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1 Introduction

Let M be a complete Riemannian manifold. Let u € C*°(R x M;R) be
a solution to the wave equation on M, i.e.

2
o
Let us define the energy, (u), of u by

S(u) :%/M{K%O (0,x)

and the energy, (u;t,4), of u in a Borel set 4 (4 C M) at time ¢ by

) = /A{](gu)<t,x>

where p(dx) denotes the Riemannian volume on the manifold M.

u(t,x) = Au(t,x), (t,x) ERxXM .

2

+IVM(O,X)|2}u(dX) :

2

HW(M)\Z}M(dX) :
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Let us assume that 0 < 3(u) < co. Let

Ao = (supp u(0,-)) U (Supp <gu> (0, -)) ,

and
A(r) = {x € M;dis(x,49) >r}, r>0.

Then it is well-known that the propagation speed of wave is one (c.f.

Chavel [3] p. 198), i.e. S(u,t,A(|¢])) =0, t € R.
For each e € (0,1) and # > 0, let

I(t;e,u) =1inf{r > 0;S(u; 1, 4(r)) < e-(u)} .

We call ¢7'1(t;¢,u) the average speed of effective energy propagation.

The purpose of the present paper is to show that the average speed
of effective energy propagation of the waves satisfying long wave
length condition in some globally fractal-like manifolds is asymptot-
ically zero.

2 Main result

We say that (Q,~) is a connected countable graph, if the following
conditions are satisfied.

(1) Q is a countable set.
(2) ~ is a relation in Q satisfying
(1) o ~ o for any v € Q,
(i) if w ~ o, then &’ ~ w,
and
(iii) for any w,w’ € Q, there are n > 1,w;,i =1,...,n— 1, such
that w;_y ~w;, i =1,...,n, where wyg = @ and w, = «'.
For a conneced countable graph (Q, ~), we define a metric func-
tion do: Q x Q — [0,00) on Q by
do(w, ") = min{n >0;w; € Q,i=0,...,n,
wy=w,0, =, 0; ~w;_1,i=1,...,n} .
for any w, 0’ € Q.

Definition 2.1 An (N — 1)-dimensional Sierpinski Gasket graph, N >
2, is a connected countable graph (Q,~) given by the following.

(H Q=A{1,... ,N}Zf, where Z_ is the set of all nonpositive integers.
(2) o~ if there is an n <0 such that wp=w,, k<n-—1,
o=, k>n+1, and o}, = w,, k>n+1. Here o = {wi},
and of = {] o, )



Waves on fractal-like manifolds 475

Definition 2.2 Let (Q,~) be a conneced countable graph. Let M be a
complete Riemannian manifold, disy; be its Riemannian distance, and u
be its Riemannian volume. We say that a complete Riemannian manifold
M is a globally (Q, ~)-like manifold, if there are a constant Cy > 0,
connected open sets U, in M, probability measures p, on M and
¢, € C(M;R), o € Q, such that

(1) UpeU, = M, diameter (U,) < Cp, u(U,) < Co, ® € Q,
diSM(Uwa Uw’) < CO : dQ(CO,(,O,), w, o' €Q )
and

dﬂ(wv a)/) é CO(diSM(Uwa Uw’) + l)a w7wl € Q )
(2) supp p, C Uy, w € Q, and

Gl <D py<Cop .

weQ

(3) supp d)w CUy € Qv ¢cu > 07 fM d)(/)d:u > C(;l and |V¢w| < COv w

€ Q, and
Y bu=1,

weQ
(4) for any o, 0" € Q with ® ~ o' and u € C*(M,R),

2
‘/udpw—/udpw/ SCO‘/ Vul* du .
M M U,uU,,

Definition 2.3 A globally (N — 1)-dim Sierpinski gasket like manifold is
a globally (Q, ~)-like complete Riemannian manifold, where (Q,~) is a
(N — 1)-dimensinal Sierpinski gasket graph.

Definition 2.4 We say that a complete Riemannian manifold M satisfies
uniform local Harnack inequality, if the following is satisfied.

(ULH) For any Ry > Ry > 0, there is an ¢ = &(Ro, Ry) > 0 such that
the following assertion holds. If x € M, u € C*(B(x;R;);(0,00)) and
Au(y) <0, y € B(x;R)), then min{u(y);y € B(x;Ro)} > ¢ max{u(y);
Yy € B(x;Ry)}.

Our main result is the following.

Theorem 2.5 Let M be an globally (N — 1)-dim Sierpinski gasket like
Riemannian manifold satisfying uniform local Harnack inequality. Here

we assume that N > 2. Suppose that {u,},~, C C*°(R x M;R) satisfies
the following three conditions.
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(1) u,(t,-) € Dom(A), t € R, t — u,(t,-) € L*(M,dx) is a C*~function
int, and

82

wun(t,x) = Au,(t,x), (t,x) eRxM, n=1,2,...,

2) S(up) =1, n=1.2,..,
(3) (long wave condition) lim,_.., 2~ log(1 + ||u,(0)||,2) =0 for any
e > 0, and there is a C > 0 such that

%<aun> <C-27" n=1,2,...
Ot

Then for any a € (1,2 — (2 —2/d,) "' (1 —2/d,)),
lim 27" sup{/(t;€,u,);t € [0,27"]} =0, Ve>0 .

where d,, = (log(N +2)/log2) > 2. In particular,
limsup2™"1(2"; e,u,) =0, &>0 .

n—oo

We give the proof of this theorem in Section 5.

