

Z K�x0 ;h0��y�

0

K�y;h��y ÿ e� dh dy �6:13�

The statement of the theorem will follow from

P- lim
e#0

I1
2e
� 1

4
�aÿ x0� ÿ 1

2
maxf0; x0g �6:14�

P- lim
e#0

I2
2e
� 1

4
�xÿ x0� ÿ 1

2
minf0; x0g �6:15�
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We are going to prove (6.15), the proof of (6.14) is completely id-
entical due to the duality of the forward and backward lines.

The following simple observation is of crucial importance:

Lemma 6.2. For any �x0; h0� 2 E and z > y > x0Z K�x0 ;h0��y�

0

K�y;h��z� dhÿ
Z K�x0 ;h0��z�

0

K�z;h��y� dh

� 1

2
K�x0;h0��z� ÿ K�x0;h0��y�
ÿ �2�2 Z K�x0 ;h0��y�

0

K�y;h��z� ÿ h
ÿ �

dh

� 1

2
K2
�x0;h0��y� ÿ

1

2
K2
�x0;h0��z� �6:16�

Proof. This proof is elementary. As M�y; z� (de®ned in (2.13)) is locally
®nite, there almost surely exists an integer n � 0, and two ®nite in-
creasing sequences 0 � a0 < a1 < � � � < an � K�x0;h0��y� and
0 � b0 < b1 < � � � < bnÿ1 � K�x0;h0��z� such that for all i 2 f1; . . . ; ng
and h 2 �aiÿ1; ai�, we have K�y;h��z� � biÿ1 and, on the other hand for
all i 2 f1; . . . ; nÿ 1g and h0 2 �biÿ1; bi� we have K�z;h0��y� � ai. Ele-
mentary computations show that both sides of the equation (6.16) are
equal to

2
Xn

i�1
�ai ÿ aiÿ1�biÿ1 ÿ anbnÿ1 ÿ a2n=2 : �6:17�

(Lemma 6.2

Applying this identity, with z � y � e, to (6.13) we get:

I2 � 1

2

Z x

x0
K�x0;h0��y � e� ÿ K�x0;h0��y�
� 	2 dy

� 2

Z x

x0

Z K�x0 ;h0��y�

0

K�y;h��y � e� ÿ h
ÿ �

dh

( )
dy

ÿ
Z x0�e

x0

Z K�x0 ;h0��y�

0

K�y;h��y ÿ e� dhÿ 1

2
K2
�x0;h0��y�

( )
dy

�: I2;1 � I2;2 ÿ I2;3 �6:18�

We easily get rid of the error term I2;3: by almost sure continuity of
y 7!K�x:h��y�, for all �x; h� 2 E and a simple dominated convergence
argument we have indeed almost surely,
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lim
e#0

eÿ1I2;3 � lim
e#0

eÿ1
Z x0�e

x0

Z K�x0 ;h0��y�

0

K�y;h��y ÿ e� dh dy

ÿ lim
e#0

eÿ1
Z x0�e

x0

1

2
K2
�x0;h0��y� dy

� h20
2
ÿ h20

2
� 0 : �6:19�

Next we look at I2;1: since K�x0;h0���� is a Brownian motion, from
standard arguments (for instance computing the ®rst two moments of
I2;1) we get:

P- lim
e#0

I2;1
2e
� 1

4
�xÿ x0� : �6:20�

It now remains to study I2;2. For �y; h� 2 E and z � y we denote

E
�
K�y;h��z�

�
�: m�y;h��z� �: h� em�y;h��z� : �6:21�

K�y;h��z� ÿ m�y;h��z� �: eK�y;h��z� �6:22�
Elementary computations show that (one could also use Tanaka's
formula to estimate these quantities)

em�y;h��z� � 2
�������������jzÿ yjp R1

jzÿyjÿ1=2h /�n� nÿ jzÿ yjÿ1=2h
� �

dn if y � z � 0

2
�����jyjp R1

jyjÿ1=2h /�n� nÿ jyjÿ1=2h
� �

dn if y � 0 � z

0 if 0 � y � z

8>><>>:
�6:23�

Where /�n� � �2p�ÿ1=2 exp�ÿn2=2�. We write

I2;2 � 2

Z x

x0

Z K�x0 ;h0��y�

0

eK�y;h��y � e� dh

( )
dy

� 2

Z x

x0

Z K�x0 ;h0��y�

0

em�y;h��y � e� dh

( )
dy

�: I2;2;1 � I2;2;2 �6:24�
First we deal with I2;2;2:

I2;2;2 � 1fx0<0g2
Z 0

x0

Z 1
0

em�y;h��y � e� dh
� �

dy

ÿ 1fx0<0g2
Z 0

x0

Z 1
K�x0 ;h0��y�

em�y;h��y � e� dh

( )
dy

�: I2;2;2;1 ÿ I2;2;2;2 �6:25�
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I2;2;2;1 is deterministic and it is easy to compute. After an elementary
integration we get:Z 1

0

��
t
p Z 1

tÿ1=2h
/�n��nÿ tÿ1=2h� dn

� �
dh � t

4
�6:26�

and hence

lim
e#0

I2;2;2;1
2e
� 1fx0<0g lime#0

ÿx0eÿ e2=2
2e

� ÿ 1
2
minf0; x0g �6:27�

Next we estimate I2;2;2;2. Another elementary computation yields:Z 1
H

��
t
p Z 1

tÿ1=2h
/�n��nÿ tÿ1=2h� dn

� �
dh � t

4
eÿH2=�2t� �6:28�

and hence we get for any x0 � y � 0:

E
�Z 1

K�x0 ;h0��y�
em�y;h��y � e� dh

�
� e
2
E
�
expfÿK2

�x0;h0��y�=�2e�g
�

� e
2

�����������������������
e

jy ÿ x0j � e

r
�6:29�

Inserting this in the de®nition of I2;2;2;2, we get

E
�

I2;2;2;2
�� ��� � E

�
I2;2;2;2

�
� 1fx0<0ge

Z 0

x0

�����������������������
e

jy ÿ x0j � e

r
dy

� 1fx0<0g
1
2

�������jx0jp
e3=2 �6:30�

Hence

P- lim
e#0

I2;2;2;2
2e
� 0 �6:31�

Finally, we turn to I2;2;1 de®ned in (6.24).

Lemma 6.3. Let �x0; h0� 2 E and x1 > x0 be ®xed. There is a constant
C � C�x0; h0� <1 such that:

E

Z x1

x0

Z K�x0 ;h0��y�

0

eK�y;h��y � e� dh

( )
dy

( )2
0@ 1A � C x1 ÿ x0j je5=2 �6:32�

Remark: The constant C � C�x0; h0� can be chosen as C0 h0 � 1fx0<0g
ÿ�������jx0jp �, where C0 is an absolute constant.

Proof. Recall thatFz the r-algebra generated by K�x;h��y� : x � y � z;
ÿ

h > 0� and for the extent of this proof we introduce the shorthand
notation:

C�e��x0;h0��y� :�
Z K�x0 ;h0��y�

0

eK�y;h��y � e� dh �6:33�
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Clearly C�e��x0;h0��y� is Fy�e-measurable and

E
�
C�e��x0;h0��y�

���Fy

�
� 0 �6:34�

We express the left hand side of (6.32):

E

 (Z x1

x0
C�e��x0;h0��y� dy

)2!

� 2

Z x1

x0

Z x1

y
E
�
C�e��x0;h0��y�C

�e�
�x0;h0��y0�

�
dy0

� �
dy

� 2

Z x1

x0

Z x1

y
E
�
C�e��x0;h0��y�E

�
C�e��x0;h0��y0�

���Fy�e

��
dy0

� �
dy

� 2

Z x1

x0

Z �y�e�^x1

y
E
�
C�e��x0;h0��y�E

�
C�e��x0;h0��y0�

���Fy�e

��
dy0

( )
dy

� 2

Z x1

x0

Z �y�e�^x1

y
E
�
C�e��x0;h0��y�C

�e�
�x0;h0��y0�

�
dy0

( )
dy

� 2

Z x1

x0

Z �y�e�^x1

y
E
�
C�e�2�x0;h0��y0�

�1=2
E
�
C�e�2�x0;h0��y�

�1=2
dy0

( )
dy

� 2e x1 ÿ x0j j sup
x0�y�x1

E
�
C�e�2�x0;h0��y�

�
�6:35�

In the second line we use the fact that C�e��x0;h0��y� isFy�e measurable, in
the third line we use (6.34).

Next we estimate the expectation on the right-hand side of (6.35).

E
�
C�e�2�x0;h0��y�

���Fy

�
�
Z K�x0 ;h0��y�

0

Z K�x0 ;h0��y�

0

E
�eK�y;h��y � e�eK�y;h0��y � e�

�
dh dh0 �6:36�

We compute the right-hand side of (6.36). Let z 7!R1
�y;h1��z� and

z 7!R2
�y;h2��z� be two independent (non-coalescing) RABs starting at

`time' y from level h1, respectively h2. De®ne their ®rst collision time,
as in (A.2):

r�2�y;h1;h2
:� inffz > y : R1

�y;h1��z� � R2
�y;h2��z�g ÿ y �6:37�

Then

C1
�y;h1��z� :� R1

�y;h1��z�; �6:38�
C2
�y;h2��z� :� R2

�y;h2��z� � 1fr�2�y;h1 ;h2
<zÿyg R1

�y;h1��z� ÿ R2
�y;h2��z�

� �
�6:39�
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have the joint law of two CRABs. Using the strong Markov property
of
ÿ
R1
�y;h1����;R2

�y;h2����
�
we get, for any z � y (in the next displayed

equations, we shall simply write r instead of r�2�y;h1;h2
for obvious ty-

pographical reasons).

E
ÿÿ

K�y;h1��z� ÿ m�y;h2��z�
�ÿ

K�y;h1��z� ÿ m�y;h2��z�
��

� E
ÿÿ

R1
�y;h1��z� ÿ m�y;h2��z�

�ÿ
R2
�y;h2��z� ÿ m�y;h2��z�

��
� E

ÿÿ
R1
�y;h1��z� ÿ m�y;h1��z�

�ÿ
R1
�y;h1��z� ÿ R2

�y;h2��z�
�
1fr<zÿyg

�
� E

ÿÿ
R1
�y;h1��z� ÿ m�y�r;R1

�y;h1�
�y�r���z�

�2
1fr<zÿyg

�
� E

ÿÿ
zÿ y ÿ r

�
1fr<zÿyg

�
� �zÿ y�Pÿr < zÿ y

�
� 2jzÿ yj exp ÿ�h2 ÿ h1�2

4jzÿ yj

( )
: �6:40�

In the last step we used (A.15). From (6.36) and (6.40):

E
�
C�e�2�x0;h0��y�

���Fy

�
� 2e

Z K�x0 ;h0��y�

0

Z K�x0 ;h0��y�

0

expfÿ�h2 ÿ h1�2=�4e�g dh1 dh2

� 2e2
Z eÿ1=2K�x0 ;h0��y�

0

Z eÿ1=2K�x0 ;h0��y�

0

expfÿ�h2 ÿ h1�2=4g dh1 dh2

� 2e2
Z eÿ1=2K�x0 ;h0��y�

0

Z 1
ÿ1

expfÿ�h2 ÿ h1�2=4g dh1 dh2

� 4
���
p
p

K�x0;h0��y�e3=2 �6:41�
Inserting (6.41) in (6.35) yields (6.32) (Lemma 6.3.

We are ready now to estimate I2;2;1 de®ned in (6.24). Let g > 0 be
®xed. For any x1 � x0,

P�j�2e�ÿ1I2;2;1j > g�

� P�x > x1� � P
1

e

Z x1

x0

Z K�x0 ;h0��y�

0

eK�y;h��y � e� dh

( )
dy

�����
����� > g

 !

� P�x > x1� � 1

g2e2
E

Z x1

x0

Z K�x0 ;h0��y�

0

eK�y;h��y � e� dh

( )
dy

( )2
0@ 1A

� C
h0 � 1fx0<0g

�������jx0jp������������
2pjx1j

p � C�x0; h0� x0 ÿ x1j jgÿ2e1=2 �6:42�
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In the last step we used (6.32). Letting x1 " 1 and e # 0 from (6.42) it
follows that

P- lim
e#0

I2;2;1
2e
� 0 : �6:43�

Putting together (6.18), (6.20), (6.27), (6.31) and (6.43) we get indeed
(6.15). As we already mentioned, (6.14) is derived by an identical
reasoning applied to the backward lines. (6.14) and (6.15) together
imply (6.10), or equivalently, (6.1).

