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Summary. We introduce a new inductive approach to the lace ex-
pansion, and apply it to prove Gaussian behaviour for the weakly self-
avoiding walk on Zd where loops of length m are penalised by a factor
eÿb=mp

(0 < b� 1) when: (1) d > 4, p � 0; (2) d � 4, p > 4ÿd
2 . In

particular, we derive results ®rst obtained by Brydges and Spencer
(and revisited by other authors) for the case d > 4, p � 0. In addition,
we prove a local central limit theorem, with the exception of the case
d > 4, p � 0.

Mathematics Subject Classi®cation: (1991) 82B41, 60K35

1 Introduction and main theorems

Since its introduction by Brydges and Spencer [1] in 1985, the lace
expansion has been developed into a powerful tool for the analysis of
mean-®eld behaviour for self-avoiding walks, lattice trees and lattice
animals, and percolation. Our purpose in this paper is to describe a
new inductive approach to the lace expansion, which is simple and
direct. We believe this approach to be su�ciently ¯exible so as to
allow for a simpli®cation and extension of the various results that
have been obtained with the lace expansion so far.

We develop the method in the setting of a model of weakly self-
avoiding walks on Zd where loops of length m are penalised by a
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factor eÿb=mp
(0 < b� 1). For d > 4, p � 0 we recover the results

proved by Brydges and Spencer [1] for d > 4, p � 0, namely, that
the mean-square displacement is asymptotically linear in the number
of steps and that the scaling limit of the endpoint is Gaussian. For
d � 4, p > 4ÿd

2 we prove similar results, thereby showing that
di�usive behaviour persists for lower dimensions at the cost of
su�ciently lowering the penalty of long loops. In addition, we prove
a local central limit theorem for d > 4, p > 0 and for d � 4, p > 4ÿd

2 .
This leaves open the important case d > 4, p � 0. Other aspects
of the model have been studied by Caracciolo et al. [2] and
Kennedy [9].

Several approaches to the lace expansion for self-avoiding walks
have appeared previously in the literature, the principal di�erence
between the approaches being the methods used to obtain conver-
gence of the expansion. Brydges and Spencer [1] used induction on
®nite memory and advanced the induction with the help of generating
functions (Laplace transforms) and complex analysis (to invert gen-
erating functions). Slade [14] proved convergence via generating
functions with no induction argument, while using a ®nite memory
cuto�. Hara and Slade [7] (see also Madras and Slade [11]) proved
convergence via generating functions, but avoided the use of ®nite
memory. Golowich and Imbrie [5] used induction on ®nite memory
together with a cluster expansion (also called a polymer expansion).
Khanin et al. [10] used induction on the length of the walk together
with a cluster expansion.

Our method involves induction on the length of the walk, but
does not use generating functions, complex analysis, ®nite memory,
or a cluster expansion. The induction step is direct and relatively
simple.

To indicate the nature of the induction, we begin by introducing
the fundamental object of study. For x 2 Zd , we set c0�x� � d0;x and,
for n � 1, p 2 R, b � 0, we de®ne

cn�x� �
X

x:0!x
jxj�n

e
ÿb
P

0�s<t�n
Ust�x�
jsÿtjp

�
X

x:0!x
jxj�n

Y
0�s<t�n

1ÿ kstUst�x�� � ; �1:1�

where

Ust�x� � 1 if x�s� � x�t�
0 if x�s� 6� x�t� ,

�
�1:2�
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kst � kst�b; p� � 1ÿ e
ÿ b
jsÿtjp ; �1:3�

and the sum in (1.1) is over all n-step simple random walk paths from
0 to x. The Fourier transform of (1.1) is written

ĉn�k� �
X
x2Zd

cn�x�eik�x; k 2 �ÿp;p�d ; �1:4�

and we use the abbreviation

cn � ĉn�0� �
X
x2Zd

cn�x� : �1:5�

We also need the characteristic function of the step distribution of
simple random walk, which is

D̂�k� � 1

d

Xd

l�1
cos kl; k � �k1; . . . ; kd� : �1:6�

The lace expansion is a combinatorial identity in terms of a func-
tion p̂m�k�, de®ned in (A.6), stating that

ĉn�1�k� � 2dD̂�k�ĉn�k� �
Xn�1
m�2

p̂m�k�ĉn�1ÿm�k� : �1:7�

A basic step in any lace expansion analysis is the observation that p̂m

can be bounded in terms of �ĉj�0�j<m. We emphasise that here only
0 � j < m appear, not j � m. This means that the right-hand side of
(1.7) can be analysed solely in terms of �ĉj�0�j�n, which opens up the
possibility of an inductive analysis, with the induction on n. This is
precisely what we shall do.

Our approach should be contrasted with the inductive approaches
in Golowich and Imbrie [5] (induction on ®nite memory) and Khanin
et al. [10] (induction on n). In these papers the authors expand the
right-hand side of (1.7) by iteration, until all �ĉj�0�j�n have been re-
placed by �p̂i�0�i�n, and then use a cluster expansion to handle the
myriad factors of p̂i�k�. Our approach, however, uses (1.7) in its
current form, without further iteration or expansion. In this way we
avoid a signi®cant level of technical di�culty.

The following two theorems are our main results. We de®ne

� � p � d ÿ 4

2
> 0 ; �1:8�

which turns out to be the key parameter in the model. The ®rst the-
orem extends the results of Brydges and Spencer [1] for d > 4, p � 0.
In its statement, and throughout the paper, we write k2 for k � k.
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Theorem 1.1 Suppose that either d > 4, p � 0 or d � 4, p > 4ÿd
2 . Then

there is a b0 � b0�d; p� > 0 such that for b < b0,

(a)
cn � Aln�1� O�nÿ��� ; �1:9�

(b)
1

cn

X
x

x2cn�x� � Dn 1� O nÿ1^�
ÿ �� �

� 6� 1
Dn 1� O nÿ1 log n

ÿ �� �
� � 1 ,

�
�1:10�

(c)
1

cn
ĉn

k������
Dn
p
� �

� eÿ
k2
2d 1�O nÿd0� �� � ; �1:11�

where l;A;D > 0 are constants (depending on d; p; b), � is given by (1.8),
d0 2 �0; 1 ^ �

2� is arbitrary, and the error estimate in (c) is uniform in
k 2 Rd provided k2�log n�ÿ1 is su�ciently small.

The second theorem is a local central limit theorem, but leaves
open the important case d > 4, p � 0.

Theorem 1.2 Suppose that either d > 4, p > 0 or d � 4, p > 4ÿd
2 . Then

there is a b0 � b0�d; p� > 0 such that for b < b0,

cn�x�
cn
� 2

d
2pDn

� �d
2

eÿ
dx2
2Dn 1� o�1�� � as n!1 ; �1:12�

where n is taken to have the same parity as kxk1, and the error estimate
is uniform in x 2 Zd provided x2�n log n�ÿ1 is su�ciently small. For
d > 4, p � 0, the following weaker result holds:

sup
x2Zd

cn�x�
cn
� O�nÿd

2� : �1:13�

Our paper is organised as follows. The lace expansion is discussed
in Appendix A, where p̂m�k� is de®ned, and (1.7) is proved in Lemma
A.1. The induction hypotheses used in the proof of Theorems 1.1 and
1.2 are stated in Section 2. In Section 2.4, we show how the induction
hypotheses involving 1 � m � n can be used to bound p̂n�1�k�. This
will be the primary driving force of the induction argument. The only
fact that we will subsequently need about p̂m�k� is that, under our
induction hypotheses, it satis®es the bounds in Lemma 2.3. This
lemma requires standard lace expansion methods, described in the
Appendix in Section A.2, that are present in one form or another in all
previous work on the problem. In Section 3, the induction is ad-
vanced. Finally, in Section 4, the completed induction is used to prove
Theorems 1.1 and 1.2, the constants l;A;D are identi®ed, and some
discussion is provided of potential extensions of our method.
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2 The induction hypotheses (H1±H6)

2.1 De®nitions and statement of induction hypotheses

In this section, we state our induction hypotheses. These hypotheses
will be motivated in Section 2.2.

Let z0 � 1
2d, and de®ne zn recursively by

zn�1 � 1

2d
1ÿ

Xn�1
m�2

p̂m�0�zm
n

" #
; n � 0 ; �2:1�

with p̂m�0� given by the Fourier transform of (A.6) at k � 0. For z > 0
and n � 0, de®ne

An�k� � znĉn�k� ; �2:2�

Bn � 2dzÿ
Xn

m�2
r2p̂m�0�zm ; �2:3�

Cn �
Xn

m�2
�mÿ 1�p̂m�0�zm �2:4�

(r is the gradient with respect to k) and

Dn � Bn

1� Cn
: �2:5�

The z-dependence of An�k�;Bn;Cn;Dn will be left implicit in the no-
tation.

Let ~p denote the vector in Rd whose components are all equal to
the number p. Since cn�x� is nonzero only when kxk1 and n have the
same parity, we have An�k �~p� � �ÿ1�nAn�k�. Thus it is su�cient to
consider k 2 ÿ p

2 ;
p
2

ÿ �� �ÿp; p�dÿ1.
The induction hypotheses below involve a number of constants.