Remark 2.6 (Waves in Euclidean space). Let us think of waves on an
Euclidean  space R?.  Let B(x,r) denote the set
{yeR%|x—y| <r},x € RY r>0. Let £ € CF(R? R) be such that

f>0, suppf=B(0,1) and /]Rd|f(x)|2dx:1.

Then there is a unique solution v € C*(R x RY; R) such that
2
— d
@v(z‘,x) = Ag(t,x), (t,x) € R x R? |
0,)=0, —=v(0,)) =
00,) =0, £0(0,9) = f
(c.f. Petrovskii [7] Chapter 2). We have if d = 1

1 t
lﬁﬂzi/f@+ﬂ@ (LX) ERXR
—t
and if d > 2

1 8d72 t B
v(t,x) :—(d — 2)!—8td—2/0 I(x, r)r(t2 — rz)(d 3)/2 dr, (t,x) € R x RY

where  I(x,r) = I;(dd//z)/ f)r'—ds,
w2 Syl

(c.f. John [4] p. 33). Then we can easily see that
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( U supp v(t, )) N(RNB(0,3)) #0 V5>0 .

2<t<240

So again by the uniqueness of a solution we have
(supp v(2,-)) N (R?\ B(0,2)) # 0 .
Also, we have S(v) = 1. Now let
wy(t,x) = 27 (@/2D=Dnp=mg o=y - (rx) e R xRY, n=1,2,...

Then we have
0
supp 1,(0:) Usupp () 0.:) € B0,
2 n 2
o0, I = 27l

S(uy) = S(v) =1,

0 0
S — = —2ncx —_—
\s<atu,,> 2 J(atU> ,

S(up; 2 - 2", R\ B(2-2",0)) = 3(v;2,IRY\ B(2,0)) >0 .

So we see that [(2-2";&u,) >2" if we choose &= J(v;IRY\
B(2,0))/2. In particular we have

liminf(2-2") "' 1(2- 2" 6 u,) > 1/2 . (2.1)

and

So in the case of Euclidean space, even if we assume the long wave
condition, the average speed of effective energy propagation does not
converges to zero in general.

The frequency of u,(-,x) is 27" times that of v(-,x). So the wave
length of u,(-,x) is 2" times that of v(-,x). This is the reason why we
call the condition (3) in Theorem 2.5 the long wave condition.

3 Basic results

Let (Q,~) be an (N — 1)-dim Sierpinski gasket graph. Let « = 2 and
I={l,...,N}. For each n>1, let o" ={(,...,i)el
i=1,...,N}. Then it is obvious that 91" # I",n > 2. Let g: Q x Q —
{0, 1} be given by

(0, 0) = 1, ifw~dao,
N D) =20, otherwise .
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Let &y: Dom(&)) x Dom(&y) — R be a bilinear form given by

Dom(&y) = {f € C(Q,R); Zf(a))2 < 00,

weQ

Y a(@,0)(f(0) - f(0) < oo}

w,0'€Q
and
6o(f.9) = Y a(w,0)(f (@) - f(o)(g(w) - g(o)),
,0'eQ
f,9 € Dom(&)) .

For any finite subset 4 of Q, let &y 4: Dom(&) x Dom(&) — R be a
bilinear form given by

Soa(f,9) = D q(w,0)(f(@) = f(@)(g(w) — g(e)),
w,0' €4
f,9 € Dom(&y) .
Foreachn>1and w € Q, let B, = {0’ € Q; 0 (k) = w(k),k < —n}
and %4, = {B, ;0 € Q}, n > 1. Foreach 4,B € Q, we denote 4 ~ B if
there are w € 4 and o’ € B with w ~ «'. Foreachn > 1 and B € 4,,
we denote by 0J,B the set {w e B;(w(—n),o(—(n—1)),...,
o(—1)) € oI"}. For each 4 C Q and n > 1, let E,(4) = U{B € %,;
A~ B}. Let (u), denote #(4)" > weq u(x) for any u € C(4;R) and
subset 4 of Q.
For each n > 1, let

I = Sup{Z(u(x) — (u)p)*;u € C(B;R), Eop(u,u) = 1,B € @n} .

xeB

For any B,B’ € %, with B ~ B and B # B/, let 6,(B,B’) be given by

0,(B,B') = sup{N"({u) — (u)p)’s.
u € C(BUB';R), 80 pup (u,u) =1} .