(Theorem 6.1.

Remark: A similar result can be proved for deterministic (®xed) times
t � 0, too:

P- lim
e#0

Z t

0

Ls�Xs � e� ÿ Ls�Xs ÿ e�
2e

ds � ÿXt � 1

4
sup
0�s�t

Xs � inf
0�s�t

Xs

� �
�6:44�

But the proof of (6.44) would require further extensive estimates
which we avoid here.

7. Upcrossings and local variation

We are now ®rst going to state and derive an approximation theorem
for the occupation-time densities using upcrossings (in the same spirit
as those for the local times of semimartingales, see e.g. Revuz-Yor
[RY], Chapter VI).

For x 2 R and e > 0, de®ne by induction the sampling times

s0�x; e� :� 0; �7:1�
rn�x; e� :� infft � snÿ1�x; e� : Xt � xg; n � 1; �7:2�
sn�x; e� :� infft � rn�x; e� : Xt � x� eg; n � 1 : �7:3�

Then, the number of upcrossings from x to x� e before time t is
de®ned by

Ux"�x�e�
t :� supfn � 0 : sn�x; e� � tg : �7:4�

Finally, for all �x; h� 2 E, we put

U e
�x;h� :� Ux"�x�e�

T �x;h� : �7:5�
Clearly, the de®nition of X shows that almost surely, for all �x; h� 2 E

U e
�x;h� � #fK�x;h0��x� e� : h0 2 �0; h�g ÿ 1 : �7:6�
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We will derive the following result:

Lemma 7.1. (i) For all �x; h� 2 E,

lim
e#0

E� ��ep U e
�x;h�� �

h���
p
p : �7:7�

The convergence is uniform in compact subdomains of E.
(ii) There exists a constant C <1 such that for all �x; h� 2 E and

e 2 �0; 1�
Var� ��ep U e

�x;h�� � Ch
��
e
p

: �7:8�
By applying Chebyshev's inequality, these estimates immediately im-
ply the following approximation result:

Proposition 7.2. For all �x; h� 2 E,

P- lim
e#0

��
e
p

U e
�x;h� �

h���
p
p : �7:9�

Proof of Lemma 7.1. By scaling, it su�ces to consider U e
x :� U e

�x;1�
only. Using (7.6) and monotonicity and left-continuity of h 7!
K�x;h��x� e�, one has

U e
x � lim

p"1
U e;p

x ; �7:10�
where

U e;p
x :�

X2pÿ1

j�0
11 K�x;j2ÿp��x� e� 6� K�x;�j�1�2ÿp��x� e�� 	

: �7:11�

For the extent of the present proof we introduce the following
shorthand notation: for p 2 N and j < j0 in N we denote the events

Ap;j;j0 �Ap;j;j0 �x; e� :� K�x;j2ÿp��x� e� < K�x;j02ÿp��x� e�� 	 �7:12�
Ac

p;j;j0 �Ac
p;j;j0 �x; e� :� K�x;j2ÿp��x� e� � K�x;j02ÿp��x� e�� 	 �7:13�

Note that for all x 2 R and e > 0 ®xed, the sequence U e;p
x is non-

decreasing with p, and (as it is integer-valued and bounded) it is sta-
tionary for large enough p. Hence,

E�U e
x� � lim

p"1
E�U e;p

x � and E��U e
x�2� � lim

p"1
E��U e;p

x �2� : �7:14�

Let g 2 �0; 1� be ®xed. Using (7.11) we write

E�U e;p
x � �

Xb2pgc

j�0
P�Ap;j;j�1� �

X2pÿ1

j�d2pge
P�Ap;j;j�1� �7:15�
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Using (A.6) of Lemma A.1 we easily estimate the ®rst sum on the right
hand side of (7.15):

Xb2pgc

j�0
P�Ap;j;j�1� � g

�����
2

pe

r
�7:16�

Next, using the uniform convergence of Lemma A.3. we get the limit
of the second sum on the right hand side of (7.15):

lim
p"1

X2pÿ1

j�d2pge
P�Ap;j;j�1� � 1ÿ g�����

pe
p �7:17�

Putting together (7.15), (7.16) and (7.17) and letting g # 0 after p " 1
we get exactly (7.7).

To derive (ii), note that

�U e;p
x �2 � U e;p

x � 2
X2pÿ2

j�0

X2pÿ1

j0�j�1
11 Ap;j;j�1 \Ap;j0;j0�1
� 	 �7:18�

and

�E�U e;p
x ��2 � 2

X2pÿ2

j�0

X2pÿ1

j0�j�1
P�Ap;j;j�1�P�Ap;j0;j0�1� : �7:19�

Hence,

Var�U e;P
x � � E�U e;p

x � � 2
X2pÿ2

j�0

X2pÿ1

j0�j�1
fP�Ap;j;j�1 \Ap;j0;j0�1�

ÿ P�Ap;j;j�1�P�Ap;j0;j0�1�g �7:20�
We claim that for all j < j0,

P�Ap;j;j�1 \Ap;j0;j0�1� ÿ P�Ap;j;j�1�P�Ap;j0;j0�1�
� P�Ap;j;j�1 \Ac

p;j�1;j0 \Ap;j0;j0�1� : �7:21�

Indeed:

P�Ap;j;j�1 \Ap;j0;j0�1� ÿ P�Ap;j;j�1 \Ac
p;j�1;j0 \Ap;j0;j0�1�

� P�Ap;j;j�1 \Ap;j�1;j0 \Ap;j0;j0�1�
� P�Ap;j;j�1�P�Ap;j0;j0�1� �7:22�

where, in the last step we use the fact that the forward lines involved
are independent as long as they do not meet and coalesce.
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Note that for all j � 0 and p ®xed, there exists exactly one j0 > j
such that

K�x;�j�1�2ÿp��x� e� � K�x;j02ÿp��x� e� < K�x;�j0�1�2ÿp��x� e� : �7:23�
Hence, for all ®xed p � 1 and j 2 f0; . . . ; 2p ÿ 2g,

X2pÿ1

j0�j�1
P�Ap;j;j�1 \Ac

p;j�1;j0 \Ap;j0;j0�1� � P�Ap;j;j�1� : �7:24�

Finally, combining (7.20), (7.21) and (7.24) we get

Var�U e;p
x � � E�U e;p

x � � 2E�U e;p
x � � 3�ep�ÿ1=2 � o�eÿ1=2� : �7:25�

Hence (7.8). (Lemma 7.1

We are now going to deduce from Proposition 7.2 the approxi-
mation result for Lt�x� (where t is a ®xed time):

Proposition 7.3. For all ®xed t � 0 and x 2 R,

P- lim
e#0

��
e
p

Ux"�x�e�
t � Lt�x����

p
p : �7:26�

Proof. Suppose that t > 0 and x 2 R are ®xed. Suppose �hn�n�1 is a
dense deterministic sequence in �0;1� with h1 � 0, and for p � 1, put
Sp � fh1; . . . ; hpg. Then for all a > 0 and g > 0, there exists p <1
such that

P�Sp \ �Lt�x� ÿ a;Lt�x�� � ; or Sp \ �Lt�x�;Lt�x� � a� � ;� < g :

�7:27�
Let us now ®x p in such a way that (7.27) holds. Proposition 7.2 then
implies that there exists e0 > 0 such that for all e < e0 and for all
j 2 f1; . . . ; pg,

P
� �����

pe
p

U e
�x;hj� ÿ hj

��� ��� > a
�
< g=p : �7:28�

Hence, combining this with (7.27) and using the fact that t 7!Ux"�x�e�
t

is non-decreasing, implies that

P
� �����

pe
p

Ux"�x�e�
t ÿ Lt�x�

��� ��� > 2a
�
< 2g : �7:29�

This completes the proof of Proposition 7.3.

(Proposition 7.3.
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A similar method is used to derive the following results, that loosely
speaking state that X has a ®nite variation of order 3=2: Suppose
that for e > 0 ®xed we de®ne by induction, the sequence of sampling
times

he
0 :� 0; he

n :� infft > he
nÿ1 : jXt ÿ Xhe

nÿ1 j � eg : �7:30�
We also de®ne, for all t > 0,

N e
t :� supfn � 0 : he

n � tg : �7:31�

Theorem 7.4.

(i) For all �x; h� 2 E,

P- lim
e#0

e3=2N e
T �x;h� �

2T �x; h����
p
p : �7:32�

(ii) For all t � 0,

P- lim
e#0

X
n�N e

t

Xhe
n
ÿ Xhe

nÿ1

�� ��3=2� P- lim
e#0

e3=2N e
t �

2t���
p
p : �7:33�

Proof. (i) De®ne the number of downcrossings Dy#yÿe
t from level x to

xÿ e before time t by X , analogously to the number of upcrossings.
Then,

N e
T �x;h� �

X
n2Z

Une"�n�1�e
T �x;h� � D�n�1�e#ne

T �x;h�
n o

; �7:34�

and, clearly, for all e > 0 and t > 0,

Une"�n�1�e
T �x;h� ÿ D�n�1�e#ne

T �x;h�
��� ��� � 1 if n 2 0; bx=ec� � [ �dx=ee; 0�

0 if n j2 0; bx=ec� � [ �dx=ee; 0�

8<: �7:35�

Hence

N e
T �x;h� ÿ 2

X
n�dx=ee

Une"�n�1�e
T �x;h� ÿ 2

X
n�bx=ec

Dne#�nÿ1�e
T �x;h�

������
������

� 2U bx=ece"dx=eeeT �x;h� � eÿ1jxj : �7:36�
But

U bx=ece"dx=eeeT �x;h� � min Ux"dx=eee
T �x;h� ; 1� Dx#bx=ece

T �x;h�
n o

: �7:37�
Now, clearly

max xÿ bx=ece; dx=eeeÿ xf g � e=2 �7:38�
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and, due to Lemma 7.1, (7.37) and (7.38) readily imply

P- lim
e#0

e3=2U bx=ece"dx=eeeT �x;h� � 0 : �7:39�

Obviously, we also have lime#0 e3=2eÿ1x � 0. So that it su�ces to study
the asymptotic behaviour of

e3=2
X

n�dx=ee
Une"�n�1�e

T �x;h� and that of e3=2
X

n�bx=ec
Dne#�nÿ1�e

T �x;h� : �7:40�

Actually, it is su�cient to show that, for any ®xed K > x

P- lim
e#0

e3=2
XbK=ec

n�dx=ee
Une"�n�1�e

T �x;h� � pÿ1=2
Z K

x
K�x;h��y� dy �7:41�

Then, letting K !1 (similarly to the argument in (6.42)) we get

P- lim
e#0

e3=2
X1

n�dx=ee
Une"�n�1�e

T �x;h� � pÿ1=2
Z 1

x
K�x;h��y� dy : �7:42�

By symmetry we get a similar result for the other sum of the down-
crossings.

We are going to prove now (7.41): Recall that we denote byFz the
sigma algebra generated by fK�x;h��y� : x � y � z; h > 0g. Let n �
dx=ee be ®xed, then conditionally on Fne the law of Une"�n�1�e

T �x;h� is id-
entical to that of U e

�ne;K�x;h��ne��.
Let us now ®x K > x. Then, the previous observation combined

with the uniform convergence proved in Lemma 7.1-(i) shows that

lim
e#0

e
XbK=ec

n�dx=ee
E
�
e1=2Une"�n�1�e

T �x;h�
���Fne

�
ÿ 1���

p
p K�x;h��ne�

���� ���� � 0 �7:43�

On the other hand, from Lemma 7.1-(ii) we getXbK=ec
n�dx=ee

Var
�
e3=2Une"�n�1�e

T �x;h�
���Fne

�
� Ce5=2

XbK=ec
n�dx=ee

K�x;h��ne�

� C�K ÿ x�e3=2 sup
y�x

K�x;h��y� : �7:44�

(7.43) and (7.44) imply

P- lim
e#0

e3=2
XbK=ec

n�dx=ee
Une"�n�1�e

T �x;h� ÿ e���
p
p

XbK=ec
n�dx=ee

K�x;h��ne�
8<:

9=; � 0 : �7:45�

But obviously, almost surely,
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lim
e#0

e���
p
p

XbK=ec
n�dx=ee

K�x;h��ne� � pÿ1=2
Z K

x
K�x;h��y� dy : �7:46�

Combining (7.45) and (7.46) yields (7.41) and, eventually, (7.32).
(ii) Suppose now that t > 0 is ®xed (the case t � 0 is trivial). The set

T �~E� is a.s. dense in R� (this is a straightforward consequence of the
fact that for any �x; h�; �x0; h0� in E such that T �x; h� > T �x0; h0�,
D�x; h�nD�x0; h0� contains an open set and therefore a point in ~E). For
all p � 1, we now de®ne

Sp :� fT �~xj; ~hj� : j � 1; 2; . . . ; pg : �7:47�
The density of T �~E� implies readily that for any a > 0 and g > 0, there
exists p � 1, such that

P�Sp \ �t ÿ a; t� � ; or Sp \ �t; t � a� � ;� < g : �7:48�
But if a, g and p are ®xed, Theorem 7.4 (i) shows that there exists
e0 > 0 such that for all e < e0 and for all j 2 f1; . . . ; pg,

P
��� e3=2 ���

p
p

N e
T �~xj;~hj�

2
ÿ T �~xj; ~hj�

��� < a

 !
< g=p: �7:49�

Combining this with (7.48) and using the fact that t 7!N e
t is a non-

decreasing function of t, implies readily (7.33).
(Theorem 7.4.

