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1. Introduction

Consider a family of Markov kernels �Qb�b�0 on a ®nite con®guration
space E. Assume that parameter b plays the role of the inverse of a
temperature and that the transitions Qb�i; j� are exponentially van-
ishing with the inverse of the temperature. More precisely, assume
that there exist j � 1, an irreducible Markov kernel q on E called the
communication kernel and V : E � E! R� [ f�1g called the com-
munication cost such that for any i; j 2 E we have

1
j q�i; j�eÿV �i;j�b � Qb�i; j� � jq�i; j�eÿV �i;j�b ; �1�

where we have done the convention that V �i; j� � �1 i� q�i; j� � 0.
This framework has been introduced before by Freidlin and Wentzell
in their study of small random perturbations of dynamical systems [4].
Such a family �Qb�b�0 will be called an admissible family. Note that
we do not assume any reversibility property of the kernels Qb so that it
extends widely the usual reversible framework of Monte Carlo sim-
ulations.

Now, let h : E ! R be any non constant function (real valued
observable) on E. If for any b � 0, lb denotes the unique equilibrium
probability measure of Qb on E, we consider the problem of the
computation of lb�h� �

P
i2E lb�i�h�i�. Usually, lb�h� cannot be

computed directly (the explicit expression in terms of fig-graphs [4] is
too complicated to be used numerically) but should be estimated
through the empirical mean on a sample X0; . . . ;Xnÿ1 of the Markov
chain with transition matrix Qb and any arbitrary initial probability
measure m

Sn�h� � 1

n

Xnÿ1
k�0

h�Xk� :

The rate of convergence of the estimator Sn�h� is given by the central
limit Theorem [1]

Un�h��
def

���
n
p

Sn�h� ÿ lb�h�
ÿ �)N�0; 2cint;h� ;

where

cint;h � 1

2
Var�h�X0�� �

X1
k�1

cov�h�X0�; h�Xk��

is called the autocovariance of h. Note that this limit does not depend
on the initial probability measure m so that we will assume in the
sequel that m � lb. The autocovariance gives us the asymptotical
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range of the ¯uctuations of the empirical mean against the length of
the sample. Now, if we want to compare these normalized ¯uctuations
with those obtained through an i.i.d sample h�Y0�; . . . ; h�Ynÿ1� of
probability law h � lb, we have to introduce the normalized ¯uctua-
tions given by

Wn�h� �
def

���
n
p Sn�h� ÿ lb�h�

Var�h�X0��1=2
 !

;

for which we have Wn�h� )N�0; 2qint;h�, where qint;h �
cint;h=Var�h�X0�� is called the integrated autocorrelation time of h as
de®ned by Sokal in [10]. Roughly speaking, the rate n=�2qint;h� can be
interpreted as the number of ``independent'' sampling values among
the h�Xk�'s.

The study of the integrated autocovariances and autocorrelation
times is crucial to compare di�erent Markovian dynamics which have
the same equilibrium probability measure. We refer in particular to a
work of one of the authors which concerns the comparison of the
Swendsen-Wang and Metropolis dynamics [5], and which has raised
some of the questions we will answer in this paper. The ®rst problem
which had to be faced was to ®nd the functions which could give the
slowest rates of convergence towards equilibrium, and especially to
link these functions with the energy landscapes. The second problem
was to compare the behaviors of these dynamics when applied to the
same interesting observables h. This led naturally to the comparison of
associated empirical distributions for the construction of Ko-
lmogorov-Smirnov tests ([1]). A third problem was to estimate pre-
cisely the integrated autocovariance and autocorrelation times. This
statistical problem will not be answered here.

We will study in this paper the behaviors of qint;h and cint;h at small
temperature, i.e. at large b. We will be interested in the values of

Ih �
def

lim sup
b!1

1
b ln�cint;h� and Hh �

def
lim sup

b!1
1
b ln�qint;h� ;

(see the discussion section 6 about the existence of a true limit for the
above quantities) as well as in the slowest modes of U and W, i.e.
functions h maximizing Ih or Hh.

This problem has been almost completely solved. Let us ®rst in-
troduce the virtual energy U: E! R� de®ned by U�i� �
limb!�1ÿ 1

b ln�lb�i�� (the existence of this limit follows from a well
known result of Wentzell and Freidlin [4]). We give upper-bounds for
Ih and Hh, denoted I and H0, explicitly de®ned in function of the
communication costs V �i; j�'s (see Theorem 2 (i) and 3 (i)). Now, if we
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look more precisely at functions which do not distinguish the di�erent
ground states (i.e. con®gurations i 2 F �E�� def fj 2 EjU�j� � 0g),
then we show that there exist I� and H � such that Ih � I� and Hh � H�.
We give in Theorems 2 and 3 su�cient conditions for equality under
weak conditions on the energy landscape, (for instance these condi-
tions hold when F �E� is a singleton). We deduce that for the energy
function U , cint;U / exp�I�b�, but, except in very particular situations,
HU < H�. We also give the exponential equivalent of qint;U at low
temperature in corollary 3: even in the case where the energy U has a
unique global minimum, the constant H� does not govern the nor-
malized ¯uctuations of Sn�U�. However, looking at the energy level
functions Uk � 1U�k, we show that qint;Uk

/ exp�H�b� i� k belongs to
some explicitly given critical set K� (see corollary 2). An important
consequence is that this critical constant H� can not be estimated
through the computation of qint;U , but we have to compute the dif-
ferent qint;Uk

's!
As a consequence, if we look now for an estimate of the distribu-

tion function FU �k��deflb�Uk�, we get that there exists C0 � 0 such
that for any C > C0, there exists 0 < a1 � a2 < 1 such that

a1 � lim inf
b!�1

lim inf
n!�1 P

���������������������
exp�ÿmb�p

sup
k>0
jWn�Uk�j � C

� �
� lim sup

b!�1
lim sup

n!�1
P

���������������������
exp�ÿmb�p

sup
k>0
jWn�Uk�j � C

� �
� a2

9>>=>>; iff m � H � :

�2�
Hence, the range of the ¯uctuations of supk>0 jWn�Uk�j is given by��������������������
exp�bH��p

.
Note that this constant H � is the largest potential barrier which

separates a con®guration i 62 F �E� from F �E�.
Let us emphasize the methods employed to tackle the above

mentioned problems. In the reversible case, we can express qint;h
through the eigenvalues of Qb, and deduce an upper-bound which
depends on the spectral gap of Qb. More precisely, following Sokal in
[10], if Eig�b� is the set of all the eigenvalues c < 1 of Qb, there exists a
probability measure mh (depending on b) on Eig�b� such that we have
the spectral representation qint;h � 1

2

R �1� c=1ÿ c� dmh�c�. Hence,
using convexity and monotonicity of c 7!1� c=1ÿ c, we get

1

2

1� cmean
1ÿ cmean

� �
� qint;h �

1

2

1� c�
1ÿ c�

� �
; �3�

where c� is the greatest eigenvalue in Eig�b� and cmean �
R

c dmh�c�.
Without precise information on the spectral measure mh, the inequal-
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ities (3) cannot lead to precise estimates of qint;h, and a precise study of
mh is strongly dependent on the precise structure of the eigenvectors
which is not completely understood (for some major steps in this
direction see [7]). Note also that this analytical method gives us only
poor informations on the values of cint;h and is restricted to the re-
versible case. In the same spirit, another challenging point of view
could be to consider that

cint;h � 1
2EIÿQ�bQb�wb;wb�;

where EIÿQ�bQb is the Dirichlet form associated to the (reversible)
generator I ÿ Q�bQb in L2�lb�, and wb is the unique solution of the
Poisson equation

�Qb ÿ I�wb � hÿ lb�h�
lb�wb� � 0:

�
�4�

However, one should again deal with the non reversible Markov
kernel Qb in the Poisson equation.

Our approach will be completely di�erent and lies on large devi-
ation estimates on the behavior of the Markov chain �Xn�n2N at low
temperature initiated by Wentzell and Freidlin in [4], developed for
the simulated annealing in the reversible case by Catoni in [3] and
extended to general admissible families by one of the authors in [12].
Our starting point will be a usual coupling argument. More precisely,
note that cint;h �

P
i;j h�i�h�j�eGij where

eGij � 1

2
lb�i� �Q0

b�i; j� ÿ lb�j�� � 2
X
k�1
�Qk

b�i; j� ÿ lb�j��
" #

:

Instead of looking for the eGij's, it will be more convenient to study
Gij � eGij � 1

2 lb�i��Q0
b�i; j� ÿ lb�j�� which veri®es

Gij �
X
k�0

lb�i��Qk
b�i; j� ÿ lb�j�� : �5�

Now, a straightforward coupling argument shows that Gij � G1
ij ÿ G2

ij
with

Gl
ij � lb�i�

X
k�0

Pdi
lb
X l

k � j; Tr�D� > k
ÿ �

; �6�

where X � �X 1
k ;X

2
k �k�0 is the coordinate process on �E � E�N, Pdi
lb

is
the unique probability measure on E � E equipped with its natural
product r-algebra for which X is a Markov chain with transition
matrix Qb � Qb 
 Qb and initial law di 
 lb and Tr�D� �
inffk � 0 j X 1

k � X 2
k g. Since
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G1
ij �

X
a;b

Nj;b
i;a and G2

ij �
X
a;b

Nb;j
i;a ;

where

Nc;d
a;b � lb 
 lb�a; b�

X
k�0

Pda
db�Xk � �c; d�; Tr�D� > k� ; �7�

we compute estimates of the Nc;d
a;b 's through large deviation estimates

on the law of the exit time and exit point out of subsets of E � E for
the process X at low temperature.

In section 2, we recall ®rst basic estimates on the behavior of the
Markov chain at low temperature associated with an admissible
family. In section 3 we state the Theorem 2 which concerns the inte-
grated autocovariance. Section 4 is devoted to the integrated auto-
correlation time. Finally, in section 5, we give the proof of these
theorems, and in section 5.2 some important lemmas which rely the
energy landscape of the coupling X to the initial energy landscape.

Let us mention here the work of L. Miclo on the ¯uctuations of
Un�hi� in the simulated annealing framework and for hi�j� � 1i�j. In
[8], the process X is assumed to start out of equilibrium and to be
driven by a non constant sequence bn � ln�1� n�=K. Moreover, the
family Q is assumed to be reversible and the underlying graph of
allowed transitions (q�i; j� > 0) is assumed to have a tree structure.
Since the cooling schedule is logarithmic decreasing, his results are of
completely di�erent nature and lie on martingale theory arguments.
However, he introduces the potential function U�i; j� � Gij=lb�i�, and
starts with an exponential upper-bound of supi2E jU�i; j�j in b. In our
work, we need more precise estimates of Gij for given i and j.