Furthermore, let ¢,, n > 0, be given by
o, = sup{o(B,B);B,B' € #,,B~ B ,B+#B} ,
and let JV,SD),n > 1, be given by
APV = sup{N" - (u)p;u € C(B;R),B € By,uly 5 =0,605(u,u) =1} .
For any subsets 4 and B of [" with ANB =), let
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R(4,B) = min{&o(u,u);u € Dom(&o),ul, = 1,ul, =0}"" .
Here we used the convention that min () = co. For any n > 1, let
R, = nf{R(B,Q\ E,(B)),B € %#,} .
Then we have the following (c.f.[6]).
Proposition 3.1 Let p = N + 1. Then there are cy,c; > 0 such that
(1) co-p"<o,<cr-p", n>2,
) co-pp" <AP) <er-p, n>2

B) co-p"<ipn<cr-p", n>2,
@) co-p"NT"<R,<ci-p"N7", n>2.

By [6] Theorem 7.2, we have the following.

Proposition 3.2 There is a constant c; € (0,00) such that
u(w) — u(e))* < ex(N"p")Eos(u,u), o, €B
Sfor any u € C(B;R),n > 1, and B € %,.

The following result is easy.

Proposition 3.3 There are constants c3,ca,cs € (0,00) such that

l. do(B,Q\E,B)) >c3", ¥Yn>1,BE€ R,

2. max{do(w,0);w,0" € B} <cqo", Vn>1,B € B,,

3. ¢so" <min{dg(w,®);w € B,/ € Q\ E,(B)}, Vn>1, B€ %,.
Now let M be a globally (N — 1)-dim Sierpinski gasket like Ri-

emannian manifold satisfying uniform local Harnack inequality. Let

us denote by A the self-adjoint extension of the Laplacian operator,

too. Let Dom(&) = Dom(v/—A) and &: Dom(&) x Dom(&) — R be

given by

g(u,v):/ Vu-Vvdu, u,ve Dom(é&) .
M

Let T: C*(M) — Cp(Q) and S: Co(Q) — C;°(M) be linear operators
given by

(Tu)(w)—/Mudpw, weQ, ueCyrM),

and

(S)(x) =D v(w),(x), xeM, veCo(Q) .

weQ

Let us denote U(4) = UyeaU,, for any subset 4 of Q.
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By Definition 2.2 we have the following result.

Proposition 3.4 There is a constant C; € (0,00) such that

1. &(Sv,Sv) < Cp-&Ep(v,v), ve CH(Q),
2. &op(Tu, Tu) < C ~fU(B) IVu)?, ue Cy (M), for any n>1 and
Be 4,

By Proposition 3.3 and Definition 2.2 (1), we have the following
result.

Proposition 3.5 There is an ng > 1 such that

dlSM(U(Q\En(B), U(B)) >2Cy, VBE %, n>ngy.

The following global Harnack inequality is the main result in this
section.

Theorem 3.6 There is an €; > 0 such that the following assertion holds.
If n>ny, BERB,, uc CU(E}(B));(0,00)) and Au(y) <0, y€
U(E3(B)), thenmin{u(x); x € U(B)} > ¢ - max{u(x);x € U(B)}, where
EN(B) = E,(B), and EX(B) is defined iteratively by:

E\(B) = EL(EX(B), k>2

Proof. By Proposition 3.1 (4), we see that for any n > 1 and B € %4,
there is a &,p3€ Co(Q) such that &o(&,p, Enp) < Micy'p™"N",
Eip(w) =1,0 €E, (B), and &,p(w) =0, € Q\ E2(B). Let 1,5 =
S(&up) € C°(M;R). If n > ng, then by Proposition 3.5 and Defini-
tion 2.2 (3), we see that n,3(x)=1,x€ U(B), and #,z(x) =0,
x € U(Q\ E3(B)). By Proposition 3.4 we can see that

EMypsNnp) < C1M§calp_”N” .

Now let us assume u € (U(E3(B);(0,00)) with Au <0. Note that
U(Q\ E}(B)) UU(E3(B)) = M. Then,

1
/ni,glv(logu)l2 dp = —/ nﬁyBVu-V<—) du
M M u

1
= / s~ Audp + / (n,5V(logu) - Vi, 5) du
M u M

12
< ( /M ni,Bwaogu)qu) s i) |

which implies that

/ IV (logu)|* du §/ 11,217B|V(10gu)|2du < CiMiey'p™"N" .
U(B) M
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By Proposition 3.4 we have
&o(T(logu), T(logu)) < CiMic,'p™"N" .

Thus, by Proposition 3.2 we know that

IT(logu)(w) — T(logu)(e)| < e3CiMocy ', w,0/ €B .
By the assumption (ULH) and Proposition 3.5 we see that
min{u(x);x € U{w})} > &(Cy,2C)) max{u(x);x € U{w})}, o € Q .
Therefore,
[ logu(x) — logu(y)| < c3C1Mocy > — 21og £(Cy,2Co), x,y € U(B) .
This implies the desired result. O

Now let {P;x € M} be the family of probability measures on
C([0,00); M) induced by the Brownian motion on M starting at the
point x € M. For any measurable set 4 in M, let o : C([0,00);
M) — [0, 00] be given by

o4(w) =1inf{t > 0;w(t) € 4,w € C([0,00); M)} .
We have the following result.

