
Parabolic problems for the Anderson model

II. Second-order asymptotics and structure of high peaks?

J. GaÈ rtner1, S.A. Molchanov2

1 Technische UniversitaÈ t, FB Mathematik, Strasse des 17. Juni 136,

D-10623 Berlin, Germany e-mail: jg@math.tu-berlin.de
2 Department of Mathematics, University of North Carolina, Charlotte,
NC 28223-9998, USA

Received: 10 December 1996 / In revised form: 30 September 1997

Summary. This is a continuation of our previous work [6] on the
investigation of intermittency for the parabolic equation
�@=@t�u �Hu on R� � Zd associated with the Anderson Hamilto-
nianH � jD� n��� for i.i.d. random potentials n���. For the Cauchy
problem with nonnegative homogeneous initial condition we study the
second order asymptotics of the statistical moments hu�t; 0�pi and the
almost sure growth of u�t; 0� as t!1. We point out the crucial role
of double exponential tails of n�0� for the formation of high inter-
mittent peaks of the solution u�t; �� with asymptotically ®nite size. The
challenging motivation is to achieve a better understanding of the
geometric structure of such high exceedances which in one or another
sense provide the essential contribution to the solution.

Mathematics Subject Classi®cation (1991): Primary 60H25, 82C44;
Secondary 60F10, 60K40

0. Introduction

This paper is a natural continuation of our article [6]. The subject is
the same, asymptotic analysis as t!1 of the parabolic Anderson
problem with homogeneous random potential n���:
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@u
@t
� jDu� n�x�u; �t; x� 2 R� � Zd ; u�0; x� � 1 :

In [6] we used rather `soft' qualitative arguments to prove intermit-
tency for the solution u under minimal conditions on the potential
n���. For a general discussion of intermittency and further references
see the lectures [7].

Roughly speaking, intermittency means that, in contrast with ho-
mogenization, the spatial structure of u�t; �� is highly irregular for
large t. In one or another sense the essential part of the solution is
believed to consist of islands of high peaks which are located far from
each other. The sizes of these islands as well as the heights and shapes
of the corresponding peaks (both of the potential n��� and the solution
u�t; ��) are crucial for di�erent asymptotic questions related to our
Anderson problem. A detailed understanding of the geometric struc-
ture of intermittent solutions would therefore be extremely useful.

Instead of directly investigating the spatial structure of u�t; ��, we
will study the second order asymptotics of the moments hu�t; x�pi,
p � 1; 2; . . ., and the almost sure growth of u�t; x� as t!1 for ®xed x.
We will restrict ourselves to the important case when the potential n���
consists of independent, identically distributed random variables un-
bounded from above. In this case the solution u�t; �� is known to
develop an intermittent behavior as t!1, see [6]. Implicitly, our
results and their proofs will allow a rather detailed insight into the
geometry of the peaks. Let us remark that our method may be
modi®ed to study the second order asymptotics of moments for a
rather large class of correlated random potentials.

In the i.i.d. case, a crucial role is played by double exponential tails
with parameter ., 0 < . <1:

Prob�n�0� > r� � expfÿer=.g; r!1 :

Such tail behavior leads to islands of asymptotically ®nite size. In the
case of `heavier' tails (corresponding to . � 1 and including Gauss-
ian potentials) the islands consist of isolated single lattice sites. On the
other hand, for `almost bounded' potentials (with faster decaying tails
corresponding to . � 0) the optimal peaks form very large ¯at islands.
Qualitatively, the last situation is similar to the picture presented by
A.-S. Sznitman in a series of papers on Brownian motion in a Pois-
sonian environment, see e.g. [8] and [9].

In Section 1 we will prove that

u�t; 0�ph i � exp H�pt� ÿ 2djv
.
j

� �
pt � o�t�

n o
�0:1�
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as t!1, where H is the cumulant generating function of n�0� and
eH�pt� :� 
eptn�0��

is supposed to be ®nite for t � 0. The last condition guarantees the
existence of all statistical moments of the homogeneous and ergodic
solution u�t; ��. The shapes of the high exceedances of the solution
determine the function v which may be expressed in terms of a vari-
ational problem. We will see that v�0� � 0, 0 < v�.� < 1 for
0 < . <1, and v�1� � 1. In the latter case, the factor expfÿ2djptg
in (0.1) may be easily explained by use of the Feynman-Kac formula

u�t; 0� � E0 exp

Z t

0

n�x�s��ds
� �

; �0:2�

where x�t� is simple random walk on Zd with generator jD. Namely,
this factor will appear if the random walk is forced to stay at 0 until
time t. Indeed,

u�t; 0� � E0 exp

Z t

0

n�x�s��ds
� �

1�x�s� � 0 for s 2 �0; t�� � etn�0�ÿ2djt ;

and therefore

u�t; 0�ph i � eH�pt�ÿ2djpt :

Hence, for . � 1 the random walk prefers to stay at one and the
same lattice site for almost all the time. This makes it plausible that in
this case the islands of high exceedances consist of single lattice sites
and that in general v�.=j� is closely related to the size of these islands.
In fact, the solution to the mentioned variational problem, which is
given by a nonlinear di�erence equation, is expected to determine the
nonrandom shape of the relevant peaks. Note also that the simple
universal bounds

eH�pt�ÿ2djpt � u�t; 0�ph i � eH�pt�

are valid for arbitrary homogeneous potentials n��� with ®nite cumu-
lant generating function H , see [6] for a proof of the upper bound.

In Section 2 we will show under reasonable regularity assumptions
that

u�t; 0� � exp tw�d log t� ÿ 2djv
.
j

� �
t � o�t�

n o
�0:3�

as t!1 for almost all realizations of the random potential n���.
Thereby the function w is again fully determined by the tail behavior
of the distribution of n�0�. In fact, w�d log t� describes the almost sure
asymptotics of the maximum of the potential n��� in a ball of radius t
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as t!1. Note that, by symmetry, u�t; 0� �Px2Zd v�t; x�, where v is
also a solution to our parabolic problem but with initial datum
v�0; x� � 1 for x � 0 and v�0; x� � 0 otherwise. Therefore the inter-
mittent peaks of v�t; �� are expected to determine the asymptotics (0.3).
For unbounded from above potentials the moments hu�t; 0�pi grow
much faster than the solution u�t; 0� itself, which is one more mani-
festation of intermittency. Hence, the leading terms in the asymptotic
formulas (0.1) and (0.3) are totally di�erent. But the second order
correction terms, which contain the essential information about the
geometry of the relevant peaks, coincide. This means that in both
cases the advantageous peaks have the same shape but di�erent
heights.

Conceptionally, the above results are closely related to the spectral
analysis of the Anderson Hamiltonian H. One may expect that the
high peaks of u�t; �� are generated by high exceedances of n��� and that
the height and form of the peaks of u�t; �� are asymptotically given by
the principal eigenvalue and the corresponding positive eigenfunction
ofH in a neighborhood of the potential peak with Dirichlet boundary
conditions, respectively.

Let us ®nally explain how and why the double exponential tails
enter our picture in the i.i.d. case. The fundamental property of the
double exponential distribution is that

Prob n�x� > h� u�x�;jxj � R� � � exp ÿeh=.
X
jxj�R

eu�x�=.

8<:
9=; :

This means that, independent of their common height h, two local
peaks of the potential of the form h� u��� and h� ~u��� occur with the
same frequency if and only ifX

jxj�R

eu�x�=. �
X
jxj�R

e~u�x�=. :

We conclude from this that, both for u�t; 0� and hu�t; 0�pi, the shape
u��� of the typical peaks (normalized byPx e

u�x�=. � 1) maximizes the
principle eigenvalue k�~u� of the operator jD� ~u��� among all shapes
~u��� with X

x

e~u�x�=. � 1 : �0:4�

The corresponding positive eigenfunction describes the nonrandom
shape of the advantageous peaks of the solution u�t; �� near the rele-
vant local maxima of the potential. We will see in Section 2 that under
the constraint (0.4) the maximum of k�~u� coincides with the term
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ÿ2djv�.=j� in (0.1) and (0.3). For technical reasons, in Section 1 we
will describe v by means of a di�erent, but equivalent, variational
problem.

1. Asymptotics of the statistical moments

1.1. Statement of the result

This section deals with the random Cauchy problem

@u�t; x�
@t

� jDu�t; x� � n�x�u�t; x�; �t; x� 2 R� � Zd ;

u�0; x� � 1; x 2 Zd ; �1:1�
for the Anderson tight binding Hamiltonian

H :� jD� n��� :
Thereby j denotes a positive di�usion constant and D is the lattice
Laplacian:

Df �x� :�
X

y:jyÿxj�1
f �y� ÿ f �x�� �; x 2 Zd :

The potential n��� is supposed to consist of i.i.d. random variables.
The underlying probability measure and expectation will be denoted
by Prob��� and h�i, respectively.

We will assume throughout that the cumulant generating function
H of our random variables is ®nite on the positive half-axis:

H�t� :� log


etn�0�� <1 for t � 0 :

This assumption guarantees that a.s. the Cauchy problem (1.1) admits
a unique nonnegative solution u. For each t � 0, u�t; �� is a spatially
homogeneous ergodic random ®eld, and

0 < u�t; x�ph i <1 for p � 1; 2; . . . and �t; x� 2 R� � Zd :

The results stated below remain valid for nonnegative homogeneous
initial conditions u0��� which are independent of n��� and satisfy

0 < u0�0�ph i <1 for p � 1; 2; . . .

