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1. Introduction

Consider a family of Markov kernels (Qp) -, on a finite configuration
space E. Assume that parameter f§ plays the role of the inverse of a
temperature and that the transitions Qgp(i, /) are exponentially van-
ishing with the inverse of the temperature. More precisely, assume
that there exist k > 1, an irreducible Markov kernel ¢ on E called the
communication kernel and V: E X E — IR, U {+o0} called the com-
munication cost such that for any i, j € E we have

La(i, j)e "0 < Qg(i, j) < xq(i, j)e” WP (1)

where we have done the convention that V (i, j) = +oo iff ¢(i,j) = 0.
This framework has been introduced before by Freidlin and Wentzell
in their study of small random perturbations of dynamical systems [4].
Such a family (Qp) 4, will be called an admissible family. Note that
we do not assume any reversibility property of the kernels Oy so that it
extends widely the usual reversible framework of Monte Carlo sim-
ulations.

Now, let 4: E — IR be any non constant function (real valued
observable) on E. If for any f# > 0, u; denotes the unique equilibrium
probability measure of Qg on E, we consider the problem of the
computation of pg(h) =z pug(i)h(i). Usually, ug(h) cannot be
computed directly (the explicit expression in terms of {i}-graphs [4] is
too complicated to be used numerically) but should be estimated
through the empirical mean on a sample Xy, ..., X,—; of the Markov
chain with transition matrix QO and any arbitrary initial probability
measure v

1

Su(h) = 3 h(Xe) .

k=0

S | -

The rate of convergence of the estimator S,(%) is given by the central
limit Theorem [1]

B0 2 (00 = 1) = (0, 2em0s)

where

1 o0
Cinn = 5 Var(h(Xo)) + > " cov(h(Xo), h(Xi))
k=1
is called the autocovariance of 4. Note that this limit does not depend
on the initial probability measure v so that we will assume in the
sequel that v = u;. The autocovariance gives us the asymptotical
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range of the fluctuations of the empirical mean against the length of
the sample. Now, if we want to compare these normalized fluctuations
with those obtained through an i.i.d sample 4(Y),...,A(Y,—1) of
probability law % o g, we have to introduce the normalized fluctua-

tions given by
[ Snh) = (k)
P, (h) =/n (Var(h(Xo))l/2> 7

for which we have W,(h)= A47(0,2p;n,), Where pi,=
Cintn/Var(h(Xp)) is called the integrated autocorrelation time of 4 as
defined by Sokal in [10]. Roughly speaking, the rate n/(2p;, ;) can be
interpreted as the number of “independent” sampling values among
the A(X;)’s.

The study of the integrated autocovariances and autocorrelation
times is crucial to compare different Markovian dynamics which have
the same equilibrium probability measure. We refer in particular to a
work of one of the authors which concerns the comparison of the
Swendsen-Wang and Metropolis dynamics [5], and which has raised
some of the questions we will answer in this paper. The first problem
which had to be faced was to find the functions which could give the
slowest rates of convergence towards equilibrium, and especially to
link these functions with the energy landscapes. The second problem
was to compare the behaviors of these dynamics when applied to the
same interesting observables 4. This led naturally to the comparison of
associated empirical distributions for the construction of Ko-
Imogorov-Smirnov tests ([1]). A third problem was to estimate pre-
cisely the integrated autocovariance and autocorrelation times. This
statistical problem will not be answered here.

We will study in this paper the behaviors of p;,, and ¢y, at small
temperature, i.e. at large . We will be interested in the values of

I = lirﬂri sc;lp%ln(am,h) and Hj = lilgl soljpéln(pim.h) :

(see the discussion section 6 about the existence of a true limit for the
above quantities) as well as in the slowest modes of ® and W, i.e.
functions 4 maximizing I, or H,,.

This problem has been almost completely solved. Let us first in-
troduce the virtual energy U:E — R™ defined by U(i)=
limg_ 4 —%ln(,uﬂ(i)) (the existence of this limit follows from a well
known result of Wentzell and Freidlin [4]). We give upper-bounds for
I, and H,, denoted I and Hy, explicitly defined in function of the
communication costs ¥ (i, j)’s (see Theorem 2 (i) and 3 (i)). Now, if we
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look more precisely at functions which do not distinguish the different
ground states (i.e. configurations i € F(E)=q{j € E|U(j) = 0}),
then we show that there exist /* and H* such that [, < I* and H, < H*.
We give in Theorems 2 and 3 sufficient conditions for equality under
weak conditions on the energy landscape, (for instance these condi-
tions hold when F(E) is a singleton). We deduce that for the energy
function U, cin,u o< exp(Z*f), but, except in very particular situations,
Hy < H*. We also give the exponential equivalent of Pinty at low
temperature in corollary 3: even in the case where the energy U has a
unique global minimum, the constant H* does not govern the nor-
malized fluctuations of S,(U). However, looking at the energy level
functions U; = ly>;, we show that p;, ; oc exp(H*f) iff / belongs to
some explicitly given critical set A, (see corollary 2). An important
consequence is that this critical constant H* can not be estimated
through the computation of p;, 7, but we have to compute the dif-
ferent pj ,’s! '

As a consequence, if we look now for an estimate of the distribu-
tion function Fy(4)=derus(U;), we get that there exists Cp > 0 such
that for any C > Cy, there exists 0 < a; < oy < 1 such that

o < liminflimian(x/exp(—mﬂ) sup |V, (U,)| > C)
>0

p——+o0 n—+00

< lim sup lim supP(x/exp(—mﬁ) sup |V, (U;)| > C) < o
>0

p—+oc0 n—+00

iff m=H" .

2)
Hence, the range of the fluctuations of sup,.,|¥,(U;)| is given by
V/exp(BH).

Note that this constant H* is the largest potential barrier which
separates a configuration i ¢ F(E) from F(E).

Let us emphasize the methods employed to tackle the above
mentioned problems. In the reversible case, we can express pj,,
through the eigenvalues of Qg, and deduce an upper-bound which
depends on the spectral gap of Og. More precisely, following Sokal in
[10], if Eig(p) is the set of all the eigenvalues y < 1 of O, there exists a
probability measure v, (depending on f§) on Eig(f) such that we have
the spectral representation py,, =% [(1+7/1 —7)dv(y). Hence,
using convexity and monotonicity of y—1+y/1 — 7, we get

1 (14 Vmean 11T+,
— < p. < Z
2 <1 - Vmean) B plnt,h —2 <1 — Vs ’ (3)

where y, is the greatest eigenvalue in Eig(f) and e, = [ 7dvi(p).
Without precise information on the spectral measure vy, the inequal-
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ities (3) cannot lead to precise estimates of p;, 5, and a precise study of
vy, 1s strongly dependent on the precise structure of the eigenvectors
which is not completely understood (for some major steps in this
direction see [7]). Note also that this analytical method gives us only
poor informations on the values of ciy, and is restricted to the re-
versible case. In the same spirit, another challenging point of view
could be to consider that

Cint,h = %gl—Q;Q;} (lpﬁa lp[)’):

where &g, is the Dirichlet form associated to the (reversible)
generator [ — QﬁQﬁ in L? (1p), and 4 is the unique solution of the
Poisson equation

(Qp = Dy = h — wy(h)
{Mﬁ(%) 320' ' (4)

However, one should again deal with the non reversible Markov
kernel Qp in the Poisson equation.

Our approach will be completely different and lies on large devi-
ation estimates on the behavior of the Markov chain (X,),.x at low
temperature initiated by Wentzell and Freidlin in [4], developed for
the simulated annealing in the reversible case by Catoni in [3] and
extended to general admissible families by one of the authors in [12].
Our starting point will be a usual coupling argument. More precisely,
note that ciny = ) ; ; h(i)h(j)Gi; where

Gy = 5 450) | (2406 1) — () + 23040 7) — 5)

k>1

Instead of looking for the G,, s, it will be more convenient to study
Gy =G+ 3 (i )(Qﬁ(z J) — ng(j)) which verifies

Gy =D ug(i)( Qi /) — () (5)

k>0

Now, a straightforward coupling argument shows that G;; = G}j — Gl.zj
with

L= (i) S Pa (X) =/, T(4) > k) (6)

k>0

where X = (X, X2),., is the coordinate process on (E x E)N, Py, is
the unique probability measure on E x E equipped with its natural
product ¢-algebra for which X is a Markov chain with transition
matrix Qp=Qp®Qp and initial law & ®@puz and T.(4)=
inf{k > 0| X! = X?}. Since
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1_§:Jlb, 2_§:b~,j
Gij - ]Vi,a and Gij - ]Vi,a7
a,b a,b

where
No = 1y ® g(a,b) > Poes,(Xi = (c,d), T,(4) > k), (7)

k>0

we compute estimates of the N;_’Z’s through large deviation estimates
on the law of the exit time and exit point out of subsets of E x E for
the process X at low temperature.

In section 2, we recall first basic estimates on the behavior of the
Markov chain at low temperature associated with an admissible
family. In section 3 we state the Theorem 2 which concerns the inte-
grated autocovariance. Section 4 is devoted to the integrated auto-
correlation time. Finally, in section 5, we give the proof of these
theorems, and in section 5.2 some important lemmas which rely the
energy landscape of the coupling X to the initial energy landscape.

