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Summary. We prove a central limit theorem for strictly stationary
random fields under a projective assumption. Our criterion is similar
to projective criteria for stationary sequences derived from Gordin’s
theorem about approximating martingales. However our approach is
completely different, for we establish our result by adapting Linde-
berg’s method. The criterion that it provides is weaker than martin-
gale-type conditions, and moreover we obtain as a straightforward
consequence, central limit theorems for o-mixing or ¢-mixing random
fields.

Mathematics Subject Classification (1991): 60 F 05

1 Introduction

Let (X;),cz be a stationary sequence of random variables with mean
zero and finite variance, and write S, = Y ;_, Xi. As far as we know,
one of the best way to prove the asymptotic normality of n~'/2S, is to
approximate S, by a naturally related martingale with stationary
differences. More precisely, assume that the sequence is ergodic and
that n='E(S?) converges to a strictly positive o2, then S, behaves as-
ymptotically like a sum of » martingale differences, each with variance
0. Therefore, under fairly weak additional condition, the central limit
theorem can be deduced from the martingale case. This approach was
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first explored by Gordin (1969). Next, Hall and Heyde (1980), Diirr
and Goldstein (1984) or more recently Volny (1993), used Gordin’s
approach to provide projective criteria for the central limit theorem.
These criteria imply Ibragimov’s central limit theorem for stationary
and strongly mixing sequences (1962).

Unfortunately, we cannot follow this way to study stationary
random fields, because the g-algebras which naturally appear are no
more nested. Nevertheless it is still natural to ask for projective cri-
terions which imply the existence of central limit theorems for sta-
tionary random fields. This question has been partially answered over
the past few years, first by considering martingale-type conditions (see
Nahapetian and Petrosian (1992) and Nahapetian (1995)), and then
by studying the case of conditionally centered random fields (see
Jensen and Kiinsch (1994), Janzura and Lachout (1995), and Comets
and Janzura (1995) in the non-stationary case). This notion has been
first introduced by Guyon and Kiinsch (1992) in order to study the
asymptotic behaviour of a certain estimator of the interaction for the
Ising model at the critical temperature. In that case, the mixing co-
efficients have no good properties of decrease and one cannot used
any mixing theorems, whereas conditional centering applies to certain
fields subordinated to the Ising model. Conversely, it is easy to un-
derstand that martingale-type conditions as well as conditional cen-
tering may fail to hold for a large class of random fields with long
range interaction: for instance, one cannot infer from any of these
assumptions Bolthausen’s central limit theorem for strongly mixing
random fields (1982) (result recently improved by Perera (1996) in the
unbounded case).

Many proofs of these theorems are based on a method introduced
by Stein (1973). However, this method does not always lead to opti-
mal assumptions, as Bolthausen notes in Remark 1 of his article. As a
matter of fact, to control the terms which naturally appear by fol-
lowing Stein’s approach, one needs to make strong assumptions about
the moments of the random field, or to introduce some unnecessary
mixing coefficients. Stein’s method has been also used by Gordin
(1993) who proves a central limit theorem for dynamical systems. We
agree with the author when he writes in the concluding remarks of his
paper, that a natural application of his approach could be the central
limit theorem for random fields. However, until now, we are unable to
compare the conditions that it might provide with ours.

Our aim in this paper is first to propose a projective criterion
comparable to the IL! criterion stated by Gordin (1973) in the case of
stationary and ergodic sequences, and second to present a self-nor-
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malized sequence whose limit, under this assumption, is a standard
gaussian. To establish our results, we use Lindeberg’s method intro-
duced in 1922 to study independent sequences of random variables,
adapted by Billingsley (1961) and Ibragimov (1963) to the case of
stationary and ergodic martingale difference sequences, and by Rio
(1995) to the case of strongly mixing sequences. In order to exhibit our
criterion, we extend a decomposition proposed by Rio to our context.
The tools that are needed are quite different from the strongly mixing
case, because the remainder terms cannot be controlled with the help
of covariance inequalities as in Bolthausen, Rio or Perera. Since our
approach needs to be more precise, we obtain as a straightforward
consequence the o-mixing condition expected by Bolthausen (see
again Remark 1 of his paper). Another interest of this approach is that
it does not require any assumption about the ergodicity of the random
field. Consequently, the normalized partial sum sequence converges in
distribution to a mixture of gaussian law. More precisely, let .# be the
invariant g-algebra, the limit is a product of an .#-measurable variable
by an independent standard gaussian.

This paper is organized as follows: Section 2 sets up the notations
and the preliminary results which will be useful in the sequel. In
Section 3, our main results are stated. In Theorem 1 the normalized
sequence converges in distribution to a mixture of gaussian law, where
the variance term # is a positive .#-measurable random variable.
Theorem 1 provides also a consistency estimator of 5. In Corollary 1,
we give a random normalization which ensures the asymptotic nor-
mality of the partial sum sequence. In Corollary 2, we are interested in
the degeneracy of the variable . Corollary 3 is devoted to mixing
assumptions, and to be complete, Theorem 2 proposes the finite-di-
mensional version of Theorem 1. The results are proved in Sections 4,
5, 6 and 7.