Remark. [Further pathwise properties of X ]

Using the Markov property (for instance at rational times), it is then
possible to make the link between exceptional times for X (times of
monotonicity for instance) and the points in E of exceptional topo-
logical type (for the system of lines; see section 2.2). More precisely, if
we say that t > 0 is a time of monotonicity for X if there exists e > 0
such that either for all u 2 �0; e�, Xtÿu < Xt < Xt�u or for all u 2 �0; e�,
Xtÿu > Xt > Xt�u, then the set of points �Xt;Ht� where t is a time of
monotonicity for X corresponds to the set of points of topological type
�1; 1�. Similarly, points of topological type �0; 2� and �2; 0� correspond to
times of local extrema for X , and the points of multiplicity 2 correspond
to end-times of excursions away from a point. This can be used to show
existence of points of topological type [2,0], [1,1] and [0,2].

8. Construction and properties of K: proofs

In this section, we give detailed proofs of Theorem 2.1 and Proposi-
tion 2.2. As already mentioned, this construction of system of forward
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lines is very similar to that of Arratia [A1, A2]. This section is divided
into two subsections: In subsection 8.1 we complete the proof of
Theorem 2.1, i.e. we prove in turn (i1), (i2) and (ii) (recall that (i3) and
(i4) were proven in Section 2.1). In subsection 8.2, we complete the
proof of Proposition 2.2.

8.1. Proof of Theorem 2.1

Proof of Theorem 2.1 (i1). De®ne the system of forward lines K ex-
actly as in Equation (2.6) (in section 2.1).

We ®rst state and derive a useful Lemma:

Lemma 8.1. For all ®xed �x; h� 2 E, K�x;h���� is almost surely well-de-
®ned on �x;1�, and

(i) There exists a deterministic sequence �n�k�; k � 1� such that
~xn�k� < x, limk"1 ~xn�k� � x, limk"1 ~hn�k� � h, and for all e > 0 there exists
a constant C � C�e� <1 such that for all k � 1

P
�
K�x;h��y� � Fn�k��y� for all y � x� e

�
� 1ÿ C

2ÿk��
e
p : �8:1�

(ii) Almost surely for all e > 0, there exists a integer k0 � k0�e� such
that for all k � k0,

K�x;h��y� � Fn�k��y� for all y � x� e : �8:2�
The random integer k0�e� is Fx0�e-measurable.

(iii) Almost surely,

K�x;h��x� � lim
y#x

K�x;h��y� � h : �8:3�

Remark: We will see in the next subsections that much more is true,
namely that these results have uniform generalisations almost surely,
to all �x; h� 2 E simutaneously.

Proof. (i) We are going to squeeze �x; h� between two families of lines
Fn�k� and Fm�k� started before x, such that Fn�k� and Fm�k� have small
probability to have coalesced before x or not to coalesce before x� e.
More precisely, we choose two sequences of points �~xn�k�; ~hn�k��k�1 and
�~xm�k�; ~hm�k��k�1 in ~E in such a way that:

~xn�k� � ~xm�k� 2 �xÿ 5ÿk; x� �8:4�
and

hÿ 2 � 2ÿk < ~hn�k� < hÿ 2ÿk < h < h� 2ÿk < ~hm�k� < h� 2 � 2ÿk

�8:5�
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for all k � 1 and de®ne the following three events:

Ak :�
n
fFn�k��y� : y 2 �~xn�k�; x� 5ÿk�g 6� �hÿ 3 � 2ÿk; h�

o
�8:6�

Bk :�
n
fFm�k��y� : y 2 �~xm�k�; x� 5ÿk�g 6� �h; h� 3 � 2ÿk�

o
�8:7�

Ck;e :�
n

Fn�k��x� e� 6� Fm�k��x� e�
o
: �8:8�

Elementary estimates on Brownian hitting times yield

P�Ak� � 2 exp ÿ 5k

4k�1

� �
; P�Bk� � 2 exp ÿ 5k

4k�1

� �
: �8:9�

Using the upper bound (A.6) from Lemma A.1 we also ®nd

P
ÿ
Ck;e

� � C02
4 � 2ÿk�����

2e
p �8:10�

Now, clearly�
K�x;h��y� 6� Fn�k��y� for some y � x� e

	 �Ak [Bk [ Ck:e �8:11�
and (8.9)±(8.11) imply (8.1).
(ii) follows from (8.1) by a simple Borel-Cantelli argument. The fact
that the random integer k0�e� is Fx0�e-measurable also follows from
the proof of (8.1).

Remark:Note that this proof also shows the following useful fact: For
all n � 0, almost surely, for all y � ~xn,

K�~xn;~hn��y� � Fn�y� : �8:12�
(iii) Note that

fsup K�x;h��y� ÿ h
�� �� : y 2 �x; x� 5ÿk�� 	 � 3 � 2ÿkg �Ak [Bk �8:13�

Applying again a Borel-Cantelli argument, from (8.13) and (8.9) we
conclude that almost surely there exists a (random) k1 <1 such that
for all k � k1

sup K�x;h��y� ÿ h
�� �� : y 2 �x; x� 5ÿk�� 	

< 3 � 2ÿk : �8:14�
This implies (8.3).

(Lemma 8.1.

Now we are ready to prove Theorem 2.1 (i1): Let �x1; h1�; . . . ;
�xp; hp� be ®xed points in E.

From Lemma 8.1-(ii), it follows that for all e > 0, for all j 2 f1; . . . ;
pg, almost surely �xj � e;1� 3 y 7!K�xj;hj��y� is continuous. Combin-
ing this with Lemma 8.1-(iii) shows that almost surely for all
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j 2 f1; . . . ; pg �xj;1� 3 y 7!K�xj;hj��y� is continuous and that K�xj;hj��xj�
� hj. So, it only remains to prove that the ®nite dimensional distri-
butions of

ÿ
K�x1;h1����; . . . ;K�xp;hp����

�
are those of a ®nite FICRAB

starting from �xj; hj�
ÿ �

j2f1;...;pg.
Let us choose the sequences �~xn1�k�; ~hn1�k��k�1; . . . ; �~xnp�k�; ~hnp�k��k�1,

as in Lemma 8.1 (i) (corresponding respectively to the points
�x1; h1�; . . . ; �xp; hp�).

Fix an integer r � 1, a map j : f1; . . . ; rg ! f1; . . . ; pg, r `time'-
variables yi > xj�i� and r intervals �ai; bi�, i � 1; . . . ; r and de®ne the
events eD :�

n
K�xj�i�;hj�i���yi� 2 �ai; bi� : i � 1; . . . ; r

o
�8:15�

and

Dk :�
n

Fnj�i��k��yi� 2 �ai; bi� : i � 1; . . . ; r
o

�8:16�
Note that due to Lemma 8.1 (iii) we do not need to consider the
possibility of yi � xj�i� for some i � 1; . . . ; r. Also, for a ®nite FICRAB
�C�x1;h1����; . . . ;C�xp;hp����� starting from �x1; h1�; . . . ; �xp; hp�

ÿ �
, de®ne

the event

D :�
n

C�xj�i�;hj�i���yi� 2 �ai; bi� : i � 1; . . . ; r
o

�8:17�
Choose e < minfyi ÿ xj�i� : i � 1; . . . ; rg and denote

Ek;e :�
n
K�xj;hj��yj� 6� Fnj�k��yj� for some j � 1; . . . ; p and yj � xj � e

o
�8:18�

Then, from Lemma 8.1 (i) it follows that

P�Ek;e� � Cp
2ÿk��

e
p : �8:19�

Now, clearly

jP�eD� ÿ P�D�j � jP�eD� ÿ P�Dk�j � jP�D� ÿ P�Dk�j : �8:20�
and

jP�eD� ÿ P�Dk�j � P�Ek;e� : �8:21�
On the other hand, since limk"1�~xnj�k�; ~hnj�k�� � �xj; hj�, j � 1; . . . ; p, we
also have

lim
k"1

P�Dk� � P�D� : �8:22�

Letting k " 1, (8.19)±(8.22) imply

P�eD� � P�D� : �8:23�
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That is: the ®nite dimensional distributions of
ÿ
K�x1;h1����; . . . ;

K�xp;hp����
�

are those of a ®nite FICRAB starting from �xj;
ÿ

hj��j2f1;...;pg.
(Theorem 2.1(i1)

For convenience, we de®ne for all x � 0,

M 0�x� � fFn�x� : n � 0 and ~xn < xg : �8:24�
The next Lemma is used in the proof of the remaining parts of The-
orem 2.1:

Lemma 8.2. Almost surely, for all y 2 R, M 0�y� is dense in R�.

Remark: This implies immediately (2.7) i.e. that K�x;h��y� is well-de-
®ned for all �x; h; y� 2 F� simultaneously.

Proof of Lemma 8.2. It su�ces to show that for any ®xed dyadic
numbers K > 0 and h > a > 0, almost surely for all x 2 �ÿK;K�,

M 0�x� \ �hÿ a; h� a� 6� ; : �8:25�
Let us ®x K > 0 and h > a > 0 in D�. For all k � 1, j 2 Z, K�jK2ÿk ;h� is
a RAB, so that elementary estimates on Brownian hitting times yield
that for all integers ÿ2k � j < 2k

P sup
y2�jK2ÿk ;�j�1�K2ÿk �

K�jK2ÿk ;h��y� ÿ h
�� �� � a

 !
� 2 exp

ÿa22k

2K

� �
�8:26�

Note that for all y 2 �ÿK;K� and j 2 Z such that jK2ÿk < y �
�j� 1�K2ÿk,

K�jK2ÿk ;h��y� 2 M 0�y� �8:27�
as jK2ÿk and h are dyadics. Hence, for any integer k � 1,

P�9y 2 �ÿK;K� : M 0�y� \ �hÿ a; h� a� � ;� � K2k�1 exp
ÿa22k

2K

� �
:

�8:28�
Letting k " 1 shows that almost surely, M 0�y� \ �hÿ a; h� a� 6� ; for
all y 2 �ÿK;K� and the result follows.

(Lemma 8.2

Proof of Theorem 2.1 (i2). Lemma 8.2 also implies immediately that
almost surely, for all �x; h� 2 E, K�x;h��x� � h.

(Theorem 2.1 (i2)
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Proof of Theorem 2.1 (ii). Assume that F� 3 �x; h; y� 7!K0�x;h��y� is a
random map satisfying (i1)±(i4).