2. Fundamental estimates at low temperature

Since we will work with di�erent processes on di�erent con®guration
spaces, we consider for the statement of the basic results a generic
con®guration space E on which a family �Qb�b�0 of Markov kernels is
de®ned, satisfying for any i; j 2 E

1
jq�i; j�eÿV�i;j�b � Qb�i; j� � jq�i; j�eÿV�i;j�b �8�

where, as in the introduction, q is an irreducible Markov kernel on E
called the communication kernel, j � 1 andV : E� E! R� [ f�1g
is the communication cost satisfying V�i; j� � �1 iff q�i; j� � 0. We
de®ne the virtual energy U on E by U�i� � ÿ limb!�1 bÿ1 ln�lb�i��
where lb is the unique invariant probability measure of Qb (see [4])
(note that in our de®nition we have mini2E U�i� � 0).
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De®nition 1. Let q1 be the Markov kernel on E� E de®ned by

q1�i; j� > 0 iff V�i; j� � 0,
and
q1�i; j� � 1=ni where ni � jfj 2 EjV�i; j� � 0gj .

8<:
We say that the family Q � �Qb�b�0 is a strongly aperiodic family i� for
any irreducible class C of q1 such that C \ F �E� 6� ;, the restriction of
q1 to C � C is aperiodic.

Note that if Q � �Qb�b�0 is a strongly aperiodic admissible family,
then for any b � 0, Qb is aperiodic. Moreover, if F �E� is a singleton,
then Q � �Qb�b�0 is always strongly aperiodic.

We start with some notations (for an extended presentation see [11,
12]).

Notation 1. Let B � E. Let any ®nite family g � �gk�0�k�ng
of el-

ements of E such that g0 � i, gng � j and gk 2 B for 0 < k < ng be
called a path in B from i to j. The integer ng (depending on g) is called
the length of the path g. Let PthB�i; j� denote the set of all paths in B
from i to j. A path is said to be empty if its length is equal to 0.

De®nition 2.

± For any non empty path g in E, we de®ne

Ac�g� � sup
0�k<ng

U�gk� �V�gk; gk�1� ;

with the convention that Ac�g� � U�g0� if ng � 0 i.e. g � �g0�.
± We de®ne the communication altitude from i to j by

Ac�i; j� � inf
g2PthE�i;j�

Ac�g� :

Moreover, for any B � E, we de®ne Ac�i;B� � infj2B Ac�i; j�.
± We say that a non empty subset P � E is a cycle if P is a singleton or

P satis®es supi;j2P Ac�i; j� < infi2P;j2Pc Ac�i; j�.We note C�E� the set
of all the cycles. Moreover, for any cycle P 2 C�E�, we note
Ac�P� � supi;j2P Ac�i; j�.

± For any cycle P, Hm�P� � supi;j2P�Ac�i; j� ÿU�i�� will be called the
mixing height of P and He�P� � supi2P infj2Pc�Ac�i; j� ÿU�i�� its
exit height.

± For any B � E, we de®ne
M�B� � fP 2 C�E�jP � B and maximal for inclusiong
M��B� � fP 2 C�E�jP � B;P 6� B and maximal for inclusiong
U�B� � inffU�i�j i 2 Bg (potential of B),
F �B� � fi 2 BjU�i� � U�B�g (bottom of B),
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He�B� � supfHe�P�jP 2 C�E�;P � Bg (exit height of B).
De®nition 3. Let �Xn�n2N be the coordinate process on EN. For any
b � 0, we denote P the unique probability measure on EN with its nat-
ural product r-algebra such that �Xn�n2N is a Markov chain satisfying

± P �Xn�1 � jjXn � i� � Qb�i; j�,
± P �X0 � i� � m0�i� where m0 is a ®xed initial probability on E whose
support is E.

De®nition 4. Let B � E. We de®ne for i; j 2 E

CB�i; j� ��U�i� �V�i; j� ÿ inf
k2Bc[fjg

Ac�i; k��1i6�j;

C�B�i; j� � inf
�X

k<ng

CB�gk; gk�1�j g 2 PthB�i; j�
�
:

Moreover, for any D � E, we note C�B�i;D� � infj2D C�B�i; j�.
Note that, for any i 2 E, CB�i; i� � C�B�i; i� � 0. For i and j in B,

C�B�i; j� can be interpreted as the communication cost to go from i to j
without escaping from B.

De®nition 5. Let B be a subset of E.We de®ne the reaching time of B by
Tr�B� � inffn � 0jXn 2 Bg and the exit times of B by Te�B� �
inffn � 0jXn 62 Bg and se�B� � inffn > 0jXn 62 Bg.

Theorem 1. Let b � 0. There exist a; a0 > 0, b � 0, c > 0, d > 0, K1 > 0
and K2 > 0 depending only on E, q and j such that:

(i) For any non empty B � E, any i 2 E, j 2 Bc, i 6� j

K1e
ÿC�B�i;j�b � P�Xse�B� � jjX0 � i� � K2e

ÿC�B�i;j�b:

(ii) For any B � E, any n 2 N and any i 2 B

P �Te�B� > njX0 � i� � �1� b� exp�ÿan eÿHe�B�b�:
(iii) For any P 2 C�E�, any n 2 N and any i 2 P

P �Te�P� > njX0 � i� � c exp�ÿa0neÿHe�P�b�1eÿHe�P�b�d :

Proof. This is an obvious corollary for constant cooling schedules of
Theorem 4.1 and 4.7 in [12] or Theorems 1.43 and 1.46 in [11].

Let us precise now a notation we will use in this article.

Notation 2. Let f : R� ! R and g: R� ! R be two functions. We will
say that g / f i� there exist b0 � 0, K1 > 0 and K2 > 0 such that, for
all b � b0, we have the inequalities
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K1g�b� � f �b� � K2g�b�:

3. Autocovariance at low temperature

This section gives our ®rst main result which concerns the exponential
equivalent of the integrated autocovariance at low temperature. We
®rst give the basic de®nitions which are required to understand this
result, and the di�erent hypotheses under which it is valid. The proof
will be given later on, in the last part of this paper.

Notation 3. We assume that Q � �Qb�b�0 is a strongly aperiodic ad-
missible family on a ®nite space E (see de®nition 1). Then, for any
b � 0, we note Qb � Qb 
Qb, so that Q � �Qb�b�0 becomes an ad-
missible family of Markov kernels on E � E � E. Now, if U is the
virtual energy, F �E� the bottom of E, Ac�:; :� the communication al-
titude, V �:; :� the communication cost associated with the family Q, we
note F�E� � F �E� � F �E� the bottom of E, U�a; b� � U�a� � U�b� the
energy of �a; b� 2 E, Ac�:; :� the communication altitude and
V��a; b�; �a0; b0�� � V �a; a0� � V �b; b0� the communication cost from
�a; b� to �a0; b0� associated to the family Q. We will also denote
D � f�i; i� 2 Eg, and F � D \ F�E�.

We now introduce some critical constants appearing in Theorem 2.

Notation 4. Let us note

I � supa 6�b Ac�a; b� ÿ 2U�a� ÿ 2U�b�,
I� � supa 62 F �E� supb 6�a Ac�a; b� ÿ 2U�a� ÿ 2U�b�,
EI� �f�a; b� 2 Ej a 6� b; �a; b� 62 F�E�;Ac�a; b� ÿ 2U�a� ÿ 2U�b� � I�g,
EI� �fa 62 F �E�j 9b 6� a; �a; b� 2 EI�g.

Remark 1. Let us note here that these constants I and I� are not
necessary non-negative.

Notation 5. Let h : E ! R be a non constant function and denote for
all k � 0

ch�k� �
X
i;j2E

h�i�h�j�lb�i��Qk
b�i; j� ÿ lb�j�� :

We de®ne the integrated autocovariance, denoted cint;h, by

cint;h � 1

2
ch�0� �

X
k�1

ch�k� :
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Moreover, we de®ne the integrated autocorrelation time, denoted
qint;h, by

qint;h �
cint;h
ch�0� :

Theorem 2. Assume that Q � �Qb�b�0 is a strongly aperiodic and ad-
missible family. Let f0 be a ®xed point in F �E� and h : E! R a non
constant function.

(i) There exists K > 0 such that for all b � 0, cint;h � K exp�Ib�.
(ii)Assume now that h�f � � h�f0�; 8f 2 F �E�.

1. There exists K > 0 such that we have for all b � 0,
cint;h � K exp�I�b�.

2. If for any a 2 EI� , h�a� � h�f0�, then there exist I 0 < I� and
K > 0 such that, for all b � 0,

cint;h � K exp�I 0b� :
3. Let us denote C�EI�� the following condition

�C�EI��� Ac�a; F �E�� > sup
f ;f 02F �E�

Ac�f ; f 0�; a 2 EI� :

If there exists i� 2 EI� such that h�i�� 6� h�f0�, if the condition C�EI��
holds, and if �h�a� ÿ h�f0���h�b� ÿ h�f0�� � 0 for all a; b 2 EI� verifying
U�a� � U�b� and C��fbg[F �E��c�a; b� � 0, then

cint;h / exp�I�b� :
The proof of Theorem 2 is stated in section 5.3, and is based on one

side on both general Lemmas 2 and 3, and on the other side on
Lemma 4.

Note that C�EI�� holds as soon as the energy U has a unique global
minimum (which happens for instance in meta-stability problems),
and more generally, as soon as U has all its global minimums in a
cycle which does not contain points of EI� . This condition implies that
if the states i and j are such that G1

ij is of the largest exponential order
as possible, then G2

ij can not be of the same order. Otherwise, since
Gij � G1

ij ÿ G2
ij, we should have sharp large deviations estimates, and

control the di�erent constants in front of the exponentials. In fact this
condition, which seems technical at a ®rst glance, has a real physical
meaning. If it is not satis®ed, di�erent qualitative behaviors, which
highly depend on the models, are possible. The simplest example is the
Metropolis dynamics applied to the 2D Ising model with no external
®eld. The energy U has in this case two global minimums, a0 and ÿa0,
separated by a high energy barrier, and which satisfy I � Ac�a0;ÿa0�.
The constant I� is very close to I . Let h be a symmetric function on E,
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which satis®es h�x� � h�ÿx� for any con®guration x. Since all is
symmetric in this problem, the exponential order of cint;h will never
be equal to I�b. The greatest exponential order of cint;h for such a
symmetric function will be I2b, with I2 � supa 62F �E� inf�Ac�a; a0�ÿ
2U�a�;Ac�a;ÿa0� ÿ 2U�a��.
Corollary 1. Assume that Q � �Qb�b�0 is a strongly aperiodic and ad-
missible family. Assume that the condition (C�EI��) holds. The energy
function U satis®es

cint;U / exp�I�b� :
Then the energy U is a slowest mode for the autocovariance function,
among the non constant functions which are constant on F �E�.