2 Preliminaries

In order to develop our results, we need some preliminary notations.

2.1 Real random fields

Let us consider the space R with its borel o- algebra %#. By a real
random field we mean a probability space (IRZ AL ,IP). We denote
by X the 1dentlca1 application from RZ to IRZ and by X; the pro-
jection from RZ' to R defined by X;(®) = w;, for any w in ]RZ From
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now on, the application X, or the field of all projections (X;); .z« will
designate the whole random field (]RZ A% P IP).

For k in Z¢, T; denotes the translation operator from RZ' to RZ'
which is deﬁned by: [Ti(w)]; = w1k An element 4 of A s said to be
invariant if 7;(4) = 4 for any k in Z. We denote by .# the o-algebra
of all invariant sets. A random field is said to be strictly stationary if
Ty oIP = IP, for any k in Z“. Throughout, X is a strictly stationary
random field with E(Xp) = 0 and [E(X$) < +oo0.

On Z“ we define the lexicographic order: If i = (i}, is,...,i;), and
j={(i1,j2,...,ja) are distinct elements of Z“, the notation i <je j
means that either i; < j; or for some p in {2,3,...,d}, i, <j, and
iy = jg for 1 < g < p. Note that the lexicographic order provides a
total ordering of Z¢.

Let the sets {V¥ :i € Z? k € N*} be defined as follows:

1 . d . .
and for k > 2: Vi {JGZ ']<leXl}’

k_ pl d

vE=vIn{jez? : |i—jl| >k} where|i—j|= rg;clél|zk—1k|
For any subset I' of Z% let # be the o-algebra defined by:
Fr=o(X;:iel). To conclude this section, let us define the tail o-
algebra 7 _o = Mgen+Z p». Then, using the same argument as in
Georgii (1988) Proposmon (14.9), the following result holds:

Proposition 1. Let X be a stationary random field. Then ¥ is included in
the PP-completion of F _

2.2 Mixing coefficients

Let (Q, o7, IP) be a probability space. Given two g-algebras # and 7~
of .o/, different measures of their dependence have been considered in

the literature. We are interested by two of them. The strong mixing
coefficient of Rosenblatt (1956) is defined by:

o, 1) = sup{|P(U)P(V) — P(UNV);U €U,V €V} .

The ¢-mixing coefficient has been introduced by Ibragimov (1962)
and can be defined by:

¢, 7") = sup{|P(V|%) = P(V)||,, .,V €7} .
Between those two coefficients, the following relation holds:
20U, 97) < (U, V) . (2.1)

Mixing coefficients for real random fields.
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Let (]de, %’Zd,IP) be a real random field. The mixing coefficients
we will use in the sequel are defined by: if n € N, &k, 7 € NU {oo},

o1 (n) = sup{a(Fr,, Fr,), [T <k, |[Io[ < 1,d(I'1,T2) = n}
¢k,l(n) = Sup{(b(‘g;rlvﬁrz)v ‘r1| <k, |F2| < Z,d(r1,rz) > }’l} )

where d(I';,I2) = min{|j —i|,i € I'1,j € I[';}. For more about the
mixing properties of random fields with respect to those coefficients,
see Doukhan (1994).

2.3 Toward a new central limit theorem for stationary random fields

Let T be any subset of Z?. We denote by |I'| the cardinality of this set,
and we introduce:

Ol ={iel : 3j¢I suchthat [i—j]=1}.

If T is a finite subset of Z¢, St denotes the partial sum of the random
field X over this set: Sr = ) ;. X;. Throughout (I',), .y is a sequence
of finite subsets of Z¢ satisfying:

lim |[,[=+oc and  lim T, or,| =0 . (2.2)

n—-+400

The IL?-ergodic theorem (see Georgii 1988) ensures that |T, |7 Sr,
converges to IE(Xy|.#) in IL?. In order to prove a central limit theorem

for T, | Sr , it will be necessary to impose some conditions ensuring
that [E(Xy|.#) = 0.

Proposition 2. Let A, = [-n,n)' N Z¢. Assumptions (a) and (b) are
equivalent:

(@) lim A7) Cov(Xo, Xi) =0;  (b) E(Xo|-#) =0 as.

n—-+o00o
ke,

The condition (a) is very weak, and is automatically realized as soon
as we make some assumption concerning the dependency of the
variables. For example, if we define, for all positive integers k and all i
in Z9, Ex(X;) = E(X)|7 y+), (a) holds if we suppose that the martin-
gale-type condition IE, (XO) = 0 is realized. However, in that case, the
classical central limit theorem may fail, for this kind of condition does
not imply the ergodicity of the field. More precisely, if d = 1, Eagleson
(1975) has shown that the sequence n~'/2S, converges weakly to a
mixture of gaussian law ¢IE'/?(X2|.#), where & ~ .4°(0,1) and ¢ is in-
dependent of .#. The fact that a single variable X appears through the
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conditional expectation with respect to .# can be easily understood. As
a matter of fact, the martingale-type condition ensures that:
A TTB(SE (1) = B(X3]7) as,

In view of the martingale case, it is natural to think that the con-
vergence of \An]_llE(SfAn‘M ) may be important to obtain a central
limit theorem. This leads us to consider the condition:

> IGEL (X)) el (2.3)

1
ke,

which implies the convergence of \A,,|_]IE(S|2AW‘|J ), as shown in the
proposition below.