Let us mention here the work of L. Miclo on the fluctuations of
®,(h;) in the simulated annealing framework and for 4;(j) = 1,—;. In
[8], the process X is assumed to start out of equilibrium and to be
driven by a non constant sequence f5, = In(1 + n)/K. Moreover, the
family Q is assumed to be reversible and the underlying graph of
allowed transitions (¢(i,j) > 0) is assumed to have a tree structure.
Since the cooling schedule is logarithmic decreasing, his results are of
completely different nature and lie on martingale theory arguments.
However, he introduces the potential function U (i, j) = Gi;/ug(i), and
starts with an exponential upper-bound of sup,.; |U(i, /)| in f. In our
work, we need more precise estimates of Gj; for given i and j.

2. Fundamental estimates at low temperature

Since we will work with different processes on different configuration
spaces, we consider for the statement of the basic results a generic
configuration space & on which a family (2),., of Markov kernels is
defined, satisfying for any i,j € &

La(i, j)e™" WP < 94, j) < kq(i, j)e”” WP (8)

where, as in the introduction, q is an irreducible Markov kernel on &
called the communication kernel,x > land 7" : § x & — R, U {400}
is the communication cost satisfying 77(i, j) = +oo iff q(i,j) = 0. We
define the virtual energy % on & by % (i) = —limp_. oo ' In(up(i))
where 5 is the unique invariant probability measure of 25 (see [4])
(note that in our definition we have min;cs % (i) = 0).
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Definition 1. Let g, be the Markov kernel on & x & defined by

9o (/) >0 iff v7(i, j) = 0,
and
Quelin) = 1fmi where = |{j € 6] 7(i,j) = 0}]

We say that the family 2 = (Qﬁ)ﬁzo is a strongly aperiodic family iff for
any irreducible class C of q., such that C N\ F (&) # 0, the restriction of
0o to C x C is aperiodic.

Note that if 2 = (2p) p>0 18 a strongly aperiodic admissible family,
then for any f# > 0, 2; is aperiodic. Moreover, if F(&) is a singleton,
then 2 = (2;) g0 1s always strongly aperiodic.

We start with some notations (for an extended presentation see [11,
12]).

Notation 1. Let B C &. Let any finite family g = (gk)OSkSng of el-
ements of & such that go =i, g,, = j and g; € B for 0 < k <n, be
called a path in B from i to j. The integer n, (depending on g) is called
the length of the path g. Let Pthp(i, /) denote the set of all paths in B
from i to j. A path is said to be empty if its length is equal to 0.

Definition 2.

— For any non empty path g in &, we define
Ac(g) = sup U(g) + 7 (9k: Giet1)

0<k<n,
with the convention that A.(g) = WU (go) if ny =0 i.e. g = (go).
— We define the communication altitude from i to j by
Ac(i,7) gepﬁﬂf(i,j)Ac@'
Moreover, for any B C &, we define 4.(i,B) = infjcp A.(i, ).

— We say that a non empty subset I1 C & is a cycle if I1 is a singleton or
I satisfies sup; jen Ac (i, j) < inficnjene Ae(1, ). We note €(&) the set
of all the cycles. Moreover, for any cycle 11 € €(&), we note
AC(H) = SUp; jenn Ac(iaj)'

— For any cycle TN, H,,(T1) = sup; ;e (Ac(i, j) — (i) will be called the
mixing height of T1 and H,(I1) = sup,cpyinfjene (4. (7, ) — %(i)) its
exit height.

— For any B C &, we define
M (B) ={I1 € 4(&)|I1 C B and maximal for inclusion}

M.(B) ={I1 € 4(&)|I1 C B,I1 # B and maximal for inclusion}
U (B) = inf{%(i)|i € B} (potential of B),
F(B) ={i € B|U(i) = U(B)} (bottom of B),
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H,(B) = sup{H,.(I1)|IT € (&), I1 C B} (exit height of B).

Definition 3. Let (%,),on be the coordinate process on &N. For any
B >0, we denote P the unique probability measure on &~ with its nat-
ural product c-algebra such that (X ,),cy is a Markov chain satisfying

- P(%n-&-l :].mﬁn = i) = a@/g(i,j),
— P(Zo =1i) = vw(i) where vy is a fixed initial probability on & whose
support is &.

Definition 4. Let B C &. We define for i,j € &

CB(i?j) :(%(l) + nV(h]) - keliiglj‘{j}Ac(i’ k))l#f’

Ci(i, ) :inf{ > Colge, giesr)l g € Pthg(i,j)}.
k<n,
Moreover, for any D C &, we note Cy(i, D) = infjep Cy(i, ).

Note that, for any i € &, Cp(i,i) = C4(i,i) = 0. For i and j in B,
C;(i,j) can be interpreted as the communication cost to go from i to j
without escaping from B.

Definition 5. Let B be a subset of &. We define the reaching time of B by
T,(B) =inf{n > 0| %, € B} and the exit times of B by T,B)=
inf{n > 0|4, & B} and t.(B) = inf{n > 0| 2, € B}.

Theorem 1. Let § > 0. There exista,a > 0,b>0,¢c>0,d >0,K; >0
and K, > 0 depending only on &, q and k such that:
(i) For any non empty BC &, anyi € &, j€ B, i #j

Kie G < P2, gy = j| X0 = i) < Kpe  BUIE,
(ii) For any BC &, any n € N and any i € B

P(T,(B) > n| % = i) < (1 + b) exp(—ane HBF),
(i) For any T1 € (&), any n € N and any i € T1

P(T,(I1) > n| Zo = i) > cexp(—d'ne M) mp_.

Proof. This is an obvious corollary for constant cooling schedules of
Theorem 4.1 and 4.7 in [12] or Theorems 1.43 and 1.46 in [11].

Let us precise now a notation we will use in this article.

Notation 2. Let f: R, — IR and g: R, — IR be two functions. We will
say that g oc f iff there exist f, > 0, K; > 0 and K, > 0 such that, for
all p > p,, we have the inequalities
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Kig(B) < f(B) < Kag(B).

3. Autocovariance at low temperature

This section gives our first main result which concerns the exponential
equivalent of the integrated autocovariance at low temperature. We
first give the basic definitions which are required to understand this
result, and the different hypotheses under which it is valid. The proof
will be given later on, in the last part of this paper.

Notation 3. We assume that O = (Op) - 18 a strongly aperiodic ad-
missible family on a finite space E (see definition 1). Then, for any
B >0, we note Qg = Qp ® Qp, so that Q = (Qﬁ)ﬁ20 becomes an ad-
missible family of Markov kernels on E = E x E. Now, if U is the
virtual energy, F(E) the bottom of E, A4.(.,.) the communication al-
titude, (., .) the communication cost associated with the family Q, we
note F(E) = F(E) x F(E) the bottom of E, U(a,b) = U(a) + U(b) the
energy of (a,b) € E, A.(.,.) the communication altitude and
V((a,b),(d,b)) =V(a,d')+ V(b,b') the communication cost from
(a,b) to (d',b’) associated to the family Q. We will also denote
A ={(i,i) € E},and F = ANF(E).

We now introduce some critical constants appearing in Theorem 2.

Notation 4. Let us note

I =sup, ,Ac(a,b) —2U(a) - 2U(b),

I" = Sup, g p(g) SUPpLe Ac(a, b) — 2U(a) — 2U(b),

E; :{(avb) € E| a 7& ba (a’b) g F(E)vAc(avb) - 2U(a) - 2U(b) = 1*}7
Ep- :{a gF(E)‘ 3b # a, (avb) € E[*}

Remark 1. Let us note here that these constants / and /* are not
necessary non-negative.

Notation 5. Let h : E — IR be a non constant function and denote for
all k>0

= > h(i)h()pp(D)( Qi) — 1) -

i,jek
We define the integrated autocovariance, denoted cin s, by

Cint,h = )+ E cn(k

k>1
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Moreover, we define the integrated autocorrelation time, denoted
pint,h’ by

Theorem 2. Assume that Q = (Qp) g0 IS a strongly aperiodic and ad-
missible family. Let fy be a fixed point in F(E) and h: E — R a non
constant function.

(i) There exists K > 0 such that for all f > 0, cinn < Kexp(If).
(ii) Assume now that h(f) = h(fy), Vf € F(E).
1. There exists K >0 such that we have for all >0,
Cinth < Kexp(I*p).
2. If for any a € Ei-, h(a) = h(fp), then there exist I' <I* and
K > 0 such that, for all > 0,

Cintn < Kexp(I'p) .
3. Let us denote C(E}+) the following condition

(C(Er)) Acla,F(E)) > sup A(f.f'); a€Ep
SS'€F(E)
If there exists i, € Ep- such that h(i,) # h(fy), if the condition C(E;-)
holds, and if (h(a) — h(fy))(h(b) — h(fo)) > 0 for all a,b € E;- verifying
U(a) = U(b) and Clisyor ) (a,b) =0, then

Cintn X exp(I*f) .

The proof of Theorem 2 is stated in section 5.3, and is based on one
side on both general Lemmas 2 and 3, and on the other side on
Lemma 4.