Proposition 3.7 There are constants C,, C; € (0,00) such that for any
n>ngand B € 4,,

Cop" < E™ [oypusny] < C3p", x€ U(B) .

Proof. For any bounded open set G, let ¢s(x) = E> a6l x € M.
Then we see that o5 < 6¢, if G C G'. Moreover, if a bounded open set
G in M has a smooth boundary, then ¢ is the unique solution of the

PDE:
{A(JSG(x) =-1, x€aq,

ds(v) =0, yEM\G .
Hence,

2
/qﬁcdu:sup{(/ ud,u> ;ueCgo(M;R),u]M\G:O,é”‘(u,u):1} .
M M

Using this we can show that
2
sup{ (/Mudu> ju € CSO(M;R),u\M\U(En(B)) =0,6(u,u) = 1}

< / banues) M (3.1)
U(E.(B))
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and

¢ 4(p)) At
/U ey UE®)

2
< sup{ </Mudu> su € Co° (M5 R), ulyp y(gs(py) = 0,6 (u,u) = 1} .

(3-2)

By Proposition 3.1 (2), we see that there is a function fec (B R) such

that  fl,5=0,605(f.f) =1, and N"(f)5 > (co/2)p".  Let
f e C(Q, R) be given by f|, = f and flas = 0. By Proposition 3.4
and Proposition 3.5 we see that Sf|y yz,5) = 0 and &(Sf,Sf) < Ci.
By Definition 2.2 (3), we also have

2
(/ Sf du> > C2 - N¥(f)5 > (2C3) ey - N"p" .
M
Thus,
(2G3C1) eo - N"p" S/ Panue(s) A1 - (33)
U(E(B))

Let u € C3°(M;R) satisfy: uly g5z =0 and &(u,u) = 1. Then we
have Tulg, \es(p) = 0 and & (Tu, Tu) < C;. By Definition 2.2 (2), we see
that [, u du < Cy -3, cq(Su)(w). However, by Proposition 3.1 (1) we
see that

< (C1C1—1)1/2(ann)1/2 (34)

> (Su)(@) = (Su)(w)

weB’ weB”

or any B',B" € %,. Therefore, there is a constant C4 € (0,00), inde-
pendent on n > ny, B € %, and u, such that

> (Su)()

weQ

< C4(ann)l/2 )

This implies that
/ Panu(es sy A1 < (CoCa)*N"p" . (3.5)
U(Eq(B))

It is obvious that
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E,(B))- mi
WEN(B)) - _mmin  dunuiess)

S/ bun\v e (8) A1
U(E(B)) \EE)

< u(E,(B)) ‘xelf]r(lg’(ilg)) Panue ) - (3.6)

Thus we get the desired result from (3.3), (3.5), the assumpion (M-1)
(1) (3) and Theorem 3.6. This completes the proof. O

Proposition 3.8 There is a constant Cs € (0,00) such that
E [UM\U(E;:(B))] <Cs-p", xe€ U(Ei(B))
for any n > ny and B € A,,.

Proof. As in the proof of Proposition 3.7, we can show that there is a
constant Cs € (0, 00) such that

EF;C [O-M\U(EB(B/))] < Cﬁpn, X € U(Bl)

for any n>ny and B’ € 4,. Note that E}(B) C E)(B') for any
B' C EX(B). Thus we have the desired assertion. O

We will use an idea due to Barlow-Bass (see the proofs of [1]
Proposition 4.4 and [2] Proposition 3.3) to prove a nice estimate for
hitting time.

The following lemma is due to Barlow-Bass [1] Lemma 1.1.

Lemma 3.9 Let X,Y:,...,Y, be non-negative random variables satis-
fying n
X>>Y"v,
i=1

P(Y; <slY;,j=1,...,i—=1)<p+bs, i=12,...,n, s>0,
where 0 < p <1 and b > 0. Then
P(X < s5) < exp(2(bns/p)'* —n-logl/p), s>0 .
Proposition 3.10 There are constants p € (0,1) and b > 0 such that
PomuEsp) < p's) <ps+b, s=0
for any x € U(B),B € %, and n > ny.

Proof. Note that
Cop" < E¥[mmnviens >]
< p"s + EN[E"0 [oyn vy ] ownvesm) > 0]
<p's+Cs- n(l P(UM\U 5) < p's)) -
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By letting p = 1 — C5'C5 and b = C5'!, we have the desired result. (]

Combining Lemma 3.9 with Proposition 3.10 we can get the fol-
lowing result.