Proposition 3. [f X satisfies (2.3), then E(Xo|# _~) = 0 almost surely.
Moreover:

SIE(oXA)| € L' and  lim |ATE(S] 17)
kez?

=) E(XX|s) as.

kez?

3 Central limit theorems

Throughout this section, (X;),.z« is a strictly stationary random field,
with [E(Xy) =0 and E(Xg) < +o0o. (T'),cn- i @ sequence of finite
subsets of Z? satisfying (2.2).

Now let us introduce the concept of stability (Rényi 1963), which
enables us to interchange norming in the central limit theorem.

Definition 1. Let (Y,),on be a sequence of real random variables, and let
Y be defined on some extension of the underlying probability space
(Q, o/, IP). Let U be a o-algebra of o/ . Then (Y,), .\ is said to converge
A-stably to Y if for any continuous bounded function ¢ and any bounded
and U-measurable variable Z, lim,_, . E(¢(Y,)Z) = E(p(Y)Z).

Theorem 1. Assume that condition (2.3) is satisfied, and set n =
> kezt E(XoXi|-#). The following results hold:

(a) The random variable |Fn]_l/ 2Srn converges -stably to en'/?, where
e~ N(0,1) and ¢ is independent of 1.
(b) For any N in N*, set Gy = {(i,j) e Iy x I, : |i—j| < N}. Let p,
be a sequence of positive integers satisfying:

lim p, = +oo and ngrfmpidm(xg(l AGITXE)) =0 . (3.1)

n—-—+o00
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Then:

A, = \Fn|71max (1, Z X,X]> LN n .
(1./)€Gy,

As a direct consequence, we obtain the following corollary:

Corollary 1. Assume that condition (2.3) is satisfied. Then, with the
same notations as in Theorem 1, (|T,]" St ,A,) converges in distri-
bution to (en'/*,n). Assume moreover that P(y > 0)=1. Then
(A,,|1",,|)_1/2Spn converges in distribution to .

Remark 1. Let us describe an important class of random fields which
satisfies condition (2.3): let X and Y be two stationary centered ran-
dom fields. As in Jensen and Kiinsch (1994), we say that X is condi-
tionally centered with respect to YV if [E(Xy|Y;,i # 0) =0 and Xp is
o(Y;, |i| < K)-measurable for some integer K. Since o(X;,i € Vf) is
contained in o(Y;,i # 0) for k£ > K, it follows immediately that con-
dition (2.3) is satisfied. This kind of random fields has also been
studied by Comets and Janzura (1995) in the non-stationary case.
They obtain a central limit theorem, assuming that the random
variables have uniformly bounded fourth moments. It is rather in-
teresting to compare conditional centering as it is defined here with the
notion of martingale-difference random fields considered by Naha-
petian (1992, 1995).

Corollary 1 gives an example of sequence whose limit is a Gaussian
law, by choosing a random norming. Situations like this one under
which we can obtain the asymptotic normality are of a special interest.
Applying Proposition 2, the next corollary gives a condition which
ensures the degeneracy of 7.

Corollary 2. Let N be a positive number, and set: X" = (X; AN)
V(=N). Assume that condition (2.3) is fulfilled. Assume moreover that
for any k in Z¢, and any positive integer N:

i -1 N xxVN ) =
Jim A, ;COV(XOX,C XX) =0 (3.2)

Then Theorem 1 holds with: n = 6> =Y 74 E(XoXk).
Remark 2. Assume that the random variables X; have finite fourth

moments, then we do not need any truncation. In view of Proposition
2, the condition which ensures the degeneracy of # can be replaced by:

lim ]/\n|71 Z Cov(XoXi, XiXi1x) =0 for any & in /A

n——+00
€A,
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As a consequence of Theorem 1, we obtain central limit theorems
under o-mixing or ¢-mixing assumptions.

Corollary 3. Let us consider the two following assumptions:

()
Z/O 0% (W) du < oo (3.3)

kez?

where Qyx, denotes the cadlag inverse of the function Hy,: t—
P(|Xo| > ¢), and

> (kD) (3-4)

kez?

The following results hold:

(a) (3.3) implies (2.3), and hence also Theorem 1(a)(b).

(b) Under condition (3.4) Theorem 1(a) holds.

(¢) Assume that (3.3) or (3.4) is realized, and moreover that:
limy 400 022(k) = 0. Then, with the same notations as in Theorem 1,
n=0>=3 2 E(XoXy) a.s.

