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Summary. We address the following problem from the intersection of
dynamical systems and stochastic analysis: Two SDE dxt �Pm

j�0 fj�xt� � dW j
t and dxt �

Pm
j�0 gj�xt� � dW j

t in Rd with smooth co-
e�cients satisfying fj�0� � gj�0� � 0 are said to be smoothly equiva-
lent if there is a smooth random di�eomorphism (coordinate
transformation) h�x� with h�x; 0� � 0 and Dh�x; 0� � id which con-
jugates the corresponding local ¯ows,

u�t;x� � h�x� � h�htx� � w�t;x� ;
where htx�s� � x�t � s� ÿ x�t� is the (ergodic) shift on the canonical
Wiener space. The normal form problem for SDE consists in ®nding
the ``simplest possible'' member in the equivalence class of a given
SDE, in particular in giving conditions under which it can be linear-
ized (gj�x� � Dfj�0�x).

We develop a mathematically rigorous normal form theory for
SDE which justi®es the engineering and physics literature on that
problem. It is based on the multiplicative ergodic theorem and uses a
uniform (with respect to a spatial parameter) Stratonovich calculus
which allows the handling of non-adapted initial values and coe�-
cients in the stochastic version of the cohomological equation. Our
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main result (Theorem 3.2) is that an SDE is (formally) equivalent to
its linearization if the latter is nonresonant.

As a by-product, we prove a general theorem on the existence of a
stationary solution of an anticipative a�ne SDE.

The study of the Du�ng-van der Pol oscillator with small noise
concludes the paper.

Mathematics Subject Classi®cation: (1991) primary 60H10, 34F05;
secondary 58F11, 93E03

1 Introduction

Normal form theory was initiated by PoincareÂ in 1892 and is a
technique of fundamental importance for dynamical systems, in par-
ticular for bifurcation theory. It aims at simplifying a nonlinear de-
terministic or random dynamical system in the neighborhood of a
reference solution by means of a smooth change of coordinates. In
this paper, we consider dynamical systems in Rd , and the reference
solution is assumed to be the ®xed point x � 0.

We brie¯y recall those facts from deterministic normal form theory
relevant to the stochastic case. For recent presentations of the deter-
ministic theory see e.g. Anosov and V. I. Arnold [1], Vanderbauwhede
[23], or Katok and Hasselblatt [14].

Two smooth vector ®elds f and g in Rd with f �0� � g�0� � 0 are
called smoothly equivalent, if the local ¯ows u and w generated by
_x � f �x� and _x � g�x� are smoothly equivalent, i.e., if there is a C1

di�eomorphism (also called coordinate transformation)1 h : Rd ! Rd

with h�0� � 0 for which

u�t� � h � h � w�t� locally :

Di�erentiating this with respect to t gives the equivalent in®nitesimal
form

f � h � Dh g : �1:1�
Normal form theory for vector ®elds now seeks an h for which g is
``simplest possible'', in other words: we look for the ``simplest possi-
ble'' element in the C1 equivalence class of f .

1Deterministic as well as stochastic normal form theory makes statements about
germs of C1 di�eomorphisms or vector ®elds, i.e., equivalence classes of C1

di�eomorphisms or vector ®elds which coincide in a neighborhood of 0. However, for
ease of presentation we ignore this point.

560 L. Arnold, P. Imkeller



Since (1.1) implies B � Dh�0�ÿ1ADh�0�, where A � Df �0� and
B � Dg�0� are the Jacobians of f and g at x � 0, respectively, and
since a linear mapping is considered simplest possible if its matrix
representation is in Jordan canonical form (which requires the choice
of a basis in Rd) it is reasonable to assume without loss of generality
that A is in Jordan canonical form, and h is near-identity, i.e.,
Dh�0� � id. Then B � A for any such h. The normal form of f at the
®xed point 0 is thus the natural generalization of the Jordan canonical
form to the nonlinear case.

The ultimate aim of normal form theory is the linearization of f ,
i.e., to ®nd an h such that g�x� � Ax, or f � A, against which there are
obstructions in the form of ``resonances''.

Formal normal form theory now expands f , g and h into formal
Taylor series at 0, f �x� � Ax�P1n�2 fn�x�, g�x� � Ax�P1n�2 gn�x�,
h�x� � x�P1n�2 hn�x�, inserts those expansions into equation (1.1),
equates coe�cients of order n � 2 (which are homogeneous polyno-
mials), and tries to successively determine hn such that gn is zero, or at
least ``simplest possible''. For this purpose we introduce spaces of
homogeneous polynomials.

Let for n 2 N

Nd
n :� s � �s1; . . . ; sd� 2 �Z��d : jsj :�

Xd

i�1
si � n

( )
be the set of multi-indices of length n. Denote by xs :� xs1

1 xs2
2 � � � xsd

d the
scalar monomial in d variables of degree jsj � n. Then

Hn;d :� Hn;d�Rd� � f �
X
s2Nd

n

xsfs : fs 2 Rd

8<:
9=;

is the vector space of homogeneous polynomials of degree n in d
variables with values in Rd . We also write jsj � n for s 2 Nd

n . Observe
that

D :� D�n; d� � #Nd
n �

n� d ÿ 1
n

� �
;

so that

D � dimHn;d�Rd� � D � d ;

in particular

D � dimHn;d�R1� :
A basis F � �u1; . . . ; ud� of Rd and the basis �xs�jsj�n of Hn;d�R1� � RD

give a basis �xsF � :� �xsui�i�1;...;d;jsj�n of Hn;d�Rd�, and
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Hn;d 3 f �
X
jsj�n

Xd

i�1
fi;sxsui � kF �f � � �kF �fs��jsj�n � �fi;s� 2 RD

(column vectors, ordered lexicographically) identi®es Hn;d with RD,
where kF is the mapping which assigns F coordinates (respectively
�xsF � coordinates) to an element of Rd (respectively Hn;d). We can
identify Hn;d�Rd� with the tensor product of Hn;d�R1� and Rd ,

Hn;d�Rd� � Hn;d�R1� 
Rd � RD 
Rd ;

where the above choice of bases induces the basis with elements xs 
 ui

in Hn;d�Rd�, and the isomorphism induced by the coordinate map-
pings maps this basis to the standard basis fj 
 ei 2 RD 
Rd .

Inserting the above Taylor expansions into (1.1) and equating
coe�cients gives the cohomological equations

gn�x� � �adnA�hn�x� � kn�x�; n � 2 ;

where the linear operator

adnA: Hn;d ! Hn;d ; hn 7! �adnA�hn�x� :� Ahn�x� ÿ Dhn�x�Ax : �1:2�
is called cohomological operator. Further,

kn � fn � Pn�fk; gk; hk; 2 � k � nÿ 1� ;
where

Pn � TnfSnÿ1�f ÿ A� � Snÿ1�hÿ id� ÿ DSnÿ1�hÿ id�Snÿ1�gÿ A�g ;
�1:3�

is a polynomial of the lower order terms fk, gk, hk, 2 � k � nÿ 1, of f ,
g, and h. Here Tn�f � denotes the term of order n of f , Sn�f � is the n-jet
(Taylor polynomial of order n) of f . For example, k2 � f2,
k3 � f3 ÿ Dh2g2, k4 � f4 � f2 � g2 ÿ Dh2g3 ÿ Dh3g2, etc.