Corollary 3.11 There are constants p € (0,1) and b > 0 such that

Py (O-M\U(Eff"(B)) < pts) <exp (Z(bmS/P)l/2 —m-logl/p), s>0
for any m > 1,x € U(B),B € %y and k > ny.

Now let d,, = log p\ log o, where d,, is sometimes called the random
walk dimension.

Proposition 3.12 For any v € (1,d,,), there are ¢(v) > 0 and n(v) € N
such that

Pu(osnuie,my < 2") < exp (= e(v) -l o)
for any x € U(B),B € %, and n > n(v).
Proof. By Proposition 3.5 we see that there is a C; € (0, 00) such that
E;™(B) C E,(B) for any B € #,,n >k > no and m < C;0"*. By Cor-
ollary 3.11 we have
Pe(om\uie,m) < ")
< exp (2(bCo KTk /p) 12 ok og 1/p)
= exp ( _ OC(n_k)/2{O((n_k)/2 10g l/p _ 2(bC7/p)1/2OC(m_kdw)/2}) .
Let k= (dy—1)"'(v= Dn+r. If §(loghya™/? > 2(bCr/p)" a2,
we have
Pe(oaue,m) < o) < exp (— ((log1/p)a"/2)al b/t
This then completes the proof. O

4 Inverse of Laplace transform

In this section, we think of inverse of Laplace transform. The idea
here is due to Bernshtein’s proof on Weierstrass’ polynomial ap-
proximation theorem. Let O,,x € [0, 1], denote the probability mea-
sure on Q={0,1}" such that O.@kk)=1=xkeN, and
o(k),k=1,2,..., are independent under Q,(d®). Let p,:[0,1] —
[0,1],n € N, be given by
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Then we have the following result.
Proposition 4.1 (1) p,(x) < p,(v) for any x,y € [0, 1] with x < y.
n -1
) pa(x) =220 21 < l>xl(1 —x)"

3) 2u®) = i IV (5) (=1Yhxe 0, 1lmeN.

Moreover,

n k—([n/2]+1)
> (G % )y
k={n/2)+1 ( k = \J

(4) pn(x) +pn(1 _x) =lxe [07 l]a l'f}’l is odd, Cmdpn(x) +pn(1 _x) =
1= (Gp) 27" x€[0,1],if nis even.

Proof. (1) Note that for x,y € [0, 1], the law of {@(k)®'(k)};~, under
0,(d®) ®0,(d®") is the same as Q,,. Thus

ICOLICE ;] <pl)

<3, neN.

Pa(xy) = O ® Oy

This proves the assertion (1).
The assertion (2) is obvious. The assertion (3) and (4) follow from
the assertion (2). This then completes the proof. O

Proposition 4.2 (1) p,,(1/2 +n1/2 ) — ¢g(x) as n — oo for any x € R,
where g(x) = [*_ (2/m)"? exp(—=2)?) dy, x € R.
(2) There are € > 0 and C > 0 such that

(3 - n~12x ) < C-exp(—e x?)

for any n € N and x € [0,n'/2/2].
(3) sup,n'/2 - [§ e =} pl(x) dx < oc.

4 supnnl/z{fol/zx DPu(x) dx + fll/Zx*I(l — pu(x)) dx} < 0.
Proof. (1) Let ¢, (& x) = E[exp(E- > 1_ (o(k) —x))], ¢ € R. Then
¢, (&%) = {x-exp(¢(1 —x)) + (1 —x) - exp(—<&x) }*
— {12 Y (1 —x) + (1 —x) - Y(~&0))"
where (&) = ec — 1 — ¢, ¢ € R. In particular,
¢, (n2E L+ 07 2x) — exp(E2/8)

as n — oo. We remark that

/ e “g(x)dx = e’ /8
R
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- 1
EC2 1 exp (nl/zé (Z (k) — (5 + n1/2x> ) )
=1

= ¢n (n_1/2£a % + n_l/zx) .
Hence by the definition of p,(x), we then know that
pa(3+n7"%x) = g(x)

as n — oo for any x € R. This proves the assertion (1).
(2) Since there is a d € (0,1) such that (&) < &,|¢] < J, we see
that

¢, (n7'PEx) < (14 E/n)"<exp(&), gl <on'?, 0<x<T .

Hence,

ool ()

< exp(—&x) - g, (— 2L —nVx)

and

<exp(—&-x+ &)

for 0 <1—n"12x <1 and |¢| € [0, 6n'/?]. Therefore, by letting & =%,
we get

D (% — n_l/zx) < exp(—x2/4)
if x € [0,0n'/2/2).

By Cramer’s large deviation theorey (c.f. Stroock [§8]), we have

limsupn 'logp, (L —€/2) <0, Veel[s,1] .

n—oo

Thus there are C > 0 and £ > 0 such that

(3 —€/2) < C-exp(—kn), neN, ec[d 1] .
From this we get that for x € [6n'/?/2,n'/?/2],

(3 — n~12x) < C-exp(—kn) < C-exp(—kx?) ,

which proves the assertion (2).
(3) Note that
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1
nl/z./
0
1/2

—2n1/2./

0

"4 (1

:—2-/0 x'ap,,<§—nl/2x>dx

n1/2/2 1
= 2 . / DPn <— — n_1/2x> dx .
0 2

Thus the assertion (3) comes from the assertion (2).
(4) Note that

[m—mmezlG—Dmmw,

/2 1/2

Ammwﬁzlme—ﬁmww.