For technical details we refer to [6], Sections 2 and 3.
The objective of this section is to study the asymptotic behavior of

the moments hu�t; x�pi, p � 1; 2; . . ., as t!1 under the following
regularity assumption on the cumulant generating function H .
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Assumption (H). There exists ., 0 � . � 1, such that

lim
t!1

H�ct� ÿ cH�t�
t

� .c log c �1:2�

for all c 2 �0; 1�.
In order to explain the meaning of this assumption let us consider

the case when the potential is double exponentially distributed with
parameter ., 0 < . <1:

Prob�n�0� > r� � expfÿer=.g ; r 2 R :

Then H�t� � logC�.t � 1� � .t log�.t� ÿ .t � o�t�, and (1.2) is ful-
®lled. Therefore, roughly speaking, for 0 < . <1, Assumption (H)
tells us that the upper tail of the distribution of n�0� behaves like that
of a double exponential distribution. In the case . � 1 the tail is
`heavier', i.e. we are `beyond' the double exponential situation. Fi-
nally, . � 0 means that the tail decays faster than in the double ex-
ponential case, and we will say that the potential n��� is `almost
bounded.'

Remark 1.1. a) If 0 � . <1, then Assumption (H) says that the
function expfH�t�=tg is regularly varying with exponent ..

b) If 0 � . <1, then the convergence in (1.2) is uniform on �0; 1�.
For . � 1, the convergence to ÿ1 is uniform on each compact
subset of �0; 1�. This follows from the observation that the function on
the left of (1.2) is convex in c.

By P�Z� we will denote the space of probability measures on Z.
We next introduce the Donsker-Varadhan functional S:P�Z� ! R�
and the entropy functional I :P�Z� ! R� de®ned by

S�p� :�
X
x2Z

�����������������
p�x� 1�

p
ÿ

���������
p�x�

p� �2
; p 2 P�Z� ;

and

I�p� :� ÿ
X
x2Z

p�x� log p�x�; p 2 P�Z� ;

respectively. Note that S�p� is nothing but the Dirichlet form of the
one-dimensional lattice Laplacian at

���
p
p

.
Our result will be described in terms of the cumulant generating

function H and the function

v�.� :� 1

2
inf

p2P�Z�
S�p� � .I�p�� �; 0 � . <1 : �1:3�
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One easily checks that v is strictly increasing and concave and
0 � v < 1. Moreover, v�0� � 0 and lim.!1 v�.� � 1. Set v�1� :� 1.

We are now ready to state the main result of this section.

Theorem 1.2. Let Assumption (H) be satis®ed. Then

u�t; 0�ph i � exp H�pt� ÿ 2djv
.
j

� �
pt � o�t�

n o
�1:4�

as t!1 for p � 1; 2; . . .

Remark 1.3. a) It will become obvious from the proof that the same
asymptotics holds true for hu�t; x1� . . . u�t; xp�i, x1; . . . ; xp 2 Zd , as well
as for the moments of the fundamental solution q�t; x; y� of our
Cauchy problem. One only has to check that the large deviation
principles of Lemma 1.5 below are also valid for the correspondingly
modi®ed measures.

b) For 0 < . <1, the in®mum in (1.3) is attained. A probability
measure on Z is a solution to this variational problem if and only if it
is of the form const v2., where v. is a positive solution of the nonlinear
di�erence equation

Dv. � 2.v. log v. � 0 on Z �1:5�
with minimal l2-norm kv.k2. Moreover,

v�.� � . log kv.k2 :
For su�ciently large ., the minimal l2-solution of (1.5) is unique
modulo shifts. For small . this is an open problem. As . # 0,

v�.� � .
4
log

1

.
� O�.�

and v. has an asymptotically Gaussian shape of width 1=
���
.
p

. The
proof of these facts may be found in the forthcoming paper [5]. Note
also that a similar problem occurs in Bolthausen and Schmock [1] in
connection with the investigation of self-attracting random walks. Let
us further remark that, for 0 < . <1, the term 2djv�.=j� in the
expansion (1.4) is concave and strictly increasing as a function of the
di�usion constant j. This is obvious from (1.3).

c) A deeper analysis in the spirit of the almost sure considerations
in Section 2 indicates that the typical shapes of the above mentioned
high peaks of our solution are (time-dependent) multiples of
v.=j 
 . . .
 v.=j.

As a ®rst step towards the proof of Theorem 1.2, we will express
the moments of u�t; 0� by means of local times of random walks on Zd .
To this end, we exploit the Feynman-Kac representation
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u�t; x� � Ex exp

Z t

0

n�x�s��ds
� �

; �1:6�

where �x�t�;Px� denotes simple symmetric random walk on Zd with
generator jD and Ex stands for expectation with respect to Px. Let
p 2 N be ®xed until the end of the proof. Consider p independent
copies x1�t�; . . . ; xp�t� of the random walk x�t�, and denote by Pp

0 and
Ep
0 probability and expectation given x1�0� � � � � � xp�0� � 0, respec-

tively. Let

lt;i�z� :�
Z t

0

1 xi�s� � z� �ds

be the local time of the i-th random walk spent at z 2 Zd during the
time interval �0; t�, and introduce the total local time

lt�z� :�
Xp

i�1
lt;i�z� :

It then follows from (1.6) that

u�t; 0�p � Ep
0 exp

X
z2Zd

lt�z�n�z�
( )

:

Averaging over the random ®eld n��� leads to

u�t; 0�ph i � Ep
0 exp

X
z

H�lt�z��
( )

: �1:7�

We next note that the occupation time measures

Lt��� :� lt���
pt

satisfy the weak large deviation principle as t!1 with rate function
being a d-dimensional analogue of the Donsker-Varadhan functional
S, cf. Donsker and Varadhan [3]. In the next subsection we will ex-
plain how to get appropriate upper and lower bounds for the expec-
tation on the right of (1.7) by `compactifying' the state space of our
random walks and then applying the full large deviation principle for
the corresponding occupation time measures. After that, in Section 3,
we will see how the variational expressions in these upper and lower
bounds ®t together to arrive at (1.4).

1.2. Compacti®cation and application of large deviations

Given R 2 N, let Td
R :� fÿR; . . . ;Rgd denote the centered lattice cube

of length 2R� 1. By introducing the periodic distance
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dp
R�x; y� :� min

z2�2R�1�Zd
jxÿ y ÿ zj; x; y 2 Td

R ;

we may consider Td
R as d-dimensional lattice torus.

Let uR;p and uR;0 denote the solutions to the initial-boundary value
problem for the equation

@u
@t
� jDu� n�x�u on R� � Td

R

with periodic and zero boundary conditions, respectively, and initial
datum identically one. The following lemma enables us to reduce the
study of the moments to the consideration of a large ®nite box Td

R.
This has the advantage that the probability laws of the associated
occupation time measures live on the compact state space P�Td

R�.
Lemma 1.4. Let u be the solution to the Cauchy problem (1.1). Then

uR;0�t; 0�p
 � � u�t; 0�ph i � uR;p�t; 0�p
 � �1:8�
for all R 2 N, t � 0, and p � 1; 2; . . .

The derivation of these bounds relies on probabilistic formulas for
the moments and only works for i.i.d. potentials. Rather than directly
exploiting the bounds (1.8), we will use later on the corresponding
inequalities for their probabilistic representations. But Lemma 1.4
explains the idea in a more analytic language.

We consider the `periodized' local times

lR
t �z� :�

X
x2�2R�1�Zd

lt�z� x�; z 2 Td
R ;

which may be regarded as total local times of p independent random
walks on Td

R with generator jD and periodic boundary conditions. Let

LR
t ��� :� lR

t ���
pt

be the associated occupation time measures on Td
R. Let further sp

R
denote the ®rst time when one of the random walks x1�t�; . . . ; xp�t�
exits Td

R.
We already know that the moments of the solution u to (1.1) admit

the representation (1.7). In analogy with this, we ®nd that

uR;0�t; 0�p
 � � Ep
0 exp

X
z2Td

R

H�lt�z��
8<:

9=;1 sp
R > t� � �1:9�
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and

uR;p�t; 0�p
 � � Ep
0 exp

X
z2Td

R

H�lR
t �z��

8<:
9=; : �1:10�

Proof of Lemma 1.4. The lower bound for hu�t; 0�pi is obvious from
(1.7) and (1.9). Since the cumulant generating function H is convex
and H�0� � 0, we haveXn

k�1
H�kk� � H

Xn

k�1
kk

 !
for all n 2 N and k1; . . . ; kn 2 R�. Hence,X

z2Zd

H�lt�z�� �
X
z2Td

R

H�lR
t �z�� :

Using this, we obtain the upper bound for hu�t; 0�pi from the proba-
bilistic representations (1.7) and (1.10). (

The main tools for deriving asymptotic formulas for the moments
(1.9) and (1.10) are large deviations for the occupation time measures
of p independent random walks on Td

R with zero and periodic boun-
dary conditions (Lemma 1.5 below). That is, we will consider large
deviations for the subprobability measures

lR;0
t �B� :� Pp

0 Lt��� 2 B; sp
R > t� �

and the probability measures

lR;p
t �B� :� Pp

0 LR
t ��� 2 B

ÿ �
onP�Td

R�. In this context, we need the Donsker-Varadhan functionals
SR;0

d and SR;p
d on P�Td

R� de®ned by

SR;0
d �p� :�

X
fx;yg�Zd

jxÿyj�1

���������
p�x�

p
ÿ

���������
p�y�

p� �2
; p 2 P�Td

R� ;

and

SR;p
d �p� :�

X
fx;yg�Td

R
dp

R�x;y��1

���������
p�x�

p
ÿ

���������
p�y�

p� �2
; p 2 P�Td

R� ;

respectively, where, by convention, in the ®rst formula p�x� :� 0 for
x j2Td

R. Note that these expressions coincide with the Dirichlet form at���
p
p

of the operator ÿD on l2�Td
R� with either zero or periodic boun-

dary condition.
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We intend to apply the following ®nite dimensional large deviation
results which may be derived as particular cases from Donsker and
Varadhan [2] or GaÈ rtner [4].

Lemma 1.5. Given R 2 N, the following holds true as t!1.

a) The subprobability measures lR;0
t satisfy the full large deviation

principle with scale pt and rate function jSR;0
d .

b) The probability measures lR;p
t satisfy the full large deviation

principle with scale pt and rate function jSR;p
d .