For � as de®ned in (1.8), we ®x c; d; d0 > 0 obeying

0 < �ÿ 1

2
d < c < c� d0 < 1 ^ �; 2d0 < � : �2:6�

The d0 appearing in (2.6) is the parameter in the error estimate in
Theorem 1.1(c). Since c can be chosen arbitrarily close to 0, any d0

obeying d0 < �
2 ^ 1 may be chosen.

We also ®x K1; . . . ;K6 according to

K3;K6 � K1;K2;K5 � K4 � 1 : �2:7�
The amount by which, for instance, K2 must exceed K4 is independent
of b and will be determined in the course of the advancement of the
induction (see Sections 2.3 and 3.1±3.5).
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We make separate induction hypotheses for small n and large n,
using a k-dependent time scale m�k� � 1 to separate `small' from
`large'. For k 2 ÿ p

2 ;
p
2

ÿ �� �ÿp; p�dÿ1 such that 1ÿ D̂�k� � c
2 (recall

(1.6)), we de®ne

m�k� � c
1

1ÿ D̂�k� log
1

1ÿ D̂�k� � 2 log
� 2

c

�
> 1 ; �2:8�

while for k such that 1ÿ D̂�k� > c
2, we de®ne m�k� � 1.

For n � 1, we de®ne intervals

In � �zn ÿ K1bnÿ1ÿ�; zn � K1bnÿ1ÿ�� : �2:9�

Throughout the rest of this paper we require that either d > 4, p � 0
or d � 4, p > 4ÿd

2 , and we ®x b < b0 with b0 � b0�d; p� > 0 su�ciently
small. Our induction hypotheses are that the following six statements
hold, for all k 2 ÿ p

2 ;
p
2

ÿ �� �ÿp;p�dÿ1 and all z 2 In:

�H1� For 1 � j � n : jzj ÿ zjÿ1j � K1bjÿ2ÿ�.

�H2� For 1 � j � n : jDj ÿ Djÿ1j � K2bjÿ1ÿ�.

(H3) For 1 � j � n � m�k� : Aj�k��
Qj
i�1
�1ÿDi�1ÿD̂�k���Ei�k���1�Fi�

with jEi�k�j � K3bk2iÿd0 ;

jFij � K3biÿ1ÿ�.

(H4) For m�k� � j � n : jAj�k�j � K4kÿ4ÿdjÿ2ÿ�.

(H5) For m�k� � j � n : jAj�k� ÿ Ajÿ1�k�j � K5kÿ2ÿdjÿ2ÿ�.

�H6� For 1 � j � n : jr2Aj�0� ÿ r2Ajÿ1�0� � DjAjÿ1�0�j
� K6bjÿ�.

Hypothesis (H3) is vacuous when n > m�k�, while �H4±H5� are vac-
uous when n < m�k�. For k � 0, (H3) reduces to Aj�0� �

Qj
i�1�1� Fi�.

We begin the induction by verifying �H1±H6� for n � 1. Since
z0 � z1 � 1

2d, �H1� holds. Since D0 � D1 � 2dz, �H2� holds. Since
A1�k� � 2dzD̂�k�, with z 2 I1, �H3� holds provided K3 � 2dK1 (take
F1 � 2dzÿ 1 � 2d�zÿ z1� and E1�k� � F1�1ÿ D̂�k��). For b small en-
ough, we have jA1�k�j � 2dz � 2 for all z 2 I1. Hence we can choose K4

large enough that (H4) holds, and since A0�k� � 1, we can also choose
K5 large enough that (H5) holds. Finally, since A0�k� � 1 and

258 R. van der Hofstad et al.



r2D̂�0� � ÿ1, the left-hand side of the inequality in �H6� vanishes for
n � 1, and �H6� holds for any positive K6.

2.2 Motivation

In this section, we motivate the induction hypotheses.
1. Because of the sub-multiplicativity bound cm�n � cmcn (which is a
simple consequence of the de®nition of cn in (1.5)), the limit
l � limn!1 c1=n

n exists. The factor zn in (2.2), with z 2 In de®ned by
(2.9), is intended to approximate lÿn, and hence to cancel the expo-
nential growth of cn. Our initial lack of a convenient expression for l
prompts us to formulate the induction hypotheses for a small interval
of z-values. The sequence zn will ultimately converge to lÿ1. Hy-
pothesis (H1) drives this convergence and gives some control on the
rate. Moreover, as we will see in Section 2.4, (H1) guarantees that the
intervals Ij are decreasing: I1 � I2 � � � � � In. Because the length of
these intervals is shrinking to zero, their intersection \1j�1Ij is a single
point, namely lÿ1. For large n, if z 2 In, then zn is close to lÿn.
Consequently, as we will see in Section 4.3, limn!1 An�0� � A, where A
is the amplitude in Theorem 1.1(a).
2. To motivate the recursion (2.1), we begin by substituting (2.2) into
(1.7), obtaining

An�1�k� � 2dzD̂�k�An�k� �
Xn�1
m�2

p̂m�k�zmAn�1ÿm�k� : �2:10�

Setting k � 0, taking n!1, and replacing An�1ÿm�0� by its limiting
value A, we get

1 � 2dz�
X1
m�2

p̂m�0�zm �2:11�

(with the series not yet shown to be convergent). The recursion (2.1)
approximates this relation, namely, by discarding the p̂m�0� for
m > n� 1 that cannot be handled at the nth stage of the induction
argument. In Section 4.3, we will show that (2.11) holds for z � lÿ1.
3. The quantity Dn de®ned in (2.5) is an approximation to the di�usion
constant D of Theorem 1.1(b). Hypothesis (H2) expresses the con-
vergence of Dn to D and gives some control on the rate. Ignoring the
error terms in (H3), replacing Di by D for 1 � i � j, and using the fact
that 1ÿ D̂�k� � k2

2d as k ! 0, we see that the right-hand side of (H3) is
an approximation to the exponential behaviour

Aj�k� � Aj�0� exp ÿD
k2j
2d

� �
�2:12�
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consistent with Theorem 1.2. Note that for b � 0 and z � 1
2d, we have

Di � 1 for all i (since p̂m�k� � 0 when b � 0), so that (H3) reduces to
Aj�k� � D̂�k�j, which is the correct simple random walk behaviour for
all j and k.
4. For large j, we require less detailed control of Aj�k�, as expressed in
(H4±H5). The overlap of (H3) with (H4±H5) for j � n � m�k� places
restrictions on the values of K4 and K5 (see Section 2.3). Hypothesis
(H5) is needed only to advance (H4).
5. We will use (H3±H4) to obtain an estimate for kAjk1 for 1 � j � n.
This will provide us with a bound on kcjk1 for 1 � j � n and, by
Lemma A.2, on p̂m�k� for 1 � m � n� 1. This mechanism drives the
induction argument.
6. For simple random walk, with b � 0 and z � 1

2d, we have Aj�0� � 1,
r2Aj�0� � ÿj, and the di�usion constant is 1. The left-hand side of
(H6) is therefore zero for simple random walk, and (H6) is an ap-
propriate generalisation for the interacting model. The form (2.5) of
Dn�1 can be motivated by the following rough argument. Di�erenti-
ating (2.10) twice with respect to k, setting k � 0, and using the fact
that odd derivatives vanish, we obtain

r2An�1�0� � 2dz�r2An�0� ÿ An�0�� �
Xn�1
m�2

h
p̂m�0�zmr2An�1ÿm�0�

� r2p̂m�0�zmAn�1ÿm�0�
i
: �2:13�

Approximating 2dzr2An�0� by �1ÿPn�1
m�2 p̂m�0�zm�r2An�0� (recall

(2.1)), An�1ÿm�0� by An�0� in the last term, and recalling (2.3), we get

r2An�1�0� ÿ r2An�0�

� ÿBn�1An�0� �
Xn�1
m�2

p̂m�0�zm r2An�1ÿm�0� ÿ r2An�0�
� �

: �2:14�

Next, approximating r2An�1ÿm�0� ÿ r2An�0� by �mÿ 1�Dn�1An�0�, in
accordance with (H6), we get (recall (2.4))

r2An�1�0� ÿ r2An�0� � ÿBn�1An�0� � Dn�1Cn�1An�0� : �2:15�
Putting the right-hand side equal to Dn�1An�0�, we ®nd (2.5).

2.3 Extension of (H4±H5)

In this section we show that (H1±H3) imply (H4±H5) for
rm�k� � j � m�k�, provided r is su�ciently close to 1. This will be used
in Section 3.4. Here, and throughout the rest of this paper,
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C denotes a strictly positive constant that may depend on
d; p; c; d; d0; r, but not on K1; . . . ;K6, not on k, and not on b (pro-
vided b is su�ciently small, possibly depending on K1; . . . ;K6). The
value of C may change from line to line.