Note that C(E;+) holds as soon as the energy U has a unique global
minimum (which happens for instance in meta-stability problems),
and more generally, as soon as U has all its global minimums in a
cycle which does not contain points of E;:. This condition implies that
if the states i and j are such that G‘ is of the largest exponential order
as possible, then G2, can not be of the same order. Otherwise, since
Gij = Gl Glzj, we should have sharp large deviations estimates, and
control the different constants in front of the exponentials. In fact this
condition, which seems technical at a first glance, has a real physical
meaning. If it is not satisfied, different qualitative behaviors, which
highly depend on the models, are possible. The simplest example is the
Metropolis dynamics applied to the 2D Ising model with no external
field. The energy U has in this case two global minimums, @y and —ay,
separated by a high energy barrier, and which satisfy I = 4.(ao, —ay).
The constant /* is very close to /. Let 4 be a symmetric function on E,
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which satisfies A(x) = h(—x) for any configuration x. Since all is
symmetric in this problem, the exponential order of cjn; will never
be equal to /*f. The greatest exponential order of cj; for such a
symmetric function will be 5Lf, with Ih = sup,gpg) inf(4.(a, ap)—
2U(a), A(a, —ap) — 2U(a)).

Corollary 1. Assume that O = (Op) - is a strongly aperiodic and ad-
missible family. Assume that the condition (C(E;-)) holds. The energy
function U satisfies

Cintu x exp(I*p) .

Then the energy U is a slowest mode for the autocovariance function,
among the non constant functions which are constant on F(E).

4. Autocorrelation times at low temperature

This section is organized as the previous one. Note that Theorem 3
relies explicitly the slowest modes of the autocorrelation times to the
energy landscape, and that corollary 2 gives examples of functions for
which the autocorrelation time is the largest among those which are
constant on the bottom of E. It also shows that the largest potential
barrier H* which separates a configuration i ¢ F(E) from F(E) nat-
urally appears in the estimation of the integrated autocorrelation
times for level functions associated to the energy U.

Notation 6. We denote Hy and H* the quantities defined by
Hy = sup4.(i,j) — U(i) — U(j) and
i#j
H* = sup supA.(i,j) — U(i) — U(j) .
i¢F(E) j#i
Moreover, we denote
Ep- = {(i,)) ¢ F(E)|4:(i,/)) —U() = U(j) =H"} ,
and
Ey={i ¢ F(E)|3j €E,(i,)) € E-}.
Theorem 3. Assume that Q = (Qp) s is a strongly aperiodic and ad-

missible family. Let fy be a fixed point in F(E) and h: E — R a non
constant function.

(1) There exists K > 0 such that for any > 0, pinn < K exp(Hyf).
(i1) Assume that h(f) = h(fo), Vf € F(E), and let us denote U, =

inf{U(#)| h(i) # h(f0)}-
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1. There exists K > 0 such that for any >0, p,, < Kexp(H*p).
2. If for any i € Ey-, U(i) # Uy, then there exist K > 0, and H' < H*
such that py,, < Kexp(H'p).
3. Let us denote now (C(Ey+)) the following condition
(C(EH‘)) Ac(aaF(E)) > sup Ac(,f?f/);a € Ep .
SJ'€F(E)
If there exists i, € Ey- such that U, = U(i,.), if the condition (C(Ey-))
holds, and if (h(i) — h(fo))(h(j) — h(fo)) > O for any i, j € Ey- verifying
U(i) = U(j) = Uy and CE‘{].}UF(E))C(i,j) =0, then
Pinty X eXp(H™B) .

The proof of this theorem, which is based on Lemmas 2, 3 and 5, is
stated in section 5.4. Condition C(Ey-) is similar to condition C(E}-).

Remark 2. Under the condition C(Ey+), we have
H* = Hld:fsup{He(H)\ MMe%E),IINFE) =0} .

Notation 7. We denote A, = {U(i)|i € Ey-}, and for any 1 > 0, U, the
function from E to R, defined by U; (i) = 1y()>;.

Corollary 2. Under condition C(Ep-), piy.y, < €Xp(BH) iff there exists
2o € Ay such that U;(i) = 1y >,

Corollary 3. Assume that the conditions of corollary 1 hold and let us
denote U, = inf{U(i)|i & F(E)}. Then the integrated autocorrelation
time of the energy function U satisfies

Pincu X exp(B(I" + Us))

Since U, + I" < H* (and since we usually have U, + I" < H*), the en-
ergy function U is usually not a slowest mode for the integrated auto-
correlation time.

5. Proof of our results

As announced in the introduction, proofs are based on two main
tools: the first one is a coupling argument, the second one uses large
deviation estimates for Markov chains with rare transitions. These
estimates come from the theory of Wentzell and Freidlin and have
been developed by O. Catoni [3] to study optimal cooling schedules
for simulated annealing, and by one of the authors [12] to study non
reversible versions of simulated annealing.
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We first give in this part a general result which gives estimates of
the cumulated mass in a fixed point before reaching a subset of the
bottom of a general set &. It is the first step to study the asymptotic
behavior of the N(( ’d))’s (see equation (7)). The second section is de-
voted to two lemmas which are both used in Theorems 2 and 3. The
third section is devoted to Theorem 2, and the fourth one to Theo-
rem 3.

5.1. Cumulative mass before reaching the bottom
of an energy landscape

Since the result stated in this section will be applied to different pro-
cesses, we will use here the same notations as in the first part of this
paper (Section 2).

Lemma 1. Let F be a subset of F(&) and let f > 0. For all i,j € &, we
note

M = pg(i) > P = j, T,(F) > k| Z0 = i) .
>0
1) WehaveA/Qi:O ifie€ForjeF and
M] ocexp(l/B);i,j & F
_ where I = Clopory U-F) = Clppupy (:4) = z/](-).
(i) Let Ir = sup;gp Ac(j, F) — 2(j), we have I} < I for all i,j ¢ F.
Moreover, for all i,j & F
| (i) = ()
A, F) =2U(j) = A (i, F) = 2U (i) = Ip .
(iil) Let I = supgps) Ac(J, F) = 2U(j), we have I <I: for all
i,j € F(&). Moreover, for all i,j & F(&)
w(i) = ()
=I5 3 Clpope (1) =0

Proof. We start here the proof of (i). Let us note for any i,j € &
Rl =) Py =), T,(F) >k Zo=i) .
k>0

One obviously has that R/ = 0 as soon as i € F or j € F. Let us now
consider i, j ¢ F. From the Markov property, we get easily that
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Rl = P(T({j}) < T.(F)| %y = )R,

and
R =1+ P(z({j}) < T.(F)| 2o = )R] ,
where t,(4) = inf{n > 0|7, € A} for all 4 C & Hence, we deduce
that
| _PEOUY <TEW =D
CP({D) > L)X =))" ’
so that using Theorem 1 (i), we get that

R} o< exp(B(C iy Us F) = Cligyay (0. ) )
and the proof of (i) is ended.

At this point, we should make the following remark. Since using
Lemma 9 in appendix B, we get that C?{j}uF)“(j’ F)=A4.j,F)—(j)
for any j € &, we deduce that

1 < AL F) — () — ) .

Now, noticing that if A4.(i,F) < A.(j,F) then CZ*{J.}UF)C(i,j) >
A.(j,F) — A.(i, F) (this relation is proved in Lemma 11 in appendix
B), we get finally that

1} <A, F) NG F) = U () — i) ©)

We turn now to the proof of (ii). Let i,j ¢ F and let a € {i,j} such
that % (a) = (i) N (j). Then using (9) we deduce immediately that

F < Aca,F)=2U(a) < Ir .

Since the first inequality is strict as soon as %(i) # %(j), we get that
forall i,j € F, if I/ = Ir, then

U(i)=U) and A.(i, F) =2U(i) = A.(j,F) = 2U(j) =Ir . (10)

However, if (10) is satisfied, then I/ = 4.(j, F) — 2%(j) — Cz‘{j}UF)c(i,j)
so that for all i, j € F, if I/ = Ir we have in fact
and (11)
Clipury (67) =0

Since we verify easily that for any i,j € F, if (11) is satisfied, then
Il = Ir, the proof of (ii) is ended.

The proof of (iii) is completely similar to the proof of (ii) and is let
to the reader.
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5.2. Relations between the coupling X and the single chain X

This section is devoted to two lemmas which are both used in Theo-
rems 2 and 3. The first one gives a very important relation between the
localized communication costs of the Markov chain X and those of
the single chain X. The second gives, for some states i and j, a lower
bound for the G}j’s. Note that these lemmas will be applied to points
of E;~ and Ep- 1n the proofs of Theorems 2 and 3. The fact that
conditions C(E;+) and C(Ey-) are satisfied is crucial.

Lemma 2. Let O = (Op) p=0 be an admissible and strongly aperiodic
family on E, let i€E and assume that A.(i,F(E)) >
sup{d.(f,f)| f,f € F(E)}. Let II be the smallest cycle for the in-
clusion such that i € Tl and TINF(E) # 0.

(1) There exists Iy € M (I1) such that F(E) C Iy and i ¢ 1.
(i1) For any j € 1\ Iy and b,b' € F(E), then

1f C?{(j,b/)}UF)C((i’ b), (], bl)) = O thel’l Cz{j}uF(E))((l,]) = 0 .