Let us now de®ne, for all n � 0,

F 0n � K�~xn;~hn� ; �8:29�
where �~xn; ~hn�n�0 is the ordering of ~E introduced in Section 2. (i1)
implies in particular that the law of �F 0n; n � 0� is identical to that of
�Fn; n � 0� (because the law of a countable FICRAB is unique).
Lemma 8.2 then implies that, almost surely, for all x 2 R,
fF 0n�x� : n � 0 and ~xn < xg is dense in R�. Hence, almost surely, for
all �x; h� 2 E, for all 0 < h00 < h0 < h, there exists n1 and n2 such that
~xn1 < x, ~xn2 < x and

h00 < F 0n1�x� < h0 < F 0n2�x� < h : �8:30�
Combining this with (i3) implies that for all y � x,

K0�x;h00��y� � F 0n1�y� � K0�x;h0��y� � F 0n2�y� � K0�x;h��y� : �8:31�
Consequently, almost surely, for all �x; h� 2 E, for all y � x,

lim
h0"h

K0�x;h0��y� � supfF 0n�y� : n � 0; ~xn < x and F 0n�x� < hg : �8:32�

On the other hand, (i2), (i3) and (i4) imply that almost surely, for any
0 � x � y the mapping h 7!K0�x;h��y� is non-decreasing and left-con-
tinuous. This implies in particular that almost surely, for all x � y and
h > 0,

lim
h0"h

K0�x;h0��y� � K0�x;h��y� : �8:33�

Hence, almost surely, for all x � y and h > 0

K0�x;h��y� � supfF 0n�y� : n � 0; ~xn < x and F 0n�x� < hg : �8:34�
This implies that K and K0 are identical in law (as random maps on
F�) and concludes the proof of Theorem 2.1(ii).

(Theorem 2.1 (ii)

8.2. Proof of Proposition 2.2

This subsection contains the remaining proofs of the results stated in
Section 2.

Proof of Proposition 2.2 (i). This is another immediate consequence of
Lemma 8.2.

hProposition 2.2 (i)
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The following two Lemmas are of crucial importance in the proof
of the rest of Proposition 2.2:

Lemma 8.3. For any ®xed �x; h� 2 E and x0 > x, almost surely for all
y � x0,

K�x;h��y� � K�x0;K�x;h��x0��y� : �8:35�

Remark: This is the `¯ow property' (2.11) stated for ®xed �x; h� 2 E.
As emphasized in Section 2, it does not hold simultaneously for all
�x; h� 2 E.

Proof. It su�ces to de®ne a sequence �xn; hn� as follows: �x0; h0� �
�x; h�, xn � x0 for all n � 1, and �hn�n�1 is dense in �0;1�. Then The-
orem 2.1-(i1) shows that �K�xn;hn�����n�0 is a countable FICRAB.
Hence, using the Markov property, K�x0;h0��x0� is independent of
�K�xn;hn�����n�1 and it is then easy to see (using a Borel-Cantelli argu-
ment) that, there almost surely exists an increasing sequence hn�k� and
a decreasing sequence hm�k� in fhn; n � 1g such that limk"1 hn�k� �
limk"1 hm�k� � K�x;h��x0� and for all y > x0,

K�x0;hn�k���y� � K�x0;hm�k���y� �8:36�
for all large enough k. Combining this with (i3) and the monotonicity
of h0 7!K�x0;h0���� implies Lemma 8.3.

(Lemma 8.3

Lemma 8.4. Suppose that x < x0 are ®xed in R, and that A and A0 denote
twoFx measurable countable dense subsets of R��. Then, almost surely,

fK�x;h��x0� : h 2 Ag � fK�x;h��x0� : h 2 A0g : �8:37�
Proof. Lemma 8.3, the Markov property and Theorem 2.1-(i) show
immediately that conditionally on Fx, the family

ÿ
K�x;h����

�
h2A[A0 is a

countable FICRAB (de®ned for y � x). It is then straightforward to
see that almost surely, for all h0 2 A,

lim
h"h0
h2A0

K�x;h��x0� � K�x;h0��x0� �8:38�

and this implies readily the Lemma.
(Lemma8.4

Proof of Proposition 2.2-(ii). Recall the de®nition: For all x < y

M�x; y� � fK�z;h��y� : h > 0 and z < xg : �8:39�
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We break up the proof into two steps:
STEP 1: Let us ®x q < q0 in D for the moment. We de®ne

M 0�q; q0� :�fFn�q0� : n � 0 and ~xn � qg
�fK�q;h��q0� : h 2 D��g : �8:40�

Lemma 8.4 and Lemma 8.2 immediately show that for all K > 0,
almost surely,

M�q; q0� � M 0�q; q0� : �8:41�
We are now going to show that almost surely,

#fK�q;h��q0� : h 2 D \ �0;K�g <1 : �8:42�
As this is true for all K 2 Nnf0g, this immediately implies that
M 0�q; q0� is locally ®nite. We de®ne for all p � 1

IK
p :� fj=2p : j 2 f1; . . . ;K2pgg; �8:43�

AK
p :� fK�q;h��q0� : h 2 IK

p g; �8:44�
NK

p :� #AK
p : �8:45�

As AK
p � AK

p0 when p � p0, NK
p is a non-decreasing function of p.

For any w 2 AK
p , we de®ne

HK
p �w� :� supfh 2 IK

p : K�q;h��q0� � wg : �8:46�
Note that

NK
p � #fh 2 IK

p : HK
p �K�q;h��q0�� � hg : �8:47�

Clearly, if h 2 IK
p , then H�K�q;h��q0�� � h if and only if one of the

following two events occur:

� h � K
� The two processes K�q;h� and K�q;h�2ÿp� do not meet before q0.

As these two processes are independent RABs before their meeting
(i.e. coalescing) time, Lemma A.1 shows that for all h 2 IK

p ,

P
�
K�q;h��q0� < K�q;h�2ÿp��q0�

�
� C02

2ÿp������������
q0 ÿ q
p : �8:48�

Hence,

E�NK
p � �

XK2p

j�1
P�H�K�q;j2ÿp��q0�� � j2ÿp�

� 1�
XK2pÿ1

j�1
P�K�q;j2ÿp��q0� < K�q;�j�1�2ÿp��q0��
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� 1� K2pC02
2ÿp������������
q0 ÿ q
p

� 1� KC02������������
q0 ÿ q
p : �8:49�

In other words, E�NK
p � is bounded, uniformly in p 2 N. But �NK

p �p�0 is
a non-decreasing sequence: Hence, there almost surely exists
p0 � p0�K� such that for all p � p0, NK

p � NK
p0 . This means in particular

that the set

fK�q;h��q0� : h 2 D \ �0;K�g �8:50�
is almost surely ®nite.

Let us now ®x a positive number K 0. Clearly, there almost surely
exists an integer K > 0 such that K�q;K��q0� > K 0, so that

M�q; q0� \ �0;K 0� � fK�q;h��q0� : h 2 �0;K�g : �8:51�
But we have seen that this set is in the closure of the set

fK�q;h��q0� : h 2 D \ �0;K�g ; �8:52�
which is almost surely ®nite; hence M�q; q0� \ �0;K 0� is also almost
surely ®nite and

M�q; q0� � fK�q;h��q0� : h 2 D��g : �8:53�
STEP 2: For any integer n � 1, we de®ne, for all ~xn < x < y,

Mn�x; y� :� fh 2 M�x; y� : h < Fn�y�g : �8:54�
It is straightforward to see that almost surely,

lim
n!1 Fn�y� � 1 �8:55�

for all y 2 R, so that it su�ces to check that Mn�x; y� is almost surely
®nite for all n � 0 and x < y in R�R in order to show that M�x; y� is
a.s. locally ®nite for all x < y.

Clearly, the de®nition of forward lines (and the fact that two Fn's
can not cross) implies that for all x � q � q0 � y, for all n � 0, such
that ~xn < x,

#Mn�x; y� � #Mn�q; q0� : �8:56�
Hence, it is easy, using step 1, to conclude that almost surely, for all
x < y, M�x; y� is locally ®nite and that

M�x; y� � fFn�y� : n � 0 and ~xn < xg : �8:57�
This concludes the proof of Proposition 2.2(ii).

(Proposition 2.2 (ii)

The true self-repelling motion 427



Proof of Proposition 2.2 (iii). This is a simple combination of Prop-
osition 2.2(ii) and Lemma 8.4.

(Proposition 2.2 (iii)

Proof of Proposition 2.2-(iv). Proposition 2.2-(ii) shows in particular
that almost surely, for all �x; h� 2 E and e > 0, there exists n0 � 0 such
that ~xn0 < x, Fn0�x� < h and

K�x;h��y� � Fn0�y�; 8y � x� e : �8:58�
Combining this with Lemma 8.2 shows that it is always possible to
choose n0 in such a way that Fn0�x� 2 �hÿ e; h�. Theorem 2.1-(i3) then
implies that almost surely, for all �x; h� 2 E and e > 0, there exists n0
such that

~xn0 < x; Fn0�x� 2 �hÿ e; h� and Fn0�y� � K�x;h��y� �8:59�
for all y � x� e.This is exactly Proposition 2.2 (ii).

(Proposition 2.2 (iv)

It now remains to prove Proposition 2.2 (v) i.e. that almost surely,
K�x;h� is continuous on �x;�1� for all �x; h� 2 E. We ®rst focus on the
continuity at x:

Lemma 8.5. Almost surely, for all �x; h� 2 E, limy#x K�x;h��y� � h.

Proof. It su�ces in fact to prove that almost surely, for any 0 < a < h
and K in D�, and for all x 2 �ÿK;K�, h00 > h� a and h0 < hÿ a,

hÿ a � lim
y#x

K�x;h00��y� � lim
y#x

K�x;h0��y� � h� a : �8:60�

Exactly as in the proof of Lemma 8.2, one can show that, almost
surely, for all large enough k, for all j 2 fÿk; . . . ; k ÿ 1g,
fK�jK=k;h��y� : y 2 �jK=k; �j� 2�K=k�g � �hÿ a; h� a� : �8:61�

In particular (combining this with Theorem 2.1 (i3)), this implies that
almost surely, for all large enough k: For all j 2 fÿk; . . . ; k ÿ 1g, for
all x 2 �jK=k; �j� 1�K=k� and for all h0 < hÿ a < h� a < h00, for all
y 2 �x; x� K=k�,

hÿ a � K�x;h00��y� � K�x;h0��y� � h� a : �8:62�
This implies (8.60) and therefore completes the proof of the Lemma.

hLemma8.5

Proof of Proposition 2.2-(v). Theorem 2.1-(ii) and Lemma 8.5 imply
that almost surely, the mapping y 7!K�x;h��y� is continuous at y � x,
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for all �x; h� 2 E. Proposition 2.2 (iv) implies that almost surely, for all
x < x0 in R and h > 0, y 7!K�x;h��y� is continuous on �x0;1� (as all Fn's
are continuous). Combining these two facts yields Proposition 2.2(v).

hProposition 2.2-(v)

9. Duality of the systems of lines: Proofs

This section is essentially devoted to the proof of Theorem 2.3 and
Proposition 2.4. We proceed in the following way:

(1) First we shall prove that almost surely, for all �x; h� 2 E the
backward line �ÿ1; x� 3 y 7!K��x;h��y� is continuous and that, al-
most surely, the backward lines do not cross (Lemma 9.1).

(2) Next we prove that for any �x; h� 2 E the process�ÿx;1� 3 y 7!
K��ÿx;h��ÿy� is a RAB and that for any ®nite collection �x1; h1�; . . . ;
�xp; hp� the processes K��x1;h1����; . . . ;K��xp;hp���� are independent as
long as they stay apart (Lemma 9.3).

(3) Finally, we prove Proposition 2.4 (iii). From this it follows that
any two backward lines coalesce when they meet and this conse-
quence completes the proof of Theorem 2.3. Proposition 2.4 (i)
and (ii) follow easily from Theorem 2.3. Altogether, Proposition
2.4 sheds light on the ®ne topological structure of the systems of
forward and backward lines. This is the most interesting part of the
present section.

(1) Note ®rst of all that the de®nition (2.16) of the backward lines
and left-continuity of K in the h-variable implies that almost surely for
any �x; h� 2 E and z � x and e > 0,

K�z;K��x;h��z���x� < h � K�z;K��x;h��z��e��x� �9:1�

(with the notation K��;0���� � 0). Hence, almost surely, for all
�x; h� 2 E, for all z � y � x and e > 0 (using Theorem 2.1-(i3) and the
de®nition of K�),

K�z;K��x;h��z���y� � K��x;h��y� �9:2�

On the other hand, if y 2 �z; x� and if h0 :� K�z;K��x;h��z��e��y�, then

Proposition 2.2 shows that there exists n � 0 such that ~xn < y,
Fn�y� < h0 and Fn�x� � K�z;K��x;h��z��e��x� � h. In particular, K��x;h��y�
� Fn�y� < K�z;K��x;h��z��e��y�. Hence (combining this with (9.2)), almost
surely, for all �x; h� 2 E, for all z � y � x and e > 0,

K�z;K��x;h��z���y� � K��x;h��y� � K�z;K��x;h��z��e��y� : �9:3�

The true self-repelling motion 429



In plain words this means that forward lines and backward lines never
cross. This will be of crucial importance in the forthcoming proof.