Remark 1.6. Since the formulation of a large deviation principle for
unnormalized measures may appear to be unconventional, let us re-
mark that assertion a) of Lemma 1.5 may be rephrased as follows.
The probability measures lR;0

t ���=lR;0
t �Td

R� satisfy the full large devia-
tion principle with scale pt and rate function jSR;0

d ÿmin�jSR;0
d � and

lim
t!1

1

pt
log lR;0

t �Td
R� � ÿmin�jSR;0

d � :

We are now in a position to derive the desired asymptotic formulas for
huR;0�t; 0�pi and huR;p�t; 0�pi. Passing from the description by local
times to the description by occupation time measures, we may rewrite
(1.10) in the form

uR;p�t; 0�p
 � � eH�pt�Ep
0 exp pt

X
z2Td

R

H�LR
t �z�pt� ÿ LR

t �z�H�pt�
pt

8<:
9=; : �1:11�

Let us ®rst consider the case when 0 � . <1. Then Remark 1.1b) to
Assumption (H) implies that the expression under the last sum be-
comes uniformly close to .LR

t �z� logLR
t �z� as t!1, and we arrive at

uR;p�t; 0�p
 � � eH�pt��o�t�Ep
0 exp ÿpt.IR

d �LR
t ����

� 	
; �1:12�

where IR
d is the entropy functional on P�Td

R�:
IR
d �p� :� ÿ

X
z2Td

R

p�z� log p�z�; p 2 P�Td
R� :

We may now apply the Laplace-Varadhan method for the large de-
viation probabilities of Lemma 1.5 b) to see that

Ep
0 exp ÿpt.IR

d �LR
t ����

� 	 � exp ÿptmin jSR;p
d � .IR

d

� �� o�t�� 	
: �1:13�

Combining (1.12) with (1.13), we arrive at assertion b) of the next
lemma.
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Lemma 1.7. Let Assumption (H) be satis®ed. Then the following holds
true as t!1 for arbitrary R 2 N and p � 1; 2; . . .

a) If 0 � . <1, then

uR;0�t; 0�p
 � � exp
�

H�pt� ÿ ptmin
�
jSR;0

d � .IR
d

�� o�t�g :
b) If 0 � . <1, then

uR;p�t; 0�p
 � � exp H�pt� ÿ ptmin jSR;p
d � .IR

d

� �� o�t�� 	
:

c) If . � 1, then

uR;0�t; 0�p
 � � exp H�pt� ÿ 2djpt � o�t�f g ; �1:14�
and the same asymptotics is valid for huR;p�t; 0�pi.

The proof of assertion a) follows the same lines as that of b).
Instead of (1.10) and Lemma 1.5 b), one has to use (1.9) and Lem-
ma 1.5 a), respectively. To prove assertion c) assume that . � 1. The
expression on the right of (1.14) is a trivial lower bound for
huR;0�t; 0�pi which is obtained from (1.9) by forcing all random walks
x1�t�; . . . ; xp�t� to stay at 0 during the whole time interval �0; t�. In view
of Lemma 1.4, it now only remains to show that the expression on the
right of (1.14) may also serve as an upper bound for huR;p�t; 0�pi. From
(1.11) and Remark 1.1 b) we conclude that

uR;p�t; 0�p
 � � eH�pt� Pp
0

�
LR

t �z� j2 �e; 1ÿ e� for all z 2 Td
R

�
� o�eÿct�

h i
for any e 2 �0; 1� and arbitrarily large c. Here we have also used that
the expression under the sum on the right of (1.11) is always non-
positive. But the large deviation principle for LR

t ��� (Lemma 1.5b))
tells us that the probability on the right behaves like

exp
�ÿ ptmin jSR

d �p�: p�z� j2�e; 1ÿ e� for all z 2 Td
R

� 	� o�t�	 :

Since the minimum in the exponent tends to 2dj as e! 0, this yields
the correct upper bound.

A combination of Lemma 1.4 with Lemma 1.7 c) proves Theo-
rem 1.2 in the case when . � 1. To complete the proof for 0 � . <1
one has to show that the minima in the exponents on the right of the
assertions a) and b) of Lemma 1.7 converge to the same limit as
R!1 and that this limit equals 2djv�.=j�. This ®nal step will be
carried out in the next subsection in Lemma 1.10.

1.3. Properties of associated variational problems

We ®rst consider the d-dimensional Donsker-Varadhan functional Sd

and the d-dimensional entropy functional Id de®ned by
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Sd�p� :�
X

fx;yg�Zd

jxÿyj�1

���������
p�x�

p
ÿ

���������
p�y�

p� �2
; p 2 P�Zd� ;

and

Id�p� :� ÿ
X
x2Zd

p�x� log p�x�; p 2 P�Zd� ;

respectively. Note that S1 and I1 coincide, respectively, with the
functionals S and I introduced in Section 1.1.

We claim that our d-dimensional variational problems split into
the sum of d one-dimensional problems.

Lemma 1.8. For 0 � . <1,

inf Sd � .Id� � � d inf S � .I� � :
If 0 < . <1, then the in®mum on the left is attained at p 2 P�Zd� if
and only if p is a product measure,

p �b
d

i�1
pi ;

and the in®mum on the right is attained at all pi 2 P�Z�, i � 1; . . . ; d.

Proof. Given d � 1 and . with 0 � . <1, abbreviate

Fd :� Sd � .Id :

We will show that

inf Fd�1 � inf Fd � inf F1 : �1:15�
First observe that

Sd�1�pd 
 p1� � Sd�pd� � S1�p1� �1:16�
and

Id�1�pd 
 p1� � Id�pd� � I1�p1� �1:17�
for all pd 2 P�Zd� and p1 2 P�Z�. This implies that the expression on
the left of (1.15) does not exceed that on the right. To obtain the
opposite inequality ®x p 2 P�Zd�1� arbitrarily. Denote by pd and p1
the marginals of the ®rst d and the last component of p, respectively,
and consider the conditional laws

pd�xjy� :� p�x; y�
p1�y� and p1�yjx� :� p�x; y�

pd�x� ; �x; y� 2 Zd � Z :

Then
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Sd�1�p� �
X
y2Z

p1�y�Sd�pd��jy�� �
X
x2Zd

pd�x�S1�p1��jx��

and

Id�1�p� �
X
y2Z

p1�y�Id�pd��jy�� �
X
x2Zd

pd�x�I1�p1��jx��

�
X
x2Zd

X
y2Z

�
p1�y�pd�xjy� log pd�xjy�

�
ÿ pd�x� log pd�x�

" #
:

Since the function x log x, x � 0, is strictly convex, an application of
Jensen's inequality shows that the expression in the square brackets is
nonnegative and vanishes identically if and only if p � pd 
 p1. Hence,

Fd�1�p� �
X
y2Z

p1�y�Fd�pd��jy�� �
X
x2Zd

pd�x�F1�p1��jx�� : �1:18�

This yields the desired lower bound. Moreover, if 0 < . <1, then in
(1.18) equality holds only if p � pd 
 p1. Together with (1.16) and
(1.17), this shows that the in®mum on the left of (1.15) is attained at p
if and only if p has the form pd 
 p1 and the in®ma on the right are
attained at pd and p1, respectively. (

Remark 1.9. It is obvious from the above proof that assertions
analogous to Lemma 1.8 are valid for the functionals SR;p

d � .IR
d and

SR;0
d � .IR

d considered in Section 1.2.

Recall that the function v has been de®ned in (1.3). The next lemma
®lls the outstanding gap in the proof of Theorem 1.2.

Lemma 1.10. For 0 � . <1 and each R 2 N,

min SR;p
d � .IR

d

� � � inf Sd � .Id� � � min SR;0
d � .IR

d

h i
: �1:19�

Moreover,

lim
R!1

min SR;p
d � .IR

d

� � � lim
R!1

min SR;0
d � .IR

d

h i
� inf Sd � .Id� � � 2dv�.� : �1:20�

Proof. Because of Lemma 1.8 and Remark 1.9, it will be enough to
consider the case d � 1. For convenience, we will suppress the di-
mension index in our notation.

The right inequality in (1.19) is obvious. To derive the left in-
equality, we ®x p 2 P�Z� arbitrarily and consider the `periodized'
measure
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pR�z� :�
X

x2�2R�1�Z
p�z� x�; z 2 TR :

It will then be enough to check that

SR;p�pR� � S�p� �1:21�
and

IR�pR� � I�p� : �1:22�
As a consequence of the Cauchy-Schwarz inequality, we have�����������

pR�y�
p

ÿ
�����������
pR�z�

p� �2
�

X
x2�2R�1�Z

�����������������
p�y � x�

p
ÿ

����������������
p�z� x�

p� �2
for all y; z 2 TR. This yields (1.21). Inequality (1.22) follows from the
fact that the function u�x� :� ÿx log x, x � 0, is concave and u�0� � 0
and therefore

u�pR�z�� �
X

x2�2R�1�Z
u�p�z� x��

for all z 2 TR.
To prove (1.20), let p 2 TR be a measure at which the minimum of

SR;p � .IR is attained. Because of shift invariance, we may assume
without loss of generality that

p�ÿR� � p�R� � 2

2R� 1
:

Then

SR;0�p� ÿ SR;p�p� � 2
�������������
p�ÿR�

p ����������
p�R�

p
� 2

2R� 1
:

This implies that

min SR;0 � .IR� �ÿmin SR;p � .IR� � � 2

2R� 1
:

Together with (1.19), this proves the convergence relations in
(1.20). For d � 1 the last equality on the right of (1.20) is the de®ni-
tion of v. (

2. Almost sure asymptotics

2.1. Statement of the result

In this section we will study the almost sure behavior of the solution
u�t; x� to our basic Cauchy problem (1.1) as t!1 for ®xed x 2 Zd .

Parabolic problems for the Anderson model. II 31



We will assume throughout that the potential n��� consists of in-
dependent, identically distributed random variables with continuous
distribution function F satisfying F �r� < 1 for all r (i.e. n��� is un-
bounded from above a.s.).