We have already checked that (H4±H5) hold for j � 1, so we can
restrict attention to j � 2, which implies m�k� � j > 1 and hence (re-
call (2.8)) 1ÿ D̂�k� � c

2 � 1
2. Since D0 � 2dz, we have

jDi ÿ 1j � jDi ÿ 2dzj � j2dzÿ 1j � C�K1 � K2�b; 1 � i � j ; �2:16�
by �H1±H2�, so all factors in the product in (H3) are strictly positive
when b is su�ciently small. Using 1� x � ex, we therefore have

0 � Aj�k� �
Yj

i�1
1ÿ Di�1ÿ D̂�k�� � Ei�k�
� ��1� Fi�

� exp
Xj

i�1
ÿDi�1ÿ D̂�k�� � jEi�k�j � jFij
� 	" #

: �2:17�

The bounds of (H3) now give

jAj�k�j � exp
h
ÿ j�1ÿ C�K1 � K2�b��1ÿ D̂�k�� � CK3bj1ÿd0k2 � CK3b

i
� 2 exp

h
ÿ j�1ÿ C�K1 � K2 � K3�b��1ÿ D̂�k��

i
; �2:18�

where we use (2.16), 0 < d0 < 1, and the inequality 1ÿ D̂�k� � Ck2.
For rm�k� � j � m�k�, the right-hand side of (2.18) is maximal at

j � rm�k�, while the bound of (H4) is minimal at j � m�k�. To obtain
(H4), it therefore su�ces to show that K4 can be chosen large enough
to guarantee that

2 exp
h
ÿ rm�k��1ÿ C�K1 � K2 � K3�b��1ÿ D̂�k��

i
� K4m�k�ÿ2ÿ�kÿ4ÿd : �2:19�

The left-hand side equals 2�1ÿ D̂�k��rc�1ÿC�K1�K2�K3�b�. For k ! 0, this
term behaves like a multiple of k2rc�1ÿC�K1�K2�K3�b�, while the right-
hand side behaves like a multiple of k2�ÿd�log 1

k2�ÿ2ÿ�. Thus (2.19)
holds for all k, provided K4 � 1 and

2rc�1ÿ C�K1 � K2 � K3�b� > 2�ÿ d : �2:20�
For b small and for r su�ciently close to 1, (2.20) is satis®ed for any c
obeying the bound in (2.6). This completes the derivation of (H4)
from (H3) for rm�k� � j � m�k�.
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To obtain (H5), we start from the expression

Aj�k� ÿ Ajÿ1�k� � Ajÿ1�k�
nh
1ÿ Dj�1ÿ D̂�k�� � Ej�k�

i
�1� Fj� ÿ 1

o
:

�2:21�
For rm�k� � j � m�k�, the absolute value of the factor multiplying
Ajÿ1�k� on the right-hand side can be estimated, using (H3), by

�1� C�K1 � K2 � K3�b��1ÿ D̂�k�� � CK3bjÿ1ÿ�

� 2�1ÿ D̂�k�� � CK3bm�k�ÿ1ÿ� : �2:22�
The right-hand side is bounded above by a multiple of k2, in view of
(2.8). Since we have already shown that (H4) follows from (H3) for
rm�k� � j � m�k�, and since the di�erence between (H4) and (H5) is a
factor K5k2=K4, it follows that (H5) holds provided K5 � K4.

2.4 Preparations: bounds on p̂m�k�, 2 � m � n� 1

In this section, we use the induction hypotheses �H1±H6� to prove
bounds on p̂m�k� for 2 � m � n� 1. This will be the driving force
behind the advancement of the induction in Section 3.

Lemma 2.1 Assume (H1±H4) and (H6).

(i) max1�j�n Aj�0� � eCK3b.
(ii) jjAjjj1 � Kjÿ

d
2 for 1 � j � n with K � C�1� K4�.

(iii) jr2Aj�0�j � K�j for 1 � j � n with K� � eC�K1�K2�K3�b � K6b.

Proof. (i) This is an immediate consequence of (H3) with k � 0.
(ii) Fix 1 � j � n, and de®ne

Rj � k 2 ÿp
2;

p
2

ÿ �� �ÿp; p�dÿ1 : m�k� � j
n o

Rc
j � k 2 ÿp

2;
p
2

ÿ �� ÿp; p� �dÿ1: m�k� < j
n o

: �2:23�

Since Aj�k �~p� � �ÿ1�jAj�k�, we have

jjAjjj1 � 2

Z
Rj

jAj�k�jdk � 2

Z
Rc

j

jAj�k�jdk : �2:24�

Using (2.18) on Rj (as allowed by (H2±H3)) and the inequality
1ÿ D̂�k� � Ck2, and using (H4) on Rc

j , we get

jjAjjj1 � 4

Z
Rj

eÿCjk2dk � 2

Z
Rc

j

K4jÿ2ÿ�kÿ4ÿddk : �2:25�

The ®rst term on the right-hand side is bounded above by Cjÿd=2.
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Since 2� � � d
2 � p, to complete the proof it su�ces to show that

jÿp
Z

Rc
j

kÿ4ÿddk � C : �2:26�

The integral is bounded uniformly in j when 4� d < d, so we need
only consider the case 4� d � d. By (2.8), Rc

j � fk: 1ÿ D̂�k� � C log j
j g.

But 1ÿ D̂�k� � k2
2d, and hence Rc

j � fk: k2 � C log j
j g. Therefore, when

4� d > d, the left-hand side of (2.26) is bounded above by

jÿp
Z

k2�Clog j
j

kÿ4ÿddk � Cjÿp log j
j

� �dÿ4ÿd
2

� Cjÿ��
d
2�log j�dÿ4ÿd

2 � C ;

�2:27�
where we use that d < 2� (recall (2.6)). A similar calculation applies in
the borderline case 4� d � d (which implies p > 0), yielding the
bound Cjÿp

���������
log j

p � C.
(iii) This is an immediate consequence of (H2±H3) and (H6). (
Lemma 2.2 Assume (H1). Then I1 � I2 � � � � � In.

Proof. Recall (2.9). Suppose z 2 Ij for some 2 � j � n. Then by (H1),

jzÿ zjÿ1j � jzÿ zjj � jzj ÿ zjÿ1j � K1b
j1��
� K1b

j2��
� K1b

�jÿ 1�1�� ; �2:28�

and hence z 2 Ijÿ1. (
Note that I1 is bounded away from 0 for b su�ciently small, since

z1 � 1
2d, and hence, given (H1), the bound

1
z � C �2:29�

holds uniformly in z 2 Ij, 1 � j � n.
The next lemma is the key to our induction step, as it provides

bounds, in particular, on p̂n�1�k�.
Lemma 2.3 Assume (H1±H4) and (H6). For 2 � m � n� 1, z 2 In, and
k 2 ÿ p

2 ;
p
2

ÿ �� �ÿp;p�dÿ1,

�i� p̂m�k�j jzm � CKbmÿ2ÿ� ; �2:30�
�ii� jr2p̂m�k�jzm � CKb2mÿ1ÿ� ; �2:31�
�iii�

���p̂m�k� ÿ p̂m�0� ÿ �1ÿ D̂�k��r2p̂m�0�
���zm � CKb2k2�2~�mÿ1ÿ��2~� ;

�2:32�
where K is the constant in Lemma 2.1(ii) and 0 � ~� � 1 is arbitrary.
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Proof. (i) By Lemma A.2(i),

jp̂m�k�j � 2dk�m�kcmÿ1k1 �
X1
N�2
�2N ÿ 1�2Nÿ1X k�m��kcm�k1

�
YNÿ1
l�1

k�m0l�kcm0l
k1cml ;

�2:33�

where k�m� � 1ÿ eÿb=mp � bmÿp, cj �
P

x cj�x�, kcjk1 � supx cj�x�,
and the unlabelled sum is over the set of m�;m1;m01; . . . ;mNÿ1;m0Nÿ1
whose sum is m and for which m� is maximal and m0l � ml for each l.
The conditions on the unlabelled sum imply that all cj on the right-
hand side of (2.33) involve 1 � j � mÿ 1 � n only.

We multiply both sides of (2.33) by zm and associate a factor zj to
each cj on the right-hand side. By Lemma 2.2, z 2 Ij for each
1 � j � n. Using the relations cj � zÿjAj�0�, kcjk1 � �2p�ÿdzÿjkAjk1,
we then obtain

jp̂m�k�jzm � C
h
bmÿpkAmÿ1k1 �

X1
N�2
�2N ÿ 1�2Nÿ1X b�m��ÿpkAm�k1

�
YNÿ1
l�1

b�m0l�ÿpkAm0l
k1Aml�0�

i
: �2:34�

By Lemma 2.1(i,ii), and the fact that m� � �2N ÿ 1�ÿ1m, the unla-
belled sum is bounded above by

KNbN �2N ÿ 1�d2�pmÿ
d
2ÿp

X1
m0�1

Xm0
m�0
�m0�ÿd

2ÿp

 !Nÿ1
eCK3b�Nÿ1�

� KNbN �2N ÿ 1�2��mÿ2ÿ�CNÿ1 ; �2:35�
where we also insert d

2 � p � 2� �. Hence, for b su�ciently small, the
sum over N in (2.34) converges and is bounded above by CK2b2mÿ2ÿ�.
The ®rst term in (2.34) is bounded above by

CbmÿpK�mÿ 1�ÿd
2 � CKbmÿ2ÿ� ; �2:36�

which dominates the second term for b su�ciently small because it has
one factor b less. This proves the claim.
(ii) The proof is similar, and uses Lemma A.2(ii) and Lemma 2.1(iii).
Note that in Lemma A.2(ii) only N� 2 contributes, and that K� � C
for small b.
(iii) This follows immediately from (ii) and Lemma A.2(iii), where also
the restriction on ~� appears. (
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3 The induction advanced

In this section we advance the induction hypotheses �H1±H6� one by
one. The computations are technical but not di�cult. Throughout this
section, in accordance with the uniformity condition on �H2±H6�, we
have z 2 In�1.