By Proposition 4.1 (2) we have

v 3| s

and

n

xilpn(x) _ Z (7;>xll(1 _x)nfl Sznx[n/2] _
+1

I=[n/2]

Thus
1/2 1
n'/? / xlp,,(x)dx—i—/ x (1 = pu(x)) dx
0 1/2
1
1
< n'/?. g2l gpl/2 / X—3 ph(x)dx .
0
The assertion (4) now follows from the assertion (3).
The proof is complete. ]

Lemma 4.3 There is a universal constant C € (0,00) such that the fol-
lowing conclusion holds. For any Banach space E,n € N,T > 0 and C'
Sfunction u: [0,00) — E,

HT1 / u(t) ~p,’1<e”/T>e’t/Tdt—u(T-logZ)
0 E

< 4-p,(1/4) -sup |u()|| + Cn”' 2T -sup W' (D)]l5 ,  (4.2)
>0 t>0
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Proof. Let v(x) = u(—Tlogx),x € (0, 1]. Then,

and

00 Tlog?2

/ u(t) - palet'") di — / u(t) di
0 0

< C-n7'2T - sup |Ju(d)|| - (4.3)

>0

E

1 %)
/ p(e) dx = 1 - / u(t)e= VT gy
0

0
Moreover,

1
/0 o) (x)dx — v(1/2)

E
1

1/4
< /0 lo() — v(1/2)l - pL(x) s + /3/4||v<x>—v(l/sz-pn(x)dx

3/4
+ /1/4 lo(x) = v(1/2)]] - P (x) dx
< 4( sup o) )pa(1/4)

x€[0,1]

|
—i—n’l/z( sup Hv’(x)”)(supnl/z/
n 0

xe[1/4,3/4]

x—%' ) ds)

Since v'(x) = —T - x~'u/(—Tlogx), we get the first assertion (i.e. (4.2))
from Proposition 4.2 (3).
Note that

r {/0 GArs /0 " df}

1/2 1
:/ ox o) dr— [ o) (1 = palo)) d
0 1/2
We get the second assertion (4.3) from Proposition 4.2 (4).
The proof is now complete. O

Corollary 4.4 Let q,(x) = p)(x) + p!(x)x,x € [0,1],n € N, and C be the
constant given in Lemma 4.3. Let E be a Banach space and u: [0, c0)
— E be a C? function. Then
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HT‘Z- / u(t) - qn (™7 )e T dt — i (Tlog2)
0

< 4pn(1/4)(suop 1/ ()]l ) + Cn_l/zT(Sug 1" ()] )
> t>

forany T >0 and n > 2.

E

Proof. By Proposition 4.1 (2) we know p/(0) =0,n > 2. If n > 2 and
sup,o ([l (6)[| + " (#)]|g) < oo, we have

T‘l/ u (), (e T)e VT dt:T_z/ u(t)ga(e™/Me T dt .
0

0

Thus we get the desired result from (4.2). O

Proposition 4.5 There is a universal constant C € (0,00) such that the

following conclusion holds. For any f € L*>(M;dx) with f € Dom(A)
and open set A in M,

Tlog2
/ XA-cos(tv —A)f dt
0 L2

<3 sup{/e M- cos (V=A) f dt| 252 2nT‘1/4}
0
xCn ' PT|f N2

(4.4)
HXA'COS Tlog2\/——A f”
<n3" sup{ ’/ TR cos t\/_)fdt }L > nT‘1/4}
+43/H"|f 2+ Cn ' PT - |[V=A f||Lz , (4.5)
and
HXA - sin T10g2\/1 ﬂf”
< 2p?3" sup{H/ %4 - cos ( t\/_)fdt /1 > 17T1/4}
+4G3/N"V=A N2+ Cr PTIAS 2 (4.6)

forn>4T > 1.

Proof. Let n =[] and u(¢) = T -cos(tv/—A)f,t > 0. Since p,(1/4) =

4" Z?:[n/2}+l( )3l < (3/4) , our assertion follows from Proposit-
ion 4.1 (2), Lemma 4.3 and Corollary 4.4. O
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5 Proof of main theorem
Let P, = exp(tA),t > 0, and K, = [;° exp(—/42s/2)P, ds, ). > 0.
Proposition 5.1 [,° cos(rv/—A)e “ dt = (1/2)K;, 2 > 0.

Proof. This comes from the following fact:

/ cos(1z)e ™ dt = Re (/ e M dt) = (2 +Zz)*1
0 0

= (1/2) /O Ooexp(—izs/2) exp(—A%s/2)ds, VzER .