(iii) For any j € I1\ Iy and any b, b’ € F(E) we have
Cli oy ((1,0), (6, /) > 0

Proof. From the above definition of II, we get that
A.(IT) = A.(i, F(E)). However, since for any f,f’ € F(E), we have
A(f,f") < Ac(i, F(E)), there exists IT" such that A.(IT') < 4.(IT) and
F(E) C IT'. Since IT' N IT # (), we deduce that IT is strictly included in
I1. Hence, there exists I1y € .#,(I1) such that F(E) C Iy C I1. From
the definition of Il, we get obviously that i ¢ Iy so that part (i) is
proved.

We turn now to the proof of part (ii). Let j € IT\ I, and let
b,b' € F(E). Assume that Cz‘{j}UF(E))ﬂ(i,j) > 0. We will show that
Cliywyorr((@:0),(j,0") > 0. From Theorem 1 (i), we get that there

exists a constant K > 0 such that

Py (T(F) > T({(,5)}) > K exp(~BC]0mr (0:6), () -
Hence, if we prove that
lim P (T.(F) < L({(j,6)})) =1, (12)

p—o0
we will deduce immediately that Cfy(;,)0pe((i,0), (j;0')) > 0. To
prove equality (12), let us show that

lim P(i,b) (XT(,(D) eIl x F(E)) =1 , (13)

p—oo
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and
lim P(cf)( (F) < TQ(HO X Ho)) = I,V(C,f) e I x F(E) , (14)

p—o0
where the set D is equal to (IT\ (ITp U {/})) x I,.

Let us prove first the relation (13). We denote D! = T\ (ITp U {;}).
Considering the two events (72(Ily) < T!(D')) and (T}(D') <
T2(Iy)), we deduce the upper bound

Py (Xrp) & Tlo X F(E)) < Py (T2 (o) < TI(DI))

+ZP(1}J) (T, (D") = k, X} & F(E))

=0

P (X} FUTE 15
+ Py (X o) € U : (15)

Since  H,(Ily) > He(D'), we get that limg_. P, (T2 (Tly) <
T!(D')) = 0. Let us note now that if 2 is an irreducible Markov
kernel, v its unique invariant probability measure, vy an initial prob-
ability measure and v, =vy2" for any n >0, then, denoting
gn(p) = va(p)/v(p), we have supg,1 < supg, so that

vu(p) < v(p)supgo - (16)
Hence, we deduce that 3, Py, (T)(D") =k X} ¢ F(E))) <
tg(F(E))/ug(b), which tends to 0 as ﬁ tends to infinity (b belongs to
F(E)). Concerning the last term of the right hand side of (15), the

event depends only on the first coordinate, so that applying Theo-
rem 1, we deduce that there exists K > 0 such that

P (Yo € (7} UTTY) < K exp(—pCh (i {7} UTTY)).

Since D' C ({j} UF(E))", we get that Cj, (i, /) > Clijur)y i:7) > 0.
Moreover, D' C I\ F(E) so that Cj,(i,IT°) > Chi s (6, T19) > 0.
Hence we deduce that Cy, (7, {/} UII) > 0 and equality (1 3) is proved.

Let us prove now the equality (14). Let (¢, f) be a state in
Iy x F(E), and denote I1. sy = {(d',b); Ac((c, ), (d',b")) < H.(Ilp)}.
Let us first notice that IT ;) is a cycle contained in Iy x ITy. Indeed,
let (a',0') be any state of Il ;). Since H.(Ilo) > A.((c,f),(d, b)) >
Ac(c,d)VA(f,b), we have A.(c,d) < H,(Ilp) and A.(f,b) <
H,(ITy). Since ¢ € Iy, and f € Iy, then &’ € Iy and »" € I1,. More-
over, since the family O = (Op)p>o is strongly aperiodic, we have

Ac((a,f),(f.f)) = 4c(a. f) < Hu(Ily) < He(Ily) so that (f, f) belongs
to H(c_f)

We deduce now from the property of IT ) that
P ) (Te(Ty x To) < T(F)) < Py (TL(Mep) < LH{(F)))
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and

lim P s (T.(H ) < THLND) =

p—o0

so that (14) is proved and the proof of part (ii) is complete.

We turn now to the proof of part (iii). Using Theorem 1 (i), we
deduce that it is sufficient to prove that limg . P (7.(F) <
T?(I1y)) = 1. Let us denote B! =1\ Iy and B = B' x I1;. We will
prove in fact that

lim Py (Xr,z € o x F(E)) =1, (17)

p—o0
and
lim P(cf)( (F) < Te(H() X H())) =1 V(C,f) e I x F(E) .

f—oo

This last inequality has been proved before in the proof of part (ii). As
regards (17), we have for P; ;) (Xz,5) ¢ Ho X F( )) the upper bound

P (T2 (M) < T)(B") + Y Puy (T, (B') =k, X} & F(E))
k>0

+P(,~’b) (XTC}(Bl) € Hc) .

Since H,(B') < H,(T1y), the first term vanishes when f tends to in-
finity. Moreover, using the same argument than in part (ii), we get that
the second term in the right hand side vanishes also. Now, since
P (X7 (51 € TI°) is bounded by Py; (X7 m\r(x)) € I1°) which tends
to 0 when f tends to infinity, the proof of (17) is complete.

Lemma 3. Let O = (Op)gs be an admissible and strongly aperiodic
Sfamily on E, let i € E and assume that A.(i,F(E)) > sup{ 4.(f, /)| f,
f' € F(E) }. Let I1 and Iy as defined in Lemma 2. Let j € T1 \ Tl such
that C7 (i,7) = 0. Then we have

({j}UF(E))*
Gy > Kexp(f(H; — U (D)) ,
where H; =qer sup{H.(IT')|II' € 4(E), j € F(IT')}.
Proof. Let b € F(E). Since G}; = (i) Y s Poap (X = J, T(4) > k),

we deduce that

Gy > ug(i)ug(b) > Pip(X) = j, T(4) > k)

k>0
> Mﬁ(i)#ﬁ(b)P ib (XT (D) € U} x Ho)
x inf Y Pio(X =/, T)(I0) >k, T}(Iy) > k) ,

el 43 ‘
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where D = (IT\ (Ilp U {;})) x I and II; is the greatest cycle among
all the cycles IT such that j € F(IT'). Note, from the definitions of IT
and Iy, that we have IT; C IT\ I1y. For all integer M > 0 and all
¢ € Iy, we have
> Py = T(I) > k, T2 (To) > k)
=0
M

> ST PGo(X] =, THI) > k, T2(To) > k)
k=0

Po(X! = /. THIL) > k)P o(TX(TTy) > k)

=
Il

0
Since Py; (T2(Ily) > k) is decreasing in k, we deduce that

e

STPoX) = THIL) > &, TA(TT) > &)
k>0

M
> Plio(T2(Tho) > M) > Pio(X) =/, TN > k) . (18)
k=0

Then, applying the Lemma 7 proved in appendix, we obtain that there
exist Ry > 0, f, > 0, and C > 0, such that for any f > f,,

[Ro exp(H;B)]
P o(X; =/, T)(I0)) > k) > Cexp(H;p) . (19)
k=0
Moreover, applying Theorem 1 (iii), there exist f; >0, C > 0, and
a > 0 such that for all > f3,
P(jyc)(Tez(H()) > [RoCH/ﬁ]) > Cexp(—aRgeMHf*He(HO))) . (20)

Hence, since H; < H,(Ilp), we deduce from equations (18), (19) and
(20) that there exists a constant C >0, such that for all

B = sup(fy, B1)

S Po(X! =, T (T) > k, T2(Thy) > k) > Cexp(BH,) .
k>0

Since b € F(E), ug(b) is bounded from below uniformly in f§ by a
strictly positive constant, and there exists a constant K > 0 such that,

for all > sup(By, B;)
Gl > KP(p(Xrp) € {j} x o) exp(B(H; — U(i))) . (21)

If i = j, the announced result is clear. Let now i be different from ;.
Since
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Pip)(Xr ) € 1/} x To) = P(nb)(X};wl) =j, T,(D") < Tf(Ho)) :
where D! = IT\ (TITp U {,}), we get the inequality
Pin(Xrp) € {j} x o) > R(Xrl;(ol) = j) = Py (T2(Mo) < T)(DY)).

Since H,(T1y) > H,.(D"), we get finally limg_. P ,(T2(ILy) < T)(D"))
= 0. Moreover, there exists a constant C > 0, such that, for all § > 0,

P(Xppry) = J) = Cexp(=BCpu (i, f)-

We just need to prove now that C}, (i, /) is equal to 0.

Let IT" be any cycle and B a subset of E. Assume that a € IT,
b ¢TI, and B°NIT' # (). Then, 4.(a,B°) < A.(a, B NIT") < A.(TT).
But since b’ ¢ I, we have U(a) + V(a,b") > A.(IT'). So that Cp(a,b’)
=U(a)+ V(a,b') — A.(a,B°) > U(a) + V(a,b') — A.(IT") > 0.