3.1 Advancement of (H1)

By (2.1) and the mean-value theorem,

zn�1 ÿ zn � ÿ 1

2d

Xn

m�2
p̂m�0��zm

n ÿ zm
nÿ1� � p̂n�1�0�zn�1

n

" #

� ÿ 1

2d
�zn ÿ znÿ1�

Xn

m�2
mp̂m�0�ymÿ1

n � p̂n�1�0�zn�1
n

" #
; �3:1�

where yn is between zn and znÿ1. By (H1) and (2.9), yn 2 In, so it follows
from (2.29) that yÿ1n � C. Hence, by Lemma 2.3(i) and (H1), we have
that

jzn�1 ÿ znj � 1

2d

h
K1bnÿ2ÿ�

Xn

m�2
CKbmÿ1ÿ� � Kb�n� 1�ÿ2ÿ�

i
� 1

2d
�CK1Kb2 � Kb��n� 1�ÿ2ÿ� : �3:2�

Thus (H1) holds for n� 1, provided b is small enough and K1 >
K
2d.

Since K � C�1� K4�, it therefore su�ces that K1 � K4.
Now that (H1) holds for n� 1, it follows that In�1 � In, as in the

proof of Lemma 2.2. For n � 0, de®ne

fn�1 � ÿ1� 2dz�
Xn�1
m�2

p̂m�0�zm : �3:3�

As usual, we do not make the z-dependence explicit in the notation,
and we recall that z 2 In�1. The following lemma, whose proof makes
use of (H1) for n� 1, will be needed in Sections 3.3±3.5.

Lemma 3.1 Uniformly for z 2 In�1,

jfn�1j � CK1b�n� 1�ÿ1ÿ� : �3:4�
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Proof. By (2.1) and the mean-value theorem,

jfn�1j �
���2d�zÿ zn�1� �

Xn�1
m�2

p̂m�0��zm ÿ zm
n �
���

�
���2d�zÿ zn�1� � �zÿ zn�

Xn�1
m�2

mp̂m�0�ymÿ1
n

��� ; �3:5�

where yn is between z and zn. Also, z 2 In�1 � In and zn 2 In, and hence
yn 2 In. Therefore, by Lemma 2.3(i) and (2.29),

jfn�1j � 2dK1b�n� 1�ÿ1ÿ� � K1bnÿ1ÿ�C
Xn�1
m�2

CKbmÿ1ÿ�

� CK1b�1� Kb��n� 1�ÿ1ÿ� : �3:6�
(

3.2 Advancement of (H2)

The de®nition of Dn in (2.5) implies that

Dn�1 ÿ Dn � 1

1� Cn�1
�Bn�1 ÿ Bn� ÿ Bn

�1� Cn��1� Cn�1� �Cn�1 ÿ Cn� ;

�3:7�
where, by (2.3±2.4),

Bn�1 ÿ Bn � ÿr2p̂n�1�0�zn�1; Cn�1 ÿ Cn � np̂n�1�0�zn�1: �3:8�
By Lemma 2.3(i,ii) and the fact that z 2 In�1 � In, both di�erences are
bounded above by CKbnÿ1ÿ�. In addition, jBn ÿ 1j � C�K1 � K�b and
jCnj; jCn�1j � CKb. This leads to

jDn�1 ÿ Dnj � CKb�n� 1�ÿ1ÿ� ; �3:9�
and hence �H2� holds for n� 1 provided b is small enough and
K2 � K. Since K � C�1� K4�, it therefore su�ces that K2 � K4.

3.3 Advancement of (H3)

This section, which involves our principal induction hypothesis, is the
most technical. Throughout this section, we ®x k and n� 1 � m�k�.
Because (H3) has already been veri®ed for n � 1, we need only con-
sider m�k� � 2, which implies that

1ÿ D̂�k� � c
2 : �3:10�
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1. The induction step will be achieved as soon as we are able to write
An�1�k�=An�k� as �1ÿ Dn�1�1ÿ D̂�k�� � En�1�k���1� Fn�1�, and show
that En�1�k� and Fn�1 satisfy the required bounds. For this, we will
write

An�1�k�
An�k� � 1ÿ Dn�1�1ÿ D̂�k�� � E0n�1�k� � Fn�1 �3:11�

and then set

En�1�k� � 1� Fn�1� �ÿ1 E0n�1�k� � Dn�1�1ÿ D̂�k��Fn�1
� �

: �3:12�
To begin, we divide the recursion relation (2.10) by An�k�, and use
(3.3), to obtain

An�1�k�
An�k� � 1ÿ 2dz�1ÿ D̂�k�� �

Xn�1
m�2

p̂m�k�zm An�1ÿm�k�
An�k�

ÿ
Xn�1
m�2

p̂m�0�zm � fn�1 : �3:13�

Using (2.3±2.4), we can rewrite (3.13) as

An�1�k�
An�k� � 1ÿ �Bn�1 ÿ Dn�1Cn�1��1ÿ D̂�k�� � E0n�1�k� � Fn�1 ;

�3:14�
where

E0n�1�k� � I � II � III � IV and Fn�1 � V � fn�1 �3:15�
with

I �
Xn�1
m�2

h
p̂m�k� ÿ p̂m�0� ÿ �1ÿ D̂�k��r2p̂m�0�

i
zm ; �3:16�

II �
Xn�1
m�2

p̂m�0�zm
�

An�1ÿm�k�
An�k� ÿ An�1ÿm�0�

An�0�
ÿ �mÿ 1�Dn�1�1ÿ D̂�k��

�
; �3:17�

III �
Xn�1
m�2

p̂m�k� ÿ p̂m�0�� �zm An�1ÿm�k�
An�k� ÿ An�1ÿm�0�

An�0�
� �

; �3:18�

IV �
Xn�1
m�2

p̂m�k� ÿ p̂m�0�� �zm An�1ÿm�0�
An�0� ÿ 1

� �
; �3:19�

V �
Xn�1
m�2

p̂m�0�zm An�1ÿm�0�
An�0� ÿ 1

� �
: �3:20�
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Since Bn�1 ÿ Dn�1Cn�1 � Dn�1 by (2.5), indeed (3.14) yields (3.11).
2. Beginning with Fn�1, we ®rst note from Lemma 3.1 that
jfn�1j � CK1b�n� 1�ÿ1ÿ�. To estimate V , and for later purposes, we
make use of the following elementary bounds. For a vector x � �xl�
satisfying supl jxlj < 1, we de®ne v�x� �Pl

jxlj
1ÿjxlj. The bound

�1ÿ t�ÿ1 � exp�t�1ÿ t�ÿ1�, together with Taylor's Theorem applied to
f �t� �Ql

1
1ÿtxl

, gives

Y
l

1

1ÿ xl

�����
����� � ev�x�;

Y
l

1

1ÿ xl
ÿ 1

�����
����� � v�x�ev�x� ; �3:21�

Y
l

1

1ÿ xl
ÿ 1ÿ

X
l

xl

�����
����� � 3

2
v�x�2ev�x� : �3:22�

Applying (H3), the second estimate of (3.21), and Lemma 2.3(i) to
estimate V , we obtain

jV j �
Xn�1
m�2

p̂m�0�zm
Yn

j�n�2ÿm

1

1� Fj
ÿ 1

" #�����
�����

�
Xn�1
m�2

CKb
m2��

Xn

j�n�2ÿm

CK3b
j1��

eCK3b � CKK3b
2

�n� 1�1�� : �3:23�

Therefore, if we take K3 � K1 and b su�ciently small, then

jFn�1j � jfn�1j � jV j �
CK1b� CKK3b

2

�n� 1�1�� � K3b

�n� 1�1�� : �3:24�

This advances the bound on Fn�1 of (H3).
3. We next consider the contributions I ; . . . ; IV to E0n�1�k�, beginning
with the simplest terms I and IV . For I, by Lemma 2.3(iii) we have

jIj �
Xn�1
m�2

p̂m�k� ÿ p̂m�0� ÿ �1ÿ D̂�k��r2p̂m�0�
�� ��zm

� CKb2k2�2~�
Xn�1
m�2

1

m1��ÿ2~� � CKb2k2�2~� ; �3:25�

where we choose ~� such that 2d0 < 2~� < � ^ 2, which is consistent with
(2.6). By (2.8), since n� 1 � m�k�, we have

k2 � C
logm�k�

m�k� � C
log�n� 1�

n� 1
: �3:26�

268 R. van der Hofstad et al.



Therefore

jI j � CKb2k2

�n� 1�d0
: �3:27�

For IV , we ®rst combine Lemma 2.3(ii,iii) with ~� � 0 to obtain
jp̂m�k� ÿ p̂m�0�j � CKb2k2mÿ1ÿ�. Then we argue as for V , to obtain

jIV j �
Xn�1
m�2

CKb2k2

m1��
Xn

j�n�2ÿm

CK3b
j1��

eCK3b � CKK3b
3k2

�n� 1�� : �3:28�

4. For II , we ®rst simplify the notation by de®ning

Dm;n�k� �
Yn

j�n�2ÿm

h
1ÿ Dj�1ÿ D̂�k�� � Ej�k�

iÿ1
ÿ 1

ÿ
Xn

j�n�2ÿm

Dj�1ÿ D̂�k�� ÿ Ej�k�
� �

: �3:29�

Since by (H3),

An�1ÿm�k�
An�k� � An�1ÿm�0�

An�0�
Yn

j�n�2ÿm

h
1ÿ Dj�1ÿ D̂�k�� � Ej�k�

iÿ1
; �3:30�

we can decompose II as

II � II1 � II2 � II3 �3:31�
with

II1 �
Xn�1
m�2

p̂m�0�zm An�1ÿm�0�
An�0� Dm;n�k� ; �3:32�

II2 �
Xn�1
m�2

p̂m�0�zm An�1ÿm�0�
An�0�

�
Xn

j�n�2ÿm

�Dj ÿ Dn�1��1ÿ D̂�k�� ÿ Ej�k�
� �

; �3:33�

II3 �
Xn�1
m�2

p̂m�0�zm An�1ÿm�0�
An�0� ÿ 1

� �
�mÿ 1�Dn�1�1ÿ D̂�k�� : �3:34�

The terms II2 and II3 can be estimated with the help of (H3), Lemma
2.3(i) and (3.21). Namely, as in (3.23),

jII3j �
Xn�1
m�2

CKb
m1��

Xn

j�n�2ÿm

CK3b
j1��

eCK3bCk2 � CKK3b
2k2

�n� 1�� ; �3:35�
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where we use the inequality 1ÿ D̂�k� � k2
2d, and the bound Dn�1 � C by