4. Autocorrelation times at low temperature

This section is organized as the previous one. Note that Theorem 3
relies explicitly the slowest modes of the autocorrelation times to the
energy landscape, and that corollary 2 gives examples of functions for
which the autocorrelation time is the largest among those which are
constant on the bottom of E. It also shows that the largest potential
barrier H� which separates a con®guration i 62 F �E� from F �E� nat-
urally appears in the estimation of the integrated autocorrelation
times for level functions associated to the energy U .

Notation 6. We denote H0 and H� the quantities de®ned by

H0 � sup
i6�j

Ac�i; j� ÿ U�i� ÿ U�j� and

H� � sup
i 62F �E�

sup
j 6�i

Ac�i; j� ÿ U�i� ÿ U�j� :

Moreover, we denote

EH� � f�i; j� 62 F�E�jAc�i; j� ÿ U�i� ÿ U�j� � H�g ;
and

EH� � fi 62 F �E�j 9j 2 E; �i; j� 2 EH�g:

Theorem 3. Assume that Q � �Qb�b�0 is a strongly aperiodic and ad-
missible family. Let f0 be a ®xed point in F �E� and h: E ! R a non
constant function.

(i) There exists K > 0 such that for any b � 0, qint;h � K exp�H0b�.
(ii) Assume that h�f � � h�f0�; 8f 2 F �E�, and let us denote Uh �

inffU�i�j h�i� 6� h�f0�g.
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1. There exists K > 0 such that for any b � 0, qint;h � K exp�H�b�.
2. If for any i 2 EH� , U�i� 6� Uh, then there exist K > 0, and H 0 < H�

such that qint;h � K exp�H 0b�.
3. Let us denote now �C�EH��� the following condition

�C�EH��� Ac�a; F �E�� > sup
f ;f 02F �E�

Ac�f ; f 0�; a 2 EH� :

If there exists i� 2 EH� such that Uh � U�i��, if the condition �C�EH���
holds, and if �h�i� ÿ h�f0���h�j� ÿ h�f0�� � 0 for any i; j 2 EH � verifying
U�i� � U�j� � Uh and C��fjg[F �E��c�i; j� � 0, then

qint;h / exp�H�b� :
The proof of this theorem, which is based on Lemmas 2, 3 and 5, is

stated in section 5.4. Condition C�EH�� is similar to condition C�EI��.
Remark 2. Under the condition C�EH��, we have

H� � H1�
def
supfHe�P�jP 2 C�E�;P \ F �E� � ;g :

Notation 7.We denote K� � fU�i�j i 2 EH �g, and for any k > 0, Uk the
function from E to R� de®ned by Uk�i� � 1U�i��k.

Corollary 2. Under condition C�EH��, qint;Uk
/ exp�bH�� i� there exists

k� 2 K� such that Uk�i� � 1U�i��k� .

Corollary 3. Assume that the conditions of corollary 1 hold and let us
denote U� � inffU�i�j i 62 F �E�g. Then the integrated autocorrelation
time of the energy function U satis®es

qint;U / exp�b�I� � U��� :
Since U� � I� � H� (and since we usually have U� � I� < H�), the en-
ergy function U is usually not a slowest mode for the integrated auto-
correlation time.

5. Proof of our results

As announced in the introduction, proofs are based on two main
tools: the ®rst one is a coupling argument, the second one uses large
deviation estimates for Markov chains with rare transitions. These
estimates come from the theory of Wentzell and Freidlin and have
been developed by O. Catoni [3] to study optimal cooling schedules
for simulated annealing, and by one of the authors [12] to study non
reversible versions of simulated annealing.
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We ®rst give in this part a general result which gives estimates of
the cumulated mass in a ®xed point before reaching a subset of the
bottom of a general set E. It is the ®rst step to study the asymptotic
behavior of the N �c;d��a;b� 's (see equation (7)). The second section is de-
voted to two lemmas which are both used in Theorems 2 and 3. The
third section is devoted to Theorem 2, and the fourth one to Theo-
rem 3.

5.1. Cumulative mass before reaching the bottom
of an energy landscape

Since the result stated in this section will be applied to di�erent pro-
cesses, we will use here the same notations as in the ®rst part of this
paper (Section 2).

Lemma 1. Let F be a subset of F �E� and let b � 0. For all i; j 2 E, we
note

Mj
i � lb�i�

X
k�0

P�Xk � j; Tr�F � > kjX0 � i� :

(i) We have Mj
i � 0 if i 2 F or j 2 F and

Mj
i / exp�Ij

i b�; i; j 62 F

where Ij
i � C��fjg[F �c�j; F � ÿ C��fjg[F �c�i; j� ÿU�i�:

(ii) Let IF � supj 62 F Ac�j; F � ÿ 2U�j�, we have Ij
i � IF for all i; j 62 F .

Moreover, for all i; j 62 F

Ij
i � IF iff

U�i� � U�j�
C��fjg[F �c�i; j� � 0

Ac�j; F � ÿ 2U�j� � Ac�i; F � ÿ 2U�i� � IF :

8<:
(iii) Let I�F � supj62F �E� Ac�j; F � ÿ 2U�j�, we have Ij

i � I�F for all
i; j 62 F �E�. Moreover, for all i; j 62 F �E�

Ij
i � I�F iff

U�i� � U�j�
C��fjg[F �c�i; j� � 0

Ac�j; F � ÿ 2U�j� � Ac�i; F � ÿ 2U�i� � I�F :

8<:
Proof. We start here the proof of (i). Let us note for any i; j 2 E

Rj
i �

X
k�0

P �Xk � j; Tr�F � > kjX0 � i� :

One obviously has that Rj
i � 0 as soon as i 2 F or j 2 F . Let us now

consider i; j 62 F . From the Markov property, we get easily that
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Rj
i � P�Tr�fjg� < Tr�F �jX0 � i�Rj

j ;

and

Rj
j � 1� P �sr�fjg� < Tr�F �jX0 � j�Rj

j ;

where sr�A� � inffn > 0jXn 2 Ag for all A � E. Hence, we deduce
that

Rj
i �

P�Tr�fjg� < Tr�F �jX0 � i�
P�sr�fjg� > Tr�F �jX0 � j� ; i; j 62 F ;

so that using Theorem 1 (i), we get that

Rj
i / exp b�C��fjg[F �c�j; F � ÿ C��fjg[F �c�i; j��

� �
and the proof of (i) is ended.

At this point, we should make the following remark. Since using
Lemma 9 in appendix B, we get that C��fjg[F �c�j; F � � Ac�j; F � ÿU�j�
for any j 2 E, we deduce that

Ij
i � Ac�j; F � ÿU�j� ÿU�i� :

Now, noticing that if Ac�i; F � < Ac�j; F � then C��fjg[F �c�i; j� �
Ac�j; F � ÿ Ac�i; F � (this relation is proved in Lemma 11 in appendix
B), we get ®nally that

Ij
i � Ac�j; F � ^ Ac�i; F � ÿU�j� ÿU�i� : �9�

We turn now to the proof of (ii). Let i; j 62 F and let a 2 fi; jg such
that U�a� � U�i� ^U�j�. Then using (9) we deduce immediately that

Ij
i � Ac�a; F � ÿ 2U�a� � IF :

Since the ®rst inequality is strict as soon as U�i� 6� U�j�, we get that
for all i; j 62 F , if Ij

i � IF , then

U�i� � U�j� and Ac�i; F � ÿ 2U�i� � Ac�j; F � ÿ 2U�j� � IF : �10�
However, if (10) is satis®ed, then Ij

i � Ac�j; F � ÿ 2U�j� ÿ C��fjg[F �c�i; j�
so that for all i; j 62 F , if Ij

i � IF we have in fact

U�i� � U�j�;Ac�i; F � ÿ 2U�i� � Ac�j; F � ÿ 2U�j� � IF

and
C��fjg[F �c�i; j� � 0 :

�11�

Since we verify easily that for any i; j 62 F , if (11) is satis®ed, then
Ij
i � IF , the proof of (ii) is ended.
The proof of (iii) is completely similar to the proof of (ii) and is let

to the reader.
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5.2. Relations between the coupling X and the single chain X

This section is devoted to two lemmas which are both used in Theo-
rems 2 and 3. The ®rst one gives a very important relation between the
localized communication costs of the Markov chain X and those of
the single chain X . The second gives, for some states i and j, a lower
bound for the G1

ij's. Note that these lemmas will be applied to points
of EI� and EH� in the proofs of Theorems 2 and 3. The fact that
conditions C�EI�� and C�EH�� are satis®ed is crucial.

Lemma 2. Let Q � �Qb�b�0 be an admissible and strongly aperiodic
family on E, let i 2 E and assume that Ac�i; F �E�� >
supfAc�f ; f 0�j f ; f 0 2 F �E�g. Let P be the smallest cycle for the in-
clusion such that i 2 P and P \ F �E� 6� ;.

(i) There exists P0 2M��P� such that F �E� � P0 and i 62 P0.
(ii) For any j 2 P nP0 and b; b0 2 F �E�, then

if C��f�j;b0�g[F�c��i; b�; �j; b0�� � 0 then C��fjg[F �E��c�i; j� � 0 :

(iii) For any j 2 P nP0 and any b; b0 2 F �E� we have
C��f�b0;j�g[F�c��i; b�; �b0; j�� > 0 :

Proof. From the above de®nition of P, we get that
Ac�P� � Ac�i; F �E��. However, since for any f ; f 0 2 F �E�, we have
Ac�f ; f 0� < Ac�i; F �E��, there exists P0 such that Ac�P0� < Ac�P� and
F �E� � P0. Since P0 \P 6� ;, we deduce that P0 is strictly included in
P. Hence, there exists P0 2M��P� such that F �E� � P0 � P. From
the de®nition of P, we get obviously that i 62 P0 so that part (i) is
proved.