Let us introduce the non-decreasing function

u�r� :� log
1

1ÿ F �r� ; r 2 R ;

and its left-continuous inverse

w�s� :� minfr: u�r� � sg; s > 0 :

Note that w is strictly increasing and u�w�s�� � s for all s > 0. The
function w has been determined in such a way that the distribution of
the ®eld n��� coincides with that of w�g����, where g��� is a ®eld of
independent, exponentially distributed random variables with mean 1.
Hence, we may and will assume without loss of generality that
n��� � w�g����. This will allow us to study the high peaks of n��� by
investigating those of the `standard' ®eld g���.

We next formulate our crucial restriction on the tail behavior of the
distribution function F .

Assumption (F). There exists ., 0 � . � 1, such that

lim
s!1 w�cs� ÿ w�s�� � � . log c �2:1�

for all c 2 �0; 1�. If . � 1, then we demand in addition that

lim
s!1 w�s� log s� ÿ w�s�� � � 0 : �2:2�

Roughly speaking, if 0 < . <1, then assumption (2.1) requires that
the upper tail of F behaves like that of a double exponential distri-
bution with parameter .. The case . � 0 is that of an `almost
bounded' potential. If . � 1, then we are `beyond' the double ex-
ponential tails, and (2.2) mainly restricts the tails to be not as `heavy'
as for exponentially distributed variables. In particular, problem (1.1)
admits a unique nonnegative solution u, and this solution is given by
the Feynman-Kac formula

u�t; 0� � E0 exp

Z t

0

n�x�s��ds
� �

; �2:3�
cf. [6], Sections 2 and 3. This sounds very similar to what was as-
sumed in the previous section. In fact, we will see later (Lemma 2.3
below) that Assumption (F) is slightly stronger than Assumption (H).
The latter was imposed on the cumulant generating function in Sec-
tion 1.1.
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Remark 2.1. The following assertions are easily veri®ed.

a) For 0 � . <1, (2.1) says that ew is regularly varying with
exponent ..

b) Condition (2.2) is equivalent to

lim
s!1 w�s� c log s� ÿ w�s�� � � 0 for all c 2 R :

If 0 � . <1, then (2.2) follows from (2.1). As a consequence of (2.2),
w�s� � o�s= log s�.
c) Assumption (F) implies that

lim
r!1

u�r � b�
u�r� � eb=. for all b 2 R

(with the obvious de®nition of eb=. for . � 0 and . � 1) and

u�r� � logu�r� � u�r � b�
for each b > 0 and all su�ciently large r.
d) If 0 � . <1, then

w�u�r�� � r � o�1� as r!1 :

The almost sure asymptotics of u�t; x� as t!1 will now be charac-
terized in terms of the function w and the function v which was in-
troduced in Section 1.1 by means of the Donsker-Varadhan
functional S and the entropy functional I.

Theorem 2.2. Let Assumption (F) be satis®ed. If d � 1, suppose in
addition that hlog�1� n�0�ÿ�i <1. Then almost surely

u�t; 0� � exp w�d log t�t ÿ 2djv
.
j

� �
t � o�t�

n o
as t!1 : �2:4�

The leading term in this asymptotic expansion is related to the max-
imum of the potential n��� along those paths of the random walk x�t�
which give the main contribution to the Feynman-Kac formula (2.3).
As we will see,

max
jxj�t

n�x� � w�d log t� � o�1� a.s .

For `heavy' tails violating assumption (2.2), this non-random as-
ymptotics breaks down and the second order term in (2.4) is expected
to be superimposed by random ¯uctuations.

Our proof of Theorem 2.2 indicates the following interpretation.
Assume that 0 < . <1 and that the minimal l2-solution v. of
equation (1.5) is unique modulo shifts. Let the initial total massP

u�0; x� be ®nite a.s. (instead of u�0; x� � 1). Then, as t!1, the

Parabolic problems for the Anderson model. II 33



main contribution to the total mass of u�t; �� will be given by widely
spaced high peaks the local shapes of which consist of (time-depen-
dent) multiples of v.=j 
 . . .
 v.=j. These peaks of u�t; �� correspond
to high exceedances of the potential n��� of the form

w�d log t� ÿ 2djv�.=j� � 2. log v.=j 
 . . .
 v.=j

ÿ �
:

The proof of Theorem 2.2 will be broken down into several steps. In
the Sections 2.2±2.4 we will collect all the ingredients necessary for the
proof which will then be put together in Section 2.5.

We close this subsection by revealing without proof the relation-
ship between Assumption (F) and Assumption (H) from Section 1.1.
As before, assume that the distribution function F is continuous and
F �r� < 1 for all r. Let H denote the associated cumulant generating
function.

Lemma 2.3. Assume that H�t� <1 for all t > 0 or, equivalently,
w�s� � o�s� as s!1. If 0 � . <1, then the following two conditions
are equivalent:

lim
s!1 w�cs� ÿ w�s�� � � . log c for all c 2 �0; 1� �2:5�

and

lim
t!1

H�ct�
ct
ÿ H�t�

t

� �
� . log c for all c 2 �0; 1� : �2:6�

Moreover, either of them implies that

H�t�
t
� w�t� � . log .ÿ .� o�1� as t!1 : �2:7�

2.2. Percolation bounds

In dimension d � 2, there is no need to impose any restrictions on the
lower tail of the distribution function F . As a consequence of a per-
colation e�ect, in the Feynman-Kac representation (2.3) the random
walk is able to bypass clusters of extremely negative peaks of the
potential n���. This subsection contains the related notation and
auxiliary results.

Given x 2 Zd and r � 0, let Br�x� :� fy 2 Zd : jy ÿ xj � rg denote
the closed ball in Zd with center x and radius r. Here and in the sequel
j � j stands for the lattice norm on Zd . We will abbreviate Br�0� by Br.

Given a natural number R, we will say that x; y 2 Zd are R-neigh-
bors if jxÿ yj � R. A subset W of Zd will be called R-connected if any
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two sites x; y of W may be joined by a path x � z0 ! z1 ! . . .! zn

� y of R-neighbors in W . The minimum of the lengths
P jzk ÿ zkÿ1j of

all such paths will be denoted by dR
W �x; y�. Hence, dR

W �x; y� measures
the distance of x and y inside the R-connected set W . Each subset of Zd

splits into R-connected components.
For each R 2 N, consider the random variables

nR�z� :� min
x2BR�z�

n�x�; z 2 �2R� 1�Zd :

Note that nR��� is a ®eld of i.i.d. random variables on the sublattice
�2R� 1�Zd . De®ne the level sets

A�a �R� :� z 2 �2R� 1�Zd : nR�z� > a
� 	

; a 2 R :

Lemma 2.4. Suppose that d � 2. Then, for each R 2 N, one ®nds a level
a � aR such that the following holds true.

a) A.s. there exists a unique in®nite �2R� 1�-connected component
W � � W ��R� of A�a �R�, and Prob�0 2 W �� > 0.

b) There exists #R > 1 such that a.s.

lim sup
jyj!1;y2W �

d2R�1
W � �x; y�
jxÿ yj � #R

for all x 2 W �.

Proof. This repeats the proof given in [6], Section 2.4, with the ran-
dom ®eld n��� on Zd replaced by nR��� on the sublattice �2R� 1�Zd . (

We will assume from now on that, for each R 2 N, a level a � aR

has been chosen as in Lemma 2.4 and the level set A�a �R� and the
in®nite percolation cluster W ��R� are de®ned accordingly.

As before, let �x�t�;Px� denote random walk on Zd with generator
jD. By sx and s�r� we denote the ®rst hitting times of the site x 2 Zd

and the complement of the ball Br, respectively.

Lemma 2.5. a) For arbitrary r > 0 and t > 0, we have

P0�s�r� � t� � 2d�1 exp ÿr log
r

djt
� r

n o
:

b) Suppose that d � 2. Fix R 2 N arbitrarily. Then there exists
#R > 1 such that for each t > 0 a.s.

E0 exp

Z sx

0

n�x�s��ds
� �

1 sx � t� � � exp ÿ#Rjxj log jxjf g �2:8�
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for all su�ciently large x 2 Sz2W ��R� BR�z�. In dimension d � 1, a cor-
responding estimate is valid a.s. for all su�ciently large jxj provided that
hlog�1� n�0�ÿ�i <1.

This is a slight modi®cation of Lemma 4.3 in [6]. The proof of
part b) relies on the percolation bound in Lemma 2.4 b).

2.3. High exceedances of the random potential

In this subsection we consider random ®elds n��� which satisfy As-
sumption (F) for some . 2 �0;1�. We will show that almost surely as
t!1 the high exceedances of the ®eld n��� in the ball Bt are of order
w�d log t� and, for . 2 �0;1�, form islands of bounded size which are
separated from each other by an arbitrarily large distance. After that
we will prove that almost surely the set of local peaks of the `vertically'
shifted potential n��� ÿ w�d log t� in Bt is asymptotically described by
the class of pro®les h��� for whichX

x

eh�x�=. � 1 :

Our results will ®rst be formulated for the ®eld g��� of independent,
exponentially distributed random variables with mean 1. As a corol-
lary, we will then obtain the corresponding statements for the trans-
formed ®eld n��� � w�g����.

Let us begin with the almost sure behavior of the maxima of the
®eld g���.
Lemma 2.6. We have

lim sup
t!1

max
x2Bt

g�x� ÿ log jBtj
���� ����

log log jBtj � 1 a:s :

The proof of this classical result will be given for the sake of com-
pleteness only.