(H2) (which was advanced in Section 3.2). Also, using
An�1ÿm�0�=An�0� � eCK3b by (H3), and the fact that d0 < � by (2.6), we
have

jII2j �
Xn�1
m�2

CKb
m2�� e

CK3b
Xn

j�n�2ÿm

CK2bk2

j�
� K3bk2

jd0

� �
� CK�K2 � K3�b2k2

�n� 1�d0
:

�3:36�
5. To deal with II1, we use (3.22) to estimate Dm;n�k�. This gives

jII1j �
Xn�1
m�2

CKb
m2�� e

CK3b 3

2
vm;n�k�
� �2

evm;n�k� �3:37�

with

vm;n�k� �
Xn

j�n�2ÿm

�1ÿ D̂�k��Dj � jEj�k�j
1ÿ �1ÿ D̂�k��Dj ÿ jEj�k�j

: �3:38�

But, by �H1±H3�, (3.10) and (2.16), for su�ciently small b we have

jvm;n�k�j � �mÿ 1��1ÿ D̂�k��q
with q � q�k� � �1� C�K1 � K2 � K3�b��1� Ck2� : �3:39�

In particular, since m � n� 1 � m�k�, it follows via (2.8) that
evm;n�k� � em�k��1ÿD̂�k��q � �1ÿ D̂�k��ÿcq : �3:40�

Therefore, again using n� 1 � m�k� and (2.8), we have

jII1j � CKbq2�1ÿ D̂�k��2ÿcq
Xn�1
m�2

1

m�
� CKbk4ÿ2cqm�k�0_�1ÿ�� : �3:41�

Inserting the de®nition of q, we ®nd

jII1j � CKbk2�2d
0

kÿCc�K1�K2�K3�bkÿCck2k2ÿ2cÿ2d
0
m�k�0_�1ÿ��

� �
: �3:42�

(A harmless factor logm�k� should also appear in the right-hand sides
of (3.41) and (3.42) when � � 1.) Now, kÿCck2 is bounded and
m�k� � Ckÿ2�1 _ log kÿ2� (recall (2.8)). Therefore, and in view of (2.6),
the quantity in parentheses is bounded by a strictly positive power of k
(provided b is su�ciently small). Since n� 1 � m�k�, it follows from
(3.26) that k2 � C�n� 1�ÿ1 logm�k�, and (3.42) then gives

jII1j � CKbk2

�n� 1�d0
: �3:43�
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6. To estimate III , we use the bound jp̂m�k� ÿ p̂m�0�j � CKb2k2mÿ1ÿ�,
(3.30), (H3), and (3.21), to obtain

jIII j �
Xn�1
m�2

CKb2k2

m1�� eCK3bvm;n�k�evm;n�k� : �3:44�

By (3.39) and (3.40) therefore,

jIII j � CKb2k2�1ÿ D̂�k��1ÿcq
Xn�1
m�2

1

m�
: �3:45�

This is equivalent to b times the ®rst bound in (3.41), and therefore III
obeys (3.43) with an extra factor b.
7. Combining the above bounds on I ; . . . ; IV , and recalling that d0 < �,
we have

jE0n�1�k�j �
CKbk2

�n� 1�d0
: �3:46�

(Note that the bounds on I ; II2; II3; III ; IV have an extra factor b and
therefore do not show up in the constant for b su�ciently small.) In
view of (3.12), this advances the bound on En�1�k� of (H3), provided
K3 � K, which means K3 � K4 because K � C�1� K4�.

3.4 Advancement of (H4±H5)

Recall that, in Section 2.3, (H4±H5) were shown to follow from
�H2±H3� for rm�k� � j � m�k� when r is su�ciently close to 1.
Therefore (H4±H5) may in fact be assumed to hold for rm�k� � j � n.
In this section, we ®x n� 1 � m�k�, and obtain (H4±H5) for n� 1,
using (H4±H5) for rm�k� � j � n. We will also use (H3).
1. We begin by rewriting (3.13) as (recall (2.3))

An�1�k� � An�k�
n
1ÿ Bn�1�1ÿ D̂�k�� � I � fn�1

o
� II ; �3:47�

with

I �
Xn�1
m�2
�p̂m�k� ÿ p̂m�0� ÿ �1ÿ D̂�k��r2pm�0��zm ; �3:48�

II �
Xn�1
m�2

p̂m�k�zm An�1ÿm�k� ÿ An�k�� � : �3:49�

By Lemma 3.1, jfn�1j � CK1b�n� 1�ÿ1ÿ�. By (3.25), jI j � CKb2k2�2~�,
for any ~� < �

2 ^ 1. It therefore remains only to estimate II .
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2. To that end, we rewrite II as

II �
Xnÿ1
j�0

p̂n�1ÿj�k�zn�1ÿj
Xn

l�j�1
�Alÿ1�k� ÿ Al�k��: �3:50�

We divide the sum over j into two parts, II1 and II2, corresponding
respectively to 0 � j � rm�k� and rm�k� < j � nÿ 1. Applying Lem-
ma 2.3(i), we may then estimate

jII1j �
Xrm�k�

j�0

CKb

�n� 1ÿ j�2��
Xn

l�j�1
�Alÿ1�k� ÿ Al�k�� �3:51�

jII2j �
Xnÿ1

j�rm�k��1

CKb

�n� 1ÿ j�2��
Xn

l�j�1
�Alÿ1�k� ÿ Al�k�� : �3:52�

The term II2 is easy. Namely, by (H5),

jII2j �
Xnÿ1

j�rm�k��1

Kb

�n� 1ÿ j�2��
Xn

l�j�1

CK5

k2�dl2��

� CKK5b

k2�d�n� 1�2�� : �3:53�

3. For II1, we divide the sum over l into two parts, II 01 and II 001 , cor-
responding respectively to j� 1 � l � rm�k� and rm�k� < l � n. These
can be estimated with the help of (H3) respectively (H5). Beginning
with II 001 , we have

jII 001 j �
Xrm�k�

j�0

CKb

�n� 1ÿ j�2��
Xn

l�rm�k��1

K5

k2�dl2��

� CKK5b
k2�dn2��

Xrm�k�

j�0

Xn

l�rm�k��1

1

l2��
: �3:54�

The double sum is bounded uniformly in n and k, and hence (recall
that m�k� � n� 1)

jII 001 j �
CKK5b

k2�d�n� 1�2�� : �3:55�

For II 01, we require an estimate for jAlÿ1�k� ÿ Al�k�j valid for
1 � l � rm�k�. For this range of l, it follows from (H3) that

jAlÿ1�k� ÿ Al�k�j � CeÿCk2l k2 � K3b
l1��

� �
: �3:56�
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Thus we have

jII 01j �
CKb
n2��

Xrm�k�

j�0

Xrm�k�

l�j�1
eÿCk2l k2 � K3b

l1��

� �
� CKb

�n� 1�2��
1

k2
�1� K3b� :

�3:57�
Summarising the above bounds, we have

jII j � jII 01j � jII 001 j � jII2j �
CKb

�n� 1�2��
1

k2�d
�K5 � 1� K3b� : �3:58�

4. We are now in a position to advance (H5). For this, we use (3.47),
(H4), the inequality 1ÿ D̂�k� � k2

2d, and the bounds found above, to
obtain���An�1�k� ÿ An�k�

��� � ��An�k�
����ÿ Bn�1�1ÿ D̂�k�� � I � fn�1

��� jII j
� K4

n2��k4�d

k2

2d
Bn�1 � CKb2k2�2~� � CK1b

�n� 1�1��
 !

� CKb�1� K5�
�n� 1�2��k2�d

: �3:59�

Since jBn�1 ÿ 1j � C�K1 � K�b, and �n� 1�ÿ1ÿ� � m�k�ÿ1ÿ� � Ck2,
(H5) follows for n� 1 if K5 � K4 and b is su�ciently small.