We turn now to the proof of part (ii). Let j 2 P nP0 and let
b; b0 2 F �E�. Assume that C��fjg[F �E��c�i; j� > 0. We will show that

C��f�j;b0�g[F�c��i; b�; �j; b0�� > 0. From Theorem 1 (i), we get that there

exists a constant K > 0 such that

P�i;b� Tr�F� > Tr�f�j; b0�g�� � � K exp ÿbC��f�j;b0�g[F�c��i; b�; �j; b0��
� �

:

Hence, if we prove that

lim
b!1

P�i;b� Tr�F� < Tr�f�j; b0�g�� � � 1 ; �12�
we will deduce immediately that C��f�j;b0�g[F�c��i; b�; �j; b0�� > 0. To
prove equality (12), let us show that

lim
b!1

P�i;b� XTe�D� 2 P0 � F �E�ÿ � � 1 ; �13�
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and

lim
b!1

P�c;f � Tr�F� < Te�P0 �P0�� � � 1;8�c; f � 2 P0 � F �E� ; �14�

where the set D is equal to �P n �P0 [ fjg�� �P0.
Let us prove ®rst the relation (13). We denote D1 � P n �P0 [ fjg�.

Considering the two events �T 2
e �P0� � T 1

e �D1�� and �T 1
e �D1� <

T 2
e �P0��, we deduce the upper bound
P�i;b� XTe�D� 62 P0 � F �E�ÿ � � P�i;b� T 2

e P0� � � T 1
e �D1�ÿ �

�
X
k�0

P�i;b� T 1
e �D1� � k;X 2

k 62 F �E�ÿ �
� P�i;b� X 1

Te�D1� 2 fjg [Pc
� �

: �15�
Since He�P0� > He�D1�, we get that limb!1 P�i;b��T 2

e �P0� �
T 1

e �D1�� � 0. Let us note now that if Q is an irreducible Markov
kernel, m its unique invariant probability measure, m0 an initial prob-
ability measure and mn � m0Qn for any n � 0, then, denoting
gn�p� � mn�p�=m�p�, we have sup gn�1 � sup gn so that

mn�p� � m�p� sup g0 : �16�
Hence, we deduce that

P
k�0 P�i;b� T 1

e �D1� � k;X 2
k 62 F �E�ÿ �� �

lb�F �E�c�=lb�b�, which tends to 0 as b tends to in®nity (b belongs to
F �E�). Concerning the last term of the right hand side of (15), the
event depends only on the ®rst coordinate, so that applying Theo-
rem 1, we deduce that there exists K > 0 such that

P�i;b� X 1
T 1

e �D1� 2 fjg [Pc
� �

� K exp ÿbC�D1�i; fjg [Pc�ÿ �
:

Since D1 � �fjg [ F �E��c, we get that C�D1�i; j� � C��fjg[F �E��c�i; j� > 0.

Moreover, D1 � P n F �E� so that C�D1�i;Pc� � C�PnF �E��i;Pc� > 0.

Hence we deduce that C�D1�i; fjg [Pc� > 0 and equality (13) is proved.

Let us prove now the equality (14). Let �c; f � be a state in
P0 � F �E�, and denote P�c;f � � f�a0; b0�; Ac��c; f �; �a0; b0�� < He�P0�g.
Let us ®rst notice that P�c;f � is a cycle contained in P0 �P0. Indeed,
let �a0; b0� be any state of P�c;f �. Since He�P0� > Ac��c; f �; �a0; b0�� �
Ac�c; a0� _ Ac�f ; b0�, we have Ac�c; a0� < He�P0� and Ac�f ; b0� <
He�P0�. Since c 2 P0, and f 2 P0, then a0 2 P0 and b0 2 P0. More-
over, since the family Q � �Qb�b�0 is strongly aperiodic, we have
Ac��a; f �; �f ; f �� � Ac�a; f � � Hm�P0� < He�P0� so that �f ; f � belongs
to P�c;f �.

We deduce now from the property of P�c;f � that

P�c;f � Te�P0 �P0� < Tr�F�� � � P�c;f � Te�P�c;f �� < Tr�f�f ; f �g�
ÿ �
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and

lim
b!1

P�c;f ��Te�P�c;f �� < Tr�f�f ; f �g�� � 0

so that (14) is proved and the proof of part (ii) is complete.
We turn now to the proof of part (iii). Using Theorem 1 (i), we

deduce that it is su�cient to prove that limb!1 P�i;b� Tr�F� <�
T 2

e �P0�� � 1. Let us denote B1 � P nP0 and B � B1 �P0. We will
prove in fact that

lim
b!1

P�i;b� XTe�B� 2 P0 � F �E�ÿ � � 1 ; �17�

and

lim
b!1

P�c;f � Tr�F� < Te�P0 �P0�� � � 1 8 �c; f � 2 P0 � F �E� :

This last inequality has been proved before in the proof of part (ii). As
regards (17), we have for P�i;b��XTe�B� 62 P0 � F �E�� the upper bound
P�i;b�

ÿ
T 2

e �P0� � T 1
e �B1���X

k�0
P�i;b��T 1

e �B1� � k;X 2
k 62 F �E��

�P�i;b� XT 1
e �B1� 2 Pc

� �
:

Since He�B1� < He�P0�, the ®rst term vanishes when b tends to in-
®nity. Moreover, using the same argument than in part (ii), we get that
the second term in the right hand side vanishes also. Now, since
P�i;b�

ÿ
XT 1

e �B1� 2 Pc
�
is bounded by P�i;b�

ÿ
XT 1

e �PnF �E�� 2 Pc
�
which tends

to 0 when b tends to in®nity, the proof of (17) is complete.

Lemma 3. Let Q � �Qb�b�0 be an admissible and strongly aperiodic
family on E, let i 2 E and assume that Ac�i; F �E�� > supf Ac�f ; f 0�j f ;
f 0 2 F �E� g. Let P and P0 as de®ned in Lemma 2. Let j 2 P nP0 such
that C��fjg[F �E��c�i; j� � 0. Then we have

G1
ij � K exp b�Hj ÿ U�i��ÿ �

;

where Hj �def supfHe�P0�jP0 2 C�E�; j 2 F �P0�g.
Proof. Let b 2 F �E�. Since G1

ij � lb�i�
P

k�0 Pdi
lb
X 1

k � j; Tr�D� > k
ÿ �

,
we deduce that

G1
ij � lb�i�lb�b�

X
k�0

P�i;b� X 1
k � j; Tr�D� > k

ÿ �
� lb�i�lb�b�P�i;b� XTe�D� 2 fjg �P0

ÿ �
� inf

c2P0

X
k�0

P�j;c� X 1
k � j; T 1

e �Pj� > k; T 2
e �P0� > k

ÿ �
;
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where D � �P n �P0 [ fjg�� �P0 and Pj is the greatest cycle among
all the cycles P0 such that j 2 F �P0�. Note, from the de®nitions of P
and P0, that we have Pj � P nP0. For all integer M > 0 and all
c 2 P0, we haveX

k�0
P�j;c� X 1

k � j; T 1
e �Pj� > k; T 2

e �P0� > k
ÿ �

�
XM
k�0

P�j;c� X 1
k � j; T 1

e �Pj� > k; T 2
e �P0� > k

ÿ �
�
XM
k�0

P�j;c� X 1
k � j; T 1

e �Pj� > k
ÿ �

P�j;c� T 2
e �P0� > k

ÿ �
:

Since P�j;c� T 2
e �P0� > k

ÿ �
is decreasing in k, we deduce thatX

k�0
P�j;c� X 1

k � j; T 1
e �Pj� > k; T 2

e �P0� > k
ÿ �

� P�j;c� T 2
e �P0� > M

ÿ �XM
k�0

P�j;c� X 1
k � j; T 1

e �Pj� > k
ÿ �

: �18�

Then, applying the Lemma 7 proved in appendix, we obtain that there
exist R0 > 0, b0 � 0, and C > 0, such that for any b � b0,X�R0 exp�Hjb��

k�0
P�j;c� X 1

k � j; T 1
e �Pj� > k

ÿ � � C exp Hjb
ÿ �

: �19�

Moreover, applying Theorem 1 (iii), there exist b1 � 0, C > 0, and
a > 0 such that for all b � b1,

P�j;c� T 2
e �P0� > �R0e

Hjb�ÿ � � C exp ÿaR0e
b�HjÿHe�P0��

� �
: �20�

Hence, since Hj < He�P0�, we deduce from equations (18), (19) and
(20) that there exists a constant C > 0, such that for all
b � sup�b0;b1�X

k�0
P�j;c� X 1

k � j; T 1
e �Pj� > k; T 2

e �P0� > k
ÿ � � C exp bHj

ÿ �
:

Since b 2 F �E�, lb�b� is bounded from below uniformly in b by a
strictly positive constant, and there exists a constant K > 0 such that,
for all b � sup�b0;b1�

G1
ij � KP�i;b� XTe�D� 2 fjg �P0

ÿ �
exp b�Hj ÿ U�i��ÿ �

: �21�
If i � j, the announced result is clear. Let now i be di�erent from j.
Since
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P�i;b� XTe�D� 2 fjg �P0

ÿ � � P�i;b� X 1
T 1

e �D1� � j; T 1
e �D1� < T 2

e �P0�
� �

;

where D1 � Pn�P0 [ fjg�, we get the inequality
P�i;b� XTe�D� 2 fjg �P0

ÿ � � Pi�X 1
T 1

e �D1� � j� ÿ P�i;b� T 2
e �P0� � T 1

e �D1�ÿ �
:

Since He�P0� > He�D1�, we get ®nally limb!1 P�i;b� T 2
e �P0� � T 1

e �D1�ÿ �
� 0. Moreover, there exists a constant C > 0, such that, for all b � 0,

Pi�X 1
T 1

e �D1� � j� � C exp ÿbC�D1�i; j�
ÿ �

:

We just need to prove now that C�D1�i; j� is equal to 0.
Let P0 be any cycle and B a subset of E. Assume that a 2 P0,

b0 62 P0, and Bc \P0 6� ;. Then, Ac�a;Bc� � Ac�a;Bc \P0� � Ac�P0�.
But since b0 62 P0, we have U�a� � V �a; b0� > Ac�P0�. So that CB�a; b0�
� U�a� � V �a; b0� ÿ Ac�a;Bc� � U�a� � V �a; b0� ÿ Ac�P0� > 0.

As a consequence, since F �E� � P0 � P, we deduce that for
�p; q� 2 P0 �Pc

0 and �p0; q0� 2 P�Pc, we have C�F �E�[fjg�c�p; q� > 0
and C�F �E�[fjg�c�p0; q0� > 0. Hence, if g 2 Pth�F �E�[fjg�c�i; j� is such that
C�F �E�[fjg�c�g� � 0 (such a path exists because C��F �E�[fjg�c�i; j� � 0), we

get that g 2 PthD1�i; j�. Now, since we verify easily that for any p 2 D1,
we have Ac�p; F �E� [ fjg� � Ac�p; �D1�c�, we deduce that
CD1�g� � C�F �E�[fjg�c�g� � 0, so that C�D1�i; j� � 0.