Lemma 9.1. [Continuity and non-crossing of the backward lines] The
dual process Fÿ 3 �x; h; y� 7!K��x;h��y� 2 R� de®ned in (2.16) almost
surely has the following properties:

(i) For all �x; h� 2 E, K��x;h��x� � h.
(ii) For any x � y ®xed the mapping R�� 3 h 7!K��x;h��y� 2 R� is left-

continuous and non-decreasing.
(iii) K� has the non-crossing property (analogous to (i3) of Theorem

2.1, stated for the forward lines): for all �x1; h1�, �x2; h2� in E and
z � y � minfx1; x2g:

K��x1;h1��y� < K��x2;h2��y�
h i

�) K��x1;h1��z� � K��x2;h2��z�
h i

�9:4�
(iv) For all �x; h� 2 E, �ÿ1; x� 3 y 7!K��x;h��y� is continuous.

Proof. (i) and (ii) follow directly from the de®nition (2.16) of the
backward lines K� and the properties of K.

(iii) is also a rather simple consequence of the de®nition of K�:
Assume the contrary, namely that there are �x1; h1�; �x2; h2� 2 E and
z < y � minfx1; x2g such that

K��x1;h1��y� < K��x2;h2��y� and K��x1;h1��z� > K��x2;h2��z� �9:5�
Then, choosing e > 0 small enough:

K�z;K��x2 ;h2��z��e��z� � K��x2;h2��z� � e < K��x1;h1��z� � K�z;K��x1 ;h1��z���z� : �9:6�
Applying (9.3), on the other hand we get:

K�z;K��x2 ;h2��z��e��y� � K��x2;h2��y� > K��x1;h1��y� � K�z;K��x1 ;h1��z���y� : �9:7�
(9.6) and (9.7) contradicts (i3) of Theorem 2.1.

(iv) By (9.3) and continuity of the forward lines, almost surely for
any �x; h� 2 E, z � x and e > 0:

K��x;h��z� � lim
y#z

K��x;h��y� � lim
y#z

K��x;h��y� � K��x;h��z� � e �9:8�

which proves continuity from right. Next, assume that there are
�x; h� 2 E, y � x, e > 0 and an increasing sequence yn " y, so that

inf
n�0

K��x;h��yn� > K��x;h��y� � e : �9:9�

By (9.3), for all n � 0,

K�yn;K
�
�x;h��yn���y� � K��x;h��y� �9:10�
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Due to continuity and the non-crossing property ((i3) of Theorem 2.1)
of the forward lines:

M�y� \ �K��x;h��y�;K��x;h��y� � e� � ; �9:11�
Indeed: assume that for some z < y and h0 > 0 K�z;h0��y� 2 �K��x;h� �y�;
K��x;h��y� � e�, then for simple topological reasons (9.3), (9.9) and
(9.10) imply that for su�ciently large n, K�yn;K

�
�x;h��yn����� would have to

cross K�z;h0���� and this contradicts (i2) of Theorem 2.1. Hence we
conclude that almost surely, for any �x; h� 2 E and y � x

lim
z"y

K��x;h��z� � K��x;h��y� �9:12�

By an identical argument we ®nd also

lim
z"y

K��x;h��z� � K��x;h��y� �9:13�

(9.12) and (9.13) imply continuity from left.

(Lemma 9.1.

(2) Let A � E be an open box of the form I � J where I and J are
two intervals. For all �x; h� 2 I � J we de®ne

xA
�x;h� :� inffy > x : K�x;h��y� j2 Ag �9:14�

x�A�x;h� :� supfy < x : K��x;h��y� j2 Ag �9:15�
In plain words: xA

�x;h� (respectively x�A�x;h�) is the ®rst exit `time' of the
forward line K�x;h���� (respectively, of the backward line K��x;h����) from
the domain A. We also de®ne the sigma algebra generated by the `data
inside the domain A':

R�A� :� r
�

Fn�y� : n � 0; �~xn; ~hn� 2 A; y 2 �~xn;x
A
�~xn;~hn��

n o�
: �9:16�

It is clear from the de®nition of the Fn's that for any ®nite collection of
pairwise disjoint boxes A1; . . . ;Ap � E the sigma algebras R�A1�; . . . ;
R�Ap� are independent.

In particular, for any ®xed x0, if A�x0 :� �x0;1�� �0;�1� and
Aÿx0 :� �ÿ1; x0� � �0;�1�, R�A�x0� and R�Aÿx0� are independent (note
that these two r-®elds are exactlyFx0 andF

�
x0 of Section 2.2; we will

keep here the notation R�A�x0� to clearly distinguish between what is
already proved from what isn't).

Note that for all x � x0 and h > 0, �K�x;h��y�; y 2 �x; x0��is R�Aÿx0�-
measurable, whereas by symmetry (this can be for instance deduced
from Lemma 8.4 and the de®nition of K�) for all x � x0 and h > 0,
�K��x;h��y�; y 2 �x0; x��is R�A�x0�-measurable.
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Hence, it follows readily (using the de®nition of K� yet again) that
for all ®xed x0, the two families �K��x;h��y�; y � x � x0; h > 0� and
�K��x;h��y�, x0 � y � x; h > 0� are independent.

We now state the counterpart for K� of Lemma 8.1:

Lemma 9.2. For all ®xed x � x0 and h > 0, almost surely, for all y � x0,

K��x0;K��x;h��x0���y� � K��x;h��y� : �9:17�

Proof. For all ®xed h0 > 0, for all n � 0 such that ~xn < x0, almost
surely, Fn�x0� 6� h0 (as the law of Fn�x0� has no atoms). Hence, it is easy
to see (using the fact that all M�y; x0� are discrete) that almost surely,
for all y < x0,

K��x0;h0��y� � lim
e#0

K��x0;h0�e��y� �9:18�

Let us now ®x �x; h� 2 E with x > x0. Then K��x;h��x0� is R�A�x0 �-mea-
surable, and therefore independent from �K�x0;h00��y�; y � x0; h00 > 0�.
Combining this with (9.18) (for h0 :� K��x;h��x0�) implies immediately
the Lemma.

(Lemma 9.2.

Let us now ®x �x1; h1�; . . . ; �xp; hp� in E such that x1 � � � � � xp. We
also ®x x0 2 R and de®ne j :� supfi � p : xi � x0g. The previous
Lemma combined with the independence stated above shows in par-
ticular that conditionally on

�K��xj�1;hj�1��x0�; . . . ;K��xp;hp��x0�� ; �9:19�

the two families of functions

�x0;�1� 3 y 7! �K��x1;h1��y�; . . . ;K��xp;hp��y�� �9:20�
and

�ÿ1; x0� 3 y 7! �K��x1;h1��y�; . . . ;K��xp;hp��y�� �9:21�
are independent (with for instance the notation K��x;h� � ÿ1 if y > x).
This shows that y 7! �K��x1;h1��ÿy�; . . . ;K��xp;hp��ÿy�� is a (inhomoge-
neous) Markov process.

It is easy to identify the transition probabilities of the Markov
process �ÿx;1� 3 y 7!K��ÿx; h��ÿy� 2 R�: let �x; h�; �x0; h0�; �x00; h00�
2 E be given, with x � x0 > x00, then by construction (2.16) of
thebackward lines, left-continuity in the h variable of the forward
lines and independence of the sigma algebras R�A�x0 � and R�Aÿx0 � we
have
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P�K��x;h��x00� < h00jK��x;h��x0� � h0� � P�K�x00;h00��x0� > h0� �9:22�
P�K��x;h��x00� � h00jK��x;h��x0� � h0� � P�K�x00;h00��x0� < h0� �9:23�

Since P
ÿ
K�x00;h00��x0� � h0

� � 0, these inequalities imply

P�K��x;h��x00� < h00jK��x;h��x0� � h0� � P�K�x00;h00��x0� > h0� �9:24�
Thus, �ÿx;1� 3 y 7!K��ÿx; h��ÿy� 2 R� is a Markov process with
transition probabilities given in (9.24) and a.s. continuous sample
path. These properties imply easily that given �x; h� 2 E ®xed
�ÿx;1� 3 y 7!K��ÿx; h��ÿy� 2 R� is a RAB: Indeed, if we de®ne a
linear Brownian motion B started from h at time 0 under the proba-
bility measure Ph, and if A denotes the absorbed Brownian motion
obtained by killing B at its ®rst hitting time of 0, then for all positive
real numbers x, h1 and h2,

Ph1�A�x� > h2� � Ph1�B�x� > h2� ÿ Ph1�B�x� < ÿh2�
� Ph1�B�x� > h2� ÿ Ph1�B�x� > 2h1 � h2�
� P0�B�x� 2 �h2 ÿ h1; h2 � h1��
� Ph2�jB�x�j � h1� : �9:25�

Next we prove that, given ®nitely many �x1; h1�; . . . ; �xp; hp� 2 E, the
processes K��x1;h1����; . . . ;K��xp;hp���� are independent as long as they stay
apart. We prove this for p � 2. The general case is treated identically,
only the notation becomes more complicated. Because of Lemma 9.2,
and the independence between R�A�x1� and R�Aÿx1�, it su�ces to con-
sider the case where x1 � x2 � x. We build up the two processes
K��x1;h1���� and K��x2;h2���� in small steps of `time span'
xÿ 5ÿnk � y � xÿ 5ÿn�k ÿ 1�, in the following way. Let us use the
shorthand notation:

xn;k :� xÿ 5ÿnk; n � 1; 2 . . . ; k � 0; 1; 2; . . . �9:26�
De®ne

A�i�n;k :� �xn;k�1; xn;k���K��x;hi��xÿ 5ÿnk� ÿ 2ÿn;K��x;hi��xÿ 5ÿnk� � 2ÿn�;
i � 1; 2; n � 1; 2; . . . ; k � 0; 1; . . . �9:27�

and the stopping times

u�i�n :� inffy � ÿx : ÿy 2 �xn;k�1; xn;k� and K��x;hi��ÿy� j2 A�i�n;kg �9:28�
vn :� xÿminf5ÿnk : A�1�n;k \ A�2�n;k 6� ;g �9:29�
By independence of the sigma algebras R�Ai� for pairwise disjoint
domains Ai, and using Lemma 9.2, it is clear that the two processes
�ÿx;1� 3 y 7!K��x;h1��ÿy� and y 7!K��x;h2��ÿy� are independent till
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ÿy � minfu�1�n ; u�2�n ; vng �9:30�
Since K��x;h1���� and K��x;h2���� are RABs (this was already proved in the
previous paragraphs), by a Borel-Cantelli argument it is easy to see
that

lim
n"1

u�i�n � 1; almost surely, i � 1; 2: �9:31�

On the other hand, vn�1 � vn and

lim
n"1

vn � inffÿy : K��x;h1��y� � K��x;h2��y�g �9:32�

From these arguments indeed it follows that the law K��x;h1���� and
K��x;h2���� are independent as long as they stay apart (i.e. the law of
these two processes up to their ®rst meeting time is that of two in-
dependent `backwards' RAB's up to their ®rst meeting time). Sum-
marizing, we get the following

Lemma 9.3. Given ®nitely many �x1; h1�; . . . ; �xp; hp� 2 E the processes
�ÿxj;1� 3 y 7!K��xj;hj��ÿy�, j � 1; . . . ; p, are RABs and they are inde-
pendent as long as they stay apart.

(3) It remains to be proven that the backward lines coalesce when
they meet. In order to do this we need the re®ned topological picture
of the system of lines stated in Proposition 2.4. For �x; h� 2 E, let
I�x; h� be the number of disjoint forward lines coalescing at �x; h� and
O�x; h� the number of disjoint forward lines going out from the
immediate vecinity of �x; h�. The precise de®nition of I�x; h� was given
in (2.28) and

O�x; h� :� lim
y#x

lim
e#0

#
�
K�x0;h0��y� : �x0; h0� 2 �x; x� e�
� �hÿ e; h� e��	

� lim
y#x

lim
e#0

#
�
K�~x0;~h0��y� : �~x0; ~h0� 2 �x; x� e�

� �hÿ e; h� e� \ ~E�	 : �9:33�
Note that #f. . .g on the right hand side of (9.33) is monotone non-
increasing with decreasing e and monotone nondecreasing with de-
creasing y. In the second equality of (9.33) we use (ii) of Proposition
2.2.