5. To advance (H4), we ®rst observe that (H4) clearly holds for any
®nite set of values of n, if K4 is taken to be large enough. Thus we may
restrict attention to large values of n. For this, we begin by using (H4)
and arguing as above, to obtain

An�1�k�j j � An�k�j j 1ÿ Bn�1 1ÿ D̂�k�� �� I � fn�1
�� ��� jII j

� K4

n2��k4�d
1ÿ Bn�1 1ÿ D̂�k�� ��� ��� CKb2k2�2~� � CK1b

�n� 1�1��
( )

� CKb�1� K5�
�n� 1�2��k2�d

: �3:60�

We need to argue that the right-hand side is no larger than
K4�n� 1�ÿ2ÿ�kÿ4ÿd. To achieve this, we will use separate arguments
for 1ÿ D̂�k� � 1

2 and 1ÿ D̂�k� > 1
2. These arguments will be valid only

when n is large enough, which, as noted above, is su�cient.
Suppose that 1ÿ D̂�k� � 1

2. For b su�ciently small,

1ÿ Bn�1 1ÿ D̂�k�� � � 0 : �3:61�
Hence, the absolute value signs on the right-hand side of (3.60) may be
removed. To obtain (H4) for n� 1, it now su�ces to show that
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1ÿ c 1ÿ D̂�k�� �� CK1b

�n� 1�1�� �
n2��

�n� 1�2�� ; �3:62�

for c within order b of 1. The term c�1ÿ D̂�k�� has been introduced to
absorb Bn�1�1ÿ D̂�k�� and the terms in (3.60) involving k2�2~� and
�1� K5�. By (2.8), 1ÿ D̂�k� � Cm�k�ÿ1 logm�k� � C�n� 1�ÿ1
log�n� 1�. Thus (3.62) holds for n su�ciently large and b su�ciently
small.

Suppose, on the other hand, that 1ÿ D̂�k� > 1
2. Since k 2 �ÿ p

2 ;
p
2���ÿp;p�dÿ1, we have 1

2 < 1ÿ D̂�k� � 2ÿ 1
d. Therefore

1ÿ Bn�1 1ÿ D̂�k�� ��� �� � D̂�k��� ��� Bn�1 ÿ 1j j 1ÿ D̂�k��� ��
� 1ÿ 1

d

ÿ � _ 1
2� Bn�1 ÿ 1j j 2ÿ 1

d

ÿ �
: �3:63�

Hence

1ÿ Bn�1 1ÿ D̂�k�� ��� ��� CKb2k2�2~� � CK1b

�n� 1�1�� � 1ÿ 1
d

ÿ � _ 1
2� Cb ;

�3:64�
and the right-hand side of (3.60) is no larger than

K4

n2��k4�d
1ÿ 1

d

ÿ � _ 1
2� Cb

� �� CKb�1� K5�
�n� 1�2��k2�d

� K4

n2��k4�d
1ÿ 1

d

ÿ � _ 1
2� C0b

� �
: �3:65�

This is less than the required bound K4�n� 1�ÿ2ÿ�kÿ4ÿd if b is su�-
ciently small and n is su�ciently large.

3.5 Advancement of (H6)

We begin by adding ÿr2An�0� � Dn�1An�0� to both sides of (2.13),
and then using Dn�1 � Bn�1 ÿ Dn�1Cn�1 on the right-hand side, to-
gether with (2.3±2.4) and (3.3). This leads us to

r2An�1�0� ÿ r2An�0� � Dn�1An�0� � I � II � fn�1r2An�0� �3:66�
with

I �
Xn�1
m�2

p̂m�0�zm r2An�1ÿm�0� ÿ r2An�0� ÿ �mÿ 1�Dn�1An�0�
� �

;�3:67�

II �
Xn�1
m�2
r2p̂m�0�zm An�1ÿm�0� ÿ An�0�� � : �3:68�
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To estimate I, we use (H6), Lemma 2.3(i), �H2� (which was advanced
in Section 3.2), and (H3) for k � 0, to obtain

jI j �
Xn�1
m�2

CKb
m2��

Xn

j�n�2ÿm

DjAjÿ1�0� ÿ Dn�1An�0�
�� ��� K6bjÿ�
� 	

�
Xn�1
m�2

CKb
m2��

Xn

j�n�2ÿm

�
Dj Ajÿ1�0� ÿ An�0�
�� ��� Dj ÿ Dn�1

�� ��An�0�

� K6bjÿ�
	 � CK K1 � K2 � K3 � K6� �b2�n� 1�ÿ� : �3:69�

To estimate II , we use Lemma 2.3(ii), and (H3) for k � 0, to obtain

jII j � CKK3b
3�n� 1�ÿ� : �3:70�

Hence I � II is bounded by a multiple of b2�n� 1�ÿ�, which is a factor
b smaller than the bound in (H6). Thus, the main term in (3.66) is
fn�1r2An�0�, which by Lemma 2.1(iii) and Lemma 3.1 is bounded
above by CK�K1b�n� 1�ÿ�. Since K� � C, (H6) holds for n� 1 pro-
vided b is small enough and K6 � K1.

4 Proof of the main theorems

Theorem 1.1 is proved in Section 4.1 and Theorem 1.2 is proved in
Section 4.2. As a consequence of the completed induction and Lemma
2.2, \1n�1In consists of a single point, which we call lÿ1. For the re-
mainder of Section 4, we ®x z � lÿ1. It also follows from the induc-
tion that there exist constants A and D such that the following
estimates hold for n!1:

An�0� ÿ A � O nÿ�� � �4:1�
Dn ÿ D � O nÿ�� � : �4:2�

The ®rst statement follows from (H3), the second from �H2�. The
constants l, A and D are identi®ed in Section 4.3 in terms of p̂m�0� and
r2p̂m�0�.
4.1 Proof of Theorem 1.1

Proof of Theorem 1.1(a): By (1.5), (2.2) with z � lÿ1 and (4.1), we
have

cn � zÿnAn�0� � lnA 1� O nÿ�� �� � : �4:3�
(
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Proof of Theorem 1.1(b): Using r2A0�0� � 0, (H6) and (4.1±4.2), we
have

1

cn

X
x

x2cn�x� � ÿ 1

An�0�r
2An�0�

� 1

An�0�
Xn

j�1
DjAjÿ1�0� � O jÿ�� �� �

� Dn 1� O nÿ1^�
ÿ �� �

� 6� 1

Dn 1� O nÿ1 log n
ÿ �� �

� � 1 .

(
�4:4�

(

Proof of Theorem 1.1(c): Suppose k 2 Rn. Then, by (2.23), n � m�k�
and hence (H3) applies. Therefore, using (4.2), d0 < 1 ^ � � 1 (recall
(2.6)), and the fact that 1ÿ D̂�k� � k2

2d � O�k4�, we obtain
ĉn�k�

cn
� An�k�

An�0�

�
Yn

i�1
1ÿ Di 1ÿ D̂�k�� �� Oÿk2iÿd0�h i

� eÿ
k2
2dDneO k4n�k2n1ÿd0� � : �4:5�

But by (2.8), k 2 Rn if n is su�ciently large and k2 is less than a
su�ciently small multiple of nÿ1 log n. Hence, for k2=Dn less than a
su�ciently small multiple of log n, the bound

1

cn
ĉn

k������
Dn
p
� �

� eÿ
k2
2d 1�O nÿd0� �� � �4:6�

holds uniformly in k, as required. (

4.2 Proof of Theorem 1.2

Our starting point for Theorem 1.2 is the relation

cn�x�
cn
� 1

�2p�d
Z
�ÿp;p�d

ĉn�k�
cn

eÿik�x dk ; �4:7�

which we rewrite, using symmetry, as

cn�x�
cn
� 1� �ÿ1�n�kxk1
� � 1

�2p�d
Z
�ÿp

2;
p
2���ÿp;p�dÿ1

ĉn�k�
cn

eÿik�x dk : �4:8�

We split the integral in (4.8) into the regions Rn and Rc
n, with these sets

de®ned in (2.23).
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Since k 2 Rn implies k2 � Cnÿ1 log n, (4.5) can be used to write the
integral over Rn in (4.8) as

1

�2p�d
Z

Rn

eÿ
k2
2dDn 1�O nÿd0 log n� �� �eÿik�x dk

� d
2pDn

� �d
2

eÿ
dx2
2Dn 1� o�1�� � as n!1 :

�4:9�

The asymptotic formula in (4.9) is uniform in x 2 Zd provided
x2�n log n�ÿ1 is su�ciently small. For the integral over Rc

n, we note that
ĉn�k�=cn � An�k�=An�0�, and use (H4) and (4.1), to obtain as upper
bound

CK4

n2��

Z
Rc

n

1

k4�d
dk � CK4

n
d
2�p

Z
Rc

n

1

k4�d
dk : �4:10�

The integral in the right-hand side of (4.10) was estimated in (2.26±
2.27). There it was shown that either the integral times nÿp decays as a
power of n, or the integral converges. In the former case, (4.10) rep-
resents an error term compared to the main term of (4.9). In the latter
case, (4.10) represents an error term compared to (4.9) if p > 0, but
not if p � 0. This proves (1.12).

For d > 4, p � 0, the integral in (4.10) converges since
d ÿ 4 � 2� > d, and hence (4.10) is bounded by a multiple of nÿd=2.
This proves (1.13). (

4.3 Identi®cation of l, A, D

In this section we abbreviate An � An�0�, and continue to ®x z � lÿ1.
The formulas appearing in the following theorem were ®rst derived in
Brydges and Spencer [1] (see also Madras and Slade [11]) for the case
d > 4, p � 0.