Hence, we deduce that there exist C > 0 and b2 > 0, such that for
all b � b2, P�i;b� XTe�D� 2 fjg �P0

ÿ � � C. From this result and the
equation (21), we have that there exist K > 0 and b� > 0
(b� � sup�b0; b1;b2�), such that for all b � b�

G1
ij � K exp b�Hj ÿ U�i��ÿ �

: �22�
so that the proof of the lemma is complete.

5.1. Integrated autocovariance

This section gives the proof of Theorem 2. It is organized as follows. A
®rst lemma gives upper bounds for the constants I�c;d��a;b� de®ned in
Lemma 1 applied to the coupling X and to the subset F of F�E� as well
as necessary and su�cient conditions to reach these upper bounds.
The proof of Theorem 2 follows.

Remark 3. Let us denote

N �a
0;b0�

�a;b� � lb�a�lb�b�
P

k�0 P�a;b� Xk � �a0; b0�; Tr�D� > k� �
and
M �a

0;b0�
�a;b� � lb�a�lb�b�

P
k�0 P�a;b� Xk � �a0; b0�; Tr�F� > k� � .

8><>:
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Since we have obviously

N �a
0;b0�

�a;b� � M �a
0;b0�

�a;b� and

G1
ij �

X
b;b02E

N �j;b
0�

�i;b� ,

G2
ij �

X
b;b02E

N �b
0;j�

�i;b� ,

8>><>>:
we can obtain exponential upper bounds of the Gij's through upper
bounds on the I �c;d��a;b� 's.

Lemma 4. Let i; j; b and b0 2 E and assume that �i; b� 62 F and
�j; b0� 62 F.

(i) We have I �j;b
0�

�i;b� _ I �b
0;j�

�i;b� � I .
(ii) Assume that i; j 62 F �E�. Then we have I�j;b

0�
�i;b� _ I �b

0;j�
�i;b� � I�.

(iii) Assume that i; j 62 F �E�. Then

I �j;b
0�

�i;b� � I� iff
�i; b�; �j; b0� 2 EI�

U�i� � U�j�
C��f�j;b0�g[F�c��i; b�; �j; b0�� � 0

8<:
and

I�b
0;j�

�i;b� � I� iff
�i; b�; �b0; j� 2 EI�

U�i� � U�j�
C��f�b0;j�g[F�c��i; b�; �b0; j�� � 0 :

8<:
Moreover, if the condition �C�EI��� holds

�C�EI��� Ac�a; F �E�� > sup
f ;f 02F �E�

Ac�f ; f 0�; a 2 EI� ;

then I �b
0;j�
�i;b� < I�.

Proof. Before starting the proof, let us make several remarks. First of
all, if �i; b� 2 EI� with i 62 F �E�, then b 2 F �E�.

Remark 4. For any �a; b� 2 E, we have
Ac��a; b�;F� � Ac�a; b� : �23�

Indeed, for any f 2 F �E�, we have Ac��a; b�; �f ; f �� � Ac�a; f �
_ Ac�f ; b� � Ac�a; b�, where the last inequality comes from the ultra-
metricity property of the communication altitude.

Now, if a or b belongs to F �E�, then
Ac��a; b�;F� � Ac�a; b� : �24�

Indeed, assume that b 2 F �E�, then Ac��a; b�;F� � inff2F �E�Ac��a; b�;
�f ; f ��. However, let P � fc 2 EjAc�b; c� � 0g. The set P is a cycle
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and U�c� � 0 for any c 2 P. From the strong aperiodicity of Q, we get
that for any c; c0 2 P, there exists a path g � �g0; . . . ; gn� such that
g0 � �c; c0�, gn � �c; c� and Ac�g� � 0. Moreover, there exists a path
p � �p0; . . . ; pr� such that if p1 � �p10; . . . ; p1r � and p2 � �p20; . . . ; p2r �
(where pk � �p1k ; p2k�), then

Ac�p1� � Ac�a; b�
p0 � �a; b�; pr � �b; c� 2 P�P;
Ac�p2� � 0 ;

8<:
so that Ac�p� � Ac�a; b�. Now, concatenating p with a path g of the
®rst type with starting point �b; c�, we deduce the inequality (24).
Remark 5. We have in fact

I � sup
f2F �E�

sup
b 6�f

Ac�f ; b� ÿ 2U�b� ; �25�

and

I� � sup
f2F �E�

sup
b62F �E�

Ac�f ; b� ÿ 2U�b� : �26�

Indeed, for any a; b 62 F �E� and f 2 F �E�, we have
Ac�a; b� � Ac�a; f � _ Ac�b; f �;

so that if c 2 fa; bg is chosen such that Ac�c; f � � Ac�a; f � _ Ac�b; f �,
then

Ac�a; b� ÿ 2U�a� ÿ 2U�b� < Ac�c; f � ÿ 2U�c� � I� � I:

We start now the proof of (i). We deduce from Lemma 1 (ii) that

supfI �j;b0��i;b� j �i; b� 62 F; �j; b0� 62 Fg � supf I �j;b
0�

�i;b� j �i; b; j; b0� 2 Ag;
where A � f�i; b; j; b0� 2 E4jU�i; b� � U�j; b0�; �i; b� 62 F; �j; b0� 62 Fg.
Moreover, for any i; b; j; b0 2 E, we have I �j;b

0�
�i;b� � L�j;b

0�
�i;b� where

L�j;b
0�

�i;b� � Ac��i; b�;F� ^ Ac��j; b0�;F� ÿU�i; b� ÿU�j; b0�:
We will prove that L�j;b

0�
�i;b� � I for any �i; b; j; b0� 2 A. Let �i; b; j; b0� 2 A.

Note ®rst that

Ac��i; b�;F� � �U�i� � Ac�b; F �E��� _ � sup
f2F �E�

Ac�i; f �� : �27�

This inequality is clear when b 2 F �E�, the left hand term being then
less than Ac�i; b�. Let now b 62 F �E� and fb 2 F �E� such that
Ac�b; fb� � Ac�b; F �E��. There exists a path g2 2 Pth�b; fb�, such that
Ac�g2� � Ac�b; F �E��. Now, there exists i1 2 E and g1 2 Pth�i; i1� with
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the same length than g2 such that Ac�g1� � U�i� (it is su�cient to
follow edges �c; d� such that V �c; d� � 0). Hence g � �g1; g2� is a path
from �i; b� to �i1; fb� such that

Ac�g� � Ac�g1� � Ac�g2� � U�i� � Ac�b; F �E�� :
Since Ac�i1; fb� � Ac�i1; i� _ Ac�i; fb�, and Ac�i; i1� � U�i� � Ac�i; fb�,
we deduce that Ac�i1; fb� � Ac�i; fb�. Hence, there exists a path
p1 2 Pth�i1; fb� such that Ac�p1� � Ac�i; fb�. Moreover we easily con-
struct a path p2 2 Pth�fb; f 0b� with the same length than p1 such that
Ac�p2� � U�fb� � 0 (f 0b 2 F �E�). Thus, considering p � �p1; p2�, we
have

Ac�p� � Ac�p1� � Ac�p2� � Ac�i; fb� :
Finally, let P � fa 2 EjAc�a; fb� � 0g. The set P is a cycle containing
fb and f 0b, and P is an irreducible class for q1 de®ned in (2). Hence,
since Q is strongly aperiodic, we deduce that q1 
 q1 restricted to
P�P is irreducible so that there exists a path q 2 Pth��fb; f 0b�;
�fb; fb�� such that q1�q1k ; q1k�1� > 0 and q1�q2k; q2k�1� > 0 for any

0 � k < nq. Thus Ac�q� � Ac�q1� � Ac�q2� � 0. Following successively
g, p, and q, we get a path m 2 Pth��i; b�; �fb; fb�� satisfying

Ac�m� � �U�i� � Ac�b; F �E��� _ Ac�i; fb� ;
so that the inequality (27) is proved. We deduce from this result that

L�j;b
0�

�i;b� � �Ac�b; F �E�� ÿ 2U�b� ÿ U�i��
_ � sup

f2F �E�
Ac�i; f � ÿ 2U�i� ÿ 2U�b��

� �I ÿ U�i�� _ �I ÿ 2U�b�� ; �28�
and part (i) is proved.

From now, we assume that i; j 62 F �E�. Let b; b0 2 E and assume

®rst that U�i; b� � U�j; b0�. We will show that L�j;b
0�

�i;b� � I�. Consider the
right hand side of the ®rst inequality of (28). We have

Ac�b; F �E�� ÿ 2U�b� ÿ U�i� � ÿU�i� � I� if b 2 F �E�
I� ÿ U�i� if b 62 F �E� ,

�
�29�

and

sup
f2F �E�

Ac�i; f � ÿ 2U�i� ÿ 2U�b� � I� ÿ 2U�b� ; �30�

so that L�j;b
0�

�i;b� � I�. Since L�j;b
0�

�i;b� � L�b
0;j�
�i;b� we get L�b

0;j�
�i;b� � I� and using

Lemma 1 (iii) we deduce part (ii) and I�F � I�.
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Let now a 2 EI� , and f 2 F �E� such that �a; f � 2 EI� . We have that
I�a;f ��a;f � � I�. Indeed I �a;f ��a;f � � Ac��a; f �;F� ÿ 2U�a�. Using remark 4,
Ac��a; f �;F� ÿ 2U�a� � Ac�a; f � ÿ 2U�a� � I�. Hence I�F � I�, and
I�F � I�.

Moreover, we get from (29) and (30) that if L�j;b
0�

�i;b� � I� then
U�b� � 0. Now, since L�j;b

0�
�i;b� � L�i;b��j;b0� we get also U�b0� � 0 so that we

have in fact b; b0 2 F �E�.
Hence, using Lemma 1 (iii), we deduce that

I�j;b
0�

�i;b� � I� iff
�i; b�; �j; b0� 2 EI� ;
U�i� � U�j�;
C��f�j;b0�g[F�c��i; b�; �j; b0�� � 0 ;

8<:
and

I �b
0;j�

�i;b� � I� iff
�i; b�; �b0; j� 2 EI� ;
U�i� � U�j�;
C��f�b0;j�g[F�c��i; b�; �b0; j�� � 0 :

8<:
To end the proof, we have to show now that if �i; b�; �b0; j� 2 EI� and
U�i� � U�j�, then, under �C�EI���,

C��f�b0;j�g[F�c��i; b�; �b0; j�� > 0 :

However, since in this case b; b0 2 F �E�, and since �C�EI��� holds, we
deduce that if P and P0 are de®ned as in Lemma 2, then j 2 PnP0

and using part (iii) of Lemma 2, we get C��f�b0;j�g[F�c��i; b�; �b0; j�� > 0.
Hence the proof is complete.

Here follows the statement of Theorem 2.