Similarly, we de®ne I��x; h� and O��x; h� as the number of disjoint
backward lines coming from the right of x and meeting at �x; h�, re-
spctively as the number of disjoint backward lines going out from the
immediate vecinity of �x; h�:
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I��x; h� :� lim
y#x

sup#
�

p 2 N : 9�x1; h1�; . . . ; �xp; hp� 2 E such that

8i � 1; . . . ; p : xi � y; K��xi;hi��x� � h and

8z 2 �x; y�; K��y;h1��z� < � � � < K��y;hp��z�
	
:

�9:34�
O��x; h� :� lim

y"x
lim
e#0

# K��x0;h0��y� : �x0; h0� 2 �xÿ e; x� � �hÿ e; h� e��
n o

:

�9:35�
It is clear that for all �x; h� 2 E: I�x; h�; I��x; h� 2 f0; 1; 2; . . . ;1g and
O�x; h�; O��x; h� 2 f1; 2; . . . ;1g. Also, from the de®nition (2.16) of
backward lines and (9.3), it follows immediately that for all �x; h� 2 E

I��x; h� � O�x; h� ÿ 1; O��x; h� � I�x; h� � 1 �9:36�
We will ®rst prove Proposition 2.4 (iii) and Theorem 2.3 simulta-

neously. We then derive Proposition 2.4 (i)±(ii) as immediate conse-
quences of Theorem 2.3.

Proof of Proposition 2.4 (iii) and Theorem 2.3. First note that, with
probability one, no three (or more) forward lines starting from distinct
points �~xi; ~hi�,�~xj; ~hj�, �~xk; ~hk� in ~E will coalesce at the same point
�x; h� 2 E. Hence, by (ii) of Proposition 2.2, we conclude that almost
surely, for all �x; h� 2 E

0 � I�x; h� � 2 : �9:37�
Further we proceed in the following way: First we prove that almost
surely for all �x; h� 2 E

O�x; h� � 3) I�x; h� � 0 �9:38�
By (9.36) this implies that the backward lines are coalescing:

I��x; h� � 2) O��x; h� � 1 �9:39�
and this is what we need to complete the proof of Theorem 2.3.
Further on: Theorem 2.3 and (9.36)±(9.39) imply that almost surely
for all �x; h� 2 E, I��x; h� � 2 so that

1 � O�x; h� � 3 �9:40�
and

I�x; h� � 2) O�x; h� � 1 �9:41�

Finally, (9.37), (9.38), (9.40) and (9.41) imply (iii) of Proposition 2.4.
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The proof of (9.38) relies on the following:

Lemma 9.4. There exists a constant C00 <1 such that for all �x; h� 2 E,
v > 0 and d > 0:

P
�
9�h1; h2; h3� 2 �h; h� d�3 : K�x;h1��x� v� < K�x;h2��x� v�

< K�x;h3��x� v�
�
< C00

d���
v
p
� �3

: �9:42�

Proof. From Lemma A.1. we know that for any v > 0, d > 0 and
�x; h� 2 E

P
�
K�x;h��x� v� < K�x;h�d��x� v� < K�x;h�2d��x� v�

�
< C03

2d���
v
p
� �3

:

�9:43�
Left continuity of h 7!K�x;h��x� v� implies thatn
9�h1; h2; h3�2�h; h� d�3 : K�x;h1��x� v�<K�x;h2��x� v�<K�x;h3��x� v�

o
�
n
9p � 1; 9j 2 f0; . . . ; 2p ÿ 2g :

K�x;h�dj2ÿp��x� v� < K�x;h�d�j�1�2ÿp��x� v�< K�x;h�d�j�2�2ÿp��x� v�
o

�9:44�
From the last two relations it follows that

P
�
9�h1; h2; h3� 2 �h; h� d�3 : K�x;h1��x� v� < K�x;h2��x� v�

< K�x;h3��x� v�
�

�
X
p�1

C02
2d2ÿp���

v
p

� �3

�2p ÿ 1�

� C00
d���
v
p
� �3

�9:45�

with C00 :� 8C03=3 (Lemma 9.4:

We are ready now to prove (9.38). We want to prove that a.s, for
all �x; h� 2 E, I�x; h� � 1 implies that O�x; h� � 2. It is su�cient to
prove that for all ®xed n � 0, g > 0 and M <1, almost surely, for all
x 2 �~xn;~xn �M �,

Og�x; Fn�x�� � 2 ; �9:46�
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where

Og�x; h� :� inf
e>0

#fK�x0;h0��x� g� : �x0; h0� 2 �x; x� e� � �hÿ e; h� e�g :
�9:47�

For m � 1, we divide the interval �~xn;~xn �M � into 5m equal parts: We
de®ne for all j � 0,

xj;m :� ~xn � jM5ÿm and hj;m :� Fn�xj;m� : �9:48�
For m > 0 and j � 1; 2; . . . ; 5m let us de®ne the events

Am;j :�
n�

K�xjÿ1;m;hjÿ1;m�2ÿm��xj;m� > hjÿ1;m � 2 � 2ÿm� or�
K�xjÿ1;m;hjÿ1;mÿ2ÿm��xj;m� < hjÿ1;m ÿ 2 � 2ÿm�o �9:49�

A simple Brownian estimate shows that

P�Am;j� � exp ÿ 5m

2M4m

� �
�9:50�

But, if 5ÿm < g=2, then for all j � 1,�9x 2 �xjÿ1;m; xj;m� : Og�x; Fn0�x�� � 3
	 \Ac

m;j �9:51�
� �9�h1; h2; h3� 2 ��hjÿ1;m ÿ 2 � 2ÿm; hjÿ1;m � 2 � 2ÿm� \R���3 :

K�xj;m;h1��xj;m � g=2� < K�xj;m;h2��xj;m � g=2�
< K�xj;m;h3��xj;m � g=2�	 �9:49�

Thus, by (9.42)

P
��9x 2 �xjÿ1;m; xj;m� : Og�x; Fn0�x�� � 3

	 \Ac
m;j

�
� C�g�2ÿ3m �9:52�

where C�g� � C0043
���
2
p

gÿ1=2. Now, combining (9.50) and (9.52) we
conclude

P
�
9x 2 �~xn0 ;~xn0 �M � : Og�x; Fn0�x�� � 3

�
� 5m exp ÿ 5m

2M4m

� �
� C�g�2ÿ3m

� �
: �9:53�

Letting m " 1 this implies (9.46).
(Proposition 2.4(iii) and Theorem 2.3

Proofs of Proposition 2.4 (i)±(ii). These results are almost immediate,
using Theorem 2.3: When �x; h� 2 E is ®xed, then for all n � 0 such
that ~xn < x, Fn�x� 6� h almost surely. Similarly, for all n � 0 such that
~xn > x, F �n �x� 6� h almost surely. This shows that almost surely,
I�x; h� � I��x; h� � 0, and this implies Proposition 2.4 (i).
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Suppose now that x 2 R is ®xed. For all n � 0 and n0 � 0 such that
~xn < x and ~xn0 < x, the meeting `time' of Fn and Fn0 is almost surely not
equal to x: Hence, almost surely, for all h > 0, I�x; h� � 1. Similarly
(by symmetry), almost surely, for all h > 0, I��x; h� � 1. This implies
Proposition 2.4 (ii).

10. Remarks

The stationary limit- Suppose now that we de®ne a process �X using
exactly the same procedure as for X except that the forward lines �Fn�
are not RAB's, but Brownian motions that are re¯ected/absorbed on
another independent Brownian motion passing through �0; 0� that
replaces the line fh � 0g. Then, the process �X has very similar prop-
erties to those of X and some of them are even simpler.

A more precise de®nition of �X can be the following: De®ne ®rst a
countable family of independent coalescing Brownian motions
(without any re¯ection nor absorbtion) �Un�n�0 started from a dense
sequence �xn; hn�n�0 in R�R, with �x0; h0� � 0.Then de®ne for all
�x; h� 2 R�R and y � x,

V�x;h��y� :� supfUn�y� : n � 0; xn < x and Un�x� < hg : �10:1�
Then, almost exactly as in Sections 8 and 9, one can notice that the
law of V de®ned in this way is unique in a certain sense, and that V has
the same self-duality property as K: If we de®ne for all �x; h� 2 R�R
and y � x,

V ��x;h��y� :� supfUn�y� : n � 0; xn < y and Un�x� < hg �10:2�
then �x; h; y� 7! V�x;h��y� and �x; h; y� 7! V ��ÿx;h��ÿy� are identical in law.
In particular, if we de®ne V �x;h��y� for all y 2 R, by

V �x;h��y� � 11fy�xgV�x;h��y� � 11fy<xgV ��x;h��y� ; �10:3�
then the law of V �0;0� is that of a linear Brownian motion de®ned on R
with V �0;0��0� � 0. We then de®ne the set

E0 :� f�x; h� 2 R�R : V �0;0��x� < hg : �10:4�
Then, for all �x; h� 2 E0, we put

�T �x; h� �
Z

R
dy V �x;h��y� ÿ V �0;0��y�
ÿ �

: �10:5�

The two-dimensional process � �X ; �H� is then de®ned exactly like
�X ;H�, just replacing T by �T . In particular, for almost all t � 0,

t � �T � �Xt; �Ht� : �10:6�
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The process �X de®ned in this way, satis®es all the properties of X
enumerated in the introduction; the only di�erence is that the right-
hand side of (1.6) has to be replaced by ÿ �XT (the perturbation at the
boundary of the range disappears). The process � �Xt; t � 0� will have
stationary increments and can be viewed as the weak limit of
�Xt0�t ÿ Xt0 ; t � 0�, as t0 " 1.

Universality of the 3=2 variation- More general self-interacting
processes can be de®ned using other independent coalescing time-
homogeneous di�usions than Brownian motion. For example, if we
start with a system of independent coalescing powers of Brownian
motions (or of Bessel processes), then the same procedure as that
described in this paper, would de®ne a self-repelling motion Y with a
di�erent scaling behaviour than that of X . More precisely, if we start
with independent coalescing processes which each have the law of
re¯ected/absorbed Bessel processes (of dimension m 2 �0; 2�) at some
power a > 0, then the corresponding self-repelling motion Y satis®es
the following scaling property: �Yat; t � 0� and �a2=�2�a�Yt; t � 0� are
identical in law. But (as for powers of Bessel processes themselves that
are di�usions, and therefore have ®nite quadratic variation), the local
behaviour of Y is similar to that of X i.e. Y satis®es the same type of
local variation property as X (with ®nite variation of order 3=2). This
3=2 variation is in some sense universal for this type of self-interacting
processes.The limit theorems proved in [T2] suggest that these pro-
cesses arise as scaling limits for `generalized true self avoiding random
walks', with subexponentially self-repelling weights.

11. A discrete construction

We now brie¯y describe a discrete model that is very similar to true
self-repelling motion. Its de®nition is a little bit more complicated
than that of true self-avoiding walk mentioned in the introduction,
but it has the advantage that many features (the lines of local times as
coalescing random walks, duality of forward and backward lines,
de®nition of the process from the family of coalescing random walks
etc) become apparent on a picture. In particular, it can be de®ned in
several di�erent ways: It can be viewed (this will be our third de®ni-
tion) as a self-interacting nearest-neighbour walk in Z; it can also be
de®ned using a family of coalescing re¯ected/absorbed simple random
walks in N.

Before giving a formal de®nition of this discrete random walk, let
us give a ®rst appealing intuitive description that vaguely recalls the
totally asymmetric exclusion process in Z: Suppose that at time zero,
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each site z 2 Z is occupied by a particle if z is an even positive or an
odd negative integer; suppose that each odd positive and each even
negative site is occupied at time zero by an anti-particle, and that site 0
is (doubly) occupied by both a particle and an anti-particle. The dy-
namics is the following: particles can move only to the right and anti-
particles can move only to the left. At any time n, there is a unique site
which is doubly occupied (by two particles, or by a particle and an
anti-particle, or by two anti-particles). Toss a fair coin to decide which
one of the two will move, and then move it to the right (if a particle is
chosen) or to the left (if an anti-particle is chosen). Start the same
procedure again at time n� 1 with this new con®guration. It is an easy
exercise (that we safely leave to the reader) to check that if Sn denotes
the position of the unique doubly occupied site at time n, then
�Sn; n � 0� is precisely the random walk that we are going to describe
in this section.