Theorem 4.1 The limits lÿ1, A, D of zn, An, Dn satisfy

1 � 2dlÿ1 �
X1
m�2

p̂m�0�lÿm �4:11�

A � 2dlÿ1 �
X1
m�2

mp̂m�0�lÿm

" #ÿ1
�4:12�

D � A 2dlÿ1 ÿ
X1
m�2
r2p̂m�0�lÿm

" #
: �4:13�
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Proof. The identity (4.11) follows after we let n!1 in (3.3) (with
z � lÿ1) and use Lemma 3.1.

To determine A, we need a summation argument because the re-
currence relation (2.10) for An is linear. For n � 1, (2.10) gives

An � 2dlÿ1Anÿ1 �
Xn

m�2
p̂m�0�lÿmAnÿm : �4:14�

De®ning Sn �
Pn

k�0 Ak, and combining (4.14) with A0 � 1, we ®nd

Sn � 1�
Xn

k�1
Ak � 1�

Xn

k�1
2dlÿ1Akÿ1 �

Xk

m�2
p̂m�0�lÿmAkÿm

 !

� 1� 2dlÿ1Snÿ1 �
Xn

m�2
p̂m�0�lÿmSnÿm : �4:15�

By (3.3) with z � lÿ1, this gives

Sn ÿ Snÿ1 � 1ÿ
Xn

m�2
p̂m�0�lÿm Snÿ1 ÿ Snÿm� � � Snÿ1fn ; �4:16�

which is the same as

An � 1ÿ
Xn

m�2
p̂m�0�lÿm

Xnÿ1
k�nÿm�1

Ak �
Xnÿ1
k�0

Ak

 !
fn : �4:17�

Finally, we use (4.1), and note from Lemma 3.1 that the last term in
(4.17) vanishes in the limit as n!1, to obtain

A � 1ÿ
X1
m�2

p̂m�0�lÿm�mÿ 1�A : �4:18�

This gives A � �1�P1m�2�mÿ 1�p̂m�0�zm�ÿ1, which by (4.11) gives
(4.12).

The proof of (4.13) is straightforward via (4.2), (2.3±2.5), and
Lemma 2.3. (

4.4 Discussion

Our method has used induction on the number of steps in the walk to
provide a direct proof of Gaussian behaviour. The use of generat-
ing functions has been avoided. We have used the Fourier trans-
form, but this is harmless. There remains the possibility that
induction hypotheses could be formulated directly in x-space rather
than in k-space. However, this would likely make the argument more
technical.
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The induction hypotheses �H1±H6� have a universal character: they
explicitly involve few parameters (essentially only � and b) and do not
involve any detailed information about the nature of the self-avoid-
ance interaction. The hard part of the analysis sits in guessing the
precise form of �H1±H6�. Once these are adequately chosen, the proof
of the induction step is mechanical. In guessing �H1±H6�, we were
partially guided by earlier work on the problem, predominantly when
setting up the de®nitions in Section 2.1. Interestingly, �H1±H6� pro-
vide us with quite detailed information about the approach to Gaussian
behaviour for ®nite n.

We have left open the important problem of proving the local
central limit theorem for d > 4, p � 0, where our method apparently is
inadequate. We have also not treated the case d > 4, ÿ dÿ4

2 < p < 0, in
which loops receive a penalty that increases, rather than decreases,
with their length.

A treatment of the strictly self-avoiding walk (b � 1) in su�-
ciently high dimensions by our method appears quite feasible, but we
have not attempted this here, in order to avoid additional complica-
tions in the presentation. Such a treatment would require the role of
small b to be taken over by 1

2d, and, in particular, Lemma 2.1(ii) would
require adaptation. It is possible that our method could even be ap-
plied to obtain an alternate proof of Gaussian behaviour for the
strictly self-avoiding walk in all dimensions d � 5 (Hara and Slade
[6]), but this would require serious e�ort and would involve, among
other things, a delicate choice of the constants K1; . . . ;K6.

It would be of interest to extend our method to lattice trees and
percolation. In both these models, the inversion of generating func-
tions poses serious technical problems (Derbez and Slade [3, 4]; Hara
and Slade [8]), and their removal would lead to improved results. An
implementation of our method in these contexts would require the
formulation of induction hypotheses suitable for convergence to in-
tegrated super-Brownian excursion (ISE), rather than to Brownian
motion, as this is what arises as the scaling limit in these two models.
Perhaps the previous work on application of the lace expansion to
lattice trees and percolation can be helpful in the formulation of ap-
propriate replacements for �H1±H6�.

Finally, it may also be possible to extend the methods and results
of Nguyen and Yang [12, 13] for high-dimensional oriented percola-
tion, by a reformulation in a similar inductive scheme.
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A The lace expansion

This appendix contains standard material on the lace expansion, and
consists of the minimum necessary to make our paper self-contained.
The lace expansion was introduced in Brydges and Spencer [1] and is
discussed at length in Madras and Slade [11]. A brief discussion with a
more combinatorial ¯avour is given in Zeilberger [15].

A.1 De®nition of p̂m�k�

In this section, we de®ne p̂m�k� and prove (1.7). This requires the
introduction of the following standard terminology.

Given an interval I � �a; b� of integers with 0 � a � b, we refer to a
pair fs; tg (s < t) of elements of I as an edge. To abbreviate the no-
tation, we write st for fs; tg. A set of edges is called a graph. A graph C
on �a; b� is said to be connected if both a and b are endpoints of edges
in C and if, in addition, for any c 2 �a; b� there is an edge st 2 C such
that s < c < t. The set of all graphs on �a; b� is denoted B�a; b�, and the
subset consisting of all connected graphs is denoted G�a; b�. A lace is a
minimally connected graph, i.e., a connected graph for which the re-
moval of any edge would result in a disconnected graph. The set of
laces on �a; b� is denoted L�a; b�, and the set of laces on �a; b� con-
sisting of exactly N edges is denoted L�N��a; b�.

Given a connected graph C, the following prescription associates to
C a unique lace LC: The lace LC consists of edges s1t1; s2t2; . . ., where
t1; s1; t2; s2; . . . are determined, in that order, by

t1 � maxft : at 2 Cg; s1 � a;

ti�1 � maxft : 9s < ti such that st 2 Cg; si�1 � minfs : sti�1 2 Cg :
Given a lace L, the set of all edges st 62L such that LL[fstg � L is denoted
C�L�. Edges in C�L� are said to be compatible with L.

For integers 0 � s < t, de®ne (recall (1.2±1.3))

Vst�x� � kstUst�x� ; �A:1�
and, for integers 0 � a < b ,

K�a; b��x� �
Y

a�s<t�b

1ÿ Vst�x�� � : �A:2�

Then

cn�x� �
X

x:0!x
jxj�n

K�0; n��x� ; �A:3�
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where the sum is over all n-step simple random walk paths from 0 to x.
Expanding the product in the de®nition of K�a; b��x�, we get

K�a; b��x� �
X

C2B�a;b�

Y
st2C
ÿVst�x�� � : �A:4�

For 0 � a < b we de®ne an analogous quantity, in which the sum over
graphs is restricted to connected graphs, namely,

J �a; b��x� �
X

C2G�a;b�

Y
st2C
ÿVst�x�� � : �A:5�

This allows us to de®ne the key quantity in the lace expansion:

pm�x� �
X

x:0!x
jxj�m

J �0;m��x�; m � 2 : �A:6�

The identity in (1.7) now follows by taking the Fourier transform of
the identity given in the following lemma.

Lemma A.1 For n � 0,

cn�1�x� �
X

y:kyk1�1
cn�xÿ y� �

Xn�1
m�2

X
v2Zd

pm�v�cn�1ÿm�xÿ v� : �A:7�

Proof. Suppress x in the notation. It su�ces to show that

K�0; n� 1� � K�1; n� 1� �
Xn�1
m�2

J �0;m�K�m; n� 1� ; �A:8�

since (A.7) is obtained after insertion of (A.8) into (A.3) followed by
factorisation of the sum over x.

To prove (A.8), we note from (A.4) that the contribution to
K�0; n� 1� from all graphs C for which 0 is not in an edge is exactly
K�1; n� 1�. To resum the contribution from the remaining graphs, we
proceed as follows. When C does contain an edge ending at 0, we let
m�C� denote the largest value of m such that the set of edges in C with
at least one end in the interval �0;m� forms a connected graph on
�0;m�. We lose nothing by taking m � 2, since Va;a�1 � 0 for all a. Then
resummation over graphs on �m; n� 1� gives

K�0; n� 1� � K�1; n� 1� �
Xn�1
m�2

X
C2G�0;m�

Y
st2C
ÿVst� �K�m; n� 1� ; �A:9�

which with (A.5) proves (A.8). (
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We next rewrite (A.6) in a form that can be used to obtain good
bounds on pm�x�. For this, we begin by partially resumming the right-
hand side of (A.5), to obtain

J �a; b� �
X

L2L�a;b�

X
C:LC�L

Y
st2L

ÿVst� �
Y

s0t02CnL
�ÿVs0t0 �

�
X

L2L�a;b�

Y
st2L

�ÿVst�
Y

s0t02C�L�
1ÿ Vs0t0� � : �A:10�

For 0 � a < b, we de®ne J �N��a; b� to be the contribution to (A.10)
coming from laces consisting of exactly N bonds:

J �N��a; b� �
X

L2L�N��a;b�

Y
st2L

ÿVst� �
Y

s0t02C�L�
1ÿ Vs0t0� �; N � 1 : �A:11�

Then

J �a; b� �
X1
N�1

J �N��a; b� �A:12�

and by (A.6),

pm�x� �
X1
N�1
�ÿ1�Np�N�m �x� ; �A:13�

where we de®ne

p�N�m �x� � �ÿ1�N
X

x:0!x
jxj�m

J �N��0;m��x�

� �ÿ1�N
X

x:0!x
jxj�m

X
L2L�N��0;m�

Y
st2L

Vst�x�
Y

s0t02C�L�
1ÿ Vs0t0 �x�� � : �A:14�

A.2 Bounds on p̂m�k�

In this section, we obtain bounds on p̂m�k� in terms of cj �
P

x cj�x�
and kcjk1 � supx cj�x� with 0 � j < m. This serves as a key step in the
proof of Lemma 2.3.