Proof. Let us start with some notations. Note that, if we call
mh �

P
k�0 ch�k�,

mh �
X

i;j

h�i�h�j�Gij : �31�

Moreover, since
P

i Gij �
P

j Gij � 0, denoting ~h�i� � h�i� ÿ h�f0� for
any i 2 E, we have mh � m~h. Now, denoting Eh � fi 2 Ej ~h�i� 6� 0g, we
get

m~h �
X

i;j2Eh

~h�i�~h�j�Gij : �32�

Now, let us note that ch�0� � c~h�0� � 0. Hence we deduce that
0 � cint;h � m~h. Now, applying Lemma 4 (i), Lemma 1 and remark 3,
we deduce that there exists K > 0 such that, for all b � 0,
m~h � K exp�Ib�, and that

cint;h � K exp�Ib� :
Part (i) is proved.
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Assume now that h�f � � h�f0�; 8f 2 F �E�. Then, using Lemma 4
(ii), we deduce that there exists K > 0 such that for any b � 0 we have

cint;h � K exp�I�b�;
and part (ii)(1) is proved.

We turn now to the proof of part (ii)(2). We assume then that for
any i 2 EI� we have ~h�i� � 0. Then, using Lemma 4 (iii), we deduce
that there exists I 0 < I� and K > 0 such that for any b � 0 and any
i; j 62 EI� [ F �E�, we have

jGijj � K exp�I 0b� :
Hence, there exists I 0 < I� and K > 0 such that for any b � 0,

cint;h � m~h � K exp�I 0b� :
Let us prove now part (ii)(3) and assume that C�EI�� holds and that

there exists i� 2 EI� such that ~h�i�� 6� 0. Let i; j 62 F �E� and note
Uij �def U�i� ^ U�i�. Using Lemma 4 (iii), we deduce that there exists
I 0 < I� such that for any b; b0 2 E, we have I �b

0;j�
�i;b� � I 0. Hence there

exists K > 0 such that for any b � 0

G2
ij � K exp�I 0b� :

Let us study now the behavior of the G1
ij's. Let us note

A � f�i; j� 2 EI� � EI� jU�i� � U�j�; C��fjg[F �E��c�i; j� � 0g:
Since we assume that for any �i; j� 2 A, we have ~h�i�~h�j� � 0, we de-
duce that X

�i;j�2A

~h�i�~h�j�G1
ij � ~h�i��~h�i��G1

i�i� :

Now, since we assume that �C�EI��� holds, we deduce from Lemma 3
that there exists b0 � 0 and K > 0 such that

G1
i�i� � K exp�I�b� :

Hence, to end the proof, it will be su�cient to prove that for any
�i; j� 62 A, with Uij � Uh �def inffU�l�j h�l� 6� h�f0�g, there exists
K > 0 and I 0 < I� such that for any b � 0 we have

G1
ij � K exp�I 0b� : �33�

Moreover, to get (33) it is su�cient to prove that for any b; b0 2 E, we
have I �j;b

0�
�i;b� < I�. However, using Lemma 4, we get that if I�j;b

0�
�i;b� � I�

then U�i� � U�j�, i; j 2 EI� and C��f�j;b0�g[F�c��i; b�; �j; b0�� � 0. Hence
we deduce easily from Lemma 2 (ii) that C��fjg[F �E��c�i; j� � 0. This is in
contradiction with the fact that �i; j� 62 A so that (33) is proved. Since
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cint;h � m~h ÿ 1
2 c~h�0�, and c~h�0� �

P
i2Eh

lb�i�~h2�i�ÿ
ÿP

i2Eh
lb�i�~h�i�

�2
,

we also have
c~h�0� / exp�ÿbUh� : �34�

Denote now U� �def inffU�l�j l 62 F �E�g. Hence, if I� � U� > 0 or if
Uh > U� (let us note here that we always have I� � U� � 0), the proof
of (ii)(3) is complete.

Let us assume now that I� � U� � 0 and that Uh � U�. Let us note,
for all i; j 2 E and l 2 f1; 2g,

G0lij � lb�i�
X
k�1

Pdi
lb
X l

k � j; Tr�D� > k
ÿ �

:

We can write

cint;h � 1

2
c~h�0� �

X
i;j

~h�i�~h�j��G01ij ÿ G02ij � :

It is clear that 0 � G0lij � Gl
ij, for all i; j 2 E and l 2 f1; 2g. Hence

there exists I 0 < I� such that for all b � 0,
��P

i;j
~h�i�~h�j�G02ij

�� �
K exp�bI 0�; and

��P�i;j�62A
~h�i�~h�j�G01ij

�� � K exp�bI 0�. Now, sinceP
�i;j�2A

~h�i�~h�j�G01ij � 0, and since c~h�0� / exp�ÿbU��, the proof of

(ii)(3) is complete.

Remark 6. We recall here that the condition (C�EI��) holds as soon as
U has a unique global minimum. In this case, the energy U is a slowest
mode for the autocovariance function.

5.2. Autocorrelation times

This section is organized as the preceding one. A ®rst lemma relies the
constants associated to the Markov chain X to the energy landscape of
the initial chain X , and is followed by the proof of Theorem 3.

Lemma 5. Let i; j; b and b0 2 E, and Uij � Ui ^ Uj.

(i) We have I �j;b
0�

�i;b� _ I �b
0;j�

�i;b� � H0 ÿ Uij.

(ii) Assume that i; j 62 F �E�. Then we have I�j;b
0�

�i;b� _ I �b
0;j�
�i;b� � H� ÿ Uij.

Assume that i; j 62 F �E�. Then

I�j;b
0�

�i;b� � H� ÿ Uij iff

�i; b�; �j; b0� 2 EH�

U�i� � U�j�
C��f�j;b0�g[F�c��i; b�; �j; b0�� � 0

8<:
and

I �b
0;j�
�i;b� � H� ÿ Uij iff

�i; b�; �b0; j� 2 EH�

U�i� � U�j�
C��f�b0;j�g[F�c��i; b�; �b0; j�� � 0 :

8<:
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Moreover, if the condition �C�EH ��� holds
�C�EH��� Ac�a; F �E�� > sup

f ;f 02F �E�
Ac�f ; f 0�; a 2 EH� ;

then I �b
0;j�
�i;b� < H� ÿ Uij.

Proof. Let i; j; b and b0 2 E. We know that

I �j;b
0�

�i;b� _ I �b
0;j�

�i;b� � Ac��i; b�;F� ^ Ac��j; b0�;F� ÿU�i; b� ÿU�b0; j� ;

and Ac��i; b�;F� � �U�i� � Ac�b; F �E��� _ �supf2F �E� Ac�i; f ��: Since

the upper bound of I �j;b
0�

�i;b� _ I �b
0;j�

�i;b� is symmetric in �i; b� and �j; b0�, we
can suppose that U�b0� � U�b�. Hence,

I �j;b
0�

�i;b� _ I �b
0;j�

�i;b� � �Ac�b; F �E�� ÿU�j; b0� ÿ U�b��

_ sup
f2F �E�

Ac�i; f � ÿU�i; b� ÿU�j; b0�
 !

:

Since Ac�b; F �E�� ÿ U�b� � H0, and supf2F �E� Ac�i; f � ÿ U�i� � H0, we
deduce immediately that

I �j;b
0�

�i;b� _ I �b
0;j�
�i;b� � �H0 ÿ U�j� ÿ U�b0�� _ �H0 ÿ U�b� ÿ U�j� ÿ U�b0�� :

So that the part (i) is proved.
Assume now that i; j 62 F �E�. Then supf2F �E� Ac�i; f � ÿ U�i� � H�,

and obviously Ac�b; F �E�� ÿ U�b� � H�. Hence again

I�j;b
0�

�i;b� _ I �b
0;j�

�i;b� � �H� ÿ U�j� ÿ U�b0�� _ �H� ÿ U�b� ÿ U�j� ÿ U�b0��
� H� ÿ Uij : �35�

Let us prove now the part (iii), and let i; j 62 F �E�. If �b; b0� 62 F�E�, we
deduce from the inequality (35) and from the fact that U�b0� � U�b�,
that I �j;b

0�
�i;b� _ I �b

0;j�
�i;b� < H� ÿ Uij. Hence we deduce that b and b0 belong to

F �E� so that

I �j;b
0�

�i;b� � Ac�i; b� ^ Ac�j; b0� ÿ U�i� ÿ U�j� :

Hence, if I �j;b
0�

�i;b� � H� ÿ Uij, then �i; b�; �j; b0� 2 EH� , U�i� � U�j�,
and Ac�i; b� � Ac�j; b0�. However in this case, we get

I�j;b
0�

�i;b� � Ac�i; b� ÿ 2U�i� ÿ C��f�j;b0�g[F�c��i; b�; �j; b0�� ;
so that C��f�j;b0�g[F�c��i; b�; �j; b0�� � 0. Hence we have proved that if

I�j;b
0�

�i;b� � H� ÿ Uij, then
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�H�
�i; b�; �j; b0� 2 EH�

U�i� � U�j�
C��f�j;b0�g[F�c��i; b�; �j; b0�� � 0 :

8<:
Conversely, if �H� holds, we deduce easily that I�j;b

0�
�i;b� � H� ÿ Uij. The

proof is the same for I �b
0;j�

�i;b� . Similarly, if I �b
0;j�
�i;b� � H� ÿ Uij, then

�i; b�; �b0; j� 2 EH� and U�i� � U�j�. Using the Lemma 2, we deduce
that, under condition C�EH ��, C��f�b0;j�g[F�c��i; b�; �b0; j�� > 0. So that
I �b

0;j�
�i;b� < H� ÿ Uij, and the proof is complete.

Now we can prove Theorem 3.

Proof. Let us use here the notations introduced in the proof of The-
orem 2, in particular ~h, mh, m~h and c~h as well as relations (31), (32) and
(34).

Assume ®rst that there exists f 2 F �E� such that h�f � 6� h�f0�.
Then using Lemma 5 (i), we deduce that

m~h � K exp�H0b� :
Since h is not constant on F �E�, c~h�0� is bounded from below by a
strictly positive constant uniformly in b so that there exists K > 0 such
that for any b � 0 we have

qint;h � K exp�H0b� :
Assume now that h�f � � h�f0�; 8f 2 F �E�. Then, using Lemma 5 (ii)
and since there exists c > 0 such that c~h�0� � c exp�ÿUhb� for any
b � 0, we deduce that there exists K > 0 such that for any b � 0 we
have

qint;h � K exp�H�b� :
Hence, parts (i) and (ii) (1) of the theorem are proved.

We turn now to the proof of part (ii) (2) and we assume that
h�f � � h�f0�; 8f 2 F �E�.