The operator adnA depends linearly on the entries of A, and its
D� D matrix representation is

adn A � I1 
 Aÿ T �A�n 
 I2 ; �1:4�
where I1 and I2 are D� D and d � d unit matrices, respectively, T �A�n
is the D� D matrix describing the linear mapping on Hn;d�R1� � RD

given by

h �
X
jsj�n

hsxs 7!
X
jsj�n

Xd

j;k�1
hs
@�xs�
@xj

ajkxk �: T �A�n�h� ;

and A
 B � �aijB� is the Kronecker product of A and B.
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Remark 1.1. One easily checks that if A is diagonal, then so is adnA for
any n � 2. (

We will now present a treatment of the normal form problem for
stochastic di�erential equations (SDE). It deals with the basic ques-
tion of how many ``essentially di�erent'' (modulo a C1 near-identity
coordinate transformation) SDE exist.

Our e�ort is motivated by the fact that many dynamical systems in
engineering and physics are perturbed by noise. The desire to simplify
those systems prompted numerous publications (see, e.g., Coullet,
Elphick and Tirapegui [12], Nicolis and Nicolis [15], SchoÈ ner and
Haken [20, 21], Sri Namachchivaya and Lin [22], and the references
therein). All those authors work with a smallness parameter multi-
plying the noise terms, hence obtaining the stochastic normal form as
a small perturbation of the deterministic one.

Normal form theory without any smallness assumption was de-
veloped for random di�eomorphisms by Arnold and Xu in [8], and for
random di�erential equations in [9, 10].

However, normal form theory for SDE has so far de®ed rigorous
analysis for the following technical reason: When solving the sto-
chastic version of the cohomological equation one is forced to con-
sider coe�cients as well as solutions which at time t are not adapted to
the natural forward ®ltrationFt

ÿ1 of the (two-sided) Wiener process.
This fact, which is a ``con¯ict'' between (multiplicative) ergodic theory
and classical stochastic analysis, has been clearly seen but not rigor-
ously handled by the pioneers of stochastic normal form theory
quoted above. It is the aim of this paper to dissolve this ``con¯ict'' and
present a rigorous treatment on the basis of multiplicative ergodic
theory and of a uniform Stratonovich and anticipative calculus. Our
main result is that an SDE is formally equivalent to its linearization
provided the latter is nonresonant (Theorem 3.2). We also show by
way of an example the usefulness of the stochastic normal form.

2 The stochastic cohomological equation

We consider the SDE

dxt �
Xm

j�0
fj�xt� � dW j

t ; t 2 R; fj�0� � 0 ; �2:1�

in Rd , where as usual, dW 0
t stands for dt, fj 2 C1 for 0 � j � m,

�X;F;P� is the canonical two-sided Wiener space,
Wt � �W 1

t ; . . . ;W m
t �, t 2 R, the canonical two-sided Wiener process,
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Ft
ÿ1 the r-algebra generated by Ws, s � t, completed by P-null sets,

and htx�s� :� x�t � s� ÿ x�t�, s; t 2 R. In the following x will denote
an arbitrary element of X, whenever it appears in the argument of a
random variable.

Equation (2.1) uniquely generates a local C1 random dynamical
system (RDS) (or cocycle) u over the ergodic dynamical system
�X;F;P; �ht�t2R�, (see Arnold and Scheutzow [6], Arnold [3, Theorem
2.3.36], for a survey see Arnold [2]). The domain D�t;x� and range
R�t;x� of u�t;x�: D�t;x� ! R�t;x� are neighborhoods of 0. How
many di�erent such local RDS do exist modulo a smooth random
conjugacy?

The linear cocycle U1�t;x� :� U�t;x� � Du�t;x; 0� on T0Rd � Rd

is then generated by the linearized SDE

dvt �
Xm

j�0
Ajvt � dW j

t ; Aj :� Dfj�0�; 0 � j � m : �2:2�

The multiplicative ergodic theorem holds for (2.2) (without any fur-
ther integrability assumptions, see [3, Proposition 6.2.11]), giving the
Lyapunov spectrum

R�U1� :� R�h;A0; . . . ;Am;W � � fK1 � � � � � Kdg ;
and the splitting Rd � E1�x� � � � � � Ep�x� which is invariant,
U�t;x�Ei�x� � Ei�htx�, t 2 R, and in which the di�erent Lyapunov
exponents k1 > � � � > kp from the spectrum are realized as exponential
growth rates forward and backward in time,

v 2 Ei�x� n f0g () lim
t!�1

1

t
log kU�t;x�vk � ki ;

and for which dimEi�x� � di, di the multiplicity of ki, 1 � i � p.

De®nition 2.1 (Random coordinate transformation). A measurable
mapping h : X�Rd ! Rd is called (near-identity) random coordinate
transformation if

(i) h�x; �� 2 Diff1�Rd�,
(ii) h�x; 0� � 0,
(iii) Dh�x; 0� � id.

The di�eomorphism h�x; �� is also denoted by h�x�: h

We now conjugate the local RDS u generated by (2.1) with another
local RDS w by means of a random coordinate transformation,

u�t;x� � h�x� � h�htx� � w�t;x� (locally) ; �2:3�
where w is generated by an SDE
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dxt �
Xm

j�0
gj�ht�; xt� � dW j

t ; �2:4�

and h is chosen such that the SDE (2.4) makes sense, and its coe�-
cients gj are ``as simple as possible'', the ultimate aim being lineari-
zation, i.e.,

dxt �
Xm

j�0
Ajxt � dW j

t :

It is important to realize that, while the di�eomorphisms u�t;x� and
w�t;x� map the ®ber over x to the ®ber over htx, the coordinate
transformation h is ``static'' and maps each ®ber to itself, hence the
h�x� on the left-hand side, and the h�htx� on the right-hand side of
(2.3).

Although it will turn out that the transformation
�h�t; �; x� � h�ht�; x� to be applied at time t is in general not adapted to
the ®ltration of W at t, we proceed formally (and justify later): Ap-
plying the Stratonovich lemma to (2.3) gives

dut � dht � Dh�ht�;wt� � dwt ; �2:5�
where dht denotes the t-di�erential of h�ht�; x�, and dut the t-di�er-
ential of u�t; ��, etc. Inserting the di�erentials of ut and wt into (2.5)
yieldsXm

j�0
fj�h�ht�; xt� � dW j

t � dht �
Xm

j�0
Dh�ht�; xt�gj�ht�; xt� � dW j

t ; �2:6�

equivalently

dxt �
Xm

j�0
gj�ht�; xt� � dW j

t

� ÿDh�ht�; xt�ÿ1dht �
Xm

j�0
Dh�ht�; xt�ÿ1fj�h�ht�; xt�� � dW j

t : �2:7�

This is an equation for h and the gj, where the choice of h is made such
that the gj are simplest possible.

We now make the simplifying assumption that we choose the ca-
nonical basis in Rd . In other words, we leave the linearized SDE (2.2)
untouched and refrain from making it ``as simple as possible'' by
choosing an appropriate (necessarily non-adapted) random basis. See
the treatment of the resonant case in subsection 4.1.

As in the deterministic case, we make the formal Taylor series
Ansatz
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fj�x� � Ajx�
X1
n�2

fj;n�x�; j � 0; . . . ;m ;

gj�x; x� � Ajx�
X1
n�2

gj;n�x; x�; j � 0; . . . ;m ;

h�x; x� � x�
X1
n�2

hn�x; x� ;

where fj;n 2 Hn;d , while gj;n��� and hn��� 2Hn;d are Hn;d-valued ran-
dom variables.