As a consequence, since F(E) C Iy C I, we deduce that for
(p,q) € Ty x I and (p',¢") € T x IT°, we have Cipgyuyy(p,q) >0
and Cggugy¢ (@5 q') > 0. Hence,. if g € Pthzg)uy)(i,7) is such that
CirEpugyy(9) = 0 (such a path exists because Clreuiy (i,7) = 0), we
get that g € Pthyy (i, j). Now, since we verify easily that for any p € D',
we have A.(p,F(E)U{j}) =4.(p,(D")), we deduce that
CDI (g) = C(F(E)U{j})"(g) = 0, so that CEl (l,]) =0.

Hence, we deduce that there exist C > 0 and f, > 0, such that for
all B> By, Pup(Xrp) € {j} xIy) > C. From this result and the
equation (21), we have that there exist K >0 and f,>0
(ﬁ* = Sup(ﬁmﬁla BZ))9 such that for all ﬁ > ﬂ*

Gl, = K exp(B(H; — U()) - (22)

so that the proof of the lemma is complete.

5.1. Integrated autocovariance

This section gives the proof of Theorem 2. It is organized as follows. A
first lemma gives upper bounds for the constants I((SZ)) defined in
Lemma 1 applied to the coupling X and to the subset F of F(E) as well
as necessary and sufficient conditions to reach these upper bounds.
The proof of Theorem 2 follows.

Remark 3. Let us denote
a.b
N " = (@) g(b) Sag Prasy Xe = (1), T(4) > k)

and
a.b
M((m;;)) = wup(a)pg(b) 3 i=0 Plap(Xe = (d,b'), T(F) > k)
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Since we have obviously

1 (.0")
/ot v Gl] ZN(lb ’
N(a,b)SM(a,b)and bb'cE

() (ah) ) v')
Gy =D Now
bb'cE

we can obtain exponentlal upper bounds of the G;;’s through upper
bounds on the I( b S

Lemma 4. Let i,j,b and b’ € E and assume that (i,b) ¢ F and
(j;0') ¢ F.

(1) We have I(’ )
(i) Assume lhat i,j éF) Then we have I(("/Z)) I(< 1;)]) <I.
(iil) Assume that i,j ¢ F(E ) Then

» (i,0),(j,0') € Er-
100 =17 iff ¢ U(i) = U())
Cliimnurs((i:0),(,0')) =0
and
(i,b),(V',)) € Er-
1% = 1 iff { UG) = U())
(&0) * . ;.
({(b’,j)}UF)"((lab)a (b a])) =0 .
Moreover, if the condition (C(E-)) holds

(C(Er)) Ac(a,F(E)) > sup A o(f.f);a € Er,
S EF(E

then I((lbbf) < I*.

Proof. Before starting the proof, let us make several remarks. First of
all, if (i,b) € E;» with i € F(E), then b € F(E).
Remark 4. For any (a,b) € E, we have

Ac((a,b),F) > Ac(a,b) . (23)

Indeed, for any f € F(E), we have A.((a,b),(f,f)) > Ac(a,f)
V A.(f,b) > A.(a,b), where the last inequality comes from the ultra-
metricity property of the communication altitude.

Now, if a or b belongs to F(E), then

Ac((a,b),F) < Ac(a,b) . (24)

Indeed, assume that b € F(E), then A.((a,b),F) = inf;cpg) Ac((a,b),
(f,f)). However, let IT = {c € E| A.(b,c) = 0}. The set II is a cycle
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and U(c) = 0 for any ¢ € I1. From the strong aperiodicity of O, we get
that for any ¢, ¢’ € I, there exists a path g = (g,...,g,) such that
g, = (¢,c), g, = (c,c) and A.(g) = 0. Moreover, there exists a path
p=(py,.--,p,) such that if p! = (pl,...,p!) and p* = V},...,P?)
(where p, = (p;, 1{)). then

Ac(p') = Ac(a, b)

po = (a,0), p, = (b,c) € I x I,

A.(p*) =0,
so that A.(p) = 4.(a,b). Now, concatenating p with a path g of the
first type with starting point (b, ¢), we deduce the inequality (24).

Remark 5. We have in fact

I = sup supd.(f,b) —2U(b) , (25)
JEF(E) b#f
and
I"= sup sup A.(f,b) —2U(b) . (26)

JEF(E) b¢F(E)
Indeed, for any a,b ¢ F(E) and f € F(E), we have
Ac(a,b) < Ac(a, [)V Ac(b, f),
so that if ¢ € {a, b} is chosen such that 4.(c,f) = Ac(a, f) V Ac(b, f),
then
A.(a,b) —2U(a) —2U(b) < Ac(c,f) —2U(c) <I" <.
We start now the proof of (i). We deduce from Lemma 1 (ii) that
sup{1/y))] (i,b) ¢ F, (j,¥) & F} = sup{ 1}))| (i,,, ') € 4},
where 4 = {(i,b,j,b') € E*|U(i,b) = U(j,b), (i,b) 7¢F, (j,b') € F}.

Moreover, for any i, b, j,b' € E, we have Igf’) )

L3 = Ac(i.).F) A A1), F) = UGi.b) ~ U b).
We will prove that LE{’Z? <[ forany (i,b,j,b') € A. Let (i,b,},b') € A.
Note first that 7

A((i,0),F) < (U(i) + 4c(b, F(E))) V ( sup A.(i,f)) - (27)
fEF(E)

) SL(;‘:b) where

This inequality is clear when b € F(E), the left hand term being then
less than A.(i,b). Let now b¢ F(E) and f, € F(E) such that
A.(b, f) = A.(b,F(E)). There exists a path g*> € Pth(b, f;), such that
A.(g%) = A.(b,F(E)). Now, there exists i; € E and ¢g' € Pth(i, ;) with
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the same length than g* such that 4.(g') < U(i) (it is sufficient to
follow edges (c,d) such that V(c,d) = 0). Hence g = (¢', ¢?) is a path
from (i,b) to (i1, f») such that

Ac(g) SAC(QI) +A0(92) < U(i) +4c(b, F(E)) .

Since Ac(il,fb) < Ac(il, i) \/Ac(i,fb), and Ac(i, il) < U(l) < Ac(i,fb),
we deduce that A.(ij, fp) < A.(i, f»). Hence, there exists a path
p' € Pth(iy, f;) such that 4.(p') < A4.(i, f»). Moreover we easily con-
struct a path p? € Pth(f}, f;) with the same length than p! such that
A.(p?) = U(fy) =0 (f] € F(E)). Thus, considering p = (p',p?), we
have

Ac(p) < Ac'(Pl) +AC(P2) < AC(iafb) :

Finally, let IT = {a € E| 4.(a, f») = 0}. The set IT is a cycle containing
f» and f], and II is an irreducible class for g, defined in (2). Hence,
since Q is strongly aperiodic, we deduce that g, ® g, restricted to
IT x IT is irreducible so that there exists a path q € Pth((f,f}),
(f»,/»)) such that g (g}, g}.,) >0 and g. (g7, qi.,) >0 for any
0 < k < nq. Thus A.(q) < 4.(¢") + 4.(¢*) = 0. Following successively
g, p, and q, we get a path m € Pth((i,b), (f», f»)) satisfying

Ac(m) < (U(i) + Ac(b,F(E))) V Ac(i, /i)
so that the inequality (27) is proved. We deduce from this result that

LUV < (4c(b,F(E)) —2U(b) — U(0))
V( sup Aisf) = 206) - 20 (8)

<{I-U@G)VI-20(0b)) , (28)

and part (i) is proved.

From now, we assume that i,j ¢ F(E). Let b,b' € E and assume
first that U(i, b) = U(j, ). We will show that Lg,’f;) < I*. Consider the
right hand side of the first inequality of (28). We have

U@ <I* ifbeF(E)

r-uv@  itbgrE , P

Ac(b, F(E)) — 2U(b) — U(i) < {

and

sup A.(i,f) —2U(i) —20(b) I —2U(b) ,  (30)
SEF(E)

so that LE{Z;) < I*. Since L(%’;) = Lgfrbj)) we get LE%) < [I* and using

Lemma 1 (iii) we deduce part (ii) and I <.
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Let now a € Ej-, and € F E) such that (a f) € Ej~. We have that
I(< J)) = I*. Indeed I( 7’;) A.((a,f),F) —2U(a). Using remark 4,

A((a,f),F)—=2U(a) = (af)—ZU( )=1I*. Hence I >1I*, and
Ii=1"

Moreover, we get from (29) and (30) that if LO iy = =[* then
U(b) = 0. Now, since LE’JIJ))) LE’/% we get also U(d') = 0 so that we
have in fact b,b" € F(E).

Hence, using Lemma 1 (iii), we deduce that

(ivb)a (]v b,) € El*,
19 = 1t { UG) = U(),
Cligwnuors((i:0),(j, ) =
and
(i,b), (b/7]) € E[*7
10 =1 iff § U(i) = U()),
(w ory ((6,0), (8, ) =0 .
To end the proof, we have to show now that if (i,b), (', /) € E;~ and
U(i) = U(j), then, under (C(E}-)),

Cliwinury ((@,0), (7)) >0 .

However, since in this case b,b" € F(E), and since (C(E;-)) holds, we
deduce that if IT and I, are defined as in Lemma 2, then j € IT\II,
and using part (iii) of Lemma 2, we get C(y jyyur<((4,0), (8',7)) > 0.
Hence the proof is complete.