Let us recall that we denote Uh � inffU�i�j h�i� 6� h�f0�g. Assume
®rst that for any i 2 EH� we have Uh 6� U�i�. Then, using Lemma 5
(iii), we deduce that there exists H 0 < H� and K > 0 such that for any
b � 0 and any i; j such that U�i� ^ U�j� � Uh, we have

jGijj � K exp��H 0 ÿ Uh�b� :
Hence, since again there exists c > 0 such that c~h�0� � c exp�ÿUhb�,
we deduce that there exists K > 0 such that for any b � 0 we have

qint;h � K exp�H 0b� :
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Assume now that there exists i� 2 EH� such that U�i�� � Uh, and that
C�EH�� holds. Let i; j 2 E such that Uij �def U�i� ^ U�i� � Uh. Using
Lemma 5 (iii), we deduce that there exists H 0 < H� such that for any
b; b0 2 E, we have I �b

0;j�
�i;b� � H 0 ÿ Uij. Hence there exists K > 0 such that

for any b � 0

G2
ij=ch�0� � K exp�H 0b� :

Let us study now the behavior of the G1
ij's. Let us note

A � f�i; j� 2 EH� � EH � jU�i� � U�j� � Uh; C��fjg[F �E��c�i; j� � 0g :
Since we assume that for any �i; j� 2 A, we have ~h�i�~h�j� � 0, we de-
duce that X

�i;j�2A

~h�i�~h�j�G1
ij � ~h�i��~h�i��G1

i�i� :

Now, since we assume that �C�EH��� holds, we deduce from Lemma 3
that there exists b0 � 0 and K > 0 such that, for all b � b0,

G1
i�i�=ch�0� � K exp�H�b� :

Hence, to end the proof, it will be su�cient to prove that for any
�i; j� 62 A, Uij � Uh, there exists K > 0 and H 0 < H� such that for any
b � 0 we have

G1
ij=ch�0� � K exp�H 0b� : �36�

Moreover, to get (36) it is su�cient to prove that for any b; b0 2 E, we
have I �j;b

0�
�i;b� < H� ÿ Uh. However, using Lemma 5, we get that if

I�j;b
0�

�i;b� � H� ÿ Uh then U�i� � U�j� � Uh, i; j 2 EH � and
C��f�j;b0�g[F�c��i; b�; �j; b0�� � 0. However, we deduce easily from Lemma
2 (ii) that C��fjg[F �E��c�i; j� � 0. This is in contradiction with the fact
that �i; j� 62 A so that (36) is proved and the proof of (ii) (3) is complete
when H� > 0.

When H� is equal to 0, which implies that for any i 62 F �E� and any
f 2 F �E�, Ac�i; f � � U�i�, using the same proof as in the case where
I� � U� � 0 in Theorem 2, we get that there exists b0 > 0 such that for
all b � b0, qint;h / exp�bH��.

6. Concluding remarks

An interesting question is the existence of a true limit in b for
ln�cint;h�b��=b as b tends to in®nity. As a ®rst remark, since
2cint;h � EIÿQ�bQb�wb;wb�; where wb is the unique solution of the linear
Poisson equation, we can deduce that if the components of Qb are
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rational expressions in the variables �eab�a2R, cint;h is also such a ra-
tional expression and the previous limit exists. However, in our larger
framework of admissible families of Markov kernels, this limit may
not exist and more importantly, even under the previous stronger
assumptions, the limit may fail to depend only on the communication
costs. As a counter-example, let us consider the three points con®g-
urations space E � fi; j; kg and the following family of Markov ker-
nels de®ned by

Qb �

1
2ÿ ��b� 1

2� ��b� 0

1
2

1ÿeÿHb

2
eÿHb

2

0 eÿb�H�D�
2 1ÿ eÿb�H�D�

2

0BBBB@
1CCCCA

where D and H are strictly positive constants and 0 � ��b� � 1=3 for
all b � 0.

Note that we deduce from our constraint on ��b� that �Qb�b�0 is an
admissible family. The virtual energy can be explicitly computed and
we get U�i� � U�j� � D and U�k� � 0. Moreover, one easily get that
I � I� � H ÿ D and EI� � fi; jg. Now, let h be the observable de®ned
by h�i� � ÿ1, h�j� � 1 and h�k� � 0. Solving explicitly the linear
system (4), we can prove with a little piece of work, that

1

b
ln�cint;h�b�� � 2 ln���b��

b
� H

� ��
ÿD� O

1

b

� �
:

Now, rewriting ��b� � 1
3 e

b
2�A�b�ÿH� with A�b� � H , we get

Fig. 1. Con®gurations space and communication costs
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1
b ln�cint;h�b�� � A�b�� ÿ D� O 1

b

� �
:

Since the constraint on A�b� is very weak, the limit of ln�cint;h�b��=b
exists i� A�b�� has a limit in b. As a consequence, without sharp
constraints on the variations ��b�, the limit of 1

b ln�cint;h�b�� fails to
exist. Moreover, this limit, when it exists, depends strongly on the
variations of ��b� and not only on the communication costs. This
surprising result comes from the fact that the hypothesis of Theorem 2
is not ful®lled here since �h�i� ÿ h�k���h�j� ÿ h�k�� < 0 (this shows
that the positivity assumption can not be removed in Theorem 2). The
key of this particular behaviour is hidden in the fact that for ��b� � 0,
Qb�i; j� � Qb�j; i� � 1=2. Hence the averaged value of h for the process
conditioned to stay in the cycle fi; jg is negligible so that, roughly
speaking, the ¯uctuations of Sn�h� for the process within the cycle
fi; jg are of order O�1= ���

n
p � with no drift. However, for ��b� > 0, the

symmetry between Qb�i; j� and Qb�j; i� is broken so that a non zero
drift appears in the ¯uctuations of Sn�h� within the cycle fi; jg which
may increase at an exponential order (in b) the value of cint;h. From
this point of view, � � 0 is a critical point for our observable. As a
consequence, our results stand in a sense in the largest set of ob-
servables for which one can expect a control of 1

b ln�cint;h�b�� inde-
pendently of the bounded ¯uctuations of Qb�a; b�ebV �a;b�. For more
precise results, one should clearly deal with a sharp estimate of the
previous quantity which will take a part in the asymptotic behaviour
of the integrated correlation time.

A. Appendix

The main result of this appendix is a general lemma which gives an
exponential lower bound for the cumulated mass in a ®xed point i
before escaping from the largest cycle which contains i in its bottom.

Let P 2 C�E� be a cycle. Assume that that P 6� E. Let c be an
element not in E, and denote eE � P [ fcg. Now de®ne, for a > 0
small enough, eQb : eE � eE! R� byeQb�i; j� � Qb�i; j� if i; j 2 P,eQb�i; c� �

X
j 62P

Qb�i; j� if i 2 P,

eQb�c; j� � a exp�bAc�P;Pc��
X
i62P

lb�i�Qb�i; j� if j 2 P ,

eQb�c; c� � 1ÿ
X
j2P
eQb�c; j� .

8>>>>>>>><>>>>>>>>:
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Lemma 6. There exists a > 0 such that for any b � 0, eQb is an irre-
ducible Markov kernel with unique invariant probability measure elb
de®ned on eE by elb�i� � mb�i�=mb�eE�, where

mb�i� � lb�i� if i 2 P;
aÿ1 exp�ÿbAc�P;Pc�� if i � c :

�
Let now eX be a Markov chain on eE with transition kernel eQ. Then, there
exists M > 0 and b0 � 0 such that for all b � b0, and all f 2 F �P�,

E ese eEnff g� �
j eX0 � f

� �
� M :

Proof. For any i 62 P and any j 2 P, there exists Ki;j � 0 such that for
all b � 0

lb�i�Qb�i; j� � Ki;je
ÿ�U�i��V �i;j��b � Ki;je

ÿAc�P;Pc�b :

Hence, there exists K > 0 such that for any b � 0, eQb�c; j� � Ka.
Hence there exists a > 0 such that eQb is a Markov kernel on eE � eE for
all b � 0. The irreducibility of eQb follows easily from the irreducibility
of Qb. We easily check that for all i 2 eE, P

j2eE mb�j�eQb�j; i� � mb�i�.
Hence the probability measure elb is the unique invariant probability
measure of eQb. Moreover, since m�c� / eÿAc�P;Pc�b and m�j� / eÿU�j�b

for all j 2 P, we get that there exists b0 � 0 and c > 0 such that for all
f 2 F �P�, elb�f � � c for all b � b0. Since for any Markov chain eX oneE with transition probability eQb E

ÿese
ÿeEnff g�j eX0 � f

� � 1=elb�f �, the
proof is complete.

Notation 8. Let i 2 EnF �E� and denote Pi the greatest cycle (for the
inclusion order) among all the cycles P such that i 2 F �P�. We denote
Hi � He�Pi�.
Lemma 7. Let i 2 EnF �E�. Then for any 0 � H � Hi, there exists
R0 > 0 and b0 � 0 such that for all 0 < R < R0 there exists c > 0 which
satis®es X�ReHb�

k�0
P �Xk � i; Te�Pi� > kjX0 � i� � ceHb 8 b � b0 : �37�

Remark 7. Let Gi�m� �
Pm

k�0 1Xk�i be the occupation time in i until
time m. The lemma 7 states that E�Gi��ReHb� ^ Te�Pi��� � ceHb. Quite
precise results, in the continuous time setting, have been proved in [9]
on the asymptotic law of Gi�Te�Pi�� after adequate time normaliza-
tion. However, those results do not apply directly for
Gi��ReHb� ^ Te�Pi�� so that we give below an elementary proof of our
lemma.
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Proof. If H � 0, then (37) is straightforward. Assume that H > 0, so
that Hi > 0. Then, from Theorem 1 (iii), there exists b0 � 0, R0 > 0
and d > 0 such that for any R � R0, and all b � b0, we have

P �Te�Pi� > ReHb j X0 � i� � d :

Let now T1 � se�E n fig� and de®ne recursively Tk�1 �
inffn > Tk; Xn � ig. Let us de®ne, for any A > 0,

HA � P T�AeHb� � ReHb < Te�Pi�j X0 � i
� �

:

Let us consider the Markov Kernel eQ and the Markov chain eX as-
sociated with Pi as in Lemma 6 (since i 62 F �E�, Pi is di�erent from
E). Since HA is also equal to P �eT�AeHb� � ReHb < eTe�Pi�j eX0 � i�, we
deduce that

HA � P eT�AeHb� � ReHbj eX0 � i
� �

ÿ P ReHb � eTe�Pi�j eX0 � i
� �

;

� 1ÿ P eT�AeHb� > ReHbj eX0 � i
� �

ÿ �1ÿ d� :

Applying at ®rst BienaymeÂ -Chebyshev inequality, and then Markov
property and Lemma 6 we get that

P eT�AeHb� > ReHbj eX0 � i
� �

� E eT�AeHb�j eX0 � i
� �

=�ReHb�

� �Ae
Hb�

ReHb M � AM
R

;

so that HA � dÿ AM=R. If we take A � dR=2M , we get HA � d=2.
Now, since

X�ReHb�

k�0
P �Xk � i; Te�Pi� > kj X0 � i�

� 1�
X�ReHb�

k�1
P�Xk � i; Te�Pi� > ReHbj X0 � i�;

and since

X�ReHb�

k�1
P �Xk � i; Te�Pi� > ReHbj X0 � i� � �AeHb�HA;

we get that
P�ReHb�

k�0 P�Xk � i; Te�Pi� > kj X0 � i� � �Ad=2�eHb �
�d2R=2M�eHb, and the proof is complete.
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B. Appendix

This appendix is devoted to the statement of Lemmas 9 and 11 which
link the localized costs to the communication altitude. Lemma 8 is used
in the proof of Lemma 9, and Lemma 10 in the proof of Lemma 11.