Plugging this into equation (2.6) and equating coe�cients yields
(calculations are as in the deterministic case) an identity for the linear
part, and for n � 2Xm

j�0
gj;n�ht�� � dW j

t �
Xm

j�0
�adnAj�hn�ht�� � dW j

t ÿ dhn�ht��

�
Xm

j�0
kj;n�ht�� � dW j

t ; �2:8�

where adnAj : Hn;d ! Hn;d is the linear operator de®ned in (1.2) by
hn 7! �adnAj�hn�x� :� Ajhn�x� ÿ Dhn�x�Ajx, in matrix form adnAj �
I1 
 Aj ÿ T �Aj�n 
 I2 on Hn;d�Rd� � Hn;d�R1� 
Rd , and

kj;n � fj;n � Pn�fj;k; gj;k; hk; 2 � k � nÿ 1�; j � 0; . . . ;m : �2:9�
Here Pn is a deterministic polynomial of the lower order terms of fj;k,
gj;k and hk, 2 � k � nÿ 1, which is independent of j and explicitly
given in (1.3).

We now de®ne the stochastic cohomological operator by

dLn�hn� :� dhn ÿ
Xm

j�0
�adnAj�hn � dW j

t ; �2:10�

acting on those Hn;d-valued stationary stochastic processes hn�htx� for
which the expression in (2.10) makes sense. With this de®nition, (2.8)
turns into the system of stochastic cohomological equations (sup-
pressing the �htx� argument)

dLn�hn� �
Xm

j�0
�kj;n ÿ gj;n� � dW j

t �: dKn ÿ dGn ; �2:11�

which have to be solved successively for n � 2; . . . ; for dKn known
from previous steps, and hn choosen to make dGn simplest possible.
The most desirable choice is dGn � 0, resulting in the task of solving
the cohomological equations
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dLn�hn� � dKn; n � 2 ;

or, equivalently, looking for stationary solutions of the a�ne SDE

dhn �
Xm

j�0
��adnAj�hn � kj;n�ht��� � dW j

t ; n � 2 ; �2:12�

where kj;n depends on the solutions of (2.12) of lower order
2 � k � nÿ 1. We have kj;2 � fj;2 deterministic, but for n � 3, kj;n is
typically random and not adapted to the ®ltration of W .

Let Un be the linear cocycle on Hn;d generated by the SDE

dvt �
Xm

j�0
�adnAj�vt � dW j

t ; n � 2 : �2:13�

The multiplicative ergodic theorem holds for Un (again without ad-
ditional assumptions) and gives the spectrum

R�Un� � fKi ÿ �K; s� : Ki 2 R�U1�; jsj � ng ;
where �K; s� :�Pd

i�1 Kisi. This can be deduced from the form of adnAj

given in (1.4) and the following facts: If the linear cocycles W1 and W2

are generated by the linear SDE dWi �
Pm

j�0 A�i�j Wi � dW j
t , i � 1; 2,

then the linear cocycle W1 
W2 is generated by the linear SDE

d�W1 
W2�t �
Xm

j�0
�A�1�j 
 I2 � I1 
 A�2�j ��W1 
W2�t � dW j

t ;

the spectrum of W1 
W2 is

R�W1 
W2� � R�W1� � R�W2�
[3, Theorem 5.4.2] and, ®nally, the spectrum of the cocycle generated
by dvt �

Pm
j�0�ÿT �Aj�n�vt � dW j

t is fÿ�K; s� : jsj � ng (see Arnold and
Xu [10, Theorem 3.1]).

It turns out that we have a chance of ®nding a (unique) stationary
solution of (2.12) provided the linear SDE (2.13) is hyperbolic, i.e.,
0 62 R�Un�. We call the linear cocycle U � U1 generated by (2.2) non-
resonant of order n if 0 62 R�Un�, resonant of order n otherwise, n � 2.

3 The nonresonant case

The crucial property of the stationary processes kj;n�ht�� in the coho-
mological equation (2.12) to ensure the existence of a stationary so-
lution in case the linear SDE (2.13) is hyperbolic, and which is in fact
inherited by the solution, is the property of temperedness.
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De®nition 3.1 (Tempered random vector). A random vector X with
values in Rd is called tempered with respect to the metric dynamical
system �X;F;P; �ht�t2R� if

lim
t!�1

1

jtj log
� jX �htx�j � 0 : �3:1�

(
The assumption (3.1) excludes the case lim supt!�1 1

jtj log
� jX �htx�j

� 1, and is implied by the integrability condition
sup0�t�1 log

� jX �ht��j2 L1�P�. We will also make use of the fact that
the set of real-valued tempered random variables is a commutative
ring with unit element.

Theorem 3.2 (Formal linearization of an SDE). Given the SDE

dxt �
Xm

j�0
fj�xt� � dW j

t ; fj�0� � 0; 0 � j � m ;

and assume that the linear cocycle generated by

dvt �
Xm

j�0
Ajvt � dW j

t ; Aj :� Dfj�0�; 0 � j � m ;

is nonresonant of any order n � 2. Then there is a random coordinate
transformation h whose formal Taylor series h�x; x� � x�P

n�2 hn�x; x� is uniquely determined and has tempered coe�cients hn,
such that h formally linearizes the above SDE.

Remark. 3.3. (i) It is quite remarkable that at the beginning and at the
end of the above procedure we have two bona ®de classical SDE,
while the transformation converting the solutions of the ®rst into the
solutions of the second is anticipative.

(ii) With the above procedure, in®nitely ¯at terms of the fj at 0
cannot be detected as they do not appear in formal power series. A
random version of Sternberg's linearization theorem would assert that
in the above situation the nonlinear SDE (2.1) and its linearization
(2.2) are indeed smoothly (and not just formally) conjugate by a
random coordinate transformation h�x; x�. However, such a theorem
is still lacking. h

The proof of Theorem 3.2 is quite complicated and is divided into
three steps, of which the ®rst two are of technical nature, while the
third one (on invariant measures of a�ne SDE) is of independent
interest. The result will be a formal random Taylor series for h. To
®nd a random coordinate transformation corresponding to this for-
mal random Taylor series is accomplished by the following theorem.
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Theorem 3.4 (Borel's theorem). Given h0 � 0, h1�x; x� � x, hn Hn;d-
valued random variables, n � 2. Then there is a random coordinate
transformation h whose formal random Taylor series expansion has the
coe�cients hn.

The proof is just an x-wise version of the deterministic proof given
by Vanderbauwhede [23, page 142] and is thus omitted.

3.1 Step 1: Boundedness of moments of solutions
of a hierarchical system of a�ne SDE

Our main task here will consist in proving that all processes in our
hierarchical system of a�ne SDE obtained by solving the cohomo-
logical equations (2.12) step by step for ®xed initial conditions satisfy
the conditions of the following lemma.

Lemma 3.5 Let u � �u�t; x��t2�0;1�;x2Rd be an Rk-valued stochastic pro-
cess which for ®xed x is P-a.s. continuous with respect to t, is adapted to
�Ft
ÿ1�, 0 � t � 1, and satis®es the following two conditions which from

now on are called

Conditions (C): For any p � 2 and any compact set K � Rd there
exist constants cp and cp;K 2 R� such that

E sup
0�t�1

ju�t; 0�jp
� �

� cp;

E sup
0�t�1

ju�t; x� ÿ u�t; y�jp
� �

� cp;K jxÿ yjp=2 for all x; y 2 K :

Then u is P-a.s. jointly continuous with respect to �t; x�, and for p > d
and any compact set K � Rd there exist constants Cp 2 R� and q � 1
such that

E sup
x2K

sup
0�t�1

ju�t; x�jp
� �

� Cp�diam K�q : �3:2�

Proof. The joint continuity of u follows from (C) by Kolmogorov's
continuity criterion, applied to the C�0; 1�-valued process x 7! u��; x�,
and with p=2 > d.