A second (equivalent) de®nition of this random walk can be ob-
tained using a family of coalescing random walks (see ®gure 2 later in
this section): This equivalence between the third de®nition of
�Sn; n � 0� (the one we are going to describe in the next paragraphs)
and the de®nition via a family of coalescing random walks is very
instructive. The construction of true self-repelling motion developed
in the present paper can be interpreted as follows: We construct the
continuous analog of �Sn; n � 0� using a natural generalization/scaling
limit of this second de®nition of �Sn; n � 0� (replacing the family of
coalescing random walks by a continuous family of coalescing
Brownian motions).

We now ®nally give the third de®nition of this nearest-neighbour
(i.e. jSn�1 ÿ Snj � 1) walk �Sn; n � 0� de®ned on Z and started from
S0 � 0. Before describing its transition probabilities, we introduce
some notation: de®ne its local time on edges just as for the true self-
avoiding walk in the introduction: For all i 2 N and z 2 Z,

l�i; z� :� #fj 2 �0; iÿ 1� : fSj; Sj�1g � fz; z� 1gg �11:1�
(in plain words: l�i; z� denotes the number of jumps along the edge
located to the right of z before step i) and we will also sometimes use
the local time on sites:

k�i; z� :� #fj 2 �0; i� : Sj � zg : �11:2�
We will also use the following function a�z� de®ned for all z 2 Z
by:

a�z� :� 1� sgn�z� 1=2��ÿ1�z
2

�11:3�
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(i.e. a�0� � 1, a�1� � 0, a�2� � 1 etc. and a�ÿ1� � 1, a�ÿ2� � 0,
a�ÿ3� � 1 etc). To de®ne the transition probabilities, we will use `�i; z�
rather than l�i; z� where we de®ne ` for all i 2 N and z 2 Z as follows:

`�i; z� :� l�i; z� � a�z�: �11:4�
a�z� can be interpretated as the initial data of the local times on edges.
It is straightforward to see by induction that for all i � 0 and z 2 Z,

`�i; z� � `�i; zÿ 1� � 2k�i; Si� if z � Si

2k�i; z� � 1 if z 6� Si

�
�11:5�

In particular, for all i � 0, `�i; Si� ÿ `�i; Si ÿ 1� is even.
We now de®ne the law of S as follows: For all i � 0,

P
�

Si�1 � Si � 1
���S0; . . . ; Si

�
� 1ÿ P

�
Si�1 � Si ÿ 1

���S0; . . . ; Si

�
�

1 if `�i; Si� < `�i; Si ÿ 1�
1=2 if `�i; Si� � `�i; Si ÿ 1�
0 if `�i; Si� > `�i; Si ÿ 1�

8><>:
This de®nition (combined with (11.5)) implies immediately that for all
i � 0, for all z 2 ZnfSig,

`�i; z� ÿ `�i; zÿ 1� 2 fÿ1; 1g �11:7�
and that

`�i; Si� ÿ `�i; Si ÿ 1� 2 fÿ2; 0; 2g : �11:8�
A simple parity argument shows that for all i � 0, `�i; Si� � Si is odd.
In particular, if `�i; Si� � `�i; Si ÿ 1� for some i � 0 then Si � `�i; Si� is
odd and `�i; Si� � 1 � 2. This implies that for all i � 0,

k�i; Si� � Si is odd� � ) `�i; Si� � `�i; Si ÿ 1�� � : �11:9�
Suppose for a moment that for some i � 0, Si � k�i; Si� is odd, and
that j`�i; Si� ÿ `�i; Si ÿ 1�j � 2. Combining this with (11.5) implies that
`�i; Si� � Si is even, which contradicts the previous statement.

We are therefore led to de®ne the sets

G� :� f�z; h� 2 Z�N : h� z is odd and h � 2g �11:10�
Gÿ :� f�z; h� 2 Z�N : h� z is even and h � 2g : �11:11�

We will also need the corresponding bottom `lines' G�0 and Gÿ0 de-
®ned as follows

G�0 :� f�z; h� 2 Z� f0; 1g : h� z is oddg n f�ÿ1; 0�g �11:12�
Gÿ0 :� f�z; h� 2 Z� f0; 1g : h� z is eveng n f�0; 0�g : �11:13�
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We now de®ne a family �n�z; h�; �z; h� 2 G�� of independent random
variables with

P
�
n�z; h� � 1

�
� P

�
n�z; h� � ÿ1

�
� 1=2 : �11:14�

The de®nition of the law of S and (11.8) shows that S can be de®ned as
follows: For all i � 0,

Si�1 ÿ Si �
1 if `�i; Si� � `�i; Si ÿ 1� ÿ 2
n�Si ÿ 1; `�i; Si� � 1� if `�i; Si� � `�i; Si ÿ 1�
ÿ1 if `�i; Si� � `�i; Si ÿ 1� � 2

8<:
�11:15�

This construction of S turns out to be very convenient: We are now
going to see that the local times of S can be described in terms of the
random variables n and more precisely, in terms of a family of co-
alescing random walks derived from the family n.

We ®rst de®ne deterministically n�z; h� when �z; h� 2 G�0 as follows:

n�z; 1� � ÿ1 if z � 0
1 if z � ÿ2

�
�11:16�

and

n�z; 0� � 1 if z � 1
ÿ1 if z � ÿ3

�
�11:17�

(recall that �ÿ1; 0� j2G�0 ).
We de®ne the family of independent coalescing random walks L�

as follows: For all �z; h� 2 G�, we de®ne a random walk y 7!L��z;h��y�
de®ned for y � z by induction: L��z;h��z� � h and for all y � z,

L��z;h��y � 1� � L��z;h��y� � n�y; L��z;h��y�� : �11:18�
Then, as the random variables �n�z;h���z;h�2G� are independent iden-
tically distributed, L� is a family of coalescing independent simple
random walks in N n f1; 0g. The `boundary conditions' on the bottom
line G�0 can be loosely speaking described as follows: L� is re¯ected
from the bottom line when z < 0 and absorbed by the bottom line as
soon as z � 0. This is exactly the discrete counterpart of the system K
constructed in Sections 2 and 8.

The corresponding dual system is easy to de®ne: For all
�z; h� 2 Gÿ, we de®ne a `backwards' running random walk Lÿ�z;h����
de®ned for all y � z as follows: Lÿ�z;h��z� � h and for all y � z,

Lÿ�z;h��y ÿ 1� � Lÿ�z;h��y� ÿ n y ÿ 1; Lÿ�z;h��y�
� �

: �11:19�
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Then Lÿ forms a family of independent coalescing `backwards' ran-
dom walks re¯ected from the bottom line Gÿ0 `before' 0 and absorbed
`after' 0. Note that the de®nitions of L� and Lÿ show that for all
�z; h� 2 G�,

Lÿ�z�1;h��z� ÿ Lÿ�z�1;h��z� 1� � ÿ L��z;h��z� 1� ÿ L��z;h��z�
� �

: �11:20�
In particular, this shows that the forward walks and the backward
walks never cross. Another formulation of this is to say that the trace
of the family of backward lines is exactly the (Whitney, topological)
dual graph of the trace of the family of forward lines (this can be
easily observed on the picture); For instance, for all �z; h� 2 G�, the
bond �z� 1; h� $ �z; h� 1� is occupied (in the graph corresponding to
Gÿ) if and only if �z; h� $ �z� 1; h� 1� is not occupied (in the graph
corresponding to G�).

It is easy to notice that in fact the law of Lÿ and of L� are very
similar: De®ne for all �z; h� 2 Gÿ [Gÿ0 ,

n0�z; h� � ÿn�zÿ 1; h� : �11:21�
Then, the two families�n�z; h���z;h�2G�[G�

0
and �n0�ÿ1ÿ z; h���z;h�2G�[G�

0

are identical in law. This implies that the mapping �z; h; y� 7!
Lÿ�ÿ1ÿz;h��ÿ1ÿ y� is identical in law to L� as for all �z; h� 2 Gÿ,

Lÿ�ÿ1ÿz;h��ÿ1ÿ y ÿ 1� � Lÿ�ÿ1ÿz;h��ÿ1ÿ y�
ÿ n�ÿ1ÿ y ÿ 1; L�ÿ1ÿz;h��ÿ1ÿ y��
� Lÿ�ÿ1ÿz;h��ÿ1ÿ y�
� n0�ÿ1ÿ y; Lÿ�ÿ1ÿz;h��ÿ1ÿ y�� �11:22�

This type of `self-duality' for discrete families of coalescing simple
random walks had been discovered and exploited by Arratia [A1, A2].
The following ®gure shows the two families of coalescing random
walks.

Note that the two families L� and Lÿ create a random maze, with
one single connected component (this is a simple consequence of the
coalescing property). One single possible path starting at the middle of
the `entrance gate' ��ÿ1; 1�; �0; 1��, i.e. from the point of coordinates
�ÿ1=2; 1�, explores this maze. (See Fig. 2.) The random walk �Si�i�0
can then easily be deterministically constructed from this random
maze. More precisely, we de®ne a continuous function �~St;Ht� on R�
with ~S0 � ÿ1=2 and H0 � 1, that explores the maze, at constant speed
(the speed is

���
2
p

; in other words, for almost all t � 0, j~S0t j � jH 0t j � 1),
as shown on the picture. Note that at all integer times i, ~Si � 1=2 2 Z
and Hi 2 Nnf0g (these points are dotted on the picture).
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It is then easy to see that the de®nitions of L� and of ~S in terms of
the family �n�z; h���z;h�2G� imply that for all i � 0,

Si � ~Si � 1=2 �11:23�
Hi � k�i; Si� : �11:24�

In order to derive (11.24) and (11.23), it su�ces for example to con-
sider the di�erent possible patterns of the maze near the point �Si;Hi�
and check that in all possible cases, Si�1 ÿ Si can indeed be expressed
as in (11.15); we safely leave this to the reader.

Note also that at any integer time i, the local times �`�i; y��y2Z (and
therefore also �k�i; y��y2Z using (11.5)) can be described in terms of the
forward and backward lines L� and Lÿ.

More precisely: Suppose that i 2 N is ®xed. Then, de®ne S�i and Sÿi
in fSi ÿ 1; Sig such that S�i � Hi is odd and Sÿi � Hi is even. This
de®nition implies that

`�i; Si� � L��S�i ;Hi��Si� �11:25�
`�i; Si ÿ 1� � L��Sÿi ;Hi��Si ÿ 1� �11:26�

Fig. 1. The `forward' and the `backward' systems (resp. in black and grey)
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(it su�ces again to consider the di�erent possible patterns of the maze
near �Si;Hi� and check that this holds in all cases). Then, for all y � Si,

`�i; y� � L��S�i ;Hi��y� �11:27�
and for all y � Si ÿ 1,

`�i; y� � Lÿ�Sÿi ;Hi��y� : �11:28�
Loosely speaking, the forward and backward lines started near the
point �Si;Hi� are exactly the local times of S at time i. Let us now
brie¯y derive (11.27) ((11.28) then follows by symmetry); (11.25)
shows that (11.27) holds when y � Si. Suppose now that y � Si is
®xed, that (11.27) holds and that `�i; y� � 2 (the case where
�y; `�i; y�� 2 G�0 is obvious). (11.7) shows that `�i; y � 1� 2 f`�i; y� ÿ 1;
`�i; y� � 1g. In particular (using (11.5)), k�i; y � 1� � `�i; y� ÿ 1.
Hence, there exists j � i such that

Sj � y � 1 and k�j; y � 1� � `�i; y� ÿ 1 : �11:29�
Using (11.10) and (11.9) (note that k�j; Sj� � Sj � `�i; y� � y is odd),
this implies that

Sj � y � 1 and `�j; Sj� � `�j; Sj ÿ 1� � `�i; y� ÿ 1 �11:30�

Fig. 2. The maze and the path of �~St;Ht�. The points �~Si;Hi� are circled
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It is then easy to notice that if n�y; `�i; y�� � �1 (i.e. if Sj�1 � Sj � 1)
then necessarily `�i; y � 1� � `�i; y� � 1 (S has to jump a second time
on the edge y � 1$ y � 2 to go to the left of y � 1 before step i), and
that if n�y; `�i; y�� � ÿ1 (i.e. if Sj�1 � y), then `�i; y � 1� � `�i; y� ÿ 1
(as S can not jump again on the edge y $ y � 1 before i). Finally, this
shows that indeed

`�i; y � 1� ÿ `�i; y� � n�y;`�i;y�� �11:31�
and combining this with (11.18) implies (11.27).