We also have the following result. O

Proposition 5.2 For any open sets A,B in M, T >0,4>0, and
p € [l,q],

laKisll ., < W{e’"zm +sup Aty < 7]+ sup Afes < T]} .
RAS xXe

Proof. For any f € L>(M;R,du), we have
(14Ko281) (%)
= y,(x) - E% [exp(—/lzag) /OC e_izs/zf(co(ag +5)) ds]
0

< sup E% [exp (= 2215)] x (2472)||f]]

x€A
- 2,1—2{e—”/2 +sup P < T]}IIfHLx |

Thus, the assertion is valid for p = co. By the duality we see that the
assertion is valid for p = 1. Then our assertion follows from the in-
terpolation theory. O

Corollary 5.3 For any ¢ € (0,d,,/2), there are constants C,c € (0,00)
such that the following conclusion holds. For any n € N and open sets
A,B in M with dis(4,B) > o",

sup{‘/ (4 cos (t\/—A)XB)e_)"dt
0

< Cexp(—c- OC(1—2¢/dw)n) '

Proof. Let v=1+2¢(1 —d;'). Then we see that v € (1,d,),v — 2¢&
= 1-2d;'¢ and (d, — 1) '(d, — v) = 1 — 2¢/d,,. Thus our assertion

iA > oc_é”}

L2—]?
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comes from Proposition 3.12, Proposition 5.1 and Proposition 5.2.

|
Proposition 5.4 Let a € (1,d,,/2) and b € (1/2,d,,/2), and assume that

dy,+2(d, —2)b
. 5.1
2(dy — 1) (5.1)
Then there are constants C,c € (0,00) such that the following conclu-

sions hold for all n € N, open sets A,B in M with dis(4,B) > o, and
f € Dom(A) with supp f C B,

sup (]| [ 7a-cos (v R)ras] T € 0,27}

b<a<

< Clexp (—c a2V £ || f )2}
(TV=A)f2:7 € [0,2"]}
< C{exp (—c- o2 )],

+ exp(—coc (a=b) ”)HfHLz —i—ocb”{

Lz} I

and
sup {||x4 - sin (TV=A)V=Af| 2: T € [0,0] }
< C{exp(—c- gl 2/ dIm)| 1|,
—|—eXp(—co< a=b ”)H\/— Af L2+o<b”||Af|yL2} .
Proof. Note that

2d,,b + 2(d,, —2)b
=2b .
S TToE -
Let § = o?@?" and ¢ = 2b — a. Then ¢ € (0,d,,/2), and
1 —2¢/d, —2(a—b) =d,;{d, — 2(d,, — )a+ 2(d,, — 2)b} >0 .
This shows that n < all=2/4)" a5 n — co. If T €[0,a™], then
nT~' > o~ and /2T < o®. Thus we get the desired result from
Proposition 4.5 and Corollary 5.3. O

Now we are ready to give a proof of Theorem 2.5.

Proof of Theorem. Let f, = u,(0) and g, = %un(O). Then it is easy to
see that

uy(t) = cos (tV—=A) f,, + /[cos (sV—=A)g,ds, t>0 . (5.2)
0
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This implies that

O alt) = sin (tV=A)V=Af, +cos ((V—=A)g,, t>0, (53)

ot
Sun) = H V—Afy L2(dp) + HgnH[}(dﬂ) ) (5.4)
and
0 5 5
%(aun) = HAanLz(du) + H _Ag”HB(dH) . (55)
Note that

2k — (2-2/d,)"" (1 = 2k/dy) < dy— (2—2/d,) " (dy— 1) =d,/)2 ,
and
2 — (2 —2/d,) (1 = 2k/d,) > 2k — (2 — 2/d,) " (2 — 2k /d),) = K

Then, for any a € (k,2x— (2—2/d,) ' (1 —2k/d,)) there are
a,b € (1/2,x) such that (5.1) holds. Let

A, = {x € M;disy, <x,{(supp u,(0,-)) U (supp %un(o, ) }) > 2oc”} ,
and
Ay, = {x € M;disy (x,supp (f,) U (supp g,,)) > o'},

and let 0 = {2(a—b)} A {1 —2(2b — )/d } > 0. Then, by Proposi-
tion 5.4 we know that there are Cy, ¢y € ( ) such that

sup{ (/ Jun (1) d# 1€ (0,0 }
4,

< Co[exp(—coo™) {[[ua (0)],2 + S(ata)*} + oS ()]

as n — oo, and
) 1/2
d,u) it €0, oc‘”’]}

p{( [l

=)
gco[exp( ){nun( >||Lz+%<un>”2+d(%”">m}

+ ab"%(u,,)l/z] = O(a 7Py | (5.7)
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as n — oo.
Now let ¢,: M — R be given by

¢n(x) = {(e"disyx, (supp f») U (supp g)) = 1) VOIA,  xeM .
Then we have |V¢,| < o™, a.e. x € M. Note that