(3.2) is a well-known implication of the fundamental continuity
lemma of Garsia, Rodemich and Rumsey, see for example Barlow and
Yor [11, formula (3.b),] or Arnold and Imkeller [5]. h

We now prove that conditions (C) are passed on from u to processes
obtained from u by reasonable operations.
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Lemma 3.6 Let u satisfy conditions (C), and let

v�t; x� �
Z t

0

u�s; x�dWs; w�t; x� �
Z t

0

u�s; x�ds ;

where W is a scalar Wiener process. Then v and w satisfy conditions (C).

Proof. This is an immediate consequence of Burkholder's and HoÈ ld-
er's inequalities. (

The following considerations will be crucial for the algorithm by
which we solve our hierarchical system of a�ne SDE. Let d1, d2 2 N,
and for 0 � i � m suppose that �ui�t; x1��t2�0;1�;x12Rd1 is a parametrized
semimartingale with decomposition

ui�t; x1� �
Z t

0

wi�s; x1�ds�
Xm

j�1

Z t

0

vj
i�s; x1�dW j

s ; �3:3�

with values in Rd2 . Let, moreover, B0, B1; . . . ;Bm be d2 � d2 matrices,
and denote by �U�t��t2R the linear ¯ow in Rd2 generated by the linear
SDE

dyt �
Xm

j�0
Bjyt � dW j

t : �3:4�

We now consider the SDE

dxt �
Xm

j�0
�Bjxt � uj�t; x1�� � dW j

t ; x0 � x2 2 Rd2 : �3:5�

Let �u�t; x1��t2R be the ¯ow generated by (3.3), the value of which at
x2 2 Rd2 will be written as u�t; x1�x2.
Lemma 3.7 Let ui � �ui�t; x1��t2�0;1�;x12Rd1 be given by (3.3). Assume that
wi and vj

i (hence ui), 0 � i � m, 1 � j � m, satisfy conditions (C). Let

u�t; x1�x2 �
Z t

0

q�s; x1; x2�ds�
Xm

j�1

Z t

0

wj�s; x1; x2�dW j
s

be the semimartingale decomposition of the solution ¯ow of (3.5). Then
u, q, and wj, 1 � j � m, satisfy conditions (C).

Proof. (i) We only prove the second of the conditions (C) for u.
Let us start by writing the ItoÃ form of (3.5). We have
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dyt �
Xm

j�1
�Bjyt � uj�t; x1��dW j

t

� B0 � 1

2

Xm

j�1
B2

j

 !
yt � 1

2

Xm

j�1
vj

j�t; x1�
 !

dt : �3:6�

Now ®x p � 2 and a compact set K � Rd1 �Rd2 . Then for any
�x1; x2�, �y1; y2� 2 Rd1 �Rd2 , Burkholder's and Jensen's inequalities as
well as the hypothesis yield, with suitable constants c1, c2, c3;K and
with the abbreviation

f �t� :� E sup
s2�0;t�

ju�s; x1�x2 ÿ u�s; y1�y2jp
 !1=p

;

f �1� � c1

�
jx2 ÿ y2j

�
Xm

j�1
E sup

t2�0;1�
j
Z t

0

Bj�u�s; x1�x2 ÿ u�s; y1�y2�dW j
s jp

 !1=p

�
Xm

j�1
E sup

t2�0;1�
j
Z t

0

�uj�s; x1� ÿ uj�s; y1��dW j
s jp

 !1=p

�E sup
t2�0;1�

j
Z t

0

B0 � 1

2

Xm

j�1
B2

j

 !
�u�s; x1�x2 ÿ u�s; y1�y2�dsjp

 !1=p

�
Xm

j�1
E sup

t2�0;1�
j
Z t

0

�vj
j�s; x1� ÿ vj

j�s; y1��dsjp
 !1=p�

� c2 jx2 ÿ y2j �
Z t

0

f �s�ds� jx1 ÿ y1j1=2
� �

� c3;K j�x1; x2� ÿ �y1; y2�j1=2 �
Z 1

0

f �t�dt
� �

: �3:7�

To (3.7) we have to apply Gronwall's lemma to obtain with a suitable
constant cp;K 2 R�

E sup
t2�0;1�

ju�t; x1�x2 ÿ u�t; y1�y2jp
 !

� cp;K j�x1; x2� ÿ �y1; y2�jp=2 : �3:8�

This is the second of the conditions (C) for u.
(ii) Next observe that according to (3.6) for any t 2 �0; 1� and

�x1; x2� 2 Rd1 �Rd2
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wj�t; x1; x2� � Bju�t; x1�x2 � uj�t; x1�;

q�t; x1; x2� � B0 � 1

2

Xm

j�1
B2

j

 !
u�t; x1�x2 � 1

2

Xm

j�1
vj

j�t; x1� :

Hence by our hypotheses and (3.8), wj and q satisfy the conditions (C)
as well. (
Next we show that conditions (C) are inherited from u and its char-
acteristics to a polynomial of u and its characteristics.

Lemma 3.8 Let

u�t; x� �
Xm

j�1

Z t

0

vj�s; x�dW j
s �

Z t

0

w�s; x�ds; t 2 �0; 1�; x 2 Rd1 ;

take values in Rd2 , and assume that u, vj and w satisfy conditions (C).
Let p be a polynomial in the variable y 2 Rd2 . Then, if

�p � u��t; x� �
Xm

j�1

Z t

0

qj�s; x�dW j
s �

Z t

0

r�s; x�ds ;

also p � u, qj and r satisfy conditions (C).

Proof. First note that, by ItoÃ 's formula, qj and r are of the same
structure as p � u. Hence it su�ces to prove the conditions for p � u.

Due to HoÈ lder's inequality, it is evidently enough to consider the
case of a real-valued u and a polynomial p of the form p�y� � yl for
some l 2 N. Then for y1, y2 2 R

p�y1� ÿ p�y2� � �y1 ÿ y2�
Xlÿ1
k�0

yk
1ylÿ1ÿk

2 : �3:9�

Now observe that by conditions (C) for any x 2 Rd1

E sup
t2�0;1�

ju�t; x�jp
 !

� cp �3:10�

for a suitable constant cp 2 R�. Then (3.9) and an application of
HoÈ lder's inequality obviously allow us to deduce conditions (C) for
p � u from (3.10) and the condition (C) for u. (

Lemma 3.9 Let u � �u�t; x��t2�0;1�;x2Rd with values in Rd satisfy condi-
tions (C), let �U�t��t2R be the linear ¯ow generated by (3.4) for d2 � d,
and let W be a scalar Wiener process. Then the processes

v�t; x� �
Z t

0

U�s�ÿ1u�s; x�dWs; w�t; x� �
Z t

0

U�s�ÿ1u�s; x�ds
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satisfy conditions (C).