Here follows the statement of Theorem 2.

Proof. Let us start with some notations. Note that, if we call
mp = Zkzo cn(k),
my, = Zh(i)h(j)Gij : (31)

Moreover, since ), Gj; = >, Gj; = 0, denoting h(i) = h(i i) — h(fo) for
any i € E, we have m; = m;,. Now denoting E;, = {i € E| h( ) # 0}, we

get o
mi = > h(D)h())Gy - (32)

Now, let us note that ¢;(0) =¢;(0) > 0. Hence we deduce that
0 < cinn < mj. Now, applying Lemma 4 (i), Lemma 1 and remark 3,
we deduce that there exists K >0 such that, for all >0,
mj, < Kexp(I/f), and that

Cintn < Kexp(If) .
Part (i) is proved.
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Assume now that i(f) = h(fy), Vf € F(E). Then, using Lemma 4
(ii), we deduce that there exists K > 0 such that for any > 0 we have

Cinth < Kexp(I'p),

and part (ii)(1) is proved.

We turn now to the proof of part (i1)(2). We assume then that for
any i € E» we have h(i) = 0. Then, using Lemma 4 (iii), we deduce
that there exists ' < I* and K > 0 such that for any f > 0 and any
i,j ¢ E UF(E), we have

|G,’j| S KCXp(I/ﬁ) .
Hence, there exists I’ < I* and K > 0 such that for any > 0,
Cingp < mj < Kexp(I'p) .

Let us prove now part (ii)(3) and assume that C(E;-) holds and that
there exists i, € E;- such that k(i) #0. Let i,j ¢ F(E) and note
Uij =der U(i) A U(i). Using Lemma 4 (iii), we deduce that there exists
I' < I* such that for any b,b' € E, we have I(( f) < I'. Hence there
exists K > 0 such that for any >0

2 /
Gj; < Kexp(I'p) .
Let us study now the behavior of the G}j’s. Let us note
A=A(i,j) € Er x Ep|U(i) = U(j), Clipur):(i:J) =0}

Since we assume that for any (i, j) € 4, we have A(i)k(j) > 0, we de-
duce that

Now, since we assume that (C(E;+)) holds, we deduce from Lemma 3
that there exists {5 > 0 and K > 0 such that

G!, >Kexp(I"B) .

Hence, to end the proof it will be sufficient to prove that for any
(i,7) € A, with Uy > Uy =qer Inf{U(])| h(I) # h(fo)}, there exists
K > 0 and I’ < I such that for any § > 0 we have

G}, < Kexp(I'B) . (33)

Moreover, to get (33) it is sufficient to prove that for any b,b’ € E, we
have [’b) < I*. However, using Lemma 4, we get that if I(l’:) =I"
then L(/'(z) U(j), i,j € Ep and C{((; yyyope((4,0), (7,6')) = . Hence
we deduce easily from Lemma 2 (ii) that CE‘ ; uF(E))"(i’ j) = 0. Thisis in
contradiction with the fact that (i, j) € 4 so that (33) is proved. Since
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Cinen = mj — 5¢3(0), and ¢;(0) = Y, gV (D)= (Xie, 1y (D)R(3))’,
we also have
c;(0) oc exp(—pU;) - (34)

Denote now U, =4 inf{U(1)|] ¢ F(E)}. Hence, if I* + U, > 0 or if
U, > U, (let us note here that we always have I* 4+ U, > 0), the proof
of (i1)(3) is complete.

Let us assume now that /* + U, = 0 and that U, = U.,. Let us note,
foralli,j € E and [ € {1,2},

Gy = pp(D) > oo, (X{ = J, T(4) > k) .
k>1
We can write

cmth——ch +Zh )a()) G’.Jl.—Gi.Jz.) )

It is clear that 0 < G}; < G, for all i,j€E and I € {1,2}. Hence
there exists I’ < I* such that for all f>0, |, h(i)h(j NGE| <
Kexp(pl'), and | >0y h(Dh(j)G}}| < K exp(BI'). Now since
ZW)GA h(i)h (/)G’1 >0, and since c¢;(0) < exp(—pU.), the proof of
(11)(3) is complete.

Remark 6. We recall here that the condition (C(E}+)) holds as soon as
U has a unique global minimum. In this case, the energy U is a slowest
mode for the autocovariance function.

5.2. Autocorrelation times

This section is organized as the preceding one. A first lemma relies the
constants associated to the Markov chain X to the energy landscape of
the initial chain X, and is followed by the proof of Theorem 3.

Lemma 5. Let i,/,b and ' € E, and U;; = U; A U;.

(i) We have I((’b))\/l((b f) < Hy — Uy.
(i1) Assume that i,j & F(E). Then we have 1V v 109 < pr+ — Uij.

A (Bb) ¥ (0b)
Assume that i,j & F(E). Then

(i,b), (j,b') € Eg-
1)) = H* — Uy iff $ U(D) = U()
’ (Geory ((,0), (,8') =

' (l’b)7 (bluf) S EH*
179 = g — vy iff U*(i) =U(j) N
C({(bﬁj)}uF)”((lab), v,j)=0.

and
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Moreover, if the condition (C(Ep+)) holds
(C(En+)) Acla,F(E)) > WRAUf)aﬂ%,
afleF

lhenlb))<H* Ujj.

Proof. Let i,j,b and b’ € E. We know that

1V I < Ac((i,6),F) AA((, b)), F) = U(i,b) = U(bj)

and AL(5:0).F) < (UG) + A F(E)) V (5pycris A1) Sine
the upper bound of ](%))) ( { is symmetric in (i,6) and (j,5'), w

can suppose that U (b’ ) > U(b l)7 Hence,
(b, F(E)) = U(j,b") = U (D))

% ( sup 4.(i,f) — Ui, b) — U(j, b’)> :

JEF(E)

[(be/)

ip) Vi b) <4

Since 4.(b, F(E)) — U(b) < Hy, and supepp) Ac(i, f) — U(i) < Hy, we
deduce immediately that

15 VIS < (Hy = UG) = UB) V (Hy = U(B) = UG) = UW)) -

So that the part (i) is proved.
Assume now that i,j ¢ F(E). Then sup cpg) 4:(i,f) — U(i) < H”,
and obviously 4.(b,F(E)) — U(b) < H*. Hence again
Iy VG < (H = UG) = U@) v (H = U(b) = UG) ~ Ub)
<H -Uj; . (35)
Let us prove now the part (iii), and let i, j & F(E). If (b,) ¢ F(E), w

deduce from the inequality (35) and from the fact that U(d') > U (b)

that I(( )) ((l b)> < H* — Uy;. Hence we deduce that b and &’ belong to
F(E) so that

1) < Ac(i,b) A A, ) = U() = U() -

Hence, if 1J}) = H* — Uy, then (i.b),(j,¥) € Ey-. U(i) = U()),
and A4.(i,b) = A.(j,b"). However in this case, we get
A,b/ . * . .
Iy = Ae(i,5) = 2U(0) = Cfygsymr (:0), G, )

so that C({(/b’)}UF) ((i,b),(j,b")) = 0. Hence we have proved that if
I(’b) H* — Uy, then
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(iab)v (]> b/) € Ey-
(H) U*(i) =U(j) ' o
(oo ((@,0),(7,67) =0 .
Conversely, if (H) holds, we deduce easily that Igf;> =H* — Uy;;. The
proof is the same for I(f;j). Similarly, if 1%’{) = H* — Uy;, then
(i,b), (¥, ) € Eg- and U(iS': U(j). Using the Lemma 2, we deduce
tt(ll}a‘;), under condition C(Ep-), Clyy nupe((i:0),(8',j)) > 0. So that

1 ;{ < H* — Uy, and the proof is complete.

Now we can prove Theorem 3.

Proof. Let us use here the notations introduced in the proof of The-
orem 2, in particular &, mj, mj; and c; as well as relations (31), (32) and
(34).

Assume first that there exists f € F(E) such that A(f) # h(fo).
Then using Lemma 5 (i), we deduce that

mj; < Kexp(Hof) .

Since A is not constant on F(E), ¢;(0) is bounded from below by a
strictly positive constant uniformly in f so that there exists K > 0 such
that for any § > 0 we have

Pint,h < KCXp(H()ﬁ) .

Assume now that 4(f) = h(fy), Vf € F(E). Then, using Lemma 5 (ii)
and since there exists ¢ > 0 such that ¢;(0) > cexp(—U,p) for any
p >0, we deduce that there exists K > 0 such that for any § > 0 we
have

Pinth < Kexp(H*p) .

Hence, parts (i) and (ii) (1) of the theorem are proved.

We turn now to the proof of part (ii) (2) and we assume that
h(f) = h(fo), Vf € F(E).