/ V()P
Ap
2
< /M 62| Vun ()]
:—/ qbnu,,(t)Au,,(l)d,u-l-/ unV(bn'vuﬂd:u
M M

1/2 P 5 12
g{ \una)\zdu} {/ du}
i M

@un(t)
12
+ a”{/A/ |un(t)]2d,u} H\/—_Aun(t)HLz(du)

1/2 5 \!~2
< { \un(t)\zdu} {s<—u> —i—oc"%(un)l/z} .
A ot

Thus, by (5.6) we have

sup{ /A n |V, (1) [P d s t € [O,oc‘”’]} = O(oc_("_b)”) , (5.8)

as n — oo. By (5.7) and (5.8) we then have

lim sup(2o") " sup{/(t; e,u,);1 € [0,0”]} <1, €>0
for any a € (1,2k — (2 —2/d,)" ' (1 — 2x/d,,)). This implies the de-
sired result.
The proof of Theorem 2.5 is complete.

6 Remark on general recurrent fractals

So far we think of Sierpinski gasket graph. However, our method
works on more general fractals.

Let a > 1 and I ={1,...,N}. Let {;;i € I} be a family of o-si-
militudes in RP?, ie. s are maps on IR” satisfying
W, (x) — ;(»)| = a~tx — y| for any x,y € RP. Then it is well-known
that there is a unique non-void compact set £ in RR? satisfying
E = Uiery;(E). Let us assume the following.
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(A-1) (the open set condition) There exists a non-void open set }J such
that Uiy, (V) C V, and y,(V) N, (V) = 0 for any i,j € I with i # j.

Then y,’s, i € I, have distinct fixed points, and the Hausdorff di-
mension of the set £ is dy, where dy = (log ) (log N).

NowletZ_. ={leZ;l<—1}andletQ={w: Z_ — L;o(—k) =1,
k > n for some n > 1}. We regard Q as a topological space with dis-
crete topology. It is easy to see that for each w € Q there is a map
¥,: RP? — R? given by

‘pw(x) = nh_)n(;lo lp;nlpw(fn)l/j(l)(fn+l) e lpw(fl)(x% X € R” .

Let us take a dy € [0,dy) and fix it throughout this section. We in-
troduce a relation ~ on Q by the following. 3

o ~ ' if the Hausdorff dimension of ,(E) Ny, (E) is greater
than or equal to d

For each n > 1, we define 0" to be the set of { € I” such that there
are o, € Q for which Y, (E) Ny, (E) # 0, w(k) # o' (k) for some
k < —n—1 and that {o(—k)},_, = &

We also assume the following.
(A-2) There is an n > 1 such that 01" # I".

Let ¢: Q x Q — {0,1} be given by

(0, 0) = 1, fow~do,
1D, 0) = 0, otherwise .

Now we define 4,, g,, (D)

s Ry, n > 1 as similar as in Section 3.
We now make the following strong assumptions.

(A-3) There are p > N and c¢g, c; > 0 such that

Mey-p"<o,<cr-p", n>1,
Q) co-p" <AP) <er-p, n>1,
B)co-p" <in<ecrep', n>1,
@ co-p"NT"<R,<c1-p"N", n>1.

Remark 6.1 (1) The assmption that p > N is related to the recurrence
property.

(2) By [6] Theorem 7.16 and the discussions given in [6] Section 7, we
see that if the assumptions (R), (KM), (LS) and (B-1) in [6] are
satisfied, then the assumption (4-3) is satisfied.

Finally, we assume the following.

(A-4) There are constants ¢4, c¢s € (0,00) and y € [1,00) such that

(1) max{dao(w,0);w, 0 € B} < csa™, Yn>1, BE B,,
(2) cso™ < min{dg(w,);w € B,/ € Q\ E,(B)},Vn > 1, B € B,.
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Remark 6.2 Kumagai [5] proved that the assumption (4-6) is satisfied
for any nested fractals. The assumption (4-6) is a geometrical as-
sumption, and so is easy to check for each fractal.

Then we can regard (Q, ~) as a connected countable graph. We can
prove the following similarly to Theorem 2.5.

Theorem 6.3 Let M be an (Q, ~)-like manifold satisfying uniform local
Harnack inequality. Suppose that u,: R x M — R, n=1,2,..., satisfy
the following conditions.

(1) u,(t,-) € Dom(A),t € R; t — u,(t,-) € L>(M,dx) is a C*-function

in t and
82
@un(t,x) =A,(t,x), (t,x)eERXM, n=12 ...,

2) S(u,) =1, n=1,2,...,

(3) (long wave length condition) lim, ., o~ log(1 + [|u,(0)|;2) =0
for any € > 0, and there are C € (0,00) and k € [1,7(d\,/2)) such
that

%(gun> <C-a7 p=1,2,...
ot

Then for any a € (1,2k — (2 —2/d,)"" (1 — 2x/d,)).
lim o " sup{/(t; €,u,);t € [0,0™]} =0, Ve>0 .
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