Proof of Lemma 2.6. Fix h > 1 and an increasing sequence �tn� of
positive numbers so that jBtn j � hn as n!1. Since

log jBtn�1 j ÿ log jBtn j � o�log log jBtn j�
and

log log jBtn�1 j � log log jBtn j ;
it will be enough to prove the statement for the sequence �tn� instead
of t. For each c > 1, we get
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Prob max
x2Btn

g�x� > log jBtn j � c log log jBtn j
� �
� jBtn jProb g�0� > log jBtn j � c log log jBtn j� �
� 1

�log jBtn j�c
� 1

�n log h�c

and

Prob max
x2Btn

g�x� < log jBtn j ÿ c log log jBtn j
� �
� 1ÿ �log jBtn j�c

jBtn j
� �jBtn j

� exp ÿ�log jBtn j�cf g

� exp ÿ�n log h�c�1� o�1��f g :
Hence, the probabilities on the left of both inequalities are summable
over n for c > 1, and our assertion follows by an application of the
Borel-Cantelli lemma. (

Taking into account Remark 2.1 b), we obtain the corresponding
result for the transformed ®eld n���.
Corollary 2.7. Let Assumption (F) be satis®ed. Then almost surely

max
x2Bt

n�x� � w�log jBtj� � o�1� as t!1 :

Remark 2.8. Since jBtj behaves like �2t�d , we may replace in Lem-
ma 2.6, and therefore also in Corollary 2.7, log jBtj by d log t. Corol-
lary 2.7 therefore explains the appearance of the term w�d log t� in our
considerations.

Given c > 0 and t > 0, consider the point process of high exceed-
ances

~Ec
t :� x 2 Bt: g�x� > eÿc log jBtjf g :

We next want to show that almost surely for large t the set ~Ec
t consists

of islands the size of which does not exceed ec. After that this result
will be reformulated in terms of the high exceedances of n���.
Lemma 2.9. For each c > 0 and each natural number R, the following is
true almost surely. There exists a random time t0 � t0�c;R; g���� > 0
such that for t > t0 each R-connected component of ~Ec

t consists of at
most ec elements.

Proof. Fix c > 0, R 2 N, and h > 1 arbitrarily. Consider an increasing
sequence �tn� such that jBtn j � hn as n!1. Then
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eÿc log jBtn�1 j � eÿc�o�1� log jBtn j; n!1 :

Because of this it will su�ce to prove our lemma for the sequence �tn�
instead of t.

Fix a natural number m > ec arbitrarily and denote by Ac;m
t the

event that ~Ec
t contains an R-connected subset of m elements. By the

Borel-Cantelli lemma it will be enough to check thatX
n

Prob Ac;m
tn

ÿ �
<1 : �2:9�

There are at most Cm;RjBtj R-connected subsets of Bt consisting of m
elements, where Cm;R is a positive constant which depends on m and R
only. For each of these sets the probability to be contained in ~Ec

t
equals

exp ÿmeÿc log jBtjf g � jBtjÿmeÿc

:

Therefore,

Prob Ac;m
tn

ÿ � � Cm;RjBtn j1ÿmeÿc � Cm;Rhÿ�me
ÿcÿ1�n :

Since meÿc > 1, we arrive at (2.9). (

Given c > 0 and t > 0, consider now the point process

Ec
t :� x 2 Bt: n�x� > max

Bt

nÿ c

� �
:

Corollary 2.10. Let Assumption (F) be satis®ed for some . 2 �0;1�.
Then for each c > 0 and each natural number R, the following is true
almost surely. There exists a random time t0 � t0�c;R; n���� > 0 such
that for t > t0 each R-connected component of Ec

t consists of at most e
c=.

elements.

In other words, for 0 < . � 1, the high exceedances of the po-
tential n��� form islands of asymptotically bounded size which are
located far from each other. For . � 1, these islands shrink to single
lattice sites as t!1.

Proof of Corollary 2.10. Suppose ®rst that 0 < . <1. Then in
Lemma 2.9 the point process ~Ec=.

t coincides in law with

x 2 Bt: n�x� > w eÿc=. log jBtj
� �n o

and, by Assumption (F),

w eÿc=. log jBtj
� �

� w log jBtj� � ÿ c� o�1� :
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Combining this with Corollary 2.7, we arrive at the desired result. The
case . � 1 may be treated similarly. (

We now turn to the investigation of the typical shapes of high
peaks of the ®eld g��� (resp. n���) in a large ball around 0.

Lemma 2.11. For each R 2 N and almost all realizations of the random
®eld g���,

lim sup
t!1

max
x2Bt

P
y2BR�x� g�y�
log jBtj � 1 : �2:10�

Proof. Fix h > 1 arbitrarily and select an increasing sequence �tn� so
that jBtn j � hn as n!1. It will be enough to prove (2.10) for the
sequence �tn� instead of t. Fix further c > 1 arbitrarily. Then, applying
Chebyshev's exponential inequality, we obtain

Prob max
x2Btn

X
y2BR�x�

g�y� > c2 log jBtn j
0@ 1A
� jBtn jProb cÿ1

X
y2BR

g�y� > c log jBtn j
 !

� jBtn j exp ÿc log jBtn jf g exp cÿ1
X
y2BR

g�y�
( )* +

� c
cÿ 1

� �jBRj
jBtn j1ÿc � c

cÿ 1

� �jBRj
hÿ�cÿ1�n :

Hence, the above probabilities are summable over n, and our assertion
again follows from the Borel-Cantelli lemma. (

Corollary 2.12. Let Assumption (F) be satis®ed for some . 2 �0;1�.
Then for each R 2 N and almost all realizations of the random ®eld n���,

lim sup
t!1

max
x2Bt

X
y2BR�x�

exp n�y� ÿ w�log jBtj�� �=.f g � 1 :

Remark 2.13. The corresponding assertion for . � 1 is obvious from
Corollary 2.7 and Corollary 2.10. In this case, given c < 0 < d and
R 2 N, the following holds true a.s. for su�ciently large t. In each ball
BR�x�, x 2 Bt, the `vertically' shifted potential n��� ÿ w�log jBtj� exceeds
c at not more than one lattice site and does not exceed d at all.

Proof of Corollary 2.12. Since g��� � u�n����, the assertion of Lem-
ma 2.11 may be rewritten in the form
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lim sup
t!1

max
x2Bt

X
y2BR�x�

u�n�y��
log jBtj � 1 a.s: �2:11�

Assume that 0 < . <1. It then follows from Remark 2.1 c) that

lim
t!1

u w�log jBtj� � b� �
log jBtj � eb=. uniformly in b � b0 �2:12�

for each b0. Because of Corollary 2.7, a.s. the ®eld n��� ÿ w�log jBtj� is
bounded from above on Bt�R uniformly for large t. Taking this into
account, we conclude from (2.12) that a.s.

u�n�y��
log jBtj � exp n�y� ÿ w�log jBtj�� �=.f g � o�1�

uniformly in y 2 Bt�R as t!1. Substituting this in (2.11), we arrive
at the desired result. (

We are now going to derive bounds on the pro®les of high peaks
opposite to that given in Lemma 2.11 and Corollary 2.12. To this end
we will need to consider percolation clusters. Recall that, for each
R 2 N, we ®xed a level a � aR as in Lemma 2.4 and denoted by
A��R� � A�a �R� and W ��R� the associated level set on the sublattice
�2R� 1�Zd and its in®nite �2R� 1�-connected component, respec-
tively. We will assume without loss of generality that the random ®eld
n��� admits a representation of the form

n�x� � �1ÿ f�x��nÿ�x� � f�x�n��x�; x 2 Zd ;

where the random variables f�x�, nÿ�x�, n��x� are mutually indepen-
dent, f�x� attains the values 0 and 1 with probability Prob�n�x� � a�
and Prob�n�x� > a�, respectively, nÿ�x� � a < n��x�, and the distri-
butions of nÿ�x� and n��x� coincide with the conditional laws of n�x�
given n�x� � a and n�x� > a, respectively. Note that f�x� � 1 if and
only if n�x� exceeds the level a. Accordingly, the ®eld g��� � u�n����
admits the decomposition

g�x� � �1ÿ f�x��gÿ�x� � f�x�g��x�; x 2 Zd ; �2:13�
where g��x� :� u�n��x��. In particular, we have gÿ�x� � u�a� � g��x�
and Prob�g��x� > s� � expfu�a� ÿ sg for s > u�a�.

Lemma 2.14. a) Suppose that d � 2. Given a natural number R and a
function h: BR ! R� with X

x2BR

h�x� < 1 ; �2:14�
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the following holds true a.s. There exists a positive (random) time t0 such
that for all t > t0 one ®nds a (random) site z0 2 W ��R� such that
BR�z0� � Bt and

g�z0 � �� > h��� log jBtj on BR : �2:15�
b)With W ��R� replaced by A��R�, the above assertion is also true in

dimension d � 1.

Proof. a) Fix R 2 N and h: BR ! R� satisfying (2.14) arbitrarily.
Suppose without loss of generality that h is strictly positive. Since
log jBn�1j � log jBnj, we may restrict ourselves to natural values of t.
For t � R, de®ne

W �
t �R� :� W ��R� \ BtÿR :

The balls BR�z�, z 2 W �
t �R�, are pairwise disjoint and contained in Bt.

Recall that Prob�0 2 W ��R�� > 0 (Lemma (2.4 a)). Hence, we con-
clude from Birkho�'s ergodic theorem that there exists a positive
constant CR such that a.s.

jW �
t �R�j � CRjBtj for sufficiently large t : �2:16�

Consider the events

Et;z :� g�z� �� > h��� log jBtj on BRf g ;
t 2 N, z 2 �2R� 1�Zd . Using the decomposition (2.13) and taking into
account that f�x� � 1 for all x 2 BR�z� if z 2 W �

t �R�, the events Et;z

coincide with

E�t;z :� g��z� �� > h��� log jBtj on BR
� 	

for z 2 W �
t �R�. Therefore an application of the Borel-Cantelli lemma

with respect to the conditional law given f��� reduces the proof of
assertion a) to the veri®cation ofX1

t�R

Prob
\

z2W �t �R�
�E�t;z�c

���f���� �
<1 a.s. �2:17�

Since the random cluster W �
t �R� depends on f��� only and the events

E�t;z are mutually independent and independent of f���, we obtain a.s.