Proof. U�t�ÿ1 satis®es the SDE

dU�t�ÿ1 � ÿ
Xm

j�0
U�t�ÿ1Bj � dW j

t ; U�0� � I :

Hence for any p � 1 we have

E sup
t2�0;1�

kU�t�ÿ1kp

 !
<1 : �3:11�

Then it is clear that Burkholder's inequality, HoÈ lder's inequality and
(3.11) imply that v and w satisfy conditions (C). h

We ®nally come to the announced hierarchical system of a�ne SDE.
Let �dn�n2N be a sequence of integers. For 0 � j � m and each n 2 N,
let Aj;n be a dn � dn matrix, and let pj;n be a polynomial in the variables
�x1; . . . ; xnÿ1� 2 Rd1 � � � � �Rdnÿ1 , with pj;1 � bj 2 Rd1 a ®xed vector.
Then our hierarchical system of a�ne SDE is as follows:

dx1t �
Xm

j�0
�Aj;1x1t � pj;1� � dW j

t ; x10 � x1 2 Rd1 ; �3:12�

dx2t �
Xm

j�0
�Aj;2x2t � pj;2�x1t �� � dW j

t ; x20 � x2 2 Rd2 ; �3:13�

� � � � � �

dxn
t �

Xm

j�0
�Aj;nxn

t � pj;n�x1t ; . . . ; xnÿ1
t �� � dW j

t ; �3:14�

xn
0 � xn 2 Rdn ;

� � � � � �
The algorithm for successively solving this system is as follows: Let
�Un�t��t2R be the linear cocycle in Rdn generated by the linear SDE

dyn
t �

Xm

j�0
Aj;nyn

t � dW j
t ; yn

0 � yn 2 Rdn : �3:15�

We ®rst solve the ®rst a�ne SDE (3.12). Denote the resulting a�ne
cocycle by �u1�t��t2R which by the variation of constants formula is
given by

u1�t�x � U1�t� x�
Xm

j�0

Z t

0

U1�s�ÿ1pj;1 � dW j
s

 !
:
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Then insert the cocycle u1�t�x1 into the second equation (3.13) in place
of x1t which gives a non-autonomous a�ne SDE whose solution ¯ow is
denoted by u2�t; x1�, etc. At step n insert u1�t�x1,. . .,
unÿ1�t; x1; . . . ; xnÿ2�xnÿ1 into the nth equation (3.14) which gives a non-
autonomous a�ne SDE

dxn
t �

Xm

j�0
�Aj;nxn

t � pj;n�u1�t�x1; . . . ;unÿ1�t; x1; . . . ; xnÿ2�xnÿ1� � dW j
t ;

xn
0 � xn 2 Rdn ; �3:16�

with solution ¯ow un�t; x1; . . . ; xnÿ1�.
Note that the ®rst n a�ne SDE considered as one equation gen-

erate the C1 RDS

u�t��x1; . . . ; xn� � �u1�t�x1;u2�t; x1�x2; . . . ;un�t; x1; . . . ; xnÿ1�xn� :
�3:17�

Proposition 3.10 For n 2 N, represent the solution of the nth equation
(3.16) as

un�t; x1; . . . ; xnÿ1�xn �
Z t

0

vn�s; x1; . . . ; xn�ds

�
Xm

j�1

Z t

0

un
j �s; x1; . . . ; xn�dW j

s :

Then for any n 2 N, un as well as vn and un
j , 1 � j � m, satisfy condi-

tions (C).

Proof. We use induction on n.
The assertion holds for n � 1. This is an immediate consequence of

Lemma 3.7, choosing uj � bj.
Let us now assume that the assertion holds for u1; . . . ;unÿ1 and

their characteristics. Consequently, Lemma 3.8 yields that all the
components of pj;nÿ1�u1�t�x1; . . . ;unÿ1�t; x1; . . . ; xnÿ2�xnÿ1� and their
semimartingale characteristics satisfy conditions (C). Hence Lemma
3.7 applies and gives condition (C) for un as well as for un

j and vn. (

Proposition 3.11 Let for t 2 R

X1�t� �
Xm

j�0

Z t

0

U1�s�ÿ1bj � dW j
s ;

and for n � 2 and �x1; . . . ; xnÿ1� 2 Rd1 � � � � �Rdnÿ1

574 L. Arnold, P. Imkeller



Xn�t; x1; . . . ; xnÿ1� �3:18�

�
Xm

j�0

Z t

0

Un�s�ÿ1pj;n�u1�t�x1; . . . ;unÿ1�t; x1; . . . ; xnÿ2�xnÿ1� � dW j
s :

Then Xn satis®es conditions (C).

Proof. This is an immediate consequence of Proposition 3.10 and
Lemmas 3.8 and 3.9. (

Here is our ®nal and main result of step 1.

Theorem 3.12 Consider the hierarchical system of a�ne SDE introduced
in (3.12) to (3.14). Then for any n � 2, any p > d1 � � � � � dnÿ1, and any
compact set K � Rd1 � � � � �Rdnÿ1 there exist constants cn;p 2 R� and
q � 1 such that

E sup
�x1;...;xnÿ1�2K

sup
t2�0;1�

jXn�t; x1; . . . ; xnÿ1�jp
 !

� cn;p�diam K�q ; �3:19�

where Xn is de®ned by (3.18).
Proof. Combine Proposition 3.11 with Lemma 3.5. h

3.2 Step 2: Inheritance of temperedness

We ®rst study the inheritance of temperedness in case tempered vec-
tors (see De®nition 3.1) are inserted into random ®elds. Property (3.2)
will play a crucial role hereby, as indicated by the following lemma.

Lemma 3.13 Let �X �y��y2Rd1 be a P-a.s. continuous random ®eld with
values in Rd2 for which the following condition holds: For p > d1 and for
any compact set K � Rd1 there exist cp 2 R� and q � 1 such that

E sup
y2K
jX �y�jp

 !
� cp�diam K�q : �3:20�

Let Y be a random vector with values in Rd1 , and for e > 0 and m 2 N
let

Ae;m :� fx 2 X : jY �htx�j � m exp�te�; t 2 R�g :
Then there exists a constant ce;m 2 R� such that for any n 2 Z�

E 1Ae;m sup
t2�n;n�1�

jX �Y ��ht��jp
 !

� ce;m exp�neq� ;

where p and q are related by (3.20).
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Proof. For x 2 Ae;m and t 2 �n; n� 1� we have
jY �htx�j � m exp�te� � m exp�e� exp�ne� :

Hence due to (3.20)

E 1Ae;m sup
t2�n;n�1�

jX �Y ��ht���jp
 !

� E 1Ae;m sup
y2Be;m;n

jX �y�jp
 !

� cp�diam Be;m;n�q ; �3:21�
where

Be;m;n :� fy 2 Rd1 : jyj � m exp�e� exp�ne�g :
But diam Be;m;n � cd1;e;m exp�ne�, with a constant depending just on d1,
e and m. Hence the desired inequality follows readily from (3.21). (

Theorem 3.14 Let �X �y��y2Rd1 be a P-a. s. continuous random ®eld with
values in Rd2 for which the following condition holds: For p > d1 and for
any compact set K � Rd1 there exist a cp 2 R� and a q � 1 such that

E sup
y2K
jX �y�jp

 !
� cp�diam K�q : �3:22�

Let Y be a tempered random vector with values in Rd1 . Then the Rd2 -
valued random vector X �Y � is tempered.
Proof. De®ne Ae;m as in Lemma 3.13. We shall prove that

lim
t!1

1
t log

� jX �Y ��htx��j � 0 ;

remarking that the behavior for t! ÿ1 can be treated similarly.
Since Y is tempered, Ae;m " X (m " 1) P-a.s. for any e > 0.

Let e > 0 be given. We have to prove that there exists a d�e� > 0
such that for any m 2 N we have

1Ad�e�;m lim sup
t!1

1
t log

� jX �Y ��htx�j � e; P-a.s. �3:23�

(3.23) will indeed imply temperedness since Ad�e�;m " X, P-a.s., for
m " 1 and any e > 0.

To prove (3.23), let e, d > 0, m; n 2 N be given. Then by (3.22) and
Lemma 3.13

P Ad;m

\
sup

t2�n;n�1�

1

t
log� jX �Y ��ht��j > e

( ) !
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� P Ad;m

\
sup

t2�n;n�1�
jX �Y ��ht��j > exp�ne�

( ) !
� E�1Ad;m exp�ÿnpe� sup

t2�n;n�1�
jX �Y ��ht��jp�

� cm;d exp�nqdÿ npe� � cm;d exp�n�qdÿ pe�� :
Now choose d < pe

q . Then for all m 2 N the Borel Cantelli lemma
yields

1Ad;m lim sup
n!1

sup
t2�n;n�1�

1
t log

� jX �Y ��ht���j � e :

This clearly implies (3.23) and completes the proof. (
As a second issue we study the inheritance of temperedness by geo-
metric series.