Let us recall that we denote Uy, = inf{U(i)| h(i) # h(fo)}. Assume
first that for any i € Ey- we have U, # U(i). Then, using Lemma 5
(iii), we deduce that there exists H' < H* and K > 0 such that for any
f > 0 and any i, such that U(i) A U(j) > Uy, we have

|Gyl < Kexp((H' — Uy)p) -

Hence, since again there exists ¢ > 0 such that ¢;(0) > cexp(—U,f),
we deduce that there exists K > 0 such that for any f > 0 we have

Pines < Kexp(H'p) .
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Assume now that there exists i, € Ep- such that U(i.) = Uj, and that

C(Ey+) holds. Let i,j € E such that U;; =g¢r U(i) A U(i) > Uj,. Using
Lemma 5 (iii), we deduce that there exists H' < H* such that for any
b,b' € E, we have I(( b’)’) < H' — Uj;;. Hence there exists K > 0 such that
for any f >0

G2 /ei(0) < K exp(H'B) .
Let us study now the behavior of the G.l.’s Let us note
A={(i,)) € Eg- x Eg-|U(i) = U(j) = Uy, C {]}up (l J)=0}.

(E))*
Since we assume that for any (i, j) € 4, we have A(i)k(j) > 0, we de-
duce that

Now, since we assume that (C(Ey-)) holds, we deduce from Lemma 3
that there exists f; > 0 and K > 0 such that, for all f > f,,

Gil*l-*/ch(O) > Kexp(H*p) .

Hence, to end the proof, it will be sufficient to prove that for any
(i,j) € A, U;j > Uy, there exists K > 0 and H' < H* such that for any
p >0 we have

G};/cn(0) < Kexp(H'B) . (36)

Moreover, to get (36) it is sufficient to prove that for any b,5’ € E, we

have I G4 < H* — U,. However, using Lemma 5, we get that if

H) U then U(i) = U(j) = Uy, i,j € Ey and

{(/ oy (5, 0), (7, b’)) = 0. However, we deduce easily from Lemma

2 (i1) that C} = 0. This is in contradiction with the fact

that (i, /) & A SO that (36) is proved and the proof of (ii) (3) is complete
when H* > 0.

When H* is equal to 0, which implies that for any i ¢ F(E) and any

f €F(E), Ac.(i,f) = U(i), using the same proof as in the case where

I" + U, = 0in Theorem 2, we get that there exists 5, > 0 such that for

all B> By, Pines o< exp(BH™).

6. Concluding remarks

An interesting question is the existence of a true limit in f for
In(cinen(B))/p as P tends to infinity. As a first remark, since
2ty = 61— Q*Qﬁ(zp,;, ), where 4 is the unique solution of the linear
Poisson equatlon we can deduce that if the components of Qp are
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rational expressions in the variables (e“ﬁ)aelR, Cint,x 15 also such a ra-
tional expression and the previous limit exists. However, in our larger
framework of admissible families of Markov kernels, this limit may
not exist and more importantly, even under the previous stronger
assumptions, the limit may fail to depend only on the communication
costs. As a counter-example, let us consider the three points config-
urations space E = {i, j,k} and the following family of Markov ker-
nels defined by

3—ef) 3+elB) 0

_ 1 1—e#F e
Q/f - 2 2 2
0 e BH+D) 1 — e BH+D)

2

where D and H are strictly positive constants and 0 < ¢(ff) < 1/3 for
all B> 0.

Note that we deduce from our constraint on €(f) that (Og) 4 1s an
admissible family. The virtual energy can be explicitly computed and
we get U(i) = U(j) = D and U(k) = 0. Moreover, one easily get that
I=1"=H—Dand E;» = {i,j}. Now, let & be the observable defined
by h(i) = —1, h(j) =1 and h(k) =0. Solving explicitly the linear
system (4), we can prove with a little piece of work, that

in(cana () = (% " H) " by 0<%> |

Now, rewriting €(f) = %eg(“l(ﬁ)‘h’) with 4(f) < H, we get

L
States

Fig. 1. Configurations space and communication costs
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Sin(cina(B)) = A(B)" =D+ 0(h) .

Since the constraint on A(f) is very weak, the limit of In(cins(f))/f
exists iff 4(f)" has a limit in . As a consequence, without sharp
constraints on the variations €(f8), the limit of %ln(cim,;,(ﬂ)) fails to
exist. Moreover, this limit, when it exists, depends strongly on the
variations of ¢(f) and not only on the communication costs. This
surprising result comes from the fact that the hypothesis of Theorem 2
is not fulfilled here since (h(i) — h(k))(h(j) — h(k)) < O (this shows
that the positivity assumption can not be removed in Theorem 2). The
key of this particular behaviour is hidden in the fact that for ¢(ff) = 0,
0p(i,j) = Op(j,i) = 1/2. Hence the averaged value of % for the process
conditioned to stay in the cycle {i,/} is negligible so that, roughly
speaking, the fluctuations of S,(4) for the process within the cycle
{i,j} are of order O(1/+/n) with no drift. However, for €(ff) > 0, the
symmetry between QOg(i, /) and Qp(j,7) is broken so that a non zero
drift appears in the fluctuations of S,(4) within the cycle {7, j} which
may increase at an exponential order (in ) the value of ciys. From
this point of view, e =0 is a critical point for our observable. As a
consequence, our results stand in a sense in the largest set of ob-
servables for which one can expect a control of %ln(cim,h(ﬁ)) inde-
pendently of the bounded fluctuations of Q/}(a,b)eﬁV(“J’). For more
precise results, one should clearly deal with a sharp estimate of the
previous quantity which will take a part in the asymptotic behaviour
of the integrated correlation time.

A. Appendix

The main result of this appendix is a general lemma which gives an
exponential lower bound for the cumulated mass in a fixed point i
before escaping from the largest cycle which contains 7 in its bottom.

Let IT € 4(E) be a cycle. Assume that that IT# E. Let y be an
element not in £, and denote £ =IIU{y}. Now define, for o >0
small enough, Qp: E x E — R by

(Olij) = Qulinj)ifij e,
Op(iy) = > Opli,j)ifi €,
Jel

Op(r,/) = oexp(BA(TLTIO))D (i) Qp(i j) if j € T,

B B igtl
Op(7,7) = 1= 08(r.J)

jen




Fluctuations of empirical means 245

Lemma 6. There exists o > 0 such that for any p >0, @ﬁ is an irre-
ducible Markov kernel with unique invariant probability measure iz
defined on E by wp(i) = vg(i)/vg(E), where

~ (i) ifi e Tl
V(i) = {afl exp(—pA(ILII)) if i =y .

Let now X be a Markov chain on E with transition kernel é Then, there
exists M > 0 and f, > 0 such that for all § > B, and all € F(II),

E(Z(E\U )1 Ko=) <M .

Proof. For any i € Il and any j € II, there exists K;; > 0 such that for
all >0

M/f(i)Qﬁ(iaj) < Kihl.e—(U(i)'*'V(i-j))ﬁ < Ki’je—Ac(H,nv)ﬁ

Hence, there exists K > 0 such that for any f >0, @,;(y,j) < K.
Hence there exists o > 0 such that Qﬁ is a Markov kernel on E x E for
all § > 0. The irreducibility of Q/; follows easily from the irreducibility
of Qp. We easily check that for all i € E, Z ~vﬁ( )Q,;( L 1) = vp(i).

Hence the probability measure g is the unlque invariant probability
measure of Q. Moreover, since v(y) o< e 48 and y(j) oc e=V0)P
for all j € I1, we get that there exists 5, > 0 and ¢ > 0 such that for all
f € F(IT), fg(f) > c for all f > f,. Since for any Markov chain X on
E with transition probability Oy E (7. (E\{f}) | Xo = f) = 1/15(f), the
proof is complete.

Notation 8. Let i € E\F(E) and denote II; the greatest cycle (for the
inclusion order) among all the cycles IT such that i € F(IT). We denote
H; = He(Hi)-

Lemma 7. Let i € E\F(E). Then for any 0 < H < H,, there exists
Ry > 0 and By > 0 such that for all 0 < R < Ry there exists ¢ > 0 which
satisfies

[Re"/]

ST P =i, T(I) > k| Xo = 1) > ce™Pvp>p, . (37)

k=0
Remark 7. Let G;(m) = ;" 1x,—; be the occupation time in i until
time m. The lemma 7 states that £(G,([Re/’?] A T,(IT,))) > ce’f. Quite
precise results, in the continuous time setting, have been proved in [9]
on the asymptotic law of G;(T,(Il;)) after adequate time normaliza-
tion. However, those results do not apply directly for
Gi([Re”’?] A T,(11;)) so that we give below an elementary proof of our
lemma.
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Proof. If H = 0, then (37) is straightforward. Assume that H > 0, so
that H; > 0. Then, from Theorem 1 (iii), there exists f; > 0, Ry > 0
and ¢ > 0 such that for any R < Ry, and all § > f5,, we have

P(T,(IT;) > Re™ | Xy = i) > 9 .

Let now 7T =71.(E\{i}) and define recursively T, =
inf{n > Tj; X, = i}. Let us define, for any 4 > 0,

Hy = P(T[Ae"’/f] < RCHﬁ < Tg(HZ)| Xo = i) .

Let us consider the Markov Kernel @ and the Markov chain X as-
sociated with IT; as in Lemma 6 (since i ¢ F(E), I1; is different from
E). Since Hy is also equal to P(Tjem < Re!f < T,(IT)| Xp = i), we
deduce that

Hy > P(?[Aeﬁ,q < ReP| X, = i> — P(ReHﬂ > T,(I1)| Xo = i>,
> 1 —P(T[AeH/x] > RCHﬁ’ )?0 = i) — (1 —5) .