Prob
\

z2W �t �R�
�E�t;z�c

���f���� �
� 1ÿ Prob�E�t;0�
� �jW �t �R�j

� exp ÿjW �
t �R�jProb�E�t;0�

n o
� exp ÿjW �

t �R�jejBRju�a�jBtjÿ
P

x2BR
h�x�

� �
� exp ÿ ~CRjBtj1ÿ

P
x2BR

h�x�
� �
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for su�ciently large t, where ~CR denotes a positive constant. On the
bottom line we have used the bound (2.16). Because of assump-
tion (2.14), this proves (2.17).

b) With several simpli®cations, the proof of part b) goes along the
same lines as that of part a). (

Corollary 2.15. Suppose that d � 2. Let Assumption (F) be satis®ed for
some . 2 �0;1�. Fix R 2 N arbitrarily. Then the following is valid for
almost all realizations of the random ®eld n���.

a) If . � 0, then for each d > 0 there exists a positive (random) time
t0 such that for every t > t0 one ®nds a (random) site z0 2 W ��R� such
that BR�z0� � Bt and

n�z0 � �� > w�log jBtj� ÿ d on BR :

b) If 0 < . <1, then for each function h: BR ! R withX
x2BR

eh�x�=. < 1 �2:18�

there exists a positive (random) time t0 such that for every t > t0 one
®nds a (random) site z0 2 W ��R� such that BR�z0� � Bt and

n�z0 � �� > w�log jBtj� � h��� on BR :

c)With W ��R� replaced by A��R�, the above assertions are also true
in dimension d � 1.

For . � 0, assertion a) tells us that the size of the islands of high
exceedances of the potential n��� grows unboundedly as t!1.

Proof of Corollary 2.15. Since n��� � w�g����, assertion (2.15) implies
that

n�z0 � �� > w h��� log jBtj� � on BR : �2:19�
But, if . � 0, then

w h��� log jBtj� � � w log jBtj� � � o�1�
independent of the speci®c choice of h: BR ! R� provided that h is
strictly positive. This yields assertion a).

To prove b) we remark that assumption (2.18) is the same as (2.14)
with h��� replaced by eh���=.. Hence, instead of (2.19) we obtain

n�z0 � �� > w eh���=. log jBtj
� �

on BR :

But, since 0 < . <1, Assumption (F) yields

w eh���=. log jBtj
� �

� w log jBtj� � � h��� � o�1� on BR ;
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and we are done.
To prove c), one has to use assertion b) of Lemma 2.14 instead

of a). (

2.4. Related spectral problems

Given R > 0 and h: BR ! R, let us denote by kR�h���� the principal
eigenvalue of the operator jD� h��� in l2�BR� with Dirichlet boundary
condition. In particular, kt�n���� is the principal eigenvalue of the
Anderson Hamiltonian

H � jD� n���
in l2�Bt� with zero boundary condition. The aim of this subsection is
to prove the following theorem on the almost sure asymptotics of
kt�n����.
Theorem 2.16. Let Assumption (F) be satis®ed for some . 2 �0;1�.
Then almost surely

kt�n���� � w�log jBtj� ÿ 2djv
.
j

� �
� o�1� as t!1 : �2:20�

Before carrying out the details, let us brie¯y explain the origin of
formula (2.20) in the case when 0 < . <1. We have seen in Sec-
tion 2.3 that almost surely the high peaks of n��� in Bt are of the form

w�log jBtj� � h��� ;
where h: BR ! R runs through the class of functions satisfyingX

x2BR

eh�x�=. < 1 �2:21�

and R is arbitrarily large. Since the islands of these peaks are located
far from each other, the upper part of the spectrum ofH in l2�Bt� is
expected to split into the union of the spectra on the single islands.
Hence, as t!1, kt�n���� will be close to the upper boundary of

kR w�log jBtj� � h���� � � w�log jBtj� � kR�h����
taken over all pro®les h: BR ! R satisfying (2.21) for arbitrarily large
R. The next lemma shows that this variational expression equals
w�log jBtj� ÿ 2djv�.=j�. It therefore makes plausible formula (2.20).

Let S0R denote the Donsker-Varadhan functional on P�BR� with
Dirichlet boundary condition, and let IR be the corresponding entropy
functional. These functionals are de®ned in the same way as the
functionals SR;0

d and IR
d considered in the Sections 1.2 and 1.3 with the

only di�erence that they are now given on P�BR� instead of P�Td
R�.
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Lemma 2.17. If 0 < . <1, then

supP
x2BR

eh�x�=.<1
kR�h���� � ÿ min

P�BR�
jS0R � .IR
� �

for each R 2 N. Moreover,

lim
R!1

min
P�BR�

jS0R � .IR
� � � 2djv

.
j

� �
:

Proof. Let us ®rst note that

supP
x2BR

eh�x�=.<1
kR�h���� � supP

x2BR
eh�x�=.�1

kR�h���� : �2:22�

This follows e.g. from the observation that kR�h��� � c� � kR�h���� � c
for each constant c. According to the variational principle for the
largest eigenvalue,

kR�h���� � sup
kvk2�1

X
x2BR

jDv�x� � h�x�v�x�� �v�x� ;

where, by convention, v�x� � 0 for x j2BR. Since it is enough to take the
supremum over positive v, we may use the substitution v2 �: p to
rewrite it in the form

kR�h���� � sup
p2P�BR�

X
x2BR

h�x�p�x� ÿ jS0R�p�
" #

:

In other words, kR is the Legendre transform of jS0R. Using this, we
®nd that the supremum on the right of (2.22) equals

sup
p2P�BR�

supP
x2BR

eh�x�=.�1

X
x2BR

h�x�p�x� ÿ . log
X
x2BR

eh�x�=.
" #

ÿ jS0R�p�
8<:

9=; :

Now observe that the expression in the square brackets does not
change by adding a constant to h. Therefore the inner supremum may
be taken over all h: BR ! R, and a straightforward computation
shows that it coincides with ÿ.IR�p�. In this way we arrived at the ®rst
assertion of our lemma. Since each ball BR may be embedded in be-
tween two tori Td

R0 and Td
R00 , the second assertion is a straightforward

consequence of Lemma 1.10. (

It may be seen from the above proof that the maximum of kR�h����
over all h with X

x2BR

eh�x�=. � 1 �2:23�
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is attained at h if and only if the square of the normalized positive
eigenfunction of jD� h��� in l2�BR� minimizes the functional
jS0R � .IR, i.e. if

h � ÿ jD
���
p
p���
p
p � const ;

where p 2 P�Td
R� is a minimizer of jS0R � .IR and the constant adjusts

h to ful®ll (2.23). Now let R!1 and take into account Re-
mark 1.3 b) and Lemma 1.10. Then one ®nds that the relevant shapes
of the potential should be of the form

h � 2. log v.=j 
 . . .
 v.=j

ÿ �ÿ 2djv�.=j� :
This is in accordance with our claims after Theorem 2.2.

We are now going to prove that the principal eigenvalue kt�n����
indeed may be approached by the maximum of the principal eigen-
values on the islands of high peaks provided that these islands are
located far from each other. Since primarily this does not have to do
anything with randomness, we will formulate the result in a nonran-
dom setting, although the proof will heavily rely on probabilistic ar-
guments.

Let B be a ®nite connected subset of Zd . Fix j > 0 and a potential
V : B! R arbitrarily. We want to estimate the principal eigenvalue kG

of the Hamiltonian

G � jD� V in l2�B�
with Dirichlet boundary condition by comparing it with the maximum
of the principal eigenvalues of G on the `islands of high peaks' of V .
To this end, let Gi, i � 1; . . . ;m, denote connected subsets of B such
that dist�Gi;Gj� > 1 for i 6� j, where dist��; �� denotes the lattice dis-
tance between subsets of Zd . For i � 1; . . . ;m, let gi be a (not neces-
sarily connected) non-empty subset of Gi. Think of the gi's as the sites
of high exceedances of V on some islands Gi in a surrounding ocean B.
Let ki denote the principal eigenvalue of G in l2�Gi� with Dirichlet
boundary condition, and set

kmax :� max
i

ki; g:�
[

i

gi; G :�
[

i

Gi :

Lemma 2.18. (Cluster expansion) Suppose that

max
Bng

V � kmax : �2:24�

Then the principal eigenvalue kG of G in l2�B� satis®es
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kmax < kG < c

for all c > kmax for which

cÿ kmax
2dj

1� cÿ kmax
2dj

� �dist�BnG;g�
ÿ1

" #
> max

i
jGij : �2:25�

Proof. Since the principal eigenvalue kG depends on the potential V
monotonically, the lower bound kG > kmax is obvious from replacing
V by ÿ1 outside of G. To prove the upper bound, we will apply some
sort of cluster expansion of the resolvent Rc associated with G. We
will show that, under (2.24) and (2.25), c belongs to the resolvent set
of G. Using the probabilistic representation of the resolvent and
taking into account that B is ®nite, it will be enough to check that

Rc1�x� � Ex

Z g

0

dt exp
Z t

0

ds�V �x�s�� ÿ c�
� �

<1 �2:26�

for all x 2 B. Here, as before, �x�t�;Px� denotes symmetric random
walk on Zd with generator jD, and g is the ®rst exit time from B:

g :� inf t � 0: x�t� j2Bf g :
We next introduce stopping times 0 � r0 < s0 < r1 < s1 . . . of suc-
cessive visits of the sets g and Gc by our random walk:

r0 :� infft � 0: x�t� 2 gg;
si :� infft � ri: x�t� j2Gg;

ri�1 :� infft � si: x�t� 2 gg; i � 0; 1; 2; . . .