Theorem 3.15 Suppose X is an Rd-valued tempered random vector. Let
�Tn�n2N be a sequence of random linear operators in Rd with negative
Lyapunov index, i.e., for some deterministic b > 0

lim sup
n!1

1
n log kTnk � ÿb :

Then

Y �
X1
n�0

Tn�X � h�n��

is absolutely and geometrically convergent and tempered.

Proof. Choose e > 0 such that 2e < b. Then by the assumptions, from
a certain index n on, kTnk�X � h�n�� < exp��2eÿ b�n� from which the
convergence statements follow. As to the temperedness of Y , there
exists a random variable Re such that for t 2 R

jY � htj �
X1
n�0
kTnkjX � h�n� t�j

� Re

X1
n�0

exp�enÿ bn� exp�e�n� jtj��

� Re
1

1ÿ exp�2eÿ b� exp�ejtj� ;

which clearly implies that Y is tempered. h
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3.3 Step 3: Invariant measures of a hierarchical system of a�ne SDE

We return to the setting of a hierarchical system of a�ne SDE in-
troduced above (see Theorem 3.12), and determine its invariant
measures.

So let �Un�t��t2R be the linear cocycle in Rdn generated by (3.15).
The multiplicative ergodic theorem holds for Un, giving its Lyapunov
spectrum R�Un�. Having in mind our cohomological equations in the
nonresonant case, we assume that all these cocycles are hyperbolic,
i.e., 0 62 R�Un� for all n 2 N. Then Rdn � Es

n�x� � Eu
n�x�, where

Es
n�x� � �ki;n<0Ei;n�x� is the stable space, and Eu

n�x� � �ki;n>0Ei;n�x� is
the unstable space of Un. Denote by pu

n (p
s
n) the projection whose range

is Eu
n (E

s
n), and whose kernel is Es

n (E
u
n).

For convenience we recall the following facts [3, Section 4.3].

Lemma 3.16 Assume that the cocycle Un is hyperbolic. Then there exists
a constant bn > 0 such that

lim sup
k!1

1
k log kpu

nUn�k�ÿ1k � ÿbn ;

and

lim sup
k!1

1
k log kps

nUn�ÿk�ÿ1k � ÿbn :

We ®rst consider the a�ne SDE of order one. We recall that a
probability measure l�dx; dx� � lx�dx�P�dx� on �X�Rd ;F
B�
with marginal P on �X;F� is called invariant for the RDS u if
u�t;x�lx � lhtx P-a.s.

Theorem 3.17 Consider the a�ne SDE in Rd1

dx1t �
Xm

j�0
�Aj;1x1t � bj� � dW j

t ; �3:24�

and assume that the corresponding linear cocycle U1 generated by
dy1t �

Pm
j�0 Aj;1y1t � dW j

t is hyperbolic. Then the a�ne cocycle u1 gen-
erated by (3.24) has a unique invariant measure, namely the random
Dirac measure lx � dj1�x�, i.e., we have u1�t; ��j1 � j1 � ht. Here
j1 � js

1 � ju
1, and

js
1 �

X1
k�0

ps
1 � U1�ÿk�ÿ1�Xÿ1 � hÿk� ; �3:25�

ju
1 � ÿ

X1
k�0

pu
1 � U1�k�ÿ1�X�1 � hk� ; �3:26�
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where

Xÿ1 :�
Xm

j�0

Z 0

ÿ1
U1�t�ÿ1bj � dW j

t ; X�1 :�
Xm

j�0

Z 1

0

U1�t�ÿ1bj � dW j
t :

The sequences in (3.25) and (3.26) converge P-a.s. absolutely and geo-
metrically, and the limits js

1 and ju
1 as well as j1 � js

1 � ju
1 are tempered

random vectors.

Proof. (i) We ®rst prove the statements on temperedness. Xÿ1 and X�1
are tempered by Theorem 3.14 since a constant vector is tempered.
Hence Theorem 3.15 and Lemma 3.16 yield that js

1 and ju
1 exist and

are tempered. Thus j1 is tempered.
(ii) We now check that dj1 is invariant, i.e., that u1�t; ��j1 � j1 � ht.

This is equivalent with ps;u
1 �ht��u1�t; ��j1 � js;u

1 �ht�� for t 2 R. Using
the variation of constants representation of u1 and the fact that for
k 2 Z� Xm

j�0

Z k�1

k
U1�s�ÿ1bj � dW j

s � U1�k�ÿ1�X�1 � hk� ;

we obtain, after some rather lengthy, but elementary manipulations,

u1�t; ��ju
1 � lim

N!1
u1�t; �� ÿ

XNÿ1
k�0

pu
1 � U1�k�ÿ1�X�1 � hk�

 !

� ju
1 � ht � ps

1

Xm

j�0

Z t

0

U1�s�ÿ1bj � dW j
s :

A similar argument holds for the stable component.
(iii) The uniqueness of the invariant measure is a consequence of

hyperbolicity and is proved in [3 Theorem 5.6.1]. (
Now suppose that j1; . . . ; jnÿ1 are tempered random vectors with
values in Rd1 ; . . . ;Rdnÿ1 , respectively such that li � dji , 1 � i � nÿ 1
is the unique invariant measure of the ith equation of our hierarchical
system of a�ne SDE. We now study the nth SDE

dxn
t �

Xm

j�0
�Aj;nxn

t � pj;n�u1�t�j1; . . . ;unÿ1�t; j1; . . . ;jnÿ2�jnÿ1�� � dW j
t

�3:27�
in Rdn . Note the fundamental fact that the validity of Lemma 3.5
entails the famous substitution rule for Stratonovich integrals (see
Arnold and Imkeller [5 Corollary 1]): If g is any random variable and
W a scalar Wiener process, then u�t; g� (though nonadapted) is Stra-
tonovich integrable, and
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Z t

0

u�s; g� � dWs �
Z t

0

u�s; x� � dWs

����
x�g

; t 2 R : �3:28�

Hence the anticipative a�ne SDE (3.27) makes sense, and it generates
an a�ne cocycle un�t;j1; . . . ; jnÿ1�. We now determine its invariant
measure.

Theorem 3.18 Suppose all equations of the hierarchical system of a�ne
SDE have a hyperbolic linear part. Then each of the equations has a
unique invariant measure. This measure is a random Dirac measure
(stationary solution) whose supporting random variable can be obtained
step by step by determining j1 according to Theorem 3.17, inserting
u1�t�j1 into the second SDE, etc., where the stable and unstable
component of jn of the nth equation (3.27) is given by

js
n �

X1
k�0

ps
n � Un�ÿk�ÿ1�Xÿn � hÿk� ; �3:29�

ju
n � ÿ

X1
k�0

pu
n � Un�k�ÿ1�X�n � hk� ; �3:30�

where

Xÿn :�
Xm

j�0

Z 0

ÿ1
Un�t�ÿ1pj;n

� �u1�t�j1; . . . ;unÿ1�t;j1; . . . ; jnÿ2�jnÿ1� � dW j
t ;

X�n :�
Xm

j�0

Z 1

0

Un�t�ÿ1pj;n

� �u1�t�j1; . . . ;unÿ1�t;j1; . . . ; jnÿ2�jnÿ1� � dW j
t :

The sequences in (3.29) and (3.30) converge P-a.s. absolutely and geo-
metrically, and the limits js

n and ju
n as well as jn � js

n � ju
n are tempered

random vectors.