Remark 3. Bolthausen (1982) proves a central limit theorem for sta-
tionary and o-mixing random fields (see Guyon (1993) for a non-
stationary version of this theorem), but he fails to make assumptions
on o «, only (see Remark 1 of his paper). To compare our result with
Bolthausen’s, let us note that if ]E(|X0|2+0) < oo for some ¢ > 0, then
the condition Y >0, m?~ loc?/;+()( ) < oo is more restrictive than con-
dition (3.3).

We remark that in Bolthausen’s article, the conditional expectation
with respect to the o-algebra .# does not appear. Indeed os>(n) is
required to be asymptoticaly negligible, and this implies the degen-
eracy of n. In fact, one can see that this condition on o, »(n) is stronger
than assumption of Corollary 2, since it implies that o(Xp, X;) is in-
dependent of .# for any k in Z¢.

To conclude this section, let us state a multivariate version of
Theorem 1.

Theorem 2. Let (I';,);, , be a sequence of disjoint subsets of z°.
Assume that condition (2.3) is fulfilled. Then:

__ln 1/2
Irl,n\m en /

, 1/2
Tyl eqn'/
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where (&) ~ N(0,1d) and (&;) is independent of 1.

ic[l..q] i€[l..q]

4 Proofs of propositions and corollaries

Proof of Proposition 2. Since E(Xj) = 0 the condition (a) of Propo-
sition 2 can be expressed as follows:
11m |A,TTE(XS),) =0 .

By the IL?-ergodic theorem, we infer that condition (a) is equivalent to
E(XE(Xy|-#)) = 0, and the result easily follows.

Proof of Proposition 3. We start by proving that [E(Xy|Z _) =0 a.s.
We denote by IE,, the conditional expectation with respect to & _,
and by IE, the conditional expectation with respect to .#. By the
backward martingale convergence theorem, we know that
lim,,— 100 | Ex(X0) — Eoo(Xp)|l, = 0. Now, for any & in V'

E(|X oo (Xo)[) < E(IXk Iy (Xo)]) + [1Xo]| | Ejg) (X0) — Eoc (Xo)l,

hence [E|X;[E (Xp)| converges to 0 as |k| — +oo. Let us introduce the
set A}q = A, NV,. Applying the IL?-ergodic theorem to the random
variables |X;|, and the Cesaro mean convergence theorem, we infer
that:

IE(E; (|X0)) [ Eso (X)) = lim |AL[" Y EWGE(Xo)| =0 .
icAl

By Proposition 1 and Jensen’s inequality, [E ,(|Xo|) > E ., (E«(|Xo|)
E,(Ex(Xo)|) a.s. Hence we have that IE(IE,(|Xo|)|[Ex(Xo)]
E(|Ew(X)|Es (|Ex (Xo)|)), which ensures that E,(|E.(Xo)|)
a.s., and finally [E (Xp) = 0 a.s.

The second point is to prove that ), ¢« E(|E(XoX¢|-#)|) < +o0.
B)ll Proposition 1 and the fact that # _, C F yis We have, for all £ in
V-

) >
) >
=0

E(|EXoXi|.#)]) < E(E(XoXi| 7 o)) < E(| X By (Xo)]) -
Since [E(XoX;|-#) = E(XoX_¢|-#), we infer that:

> E(EXXe|2)) EWXG) +2 ) E(EXoX:].7)])
kez? kev)

X2 +2Z |XkIE‘k‘ X() |) < 400 .
ke,
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The last point is to prove that lim,_ ]A,,|_l]E(S/2\”|f) => ez
E(XoX;|.#). For any subset T' of Z¢ and any k in Z% Ilet
I' — k = {i — k, i € T'}. By stationarity of the random field:

|A,,|’1IE<S‘2AW‘|J) = 3" AT AL O (A — B EXoX] #)
kEAzn
Now [An| A, N (Ay — K)||E(XoXi].#)| < |IE(XoX¢|.#)], and also Y kezd
E(XoX;|.#)| < 400 a.s. Since lim,_ o0 |As] ' [Ay N (A, — k)| = 1, we
may apply the dominated convergence theorem, yielding:

lim A TE(S] 1) = D E(XoXi o) as.
e kez?

Hence the result follows.

Proof of Corollary 1. Corollary 1 is an immediate consequence of the
following lemma:

Lemma 1. Let X, and Y, be two sequences of real random variables
defined on (Q,.</,IP). Let U be a o-algebra of <. Assume that X,
converges U-stably to X and that Y, converges in probability to some %U-
measurable random variable Y. Then (X,,Y,) converges in distribution
to (X,Y).

Proof. Let f and g be two continuous bounded functions, and assume
moreover that g is 1-Lipchitz. Clearly:

[/ (X)g(Ya) = f(X)g(Y)] < If [l Elg(Ya) — g(Y)]
+ [E(g(Y)[f (Xa) = X)) -

The stability of the convergence of X, to X ensures that the second
term of the right hand inequality is asymptotically negligible, and the
convergence in probability of Y, to Y together with the fact that g is
I-Lipchitz  imply  that lim,_ . [E|g(Y,) —g(Y)| =0. Hence
E(f(X,)g(Y,)) converges to E(f(X)g(Y)) and the result follows.