We will use these stopping time cycles to estimate the resolvent from
above by a geometric series. First, we may rewrite (2.26) in the form

Rc1�x� � Ex

Z r0^g

0

dt exp
Z t

0

ds�V �x�s�� ÿ c�
� �

�
X1
i�0

Ex

Z ri�1^g

ri^g
dt exp

Z t

0

ds�V �x�s�� ÿ c�
� �

: �2:27�

Since x�s� 2 B n g for 0 < s < r0 ^ g and because of (2.24), we have

Ex

Z r0^g

0

dt exp
Z t

0

ds�V �x�s�� ÿ c�
� �

�
Z 1
0

dt e�kmaxÿc�t � 1

cÿ kmax
<1 �2:28�

for all x 2 B. Using the strong Markov property together with (2.24)
and kmax < c, we ®nd for i � 0; 1; 2; . . . that
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Ex

Z ri�1^g

ri^g
dt exp

Z t

0

ds�V �x�s�� ÿ c�
� �

� Ex exp

Z r0

0

ds�V �x�s�� ÿ c�
� �

1�r0 < g�

�Ex�r0� exp
Z ri

0

ds�V �x�s�� ÿ c�
� �

1�ri < g�

�Ex�ri�

Z r1^g

0

dt exp
Z t

0

ds�V �x�s�� ÿ c�
� �

� max
y2g

Ey exp

Z r1

0

ds�V �x�s�� ÿ c�
� �

1�r1 < g�
� �i

�max
y2g

Ey

Z r1^g

0

dt exp
Z t

0

ds�V �x�s�� ÿ c�
� �

: �2:29�

Combining (2.27) with (2.28) and (2.29), we see that it will be enough
to show that, under the assumptions (2.24) and (2.25),

Ex exp

Z r1

0

ds�V �x�s�� ÿ c�
� �

1�r1 < g� < 1 �2:30�
and

Ex

Z r1^g

0

dt exp
Z t

0

ds�V �x�s�� ÿ c�
� �

<1 �2:31�
for all x 2 g.

Let us ®rst prove assertion (2.30). Applying the strong Markov
property, we obtain for x 2 g:

Ex exp

Z r1

0

ds�V �x�s�� ÿ c�
� �

1�r1 < g�

� Ex exp

Z s0

0

ds�V �x�s�� ÿ c�
� �

1�s0 < g�

�Ex�s0� exp
Z r0

0

ds�V �x�s�� ÿ c�
� �

1�r0 < g� : �2:32�
To derive an appropriate bound for the last expectation, note that
x�s0� 2 BnG and x�s� 2 Bng for 0 � s < r0. But, by assumption (2.24),
V ÿ c � kmax ÿ c < 0 outside of g. Moreover, r0 may be estimated
from below by the sum of dist�BnG; g� independent exponentially
distributed random variables with mean �2dj�ÿ1. Hence, Px-a.s.

Ex�s0� exp
Z r0

0

ds�V �x�s�� ÿ c�
� �

1�r0 < g� � Ex�s0�e
ÿ�cÿkmax�r0

�
�

2dj
2dj� cÿ kmax

�dist�BnG;g�
: �2:33�
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Note that, Px-a.s. for x 2 gi, s0 coincides with the ®rst exit time from
Gi. Thus, for i 2 f1; . . . ;mg and x 2 gi,

u�x� :� Ex exp

Z s0

0

ds�V �x�s�� ÿ c�
� �

�2:34�

coincides with the solution to the boundary value problem

jD� V ÿ c� �u � 0 in Gi;

u � 1 on Gc
i :

With the substitution u �: 1� v, this turns into

jD� V ÿ c� �v � cÿ V in Gi;

v � 0 on Gc
i :

For c > ki, the solution exists and is given by

v � R�i�c �V ÿ c� ;
where R�i�c denotes the resolvent of G in l2�Gi� with Dirichlet boun-
dary condition. Since V � ki � 2dj � c� 2dj on Gi, and because of
the positivity of the resolvent, we obtain

v�x� � 2djR�i�c 1�x� � 2dj R�i�c 1; 1
� �

Gi

; x 2 Gi ;

where ��; ��Gi
is the inner product in l2�Gi�. Using the spectral repre-

sentation of the resolvent (i.e. its Fourier expansion with respect to the
orthonormal basis of eigenfunctions of G in l2�Gi�), we ®nd that

R�i�c 1; 1
� �

Gi

� jGij
cÿ ki

:

This means that

u�x� � 1� 2dj
cÿ ki

jGij; x 2 Gi : �2:35�

Combining (2.32) with (2.33), (2.34), and (2.35), we arrive at

Ex exp

Z r1

0

ds�V �x�s�� ÿ c�
� �

1�r1 < g�

� 1� 2dj
cÿ kmax

max
i
jGij

� �
1� cÿ kmax

2dj

� �ÿdist�BnG;g�
for x 2 g. But the expression on the right is less than 1 if and only if
(2.25) is ful®lled. This proves (2.30).

It remains to verify (2.31). Given i 2 f1; . . . ;mg and x 2 gi, an
application of the strong Markov property and (2.28) yields
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Ex

Z r1^g

0

dt exp
Z t

0

ds�V �x�s�� ÿ c�
� �

� Ex

Z s0

0

�
Z r1^g

s0^g

� �
dt exp

Z t

0

ds�V �x�s�� ÿ c�
� �

� R�i�c 1�x� �Ex exp

Z s0

0

ds�V �x�s�� ÿ c�
� �

1�s0 < g�

�Ex�s0�

Z r0^g

0

dt exp
Z t

0

ds�V �x�s�� ÿ c�
� �

� R�i�c 1�x� � 1

cÿ kmax
Ex exp

Z s0

0

ds�V �x�s�� ÿ c�
� �

:

Since c > ki, R
�i�
c 1�x� is ®nite. The ®niteness of the expectation on

the right of the last estimate was shown before, see (2.34) and (2.35).
Hence, we arrived at (2.31). This completes the proof of our lemma.

(
We have now collected all the auxiliary material for the proof of

our theorem.

Proof of Theorem 2.16. a) Lower bound. Let us ®rst assume that
0 < . <1. Fix R 2 N and h: BR ! R withX

x2BR

eh�x�=. < 1

arbitrarily. Corollary 2.15 b) (resp. c) in dimension one) tells us that
a.s. for su�ciently large t there exists a site z0 such that BR�z0� � Bt

and

n�z0 � �� > w�log jBtj� � h��� on BR :

This implies that

kt�n���� � w�log jBtj� � kR�h���� :
From this we conclude that

lim inf
t!1 kt�n���� ÿ w�log jBtj�� � � supP

x2BR
eh�x�=.<1

kR�h���� a.s.

Together with Lemma 2.17, this yields the lower bound.
In the case . � 0, using Corollary 2.15 a) (resp. c)), we obtain

lim inf
t!1 kt�n���� ÿ w�log jBtj�� � � kR�0� :

But kR�0� ! 0 as R!1, and we are done.
For . � 1, the lower bound follows from Corollary 2.7 and the

fact that
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kt�n���� � max
Bt

nÿ 2dj :

The latter is obvious from the observation that, for each x 2 Bt,
kt�n����may be estimated from below by the principal eigenvalue ofH
on the set fxg with zero boundary condition which equals n�x� ÿ 2dj.

b) Upper bound. We ®rst treat the case 0 < . <1. Fix d > 0 ar-
bitrarily and choose R 2 N so large that

d
2dj

1� d
2dj

� �R

ÿ1
" #

> e2dj=.jBRj : �2:36�

We know from Corollary 2.10 that a.s. for su�ciently large t the level
set

Et :� x 2 Bt: n�x� > max
Bt

nÿ 2dj

� �
splits into �2R� 1�-connected clusters of size not exceeding e2dj=..
Given x 2 Et, denote by gx the �2R� 1�-connected component of Et

which contains x, and let

Gx :�
[
y2gx

BR�y� \ Bt

denote its R-neighborhood in Bt. By construction, the sets Gx are
connected. Moreover, any two of these sets either coincide or have a
distance larger than one. Let kx denote the principal eigenvalue ofH
in l2�Gx� with Dirichlet boundary condition. Since

kx � max
Gx

nÿ 2dj; x 2 Et ;

and the potential in Bt does not exceed maxBt nÿ 2dj outside of
Et �

S
x gx, we ®nd that

kmax :� max
x2Et

kx � max
Btn
S

x2Et
gx

n :

Hence, we are in a situation where we may apply Lemma 2.18 to
estimate kt�n���� from above. In our case g � Sx2Et

gx, G � Sx2Et
Gx,

dist�Bt n G; g� � R; and max
x2Et

jGxj � e2dj=.jBRj :

Because of (2.36), this means that condition (2.25) is ful®lled for c �
kmax � d. Thus, we conclude from Lemma 2.18 that a.s. for large t,

kt�n���� � max
x2Et

kx � d : �2:37�

Now observe that each of the sets Gx is contained in a ball of radius
R0 :� e2dj=.R. But, according to Corollary 2.12, we have

50 J. GaÈ rtner, S.A. Molchanov



max
x2Bt

X
y2BR0 �x�

exp n�y� ÿ w�log jBtj�� �f g < ed=. �2:38�

a.s. for large t. Since the principal eigenvalue depends on the potential
monotonically, we conclude from (2.37) and (2.38) that

kt�n���� ÿ w�log jBtj� � max
x2Bt

kR0 n�x� �� ÿ w�log jBtj�� � � d

� supP
y2BR0

eh�y�=.<ed=.
kR0 �h� � d

� supP
y2BR0

eh�y�=.<1
kR0 �h� � 2d

a.s. for large t. Hence, for each d > 0 and all su�ciently large R,

lim sup
t!1

kt�n���� ÿ w�log jBtj�� � � supP
y2BR0

eh�y�=.<1
kR0 �h� � 2d a.s.

Combining this with Lemma 2.17, we arrive at the desired upper
bound.

The proof for . � 1 is similar. Given d > 0, one has to choose R
so large that (2.36) holds with e2dj=. replaced by 1. A.s. for su�ciently
large t, the �2R� 1�-connected components of the level set Et consist
of single lattice sites. In particular, Gx � BR�x�, x 2 Et. Choose c < 0
arbitrarily. According to Remark 2.13, a.s. for large t, the `vertically'
shifted potential n��� ÿ w�log jBtj� does not exceed c on BR�x�nfxg and
does not exceed d at site x for each x 2 Et. Hence, applying Lem-
ma 2.18, we ®nd that

lim sup
t!1

kt�n���� ÿ w�log jBtj�� � � kR�hd;c� � d a.s. ;

where hd;c�0� � d and hd;c�x� � c for x 2 BRnf0g. But kR�hd;c� tends to
dÿ 2dj as c! ÿ1. Since d > 0 may be chosen arbitrarily small, this
implies the desired bound.