Proof. Since Theorem 3.12 holds, and since �j1; . . . ;jnÿ1� is a tem-
pered vector, Theorem 3.14 applies and entails that Xÿn and X�n are
tempered. Hence by Lemma 3.16 and Theorem 3.15, the series in
equations (3.29) and (3.30) have the convergence properties claimed,
and the limits js;u

n are tempered. Hence ®nally jn is tempered.
Invariance and uniqueness of jn are proved as in Theorem

3.17. (
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Remark 3.19. (i) By means of the substitution rule (3.28), j1 can also
be written as

js
1 �

Xm

j�0

Z 0

ÿ1
U1�t�ÿ1�ps

1�ht��bj� � dW j
t ;

ju
1 � ÿ

Xm

j�0

Z 1
0

U1�t�ÿ1�pu
1�ht��bj� � dW j

t ;

where the integrals exist as the P-a.s. limits of the non-adapted
Stratonovich integrals

R 0
ÿT and

R T
0 for T !1. Similarly for jn.

(ii) Again by the substitution rule (3.28), the cocycle (3.17) evalu-
ated at j :� �j1; . . . ; jn� is equal to the solution of the ®rst n equations
with non-adapted initial value j, and is the unique stationary solution
of these equations, u�t�j � j � ht, t 2 R. (
This completes the proof of Theorem 3.2. We close with an example.

Example 3.20. (The one-dimensional case). For d � 1, Hn;1 � R1

(choose the basis xne1) for all n � 2. The linearization of the SDE
dx �Pm

j�0 fj�x� � dW j is dv �Pm
j�0 Ajv � dW j whose explicit solution is

U�t;x� � exp A0t �
Xm

j�1
AjW

j
t �x�

 !
:

Hence k � A0 is the Lyapunov exponent. Further,
adnAj � ÿ�nÿ 1�Aj, and R�Un� � fÿ�nÿ 1�kg. We have nonreso-
nance for all n if and only if k 6� 0. The unique stationary solution of
the nth cohomological SDE

dhn �
Xm

j�0
��adnAj�hn � kj;n�ht��� � dW j

t

is

hn �
Pm

j�0
R 0
ÿ1 exp��nÿ 1�Pm

l�0 AlW l
t �kj;n�ht�� � dW j

t ; k > 0;

ÿPm
j�0
R1
0 exp��nÿ 1�Pm

l�0 AlW l
t �kj;n�ht�� � dW j

t ; k < 0 .

8<:
4 The resonant and small noise case

4.1 Resonant case

If 0 2 R�Un� we cannot guarantee anymore that the cohomological
equation (2.11) of order n has a solution for any right-hand side.
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Assume for simplicity that U has simple spectrum (all Lyapunov ex-
ponents Ki are di�erent, equivalently all Ei are one-dimensional).
Then by [5, Theorem 9], the linear SDE (2.1) can be diagonalized by
means of a random (anticipative) coordinate transformation
wt � P �htx�vt, so that the linear cocycle

W�t;x� � P �htx�U�t;x�P �x�ÿ1 � diag�w1�t;x�; . . . ;wd�t;x��
has the same spectrum as U, is diagonal, and has generator

dwt �
Xm

j�0
diag�Qj�u1�ht���; . . . ;Qj�ud�ht����wt � dW j

t ; �4:1�

where Qj�u� � hAju; ui, and F � �u1; . . . ; ud� is a basis of random
eigenvectors such that ui 2 Ei. The anticipative Stratonovich SDE
(4.1) makes sense. Further, all adnAj become diagonal matrices in this
basis (see Remark 1.1), so that the random cohomological equation
(2.11) decouples into D scalar SDE. Recall that for n � 2,
R�Un� � fKi ÿ �K; s� : Ki 2 R�U�; jsj � ng.

If �i; s� is such that Ki ÿ �K; s� 6� 0 we put dGi;s
n � 0, and solve the

corresponding a�ne cohomological equation as usual. If for some
�i; s�, Ki ÿ �K; s� � 0 (resonance of order n) we make the convention to
choose hi;s

n � 0, hence dGi;s
n � dKi;s

n , i.e., we will not try to simplify Gi;s
n

(which will only be possible in rare exceptions anyway). We call the
result of this procedure after N steps normal form of order N . The
formal handling of the hierarchical system of anticipative SDE can be
justi®ed as in the nonresonant case which we refrain from making
explicit here.

4.2 Small noise: a case study

The engineering and physics literature on stochastic normal forms has
worked exclusively in a center/stable situation, and with a smallness
parameter multiplying the noise terms, thus obtaining a stochastic
normal form as a small perturbation of the deterministic one.

We will now connect our general approach developed in the pre-
vious sections (which is independent of any smallness assumptions)
with the existing physics and engineering literature by presenting a
stochastic analogue of a very successful procedure proposed by Elp-
hick et al. [13] for simultaneously obtaining the normal form, elimi-
nating the stable variables from the center equation, and determining
the center manifold. This was done for random di�erential equations
by Arnold and Xu [9].
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We are now in a position to carry this procedure over to the SDE
case. We will, however, not repeat details and just emphasize that all
nonresonant (anticipative Stratonovich) cohomological equations in
the SDE analogues of Theorems 2.1 and 3.1 of [9] are solved as in the
nonresonant case of section 3, and, following our convention made in
subsection 4.1, for all resonant equations we make the trivial choice
hn � 0 for the random transformation. This mathematically rigorous
procedure ®nally justi®es earlier important work on normal forms for
SDE quoted at the beginning of this article.

We now discuss the following application: In stochastic bifurcation
theory one needs to study an SDE

dxt � f0�xt; a�dt � r
Xm

j�1
fj�xt; a� � dW j

t �4:2�

in Rd , where the smooth vector ®elds fj�x; a� smoothly depend on a
parameter a 2 Rm, and r 2 R is a (small) intensity parameter. We
assume that fj�0; a� � 0 for all a 2 Rm, so that the linearization of
(4.2) is

dvt � A0�a�vtdt � r
Xm

j�1
Aj�a�vt � dW j

t ;Aj�a� : � Dxfj�x; a�jx�0;

0 � j � m :

Assume further that for �a; r� � �0; 0� the deterministic linear equa-
tion

_v � A0v; A0 � Dxf0�x; 0�jx�0
is in a center/stable situation (no eigenvalues with positive real part)
and has been brought into Jordan canonical form by a (deterministic!)
coordinate transformation, so that Rd � Rdc �Rds is the invariant

splitting for A0 � Ac
0 0
0 As

0

� �
into a center and stable part.

We treat �a; r� 2 Rm�1 as a small parameter and seek the normal
form and center manifold reduction for small �x; a;r� as a polynomial
in �xc�p�xs�qalrr. All cohomological operators (hence all linear cocy-
cles) are now deterministic and of the form

dLn�hn� � dhn ÿ �adnA0�hndt :

We add the trivial equations da � 0 and dr � 0. The result is given by
the (rather obvious) white noise analogue of Theorem 3.1 of [9] and is
(omitting remainder terms) as follows: The center variable satis®es

dxc
t � Ac

0x
c
t dt �

Xm

j�0
gc

j�ht�; xc
t ; a; r� � dW j

t ; dat � 0; drt � 0 ;
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where gc
j is a random polynomial of order N in xc and M in �a;r�, and

the (approximate) stochastic center manifold is given by its graph

Rdc �Rm�1 3 �xc; a; r� 7! mc��; xc; a; r� 2 Rds ;

where mc is a random polynomial of order N in xc and M in �a;r�.
The prototypical Du�ng-van der Pol oscillator

�y � ay � b _y ÿ y3 ÿ y2 _y �4:3�
under the in¯uence of parametric and additive noise has been the
subject of numerous investigations (see Arnold, Sri Namachchivaya
and Schenk-HoppeÂ [7], Schenk-HoppeÂ [17, 18, 19] and the references
therein). For a < 0 ®xed and b the bifurcation parameter, the system
(4.3) exhibits a Hopf bifurcation for b � 0. For b < 0 ®xed and a the
bifurcation parameter, it undergoes a pitchfork bifurcation at a � 0.