Proof of Corollary 2. By Proposition 2 and assumption (3.2),
E(XoXY|#) = E(XX}Y) a.s. Now, applying the dominated conver-
gence theorem, we get that:

Nlirf E(XoX)'|7) =E(XoX¢|#) as. and

Nlirf E(X X)) = E(XoX;) -

Finally for all k in Z9: E(XoX;|.#) = E(XpX;) almost surely. Since
(2.3) is realized, we infer that:
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=Y E(XX:) and [L,[7V2S, 2 70,67
kezd

Proof of Corollary 3. First, we note that (c) follows immediately from
Corollary 2.
To prove (a), let us remark that:

E|XE(Xo)| = Cov (| Xi| (g, (x)20 — L 0x0)<0)> X0) -
By Theorem 1.1 in Rio (1993), it follows that

o o0 ([K1)
Xy, (Xo)] < 4 /O 0% (w) du .

which proves (a).
To prove (b), we need a conditional version of Peligrad’s inequality
(1983). A complete proof of this inequality will be done in Appendix.

Proposition 4. Let (Q, .o/, P) be a probability space, and U, V", F three
a-algebras of </ such that U and V" are independent of & . Let X and Y
be two random variables from (Q,.</,P) to R such that X is U-mea-
surable in P (IP), and Y is ¥ -measurable in ILY(IP), where p and q are
two positive numbers with p~' + ¢! = 1. We define Cov(X,Y|F) =
EXY|7) — EX)E(Y). Then:

Cov(X, Y|7)| < 20V(F v, 1) (v v )X IY, as.

Now, to prove the asymptotic normality, we apply the truncation
technique as in Ibragimov and Linnik (1971). Using the same notation
as in Corollary 2, let XY = (Xx AN) V (=N), and X} = X; — X}¥. We
denote by S’ the sum of the new centered field X — IE(X") over the
set I, and we set S? =3S8r, — SF By assumption the equation (3.4):
S ez Bron (IK]) < ocis satisfied. Applying (2.1), 261 ([K]) < ., ([K])
and (3.4) implies that: ), ;0 01 (|k]) < co. Now, we can apply
Corollary 3(a) to the random field XV. As a matter of fact, the defi-
nition of Oxy E(xy) as the inverse cadlag of the tail function
Hyy gy - .t - P(|XY — E(XY)| > £), ensures that Oxy_E(x)) < 2N.
Therefore:

d]x ‘kl
/ O g () du < 4Ny~ oo (k) <

kez? kez?

This means that (3.3) is realized, and Corollary 3(a) ensures that the
random field XV — E(X") satisfies condition (2.3). Consequently, the
series 3,50 Cov(X), X}Y|.#) converges in IL'. Now, set ny = >,
Cov(XY,X|.#). Let Z be any bounded .#-measurable random vari-
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able, and ¢ be a bounded 1-Lipschitz function. To obtain the theo-
rem, we have to prove that, under (3.4),

Jim E(Z[p(|0,[7"Sr,) — o(en'?)]) =0 .
Clearly:
E(Z[o(IT.~"8r,) —0 (en'?)]) =
E(Z[o(ITu"Sr,) — o (I 7'25E)])
+E(Z[o(10, 7)) — o(eny?)])

+E(Z[p(eny’) — o(en'/?)]) .

By Theorem 1(a), the second term of the right hand expression con-
verges to 0 as n — +oo. Let us now study the first term of the right
hand expression:

[E(Z[o(ITa7/2Sr,) — (I~ 2SE)])| < 120 Tu 2B ([SE]7)

Now, by Proposition 4:
L TE(SY ) < I8 daci (K] -

kezd

Since || X)'||, converges to 0 as N — oo, the first term of the right
hand expression can be chosen as small as we wish. Now, to ensure
that the third term of the right hand expression is asymptotically
negligible, it is enough to prove that limy_, %y = n almost surely.
The dominated convergence theorem implies that:
lim Cov(Xy,X'|7) = E(XoXi|.9) as.
N—+00

Let us remark that the convergence of ¢, ;(n) to zero implies that for
all k in Z%, o(X;) is independent of % _,. Therefore, applying Prop-
osition 1 and Proposition 4:

Cov(X', X'|-7) < [1Xol390c,1 (K]) as.

Since (3.4) is realized, we may apply once more the dominated con-
vergence theorem yielding:

lim Z Cov(Xy , X |7) = Z E(XoXi|-#) = n as.
kez?

N—+00
kez?

This ends the proof of (b).
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5 Proof of the main result

In this section we prove Theorem 1(a). The two main references
concerning this part of Theorem 1 are Ibragimov (1963) and Rio
(1995). From the first article, which deals with stationary and ergodic
martingales differences sequences, we get the structure of our proof.
From the second one we borrow a decomposition which can be
adapted to our case although we do not use mixing assumptions.