Remark: Note that it is also possible, using a similar method, to
construct the discrete counterpart of the process �X presented in Sec-
tion 10.

Appendix A: Preliminary estimates for RAB-s

In the present appendix we collect some a priori estimates on hitting
probabilities of Brownian motions and re¯ected/absorbed Brownian
motions. These estimates are used throughout the paper.

Recall the de®nition of RAB's from the notation section. In this
subsection only estimates on independent (non-coalescing) Brownian
motions and RABs will be presented.

For any ®xed k � 2 (later on we will only use k � 2 and k � 3),
x 2 R and 0 � h1 � � � � � hk, we de®ne k independent RAB's
R1
�x;h1�; . . . ;Rk

�x;hk� (respectively k independent Brownian motions

B1
h1 ; . . . ;Bk

hk
) started from �x; h1�; . . . ; �x; hk� (respectively from levels

h1; . . . ; hk). We then de®ne the following random variables (stopping
times for Brownian motions, respectively RABs):

s�k�h1;...;hk
:� inffy > 0 : Bi

hi
�y� � Bj

hj
�y� for some 1 � i < j � kg �A:1�

r�k�x;h1;...;hk
:� inffy > 0 : Ri

�x;hi��y � x� � Rj
�x;hj��y � x�

for some 1 � i < j � kg �A:2�
(Note the slight abuse of notation: actually s�k�h1;...;hk

� s�k��B1
h1 ; . . . ;Bk

hk
�

and r�k�x;h1;...;hk
� r�k��R1

�x;h1�; . . . ;Rk
�x;hk��. It is known that for any v > 0,

and h1 � h2 � h3

P
�
s�2�h1;h2 > v

�
� 1���

p
p h2 ÿ h1���

v
p �: C2

h2 ÿ h1���
v
p �A:3�

P
�
s�3�h1;h2;h3 > v

�
� C3

h3 ÿ h1���
v
p

� �3

: �A:4�
Indeed, (A.3) is a straightforward classroom exercise, and (A.4) can be
viewed as the hitting time of a wedge of angle p=6 by the two-
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dimensional Brownian motion ��B2 ÿ B1�= ���
2
p

; �2B3 ÿ B2 ÿ B1�= ���
6
p �

for which such estimates are well-known (using the skew-product
decomposition of planar Brownian motion; see for instance Lemma
2.2 in Mountford [M]).

Remark 1: A slightly weaker version of (A.4) with 3ÿ e in the expo-
nent, rather than 3 follows from Theorem 2 of Spitzer [S].

Remark 2: Actually there is a stronger recent result of Grabiner [G],
that in particular implies that for any k � 2 there is a ®nite constant Ck

such that for any v > 0 and h1 � � � � � hk

P
�
s�k�h1;...;hk

> v
�
� Ck

hk ÿ h1���
v
p

� �k�kÿ1�=2
�A:5�

but in the present paper we will not use more than (A.3) and (A.4).
We need estimates similar to (A.3) and (A.4) for the stopping times

r�2� and r�3�rather than s�2� and s�3�.
Lemma A.1. For all v > 0, x 2 R and 0 � h1 � h2 � h3

P
�
r�2�x;h1;h2

> v
�
� C02

h2 ÿ h1���
v
p (A:6�

P
�
r�3�x;h1;h2;h3 > v

�
� C03

h3 ÿ h1���
v
p

� �3

: �A:7�

with C02 :� ���
2
p

C2 and C03 :� 33=2C3

Proof. Note ®rst that absorbtion at 0 delays the ®rst collision times
r�k� (compared to re¯ection) so that for any k � 2, x 2 R and 0 � h1
� � � � � hk

P
�
r�k�ÿv;h1;...;hk

> v
�
� P

�
r�k�x;h1;...;hk

> v
�
� P

�
r�k�0;h1;...;hk

> v
�

�A:8�
We prove (A.6) by a simple coupling argument. Let B1

h1��� and B2
h2���

be two independent Brownian motions started from h1 and h2 and
assume that R1

�0;h1� and R2
�0;h2� are exactly B1

h1 and B2
h2 stopped at their

®rst hitting time of zero. Beside the stopping time r�2� we de®ne:

h�2�h1;h2
:� inffy > 0 : B1

h1�y� � 0 or B1
h1�y� � B2

h2�y�g : �A:9�
Note that h�2�h1;h2 � r�2�0;h1;h2 . We also de®ne

er�2�h1;h2 :� h�2�h1;h2 � 2
ÿ
r�2�0;h1;h2 ÿ h�2�h1;h2

�
: �A:10�

Note that this de®nition implies that

er�2�h1;h2
� r�2�0;h1;h2

: �A:11�
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We then de®ne, for all y � 0,

u�y� :� y if y < h�2�h1;h2

2�y ÿ h�2�h1;h2
� � h�2�h1;h2

if y � h�2�h1;h2

(
�A:12�

and

b�y� � B2
h2�u�y�� ÿ R1

�0;h1��u�y�� : �A:13�

Using the strong Markov property it is straightforward to check that
b=

���
2
p

is a linear Brownian motion started from �h2 ÿ h1�=
���
2
p

and thater�2�h1;h2
is exactly the hitting time of 0 by b. Hence, combining this with

(A.11) yields (A.6).
The proof of (A.7) is based on exactly the same idea: This time, one

can use a coupling with three independent absorbed Brownian mo-
tions. This is safely left to the reader.

(Lemma A.1.

Another straightforward estimate, opposite to (A.3) is the following:

P
�
s�2�h1;h2

< v
�
� eÿ�h2ÿh1�2=�4v� : �A:14�

Again, we shall need a similar estimate for the ®rst collision time of
two RABs rather than two BMs.

Lemma A.2. For all v > 0, x 2 R and 0 � h1 � h2

P
�
r�2�x;h1;h2

< v
�
� 2eÿ�h2ÿh1�2=�4v� : �A:15�

Proof. Recall from (A.8) that

P
�
r�2�x;h1;h2 < v

�
� P

�
r�2�ÿv;h1;h2 < v

�
�A:16�

But a simple re¯ection argument shows that

P
�
r�2�ÿv;h1;h2 < v

�
� 2P

�
s�2�h1;h2 < v

�
�A:17�

and, using (A.15), the Lemma follows.

( LemmaA:2:

Beside (A.3) and (A.14), the re¯ection principle yields also the precise
asymptotics

lim
d#0

dÿ1P
�
s�2�h;h�d > v

�
� 1�����

pv
p : �A:18�

Again, we formulate the analogous statement for RABs:
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Lemma A.3. For all x 2 R, h > 0 and v > 0

lim
d#0

dÿ1P
�
r�2�x;h;h�d > v

�
� 1�����

pv
p : �A:19�

The convergence is uniform in �x; h; v� 2 �ÿ1;1�� �h0;1�� �v0;1�
for any h0 > 0 and v0 > 0 ®xed.

The proof of this statement is left for the reader.

Appendix B: Phenomenological derivation of the driving mechanism

As mentioned in the Introduction, in ToÂ th [T1] a limit theorem was
proved, essentially for the distribution of nÿ2=3Sn as n " 1, but the
natural question of the asymptotics of the process

X �A�t :� Aÿ2=3S�At�; t 2 R� �B:1�
in the limit A " 1 remained open. In the following paragraphs we
argue that, if the sequence of processes t 7!X �A�t converges in distri-
bution to a process t 7!X �1�t , as A " 1, then the limit process is driven
by the gradient of its local time, as claimed in (1.6). We warn the
reader that the forthcoming argument is based on a somewhat formal
computation and it is by no means mathematically rigorous, but we
hope, it provides a convincing motivation for the construction of a
process with the prescribed properties.

Beside the scaled position process t 7!X �A�t de®ned in (B.1) we de-
®ne the properly scaled local time process of the true self-avoiding
random walk

L�A�t �x� :� Aÿ1=3l�At���A2=3x��; t 2 R�; x 2 R �B:2�
and we assume that the sequences of processes X �A�� and L�A���; ��
converge jointly weakly:

X �A�� ;L�A�� ���
� �

) X �1�� ;L�1�� ���
� �

�B:3�
where �t; x� 7! L�1�t �x� is assumed to be the local time of the process
t 7!X �1�t . Let Fn be the r-algebra generated by �S0; . . . ; Sn�, then

E
�

Sn�1 ÿ Sn

���Fn

�
� ÿ tanh g�ln�Sn� ÿ ln�Sn ÿ 1��� � �B:4�

Var
�

Sn�1 ÿ Sn

���Fn

�
� coshÿ2 g�ln�Sn� ÿ ln�Sn ÿ 1��� � �B:5�

So:

Sn �
Xnÿ1
k�0

tanh g�lk�Sk� ÿ lk�Sk ÿ 1��� � �: Mn �B:6�

where Mn is a martingale with quadratic variation process
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hMin �
Xnÿ1
k�0

coshÿ2 g�lk�Sk� ÿ lk�Sk ÿ 1��� � < n �B:7�

Our object of study is the scaled form of (B.6):

Aÿ2=3S�At� � Aÿ2=3
X�At�ÿ1

k�0
tanh g�lk�Sk� ÿ lk�Sk ÿ 1��� � � Aÿ2=3M�At�

�B:8�
The ®rst term on the left-hand side of (B.8) is just X �A�t . From (B.7) in
particular it follows that for any T <1

Pÿ lim
A"1

sup
0�t�T

Aÿ2=3M�At�
�� ��� �

� 0 �B:9�

so that the right hand-side of (B.8) is asymptotically negligible. A formal
computation of the second term on the left-hand side of (B.8) follows:
the ®rst two steps are straightforward transformations using the de®-
nitions (B.1) and (B.2) of the scaled process and scaled local time:

Aÿ2=3
X�At�ÿ1

k�0
tanh g lk Sk� � ÿ lk Sk ÿ 1� �� �� �

� Aÿ1
X�At�ÿ1

k�0
A1=3 tanh g lAk=A�A2=3X �A�k=A� ÿ lAk=A A2=3X �A�k=A ÿ 1

� �� �� �
� Aÿ1

X�At�ÿ1

k�0
A1=3 tanh gA1=3 L�A�k=A X �A�k=A

� �
ÿ L�A�k=A X �A�k=A ÿ Aÿ2=3

� �� �� �
�B:10�

The next step is the formal, non-rigorous one: we treat formally
L�A�t �x� as a smooth function and replace L�A�t �x� ÿ L�A�t �xÿ dx� by
@L�A�t �x�
@x dx and get

Aÿ2=3
X�At�ÿ1

k�0
tanh

ÿ
g�lk�Sk� ÿ lk�Sk ÿ 1���

`` � ''Aÿ1
X�At�ÿ1

k�0
A1=3 tanh gA1=3Aÿ2=3

@L�A�k=A X �A�k=A

� �
@x

0@ 1A
`` � ''gAÿ1

X�At�ÿ1

k�0

@L�A�k=A X �A�k=A

� �
@x

� O Aÿ1=3
� �

``) ''g
Z t

0

@L�1�s X �1�s

ÿ �
@x

ds �B:11�
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With the quotation marks `` � � � '' we intend to emphasize that these
last equalities and convergence should not be taken too seriously.
Inserting (B.1), (B.9) and (B.11) into (B.8) we get

X �1�t � const.

Z t

0

@L�1�s X �1�s

ÿ �
@x

ds � 0 �B:12�

which is indeed somewhat reminiscent of (1.6). The e�ect of `pushing
the boundaries of the range' and the right constant in front of the
gradient term can not be recovered on this level of formal computa-
tions. We repeat again: this computation is nothing like rigorous, but
on the phenomenological level it is convincing.

The same reasoning (on the same level of `rigour') can be applied to
the `polymer model' proposed by Durrett and Rogers in [DR]:

Xt � Bt �
Z t

0

ds
Z s

0

duf �Xs ÿ Xu� �B:13�

where f : R! R is a smooth function of compact support and sat-
is®es f �ÿx� � ÿf �x� and sgn f �x� � sgn x. De®ning X �A�t � Aÿ2=3XAt,
in the limit A!1 f transforms into d0 and the same dynamical
driving mechanism is found.
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