To reduce complexity, we will treat a particular case of parametric
noise: Let the parameter a be replaced by a� r _W , where _W stands,

as usual, for white noise, and r is a strength parameter. With x � y
_y

� �
,

the perturbed version of (4.3) is

dxt � 0 1
a b

� �
xt � 0

ÿx31;t ÿ x21;tx2;t

� �� �
dt � r

0 0
1 0

� �
xt � dWt :

�4:4�
Here W is a two-sided one-dimensional Wiener process. The lineari-
zation of (4.4) at x � 0 is

dvt � 0 1
a b

� �
vtdt � r

0 0
1 0

� �
vt � dWt : �4:5�

The pitchfork scenario under small random perturbations

Put for simplicity b � ÿ1. Then the eigenvalues of the linear part of
the deterministic equation (4.4) (r � 0) are �ÿ1� ��������������

1� 4a
p �=2. We

treat �a; r� as a small two-dimensional parameter and will determine
the simultaneous stochastic normal form and center manifold reduc-
tion of (4.4) for small x, a and r.

The (formidable) calculations are formally the same as in the real
noise case (just replace in [9] n�t� by _W , with all the obvious conse-
quences). We introduce the auxiliary processes U , V , X , and Y which
are the unique stationary solutions of the scalar SDE

dUt � ÿUtdt � dWt; dVt � Vtdt � dWt ;

and

dXt � ÿXtdt � dUt; dYt � ÿYtdt � Ut � dWt :
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Note that V anticipates the future of W . The resulting center SDE (up
to terms of order 3 in xc and 2 in �a; r�) is

dxc
t � �aÿ arUt ÿ a2�xc

t dt � �rÿ r2Ut ÿ ar�xc
t � dWt

� �ÿ1� 2rUt ÿ r2�3UtVt � 4Yt � 2Ut � U2
t �

� 3aÿ ar�15Ut � 7Xt � 4Vt� ÿ 18a2��xc
t �3dt

� �rÿ r2�4Ut � 3Xt � Vt� ÿ 10ar��xc
t �3 � dWt : �4:6�

Note that this is an anticipative SDE since V is anticipative.
The approximate center manifold is the random function

�xc; a; r� 7! mc��; xc; a; r� � xs given by

mc��; xc; a; r� � �ÿ
���
2
p

rU0 � 2
���
2
p

r2Y0 ÿ
���
2
p

a

� 2
���
2
p

ar�U0 � X0� � 2
���
2
p

a2�xc

� �
���
2
p
ÿ

���
2
p

r�4U0 � 3X0�
� r2Hs

3002 ÿ 7
���
2
p

a� arHs
3011 ÿ 47

���
2
p

a2��xc�3 ;
where Hs

3002 and Hs
3011 are certain anticipative random variables which

are very complicated functions of lower order terms.
The computational e�ort for these results is enormous and could

only be accomplished by using the computer algebra program MA-
PLE. There are 106 cohomological equations to be solved to deter-
mine the coe�cients. For the real noise case, these cohomological
equations ®ll 18 pages and can be found in an appendix to a reprint
version of [9].

The scalar SDE (4.6) can now be utilized for stochastic bifurcation
theory of the two-dimensional SDE (4.4), similarly as in Arnold and
Boxler [4].

For example, linearizing the SDE (4.6) at xc � 0 gives the scalar
SDE

dvt � �aÿ arUt ÿ a2�vtdt � �rÿ r2Ut ÿ ar�vt � dWt

which can be explicitly solved to give its Lyapunov exponent

kc�a; r� � aÿ a2 ÿ r2 lim
t!1

1

t

Z t

0

Us � dWs � aÿ a2 ÿ r2

2
;

where we have used Z t

0

Us � dWs �
Z t

0

UsdWs � t
2

and
R t
0 UsdWs=t! 0 P-a.s. This is in full agreement with an asymptotic

formula for the top Lyapunov exponent k1�a; r� of the two-dimen-
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sional linear SDE (4.5) (for b � ÿ1) by Pardoux and Wihstutz
[16, Theorem 5.3] which gives

k1�a;r� � kc�a; r� � O�r4� :
In particular k1�0; r� � ÿ r2

2 � O�r4�, hence the disturbed system is
still stable at the deterministic critical value a � 0, and the stochastic
pitchfork bifurcation (bifurcation of two new invariant measures from
the trivial reference measure d0) is delayed to the parameter value

ac � r2

1�
����������������
1ÿ 2r2
p � � � � � r2

2
� � � � :

at which k1�ac; r� � 0.

The Hopf scenario under small random perturbations

We now assume that a < 0 is ®xed and b is the bifurcation parameter
which varies in the interval jbj < ���������ÿ4ap

so that the frequency

xd :�
����������������������
ÿaÿ b2=4

q
is well-de®ned. We follow [7] and obtain the normal form for small x,
b and r. The linearized SDE (4.5) is for r � 0

_v � 0 1
a b

� �
v ;

with eigenvalues b
2 � ixd which are purely imaginary for b � 0. We

have dimension d � dc � 2 for the center space, while the stable
component is not present. All cohomological equations are hence
resonant (in the random sense, i.e., all Lyapunov exponents vanish).
Our recipe for their solution is as follows: If in a cohomological
equation the right-hand side is random, we choose hn � 0 (hence do
not simplify gn), while if the right-hand side is nonrandom we search
for a nonrandom hn for which gn is ``as simple as possible'' by means
of deterministic normal form theory.

The truncated stochastic normal form for N � 3 and M � 1 in
polar coordinates �r;u�, x1 � r cosu, x2 � r sinu, is as follows (again
after formidable computational e�orts which we omit):

drt � b
2

rt ÿ 1

2
r3t

� �
dt

� rt

8x2
d

ÿ2r2t �
5r2t
xd
ÿ 4xd

� �
sin 2ut ÿ

2r2t
xd

sin 4ut

�
� r2t cos 2ut

�
r � dWt ;
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dut � xd � 6� 3b
4xd

r2t

� �
dt

� 1

2xd
ÿ1� 3r2t

x2
d

� ÿ1� 5r2t
2x2

d

� �
cos 2ut ÿ

r2t
2x2

d

cos 4ut

�
ÿ 3r2t
2xd

sin 2ut

�
r � dWt :

For r � 0 we recover the deterministic truncated normal form, from
which the Hopf bifurcation at b � 0 can be read o�. For r 6� 0, the
corresponding Pardoux-Wihstutz formula [16, Theorem 4.1] for the
Lyapunov exponents of (4.5) yields for ®xed a < 0

k1;2�b; r� � b
2
� r2

8x2
d

� O�r4� :

At b � 0, k2�0; r� < 0 < k1�0;r�, so that the trivial solution has al-
ready lost its stability. Stochastic Hopf bifurcation consists of the
premature bifurcation of a ®rst invariant measure from the trivial one
at b1 < 0 where k1�b1; r� � 0, and then of a second measure at b2 > 0
where k2�b2; r� � 0.
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