Notations 1. Let f be a one to one map from [I,N]JNIN* to
F([I,N]NnN*) € Z%, and (&), a real random field. For all integer &
in [1, N] we introduce:

k
Srw(&) = Z Sray and Sy () = Z $riy -
p) ;

with the convention: Sy (&) = S_;'(NH)(@ =0.

Let T be a bounded subset of Z?. To describe this set, we define the
one to one map fr from [1, |I'|]] N IN* to I by: fr is the unique function
such that for 1 <m < n < ||, f(m) <iex f(n).

Let T, be a sequence of finite subsets of Z¢, satisfying (2.2). We
introduce the sequence of one to one maps fr,. In the sequel, we will
omit the index I',,.

Notations 2. From now on, we consider a strictly stationary random
field (X;),.z« which satisfies the condition (2.3) and (&;);.z« an i.i.d.
random field independent of X, such that g ~ 47(0,1) (a classical
argument ensures the existence of two such fields). We introduce the
two sequences of fields: ¥ = |I,|""/2X; and 7" = |I,|"?&'/2. In the
sequel, we will omit the index #.

Notations 3. Let h be any Borel function from IR to R. For
0 <k <!<|Tul+ 1, we introduce: Ay (Y) = h(Spu (Y) + S5y (7))-
With the above convention: /i r,41(Y) = A(Sr(Y)) and
hoi(Y) = h(S7 (7). For sake of brevity, we will often write A, in-
stead of (7).
We denote by B}(IR) the unit ball of C§(R): & belongs to Bf(IR) if
and only if it belongs to C*(IR) and satisfies maxg<;<q4 |27 < 1.

5.1 Lindeberg’s method

Let Z be a .#-measurable random variable bounded by 1. We shall
prove that, under the assumptions of Theorem 1, for all /# in B}(R):
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~1/2g _ 1/2
nE&E@MW| Sr,)) = E(Zh(en'’?)) . (5.1)

We use Lindeberg’s decomposition:

E(Z[A(|T]""7Sr,)) — E(h(en'?)])

=E(Z[hr, r,/+1 — ho1])

Z hkk+l — hy— lk]) . (5.2)

Now:
hikrr — -1 = Picjt — P11 + hi—1 i — i1

Applying Taylor’s formula we get that:

(

5
3 B g+ Ri

Priir — hiviir = Yehi g + -5

and

Vf(k)

> B ygr + ks

Pivirt = ik = =Vruhi 11 —

where [R| < Y7, (1A |Yrl) and Jre| < P (LA [2r)-

Slnce ( ,(/ &)izry) 18 independent of Er(k)s 1t follows that
E(Zyro0Me—1541) —O and furthermore ]E(ny( Wy 401) = E(Z|T, !
xnhy_ 17k+1) We obtain:

(L]

IE(Zh(|T,|~"/?Sr, ) ~1E(Zh(en'?)) = > EZ(Ywhi1411))
I - !
(e () )
+§:]E(Rk+rk) : (5.3)
k=1

Arguing as in Rio (1995), it is easily proven that
lim,, oo S0} E(Re| + [re]) = 0.
On the other hand, if we define the random variable 71, by
=D ke, E(XoXi|#), the following upper bound [y —ny| <
ZZkeVV E|E(XoX;|-#)| holds for any positive integer N. Hence ac-
cordmg to condition (2.3), lim,_, 1 [E|# — ny| = 0, and consequently
Theorem 1(a) will be proved if we show that:
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[T
lim limsup ZIE '(k)h;cf] yas| ))

N—+0 pio00
n A1 e
2 N —1k+ _

5.2 First reduction

In this section, we focus on ZLF:{ E(Z(Y/ ()M} 1 4+1))- Since Y does not
satisfy a martingale type condition, this term has a non negligible
contribution.

Notations 4. For all N in N* and all integer & in [1,|I',|], we define:

E} =f([(LNN )NV} and SHp(Y) =) ¥ .
i€EY
For any Borel funct1on g from R to R, we define: gy =

SN Y)+S; Afterwards, we shall apply this notation to the
(k) 1)
successive derlvatlves of the function #.)

Our aim in this section is to show that:
T

hm hmsupZIE - 1k+1)

— Y5 (Sru—1) = S{u)h1501) =0 . (5.5)

First we use the decomposition:

N N
}?(k>h;c—1,k+1 = Yf(k)h;c—l,k-i-l + Y/'(k)(h;c—l,kﬂ h;c 1k+1) .