A lace L is a collection of edges s1t1; . . . ; sN tN . Let r0; r1; . . . ;r2Nÿ1
represent an ordered relabelling of the si and tj. For a lace L on �0;m�,
by de®nition r0 � 0 and r2Nÿ1 � m. De®ne the intervals ~Ij � �rjÿ1; rj�
(j � 1; . . . ; 2N ÿ 1), and write j~Ijj � rj ÿ rjÿ1. Note that j~Ijj � 0 is
possible if and only if N � 3 and j � 2l� 1 for some
l 2 f1; . . . ;N ÿ 2g. De®ne j� to be the smallest j for which
j~Ij� j � maxj2f1;...;2Nÿ1g j~Ijj.
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A walk giving a nonzero contribution to (A.14) must intersect itself
N times, to ensure that Ust 6� 0 for each st 2 L. For example, when
N � 11 the walk must undergo a trajectory of the form

where the labels on subwalks correspond to the labels of the intervals
~Ij. Here, any of the subwalks labelled 3, 5, 7, 9, 11, 13, 15, 17, 19 can
have length zero.

Given a lace L with its corresponding j�, denote by Î1; . . . ; Î2Nÿ2 the
ordered set of intervals ~Ij with ~Ij� removed. For each i � 1; . . . ;N ÿ 1,
de®ne I 0i � Î2iÿ1 and Ii � Î2i if jÎ2iÿ1j � jÎ2ij, otherwise de®ne I 0i � Î2i

and Ii � Î2iÿ1. We have thus partitioned our original 2N ÿ 1 intervals
~Ij into a maximal interval ~Ij� and N ÿ 1 pairs of intervals Ii; I 0i in which
the maximal interval in each pair has been associated with a prime.
Note that, by construction,

~Ij�
�� �� � m

2N ÿ 1
: �A:15�

Since kst is a function of jsÿ tj, we write kst � k�jsÿ tj� in the
following lemma.

Lemma A.2 For any k 2 �ÿp; p�d and m � 2, the following hold:

(i) For N � 1,

0 � p̂�1�m �k� � p�1�m �0� � 2dk�m�kcmÿ1k1 : �A:16�
For N � 2,

p̂�N�m �k�
�� �� � �2N ÿ 1�2Nÿ1X k m�� �kcm�k1

YNÿ1
l�1

k m0l
ÿ �kcm0l

k1cml ;

�A:17�
where the unlabelled sum is over the set of m�;m1;m01; . . . ;mNÿ1;m0Nÿ1
whose sum is m and for which m� is maximal and m0l � ml for each l.
Possibly ml � 0, but m0l > 0 for all l, and m� > 0.
(ii) For N � 1,

r2p̂�N�m �k�
�� �� � �2N ÿ 1�2Nÿ1�N ÿ 1�

X
k�m��kcm�k1

�
XNÿ1
r�1

k m0r
ÿ �kcm0rk1r2ĉmr�0�

Y
1�l�Nÿ1

l 6�r

k m0l
ÿ �kcm0l

k1cml : �A:18�
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(iii) For N � 1, and for any 0 � ~� � 1,

p̂�N�m �k� ÿ p̂�N�m �0� ÿ
k2

2d
r2p̂�N�m �0�

���� ���� � Ck2�2~�m2~� � [R.H.S. (A.18)] :

�A:19�
The same bound holds with k2=2d replaced by 1ÿ D̂�k� on the left-hand
side.

Proof. (i) The equality in (A.16) is a consequence of the fact that
p�1�m �x� is nonzero only for x � 0. The inequality in (A.16) follows from

p�1�m �0� � k�m�
X

x:0!0
jxj�m

Y
0�s0<t0�m
s0;t0� �6��0;m�

1ÿ ks0t0Us0t0 �x�� � � k�m�
X

y:jyj�1
cmÿ1�y� :

�A:20�
For (A.17), we begin with the bound

p̂�N�m �k�
�� �� �X

x

p�N�m �x�
�� �� : �A:21�

The indices m�;m1;m01; . . . ;mNÿ1;m0Nÿ1 in (A.17) represent the lengths
of the corresponding lace subintervals ~Ij� ; I1; I 01; . . . ; INÿ1; I 0Nÿ1. The
factor 2N ÿ 1 in (A.17) arises from the number of ways of choosing
which of the 2N ÿ 1 subintervals has maximal length. For each of the
remaining N ÿ 1 pairs of subintervals, there is a factor 2 associated
with the choice of the longer subinterval, which explains the factor
2Nÿ1 in (A.17). Suppose now that the lengths of all the subintervals are
®xed. So, in particular, it is known which are the maximal intervals.

Using 1ÿ Vs0t0 � 1 in (A.14) whenever s0 and t0 belong to di�erent
subwalks, we get an upper bound in which distinct subwalks no longer
interact. However, each subwalk remains self-interacting. The norms
appearing in (A.17) arise when bounding the sum over N ÿ 1 diagram
vertices (an additional vertex is ®xed at 0). Rather than writing down a
formal proof, we illustrate the bound with an example. Consider the
case N � 7 and suppose that ~Ij� � ~I6, I1 � ~I1, I 01 � ~I2, I2 � ~I4, I 02 � ~I3,
I3 � ~I7, I 03 � ~I5, I4 � ~I9, I 04 � ~I8, I5 � ~I10, I 05 � ~I11, I6 � ~I12, I 06 � ~I13. The
relevant diagram is bounded byX
x1;x2;x3;x4;x5;x6

cm1
�x1�cm0

1
�x1�cm2

�x2 ÿ x1�cm0
2
�x2�cm3

�x4 ÿ x2�cm0
3
�x3 ÿ x1�

� cm��x3 ÿ x2�cm4
�x5 ÿ x3�cm0

4
�x4 ÿ x3�

� cm5
�x5 ÿ x4�cm0

5
�x6 ÿ x4�cm6

�x6 ÿ x5�cm0
6
�x6 ÿ x5� : �A.22�
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We bound each of the factors corresponding to the maximal subin-
tervals by using the supremum norm. This leavesX

x1;x2;x3;x4;x5;x6

cm1
�x1�cm2

�x2 ÿ x1�cm3
�x4 ÿ x2�

� cm4
�x5 ÿ x3�cm5

�x5 ÿ x4�cm6
�x6 ÿ x5� : �A:23�

We then do the sum in the order x6; x3; x5; x4; x2; x1.
There is a factor of k associated with each diagram loop, evaluated

at the length of the loop. Since k�m� is monotone decreasing in m, the
factor k associated with a loop can be bounded by k evaluated at the
length of an appropriate subwalk in the loop. It is not di�cult to see
that it is always possible to choose the subwalks corresponding to
~Ij� ; I 01; . . . ; I 0Nÿ1. (In the above example, we get a factor k�m01� from the
®rst loop and k�m02� from the second. Since I 03 � ~I5, we take a factor
k�m03� from the third, rather than taking k�m��, which we take instead
from the fourth loop. The remaining loops are straightforward.)
(ii) We begin with the bound

r2p̂�N�m �k�
�� �� �X

x

x2 p�N�m �x�
�� �� : �A:24�

The displacement x can be written as a sum of subwalk displacements
yj, and we can always choose these displacements from among the
nonmaximal subwalks, i.e., from I1; I2; . . . ; INÿ1. (In the above
example, we would write x � x1 � �x2 ÿ x1� � �x4 ÿ x2� � �x5 ÿ x4�
��x6 ÿ x5�.) We now use the Cauchy±Schwarz inequality in the form
�PNÿ1

j�1 yj�2 � �N ÿ 1�Pj y2j . Then the argument proceeds as for
(A.17).
(iii) We start with the observation that, by symmetry,

p̂�N�m �k� ÿ p̂�N�m �0� ÿ
k2

2d
r2p̂�N�m �0�

�
X

x

cos�k � x� ÿ 1� 1

2
k � x� �2

� �
pm�x� : �A:25�

Using j cos t ÿ 1� 1
2 t2j � Ct2�2~� (valid for any 0 � ~� � 1), and

�k � x�2�2~� � k2�2~�x2�2~� � k2�2~�m2~�x2, we obtain

p̂�N�m �k� ÿ p̂�N�m �0� ÿ
k2

2d
r2p̂�N�m �0�

���� ���� � Ck2�2~�m2~�
X

x

x2 p�N�m �x�
�� �� :

�A:26�
But the last sum is what we bounded in (ii). Replacement of k2=2d by
1ÿ D̂�k� is possible because 1ÿ D̂�k� � k2=2d � O�k4�. (
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