Applying at first Bienaymé-Chebyshev inequality, and then Markov
property and Lemma 6 we get that

A
[4eHP] AM
< M <— |
~ Ref’f - R

so that Hy > 6 — AM/R. If we take A = 0R/2M, we get Hy > 0/2.
Now, since

[Re"|
> PUi=i, T.(TL) > k| Xo = i)
k=0
[Reu/;]
_ _ HB| v _
>1+ Y P =i, T.(I) > Re"| X = i),
k=1
and since
[Re")
> P =i, T.(I,) > Re"’| Xo = i) > [4e"|Hy,
k=1
Re™|

we get that Yoo IP(X =i, TL(IL) > k| Xo = i) > (45/2)e"P =
(6°R/2M)e"F, and the proof is complete
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B. Appendix

This appendix is devoted to the statement of Lemmas 9 and 11 which
link the localized costs to the communication altitude. Lemma 8 is used
in the proof of Lemma 9, and Lemma 10 in the proof of Lemma 11.

Lemma 8. Let j € & B C & such that j € B, and q € B°. Then
CopnUna) < Cpli,q) +4c(, BS) — U(j) - (38)
Proof. The proof will be done by induction on the size of B.

Let B={j}, and gq#,. Since Cj,(j,q9)= %()+7(j,q)
—A4.(j,{j}°) and C;(j,q) = 7°(j,q), we get the inequality (38) and the
proof is complete for B = {/}.

Assume now that the lemma is proved for |B| < n. Let B be a set
which contains j of size n+ 1 and II; be the unique cycle in .#Z.(B)
containing j. Let ¢ € B¢, g € Pthg(j, ¢) such that Cz(g) = C;(/j,¢) and
ko = sup{k > 0| g € I1;}. Since there exists g’ € Pthr (/,gx,) such
that Cr,(9') = () we can suppose that for all k£ < ko, gi € I1;. Let us
denote now m' = (go, ..., gry+1), and m* = (Gys1, - - -+ Gn,)-

Let a €Il If B is a cycle, then A.(a,I1j) = %(B) + Hu(B) <
A.(a,B¢) = %(B) + H,(B) and

Cp(a, b) ifben

Cn,(a,b) = { Csla,b) + H(B) — Hy(B)  if b e g 5 that

Cr (m') = Com') + (Ho(B) — Hp(B)yy s -+ (39)
If B is not a cycle, then 4.(a, H;) = A.(a,B°) so that Cg(a,b) =
Cn,(a,b) for any b € & and
Cn.(ml) = Cp(m') . (40)
Indeed, we already have that 4.(a, B) > 4.(a, I17). Let us assume now
that 4.(a, HC) < Ac(a,B%), and let IT; = {c € | "4 c(a,c) < Ac(a, TI5)}.
The set IT, ; is a cycle and satisfies II; C H’ C B. Since B is not a cycle
and since H # I1;, we obtain a contradlctlon with the definition of
IT;.
Assume first that ko = n, — 1 i.e. m! = g and m? is empty. Then, if
B is a cycle, we deduce from the induction hypothesis and (39) that

CopyUs9) < CripngpUs ) < Cr U q) + A, 115) — ()
< Ci,(m") + 4., 1I5) — (j)
= Cp(m') + (Ho(B) — Hy(B)) + Ac(j, TI5) — U ())
= Cp(m') + 4:(j, B) = U(j) = C3(j,q) + 4c(j, B) — U (j)
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so that inequality (38) is proved. If B is not a cycle, then we deduce
from the induction hypothesis and (40) that

< Cy(m') + 4c(j, B) = U(j)
= C;(]a CI) +AC(j>BC) - %(]) )
so that inequality (38) is proved in this case.
Assume now that ko + 1 < n, i.e. g, +1 € B and m? is not empty.

Let a € B\II,. If B is a cycle, then A.(a,I1;) = %(B) + Hu(B) <
A.(a,B¢) = (B) + H.(B) and

_ | Cs(a,b) if be B\ I,
Crn,(a,6) = { Cs(a,b) + H,(B) — H,(B) ifbecB

so that

Con, (m?) = Cp(m”) + He(B) = H(B) - (41)
If B is not a cycle then A.(a,Il;) > A.(a,B) so that Cp(a,b) =
Cp\11,(a, b) and

Cp\i,(m*) = Cg(m®) . (42)

Indeed, if we assume that 4.(a,I1;) < A.(a, B°), then considering the
cycle I' = {c € &| A.(a,c) < A.(a,11;)}, we deduce that IT' is a cycle
included in B and containing a and I1;. Since B is not a cycle, IT' # B,
which is in contradiction with IT; € .Z.(B).

From (39), (41) and the induction hypothesis, we deduce that if B is
a cycle, then

Coi5 U2 9) < Con 53U Gtos1) + Con gy (Ghos19)
= Cﬁ/\{j} Us ko) + Cg\n,(gkoﬂ,q)
< Cr, U Grow) + (A 105) — () + CB\n,(mz)
< Cry(m") + (4, TI5) — 2 (j))
+ Cp(m*) + (Ho(B) — Hyu(B))
< Cs(g) + (Ac(j, BY) — % ()))
< CpUsq) +A4:(,BY) = «(j) ,

so that inequality (38) is proved in this case. Now, if B is not a cycle,
we deduce from (40), (42) and the induction hypothesis that
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CpnUs9) < Cpy Us grot1) + Cpy 3y (Gko+1,9)
< Cip iy Uy k1) + Cpym, (915 9)
< Cfy, (s gry 1) + (Ae(, TIS) = () + Cp, (m?)
< Cn (m') + (A (/. BY) = U(j)) + Cp(m?)
< C3Usq) + (Ac(, BY) — %))
so that the proof is complete.

Lemma 9. Let F be a subset of F(&) and let j € &. We have the fol-
lowing relation between the localized costs and the communication al-
titude

Clrogyye o F) = 4G, F) = () (43)

Proof. If j belongs to F, the result is clear. Let then j ¢ F. Let II; be
the unique cycle in .#(F¢) containing j (note that we do not impose
here II; to be strictly included in F¢). Let us prove the inequality

C?Fu{j})”(jaF) ZAC(,/7F> - %(J) :
Let a € T1;. Since 4.(a,j) < Ac(a,ITj) < A.(a,F) we deduce that for
any b € &, C(Fu{j})" (a,b) = an\{j}(a,b) and

Clrugy U 1) = Cry gy U TT5) - (44)

However, we have Cpy\(,(/,11}) = %(I1;) + He(I1;) — % (j) (cf Lem-
ma 3.5 in [12]). Smce fzrom the definition of IT; we get #(Il;)+
H,(I1)) = A4.(j, 117) = A.(j, F), we deduce

Clrogyy U F) = Clpoppye U IT) = A F) = U () -
Let us prove now the inequality
Clrogn Un F) S AU, F) — U (j).

Since Cj.(j,F) =0, there exists then f € F such that Cy.(j,f) = 0.
Applying Lemma 8, we deduce that Cj. e }(] ) <A.j,F)—U)
( € F°). Hence the proof of Lemma 9 is complete.

Lemma 10. Let I1 be a cycle, i € I1, and f € F(I1). Then, we have
C{i[\{f}(i, I1°) > A.(i, T1I°) — 4.(i, f) .
Proof. Let B=1II\ {f} and ¢ € II°. Using Lemma 8 we get

Ciny gy (0 119) < Cp (3 (4, 11°) < Cpy (7, 9)
< Cyli,q) + Ac(i, B) — U(i).
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Hence Cin, g Cr\y (i, T1°) + A.(i, BC) — 52/(1) Since
TV o) Ciny g (01 = Ac(1,TI) — (i) ([12)),
we get CH\{f}(z 1) > A.(i, T1I¢) — A.(i, f).

Lemma 11. Let i € &, j€ &, and F a subset of F(&). If we have
Ac(i, F) <A, F), then Cl o ic(is j) 2 Ae(j, F) = Ac(i, F).

Proof. We claim first that A.(j,F) < A.(i,j). Let indeed f € F such
that A.(i,f) = A.(i,F). Since A.(j,f) < A.(i,j) VA.(i,f), and since
A.(i,F) < A.(j,F), we deduce that 4.(i,F) < A.(j,f) < A.(i,j), and
our statement is proved.

Let now II;; be the smallest cycle which contains i and j, and f € F
satisfying A.(i,f) = A.(i, F). Note that f € II; (4.(i,f) < A.(i, ))).
Let us denote IT; € .#,(I1;;) containing i. Since (F U {;})" C {f}°, we
have

Clrugyy (1,4) = Clpye(i)) -
Now, since j & IT;, C71e(i,7) = Cy e (i, IT7). Checking that CY
Uy Clry
= Ci\ iy (- TT5) and using Lemma (10), we get
C(FU{j})"(la]) > Ac(’, Hf) _Ag(l,f) .

Since A.(i,I1{) = A.(i,j) > A.(j,F), and A.(i, f) = A.(i, F), the proof
is complete.

{6 1L)
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