Let m be a one to one map from [1,|EY|]NN* to EY such that

|m(i) — f(k)| <|m(i—1)— f(k)|. This choice of m ensures that

Sm(i)(Y) and S,,;_1)(Y) are J’V\m, sw-measurable. On the other hand,
(%)

the fact that y is independant of Y together with the first result stated
in Proposition 3 imply that IE(ZY; h’(S‘(kH)( 7)) = (h’(S‘(k+l)( 7))
XE(ZIE(Y; ()| F —x)) = 0. Therefore

N c
[E(ZY; iy p1) | = ZIE ZYr 0y (B (Sm(iy (Y) + S50y (7))

— B (S0 (Y) + S5y (1) ])
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Since S,,;)(Y) and S,,;_1)(Y) are /V\m@ sw-measurable, we can take
1)

the conditional expectation of Yy with respect to # » in the

V\m i
right hand side of the above equation. On the other hdnd the functlon
K" is 1-Lipschitz (see Notations 3), which implies that

A (S (Y) + S5ty (7)) = B (Smii=1)(¥) + S50y )| < Yoo ] -

Therefore

[E(ZY 00 [B Sty (V) + S5y (7)) = H (Smii=1y (¥) + S50y (0))]) |
< E|Y) By 1) (Yrw)|

and
. EY|
[E(ZY s i) | < B Y Bimo—r Yrew)| -
i=1

Consequently:

‘rn N ‘rnl |EV‘

Z (ZY il -1 ki1 <ZZ]F] "E X E iy (X))

k=1 k=1 i=1

<> EXE X)) -

N
kel

Since (2.3) is realized, this last term is as small as we wish by choosing
N large enough.
Applying again Taylor’s formula, it remains to consider

N
Yk (h;cfl k+1 h/kfl,kJrl) = Yy (Sf(k—l) - S;]f\'[(k))h;c/fl,qul JFR;c

where [R| < 2|50 (Su—1) = SNy ) (LA [Sre-1) = SFp )l It follows

f
that
T T | "
/ — —
S ER ()] <2 T E Xl [ D1l [ TAIGIT2D X
=1 =1 €Ay icAy

§2IE<|X0| (Z !Xi|> (1 NG IXi\>> :
icAy i€AN

By the dominated convergence theorem, this last term converges to
zero as n — +oo, and (5.5) follows.
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5.3 The second order terms

It remains to control

|| 2
NN
)}
(5.6)

Notations 5. We introduce the two sets:
_{ieT,:d({i},dr,) >N} and
“{1<iginlisien))
and the function g from RZ' to R such that:
gX) =X7+ > 2X%X .
i€V NAy
For k in [1,|T,[], we set: DY = ny — g o Ty (X).
By definition of g and of the set IV, we have, for any k in I":
g0 Ty (X) = X7 + 2500 (Spu—1) (X) = S) (X)) -
Therefore, for k in I7:
D7D = Tl ™y = Y7y = 2500 (Spue—n) (Y) = S5 (1))

The assumption (2.2) ensures that lim,_ . [, 1| = 1. Hence, it
remains to prove that

L
lim limsupE|ZS |0, '% ,,..DY | =0 . 5.7
yom H+OOP < ;| |y 1k+1 k) (5.7)

5.4 Conditional expectation with respect to the tail o-algebra

Our aim in this section is to replace DY by IE(DY|Z _). We introduce
the expression:

|T|

H,],vZZE<éhZ—1,k+l[gOTf(k)(X) EE(g o Ty (X)|.7 - ﬂ) :

For sake of brevity, we have written & ., instead of &, (Y).
Using the stationarity of the field we get that

||

1 = 3 () (i o 7o) 00 - B0 1)
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For any positive integer p, we decompose HY in two parts:

T T |
HY =>"Jp)+ > _Jp)
k=1 k=1
with

R = (e (s o Ty (Vg ) ~ Bl 017 -] )

and

Z
sz(P) = IE( T |:h;c/—l,k+l o Ty — h//i—l,k—s-l © Tff(k)} (Y)

% [g(X) — E(g(X)|# )]

(cf. notations 4 for the definition of #”}_,, ). The backward mar-
tingale theorem applied to the sequence IE(g(X)|F ,/Op) implies that
limy,— o E[IE(g(X)[F yr) — E(g(X) |# )| = 0, and consequently,

||
lim limsup ZJ,{I(p)| =0 .
=1

p—=+00 pto

Now,
T

> S5 p)
k=1

Hence, applying the dominated convergence theorem, we conclude
that lim,,_, | H,’,V = 0. It remains to consider:

T
W) = IE<ZZhZ1,k+1|Fn|_11E(Divlfoo)> : (58)
k=1

<E

(21 ‘r'fl‘/z)\g<x>—m<g<x>|f@\] .
lij<p1® n

5.5 Truncation

Notations 6. For any integer k in [1,|T,|], and any M in R" we in-
troduce:

BY (M) = IE(DkN“g;*OO)]lUE(DQ’\f,w)KM and
B, (M) =E(D}|7 ) — BY (M) .