Lemma 8. Let j 2 E, B � E such that j 2 B, and q 2 Bc. Then

C�Bnfjg�j; q� � C�B�j; q� � Ac�j;Bc� ÿU�j� : �38�
Proof. The proof will be done by induction on the size of B.

Let B � fjg, and q 6� j. Since C�fjg�j; q� � U�j� �V�j; q�
ÿAc�j; fjgc� and C�;�j; q� �V�j; q�, we get the inequality (38) and the
proof is complete for B � fjg.

Assume now that the lemma is proved for jBj � n. Let B be a set
which contains j of size n� 1 and Pj be the unique cycle in M��B�
containing j. Let q 2 Bc, g 2 PthB�j; q� such that CB�g� � C�B�j; q� and
k0 � supfk � 0j gk 2 Pjg. Since there exists g0 2 PthPj�j; gk0� such
that CPj�g0� � 0, we can suppose that for all k � k0, gk 2 Pj. Let us
denote now m1 � �g0; . . . ; gk0�1�, and m2 � �gk0�1; . . . ; gng�.

Let a 2 Pj. If B is a cycle, then Ac�a;Pc
j� � U�B� � Hm�B� �

Ac�a;Bc� � U�B� � He�B� and

CPj�a; b� � CB�a; b� if b 2 B
CB�a; b� � He�B� ÿ Hm�B� if b 2 Bc

�
, so that

CPj�m1� � CB�m1� � �He�B� ÿ Hm�B��1gk0�1 62B : �39�
If B is not a cycle, then Ac�a;Pc

j� � Ac�a;Bc� so that CB�a; b� �
CPj�a; b� for any b 2 E and

CPj�m1� � CB�m1� : �40�
Indeed, we already have that Ac�a;Bc� � Ac�a;Pc

j�. Let us assume now
that Ac�a;Pc

j� < Ac�a;Bc�, and let P0j � fc 2 Ej Ac�a; c� � Ac�a;Pc
j�g.

The set P0j is a cycle and satis®es Pj � P0j � B. Since B is not a cycle,
and since P0j 6� Pj, we obtain a contradiction with the de®nition of
Pj.

Assume ®rst that k0 � ng ÿ 1 i.e. m1 � g and m2 is empty. Then, if
B is a cycle, we deduce from the induction hypothesis and (39) that

C�Bnfjg�j; q� � C�Pjnfjg�j; q� � C�Pj
�j; q� � Ac�j;Pc

j� ÿU�j�
� CPj�m1� � Ac�j;Pc

j� ÿU�j�
� CB�m1� � �He�B� ÿ Hm�B�� � Ac�j;Pc

j� ÿU�j�
� CB�m1� � Ac�j;Bc� ÿU�j� � C�B�j; q� � Ac�j;Bc� ÿU�j� ;
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so that inequality (38) is proved. If B is not a cycle, then we deduce
from the induction hypothesis and (40) that

C�Bnfjg�j; q� � C�Pjnfjg�j; q� � C�Pj
�j; q� � Ac�j;Pc

j� ÿU�j�
� CB�m1� � Ac�j;Bc� ÿU�j�
� C�B�j; q� � Ac�j;Bc� ÿU�j� ;

so that inequality (38) is proved in this case.
Assume now that k0 � 1 < ng i.e. gk0�1 2 B and m2 is not empty.

Let a 2 B nPj. If B is a cycle, then Ac�a;Pj� � U�B� � Hm�B� �
Ac�a;Bc� � U�B� � He�B� and

CBnPj�a; b� �
CB�a; b� if b 2 B nPj

CB�a; b� � He�B� ÿ Hm�B� if b 2 Bc

�
;

so that

CBnPj�m2� � CB�m2� � He�B� ÿ Hm�B� : �41�

If B is not a cycle then Ac�a;Pj� � Ac�a;Bc� so that CB�a; b� �
CBnPj�a; b� and

CBnPj�m2� � CB�m2� : �42�

Indeed, if we assume that Ac�a;Pj� < Ac�a;Bc�, then considering the
cycle P0 � fc 2 Ej Ac�a; c� � Ac�a;Pj�g, we deduce that P0 is a cycle
included in B and containing a and Pj. Since B is not a cycle, P0 6� B,
which is in contradiction with Pj 2M��B�.

From (39), (41) and the induction hypothesis, we deduce that if B is
a cycle, then

C�Bnfjg�j; q� � C�Bnfjg�j; gk0�1� � C�Bnfjg�gk0�1; q�
� C�Pjnfjg�j; gk0�1� � C�BnPj

�gk0�1; q�
� C�Pj

�j; gk0�1� � �Ac�j;Pc
j� ÿU�j�� � CBnPj�m2�

� CPj�m1� � �Ac�j;Pc
j� ÿU�j��

� CB�m2� � �He�B� ÿ Hm�B��
� CB�g� � �Ac�j;Bc� ÿU�j��
� C�B�j; q� � Ac�j;Bc� ÿU�j� ;

so that inequality (38) is proved in this case. Now, if B is not a cycle,
we deduce from (40), (42) and the induction hypothesis that
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C�Bnfjg�j; q� � C�Bnfjg�j; gk0�1� � C�Bnfjg�gk0�1; q�
� C�Pjnfjg�j; gk0�1� � C�BnPj

�gk0�1; q�
� C�Pj

�j; gk0�1� � �Ac�j;Pc
j� ÿU�j�� � CBnPj�m2�

� CPj�m1� � �Ac�j;Bc� ÿU�j�� � CB�m2�
� C�B�j; q� � �Ac�j;Bc� ÿU�j�� ;

so that the proof is complete.

Lemma 9. Let F be a subset of F �E� and let j 2 E. We have the fol-
lowing relation between the localized costs and the communication al-
titude

C��F[fjg�c�j; F � � Ac�j; F � ÿU�j� : �43�
Proof. If j belongs to F , the result is clear. Let then j 62 F . Let Pj be
the unique cycle in M�F c� containing j (note that we do not impose
here Pj to be strictly included in F c). Let us prove the inequality

C��F[fjg�c�j; F � � Ac�j; F � ÿU�j� :
Let a 2 Pj. Since Ac�a; j� � Ac�a;Pc

j� � Ac�a; F � we deduce that for
any b 2 E, C�F[fjg�c�a; b� � CPjnfjg�a; b� and

C��F[fjg�c�j;Pc
j� � C�Pjnfjg�j;Pc

j� : �44�

However, we have C�Pjnfjg�j;Pc
j� � U�Pj� � He�Pj� ÿU�j� (cf Lem-

ma 3.5 in [12]). Since from the de®nition of Pj we get U�Pj��
He�Pj� � Ac�j;Pc

j� � Ac�j; F �, we deduce
C��F[fjg�c�j; F � � C��F[fjg�c�j;Pc

j� � Ac�j; F � ÿU�j� :
Let us prove now the inequality

C��F[fjg�c�j; F � � Ac�j; F � ÿU�j�:
Since C�F c�j; F � � 0, there exists then f 2 F such that C�F c�j; f � � 0.
Applying Lemma 8, we deduce that C�F cnfjg�j; f � � Ac�j; F � ÿU�j�
(j 2 F c). Hence the proof of Lemma 9 is complete.

Lemma 10. Let P be a cycle, i 2 P, and f 2 F �P�. Then, we have
C�Pnff g�i;Pc� � Ac�i;Pc� ÿ Ac�i; f � :

Proof. Let B � P n ff g and q 2 Pc. Using Lemma 8 we get

C�Pnfig�i;Pc� � C�Bnfig�i;Pc� � C�Bnfig�i; q�
� C�B�i; q� � Ac�i;Bc� ÿU�i�:
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Hence C�Pnfig�i;Pc� � CPnffg�i;Pc� � Ac�i;Bc� ÿU�i�. Since
Ac�i; ff g [Pc� � Ac�i; f � and C�Pnfig�i;Pc� � Ac�i;Pc� ÿU�i� ([12]),
we get C�Pnff g�i;Pc� � Ac�i;Pc� ÿ Ac�i; f �.
Lemma 11. Let i 2 E, j 2 E, and F a subset of F �E�. If we have
Ac�i; F � < Ac�j; F �, then C��F[fjg�c�i; j� � Ac�j; F � ÿ Ac�i; F �.
Proof. We claim ®rst that Ac�j; F � � Ac�i; j�. Let indeed f 2 F such
that Ac�i; f � � Ac�i; F �. Since Ac�j; f � � Ac�i; j� _ Ac�i; f �, and since
Ac�i; F � < Ac�j; F �, we deduce that Ac�i; F � < Ac�j; f � � Ac�i; j�, and
our statement is proved.

Let now Pij be the smallest cycle which contains i and j, and f 2 F
satisfying Ac�i; f � � Ac�i; F �. Note that f 2 Pij (Ac�i; f � < Ac�i; j�).
Let us denote Pi 2M��Pij� containing i. Since �F [ fjg�c � ff gc , we
have

C��F[fjg�c�i; j� � C�ff gc�i; j� :
Now, since j 62 Pi, C�ffgc�i; j� � C�ff gc�i;Pc

i �. Checking that C�ff gc�i;Pc
i �

� C�Pinff g�i;Pc
i � and using Lemma (10), we get

C��F[fjg�c�i; j� � Ac�i;Pc
i � ÿ Ac�i; f � :

Since Ac�i;Pc
i � � Ac�i; j� � Ac�j; F �, and Ac�i; f � � Ac�i; F �, the proof

is complete.
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