The proof in the case . � 0 is a straightforward consequence of
Corollary 2.7 and the observation that

kt�n���� � max
Bt

n :

(
We close this subsection with a modi®cation of Theorem 2.16

which takes into account the percolation e�ect explained in Sec-
tion 2.2. Recall that A��R� and W ��R� denote, respectively, the level
set in the sublattice �2R� 1�Zd and its in®nite �2R� 1�-connected
component considered in Lemma 2.4. For d � 2, de®ne
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bW �
t �R� :�

[
z2W ��R�\BtÿR

BR�z� :

This is the R-neighborhood of the part of the in®nite percolation
cluster W ��R� in the ball BtÿR. If d � 1, then we de®ne bW �

t �R� by the
same formula but with W ��R� replaced by the level set A��R�. We
denote by kR

t �n���� the principal eigenvalue of our random Hamilto-
nian H in l2� bW �

t �R�� with Dirichlet boundary condition. Note that
kR

t �n���� � kt�n����.

Corollary 2.19. Let Assumption (F) be satis®ed for some . 2 �0;1�.
Then almost surely

lim inf
R!1

lim inf
t!1 kR

t �n���� ÿ w�log jBtj�
� � � ÿ2djv

.
j

� �
:

This means that the principal eigenvalue kt�n���� is essentially `gen-
erated' by those islands of high peaks of the potential n��� which are
located in the R-neighborhood of the cluster W ��R� for large R.

Proof of Corollary 2.19. For 0 < . <1 and also for . � 0, this re-
peats part a) of the proof of Theorem 2.16. Namely, according to
Corollary 2.15, in the proof the lattice site z0 may be assumed to
belong to W ��R�. If . � 1, then one has to replace Corollary 2.7 by
the asymptotic formula

max
x2W ��R�\BtÿR

n�x� � w�log jBtj� � o�1� a.s. as t!1

which holds in dimension d � 2 and the corresponding formula with
W ��R� replaced by A��R� in dimension d � 1. To understand how to
treat such a restriction to the cluster W ��R�, we refer to the proof of
Lemma 2.14 where a similar problem had been considered. The de-
tails are left to the reader. (

2.5. Completion of the proof

We are now ®nally in a position to complete the proof of Theo-
rem 2.2. Roughly speaking, we will show by an application of the
Feynman-Kac formula and the spectral representation theorem that
u�t; 0� behaves like etkt�n���� a.s. as t!1. This combined with our
asymptotic formula for the principal eigenvalue kt�n���� will then yield
the desired asymptotics of u�t; 0�.

To be precise, ®x e > 0 arbitrarily and set
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r�t� :� t

�log t�1�e and r�t� :� t�log t�1�e :

We want to show that under the assumptions of Theorem 2.2,

exp �t ÿ 1�kR
r�t��n���� � o�t�

n o
� u�t; 0� � exp tkr�t��n���� � o�t�� 	

�2:39�
a.s. as t!1 for each R 2 N. We may then apply the asymptotic
formulas for the principal eigenvalues kr�t��n���� and kR

r�t��n���� ob-
tained in Theorem 2.16 and Corollary 2.19, respectively. Substituting
them in (2.39) and taking into account that

w log jBr�t�j
ÿ � � w�d log t� � o�1�;

w log jBr�t�j
ÿ � � w�d log t� � o�1� ;

and w�d log t� � o�t�, we arrive at the desired asymptotics (2.4). The
above properties of w are obvious from Remark 2.1 b).

It now only remains to prove (2.39) by exploiting the Feynman-
Kac representation (2.3) of u�t; 0�. To derive the lower bound for
u�t; 0�, ®x R 2 N arbitrarily. Recall that bW �

r�t��R� is the R-neighbor-
hood of the part of the in®nite percolation cluster W ��R� (resp. the
level set A��R� if d � 1) which is contained in the ball Br�t�ÿR. Let e

R
t

denote the normalized positive eigenfunction corresponding to the
principal eigenvalue kR

r�t��n���� of the random Hamiltonian H in
l2� bW �

r�t��R�� with Dirichlet boundary condition. Let z0 2 bW �
r�t��R� be a

random site (depending on t and R) at which eR
t attains its maximum.

Then jz0j � r�t� and �eR
t �z0��2 � j bW �

r�t��R�jÿ1 � jBr�t�jÿ1. Let rR
t denote

the ®rst exit time of the random walk x�t� from bW �
r�t��R�. As before, let

sz0 be the ®rst hitting time of z0. Repeatedly applying the strong
Markov property to the Feynman-Kac representation of u�t; 0�, we
®nd that

u�t; 0� � E0 exp

Z sz0

0

n�x�u��du
� �

1 sz0 � 1� �

�Ez0 exp

Z tÿ1

0

n�x�u��du
� �

1 rR
t > t ÿ 1; x�t ÿ 1� � z0

ÿ �
� inf

0�s�1
Ez0 exp

Z s

0

n�x�u��du
� �

: �2:40�

In other words, we have forced the random walk to hit z0 until time 1
and then to stay in bW �

r�t��R� during a time period of length t ÿ 1 at the
end of which it has to return to z0. The remaining time the random
walk is allowed to move freely. The expression on the last line of (2.40)
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is independent of t and strictly positive a.s. Since jz0j � r�t� �
t=�log t�1�e, an application of Lemma 2.5 b) shows that a.s. the ®rst
expectation on the right is of order eo�t� as t!1. The main asymp-
totics is therefore hidden in the second expectation. But this is the
probabilistic representation of the fundamental solution of H in
l2� bW �

r�t��R�� with zero boundary condition considered at time t ÿ 1
with starting point and end point equal to z0. The spectral represen-
tation of the fundamental solution shows that the considered expec-
tation may be estimated from below by

e
�tÿ1�kR

r�t��n�����eR
t �z0��2 � e

�tÿ1�kR
r�t��n����jBr�t�jÿ1 :

In this way we arrive at the lower bound in (2.39).
To derive the upper bound, set Rn�t� :� nr�t� for n 2 N and t > 0.

As before, let s�Rn�t�� denote the ®rst exit time from the ball BRn�t�.
Then, using the Feynman-Kac formula, we obtain

u�t; 0� � E0 exp

Z t

0

n�x�u��du
� �

1 s�r�t�� > t� �

�
X1
n�1

E0 exp

Z t

0

n�x�u��du
� �

1 s�Rn�t�� � t < s�Rn�1�t��� � :

�2:41�
We will show that the ®rst term on the right provides the correct
asymptotics and the remaining sum tends to zero as t!1 a.s. First
note that

v�s; x� :� Ex exp

Z s

0

n�x�u��du
� �

1 s�r�t�� > s� �; �s; x� 2 R� � Br�t� ;

is the solution of the initial-boundary value problem for the parabolic
equation

@v
@s
�Hv on R� � Br�t�

with initial datum v�0; x� � 1 and Dirichlet boundary condition.
Using the spectral representation of v�t; �� (i.e. its Fourier expansion
with respect to the eigenfunctions of H in l2�Br�t��, we ®nd that

v�t; 0� �
X

x2Br�t�

v�t; x� � etkr�t��n����jBr�t�j :

Consequently,

E0 exp

Z t

0

n�x�u��du
� �

1 s�r�t�� > t� � � exp tkr�t��n���� � o�t�� 	
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a.s. as t!1. This is the desired upper bound. It remains to check
that the sum on the right of (2.41) tends to zero a.s. We obtainX1

n�1
E0 exp

Z t

0

n�x�u��du
� �

1 s�Rn�t�� � t < s�Rn�1�t��� �

�
X1
n�1

exp t max
BRn�1�t�

n

( )
P0 s�Rn�t�� � t� � : �2:42�

Using Corollary 2.7 and taking into account that w�s� � o�s� by Re-
mark 2.1 b), we ®nd that a.s.

max
BRn�1�t�

n � w log jBRn�1�t�j
ÿ �� o�1� � o�logRn�1�t��

as t!1 uniformly in n. According to Lemma 2.5 a),

P0 s�Rn�t�� � t� � � 2d�1 exp ÿRn�t� logRn�t�
djt
� Rn�t�

� �
:

Using these estimates and remembering that Rn�t� � nt�log t�1�e, one
easily checks that the sum on the right of (2.42) tends to zero a.s. as
t!1.

The proof of Theorem 2.2 is now complete.

References

1. Bolthausen, E., Schmock, U.: On self-attracting d-dimensional random walks.

Ann. Probab. 25, 531±572 (1997)
2. Donsker, M. D., Varadhan, S. R. S.: Asymptotic evaluation of certain Markov

process expectations for large time, I. Commun. Pure Appl. Math. 28, 1±47 (1975)

3. Donsker, M. D., Varadhan, S. R. S.: Asymptotic evaluation of certain Markov
process expectations for large time, III. Commun. Pure Appl. Math. 29, 389±461
(1976)

4. GaÈ rtner, J.: On large deviations from the invariant measure. Theory Probab.
Appl. 22, 24±39 (1977)

5. GaÈ rtner, J., den Hollander, F.: Correlation structure of intermittency in the

parabolic Anderson model. Submitted
6. GaÈ rtner J., Molchanov, S. A.: Parabolic Problems for the Anderson Model. I.

Intermittency and related topics. Commun. Math. Phys. 132, 613±655 (1990)
7. Molchanov, S. A.: Lectures on random media. In: D. Bakry R.D. Gill, and S.A.

Molchanov, Lectures on Probability Theory, Ecole d'EteÂ de ProbabiliteÂ s de Saint-
Flour XXII-1992 Lect. Notes in Math. 1581, pp. 242±411. Berlin: Springer 1994

8. Sznitman, A.-S.: Brownian con®nement and pinning in a Poissonian potential. I.

Probab. Theory Relat. Fields 105, 1±29 (1996)
9. Sznitman, A.-S.: Brownian con®nement and pinning in a Poissonian potential. II.

Probab. Theory Relat. Fields 105, 31±56 (1996)

Parabolic problems for the Anderson model. II 55