The stationarity of the field ensures that for all & in [1,|[,]],
IE]B_'Z (M)| = ]E\BJIV(M)] Now, a%plying the dominated convergence
theorem, we have: limy,_, IE|B} (M)| = 0. It follows that
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||
lim Z]E By L1 D |7IBN( ))

M—+o00

Therefore, instead of W it remains to consider:

||
(Zth et |Tal™'B <M>) : (5.9)

5.6 An ergodic lemma

The next result is the central point of our proof.
Lemma 2. For all M in IR, we introduce

By (M) = E([ny — E(g(X)|F o)y, —Ego0) 7 )1<m|F)
Then

lim fy(M)=0as. and lim E|fy(M)—

M—+o00 n—-+00 ‘Fn‘

Proof of Lemma 2. Let u(X) = [ny — E(9(X)|F )Ny, —E(g(x)|7 ) |<M-
Using the function u, we write Sy (M) = E(u(X)|.#). The fact that
limpy/— 400 fy (M) = 0 follows from the dominated convergence theo-
rem. As a matter of fact, limy o u(X) =1y — E(9(X)|# _«), and
u(X) is bounded by |y — E(g(X)|# _)|, which belongs to IL'. This
implies that:

lim fy(M) =TE(ny — E(g(X)|7 )|F) as

M—+o0

Since .7 is included in the IP-completion of & _, (see Proposition 1),
and bearing in mind that #, is .#-measurable, it follows that
limy o fy (M) = ny — E(g9(X)|-#) a.s. By stationarity of the ran-
dom field, E(XoX;|.-#) = [E(XoX_¢|-#), which implies that
E(g(X)|7) = Z E(XoXi| ) = ny
kGAl\/,l
and the result follows.

To prove the second point of Lemma 2, we apply the IL'-ergodic
theorem. First note that

Bﬁcv(M) [”N - IE(gO Tf k)( )|'/ )]]1\11N—IE(gon X)7 - )|SM

=uco Tj(k)(X) .
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Consequently: Z‘r " BY (M) = Zier,,uo T,(X), and the IL'-ergodic
theorem ensures that T, > ier, 4o Ti(X) converges in L' to
[E(u(X)|-#). This means exactly that

lim [E

n——+00

Py (M

and the proof of Lemma 2 is complete.
As a direct application of this lemma, we see that:

T M)
(Zth Lk+1 ‘r| )

is as small as we wish, by choosing M large enough. So, instead of W3,
we consider:

< E|fy(M)] ,

||
W= (Zzh;cllk-s-l (M )|1—n|ﬁN( ﬂ) (5.10)

5.7 Abel transformation

Ll [ k[N —
S (B el )

k=1 \ i=I

Wy =E

[Tal [N .
e 0t}

— T
Now
S [BY ) — By (1)
]E(Z T, || T +2 [ T, = }
k=1 n
1 I
> E ﬁN(M) - ‘1—*"| — BﬁcV(M)’

Then, applying Lemma 2, we get that:

T BN ﬁN
(Zh|r I \1‘,,|+2Z |F | i )])

Therefore it remains to prove that, for any positive integer N and any
positive real M,

=0 .

lim

n—+00
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|F |ﬁN( )]>Z(h;cll,k+l _hZ,Hz)] =0.
(5.11)

i=1

lim IE

n—-4o00

5.8 Last reductions

We use the same decomposition as in Section 5.1:
B r = Wy i = Mg = B W — 14y
Applying Taylor’s formula:
hZ,Hz - hZ,kH == Vf(k+1)h;c/,/k+2 +s¢ and
B ir = Mt = Y e + Sk

where [s;| < 72 re) and || < Yfz(k). To examine the remainder terms,
we consider:

o$h oL (=00 )

The definition of BY(M) and of B, (M) enables us to write, for all
integer & in [1,|T,]|],

k

> IBY (M) — By (M)| < 2M|T,| .

i=1

Therefore:

t Z T (Z [ T | s ZX?(k)]l|Xf'<k>|>K

k=1 i=1
< 2ME(Xgljx>k)

and, applying the dominated convergence theorem, this last term is as
small as we wish by choosing K large enough. Now, for all K in R,
Lemma 2 ensures that:

, Sl (& BY(M) — By(M
nkﬂzm@r—(Z[ W ﬂ)”’z’(")ﬂx’(“'“):o'

i=1

So, we have proved that

| N
() o




418 J. Dedecker

In the same way, we obtain that

‘ ’1|
nETm]E(FZ (i WWE f ”(M”)Zsk) =0

k=1 \i=1

Moreover, since (X, (¢:);/ (1)) is independent of &(.1) we have:

kRN B
I ( <Z Z (M)yrn \ﬁN(M)] > Vf<k+1>ZhZ,'k+z> =0

i=1

Finally, it remains to consider:

Ll [ k_ [RN(1f)
Z(Z B! (M)‘ran(M)}>ZYf(k)h;cﬂ—l,kH] ) (5.12)

k=1 \ i=l

Ws = E

Let p be a fixed positive integer. Since |B",,, — K" | <
ISre—1y(Y) — Sf.(k)(Y )|, we can apply the same truncation argument as
before: first we choose the level of our truncation by applying the
dominated convergence theorem, and then we use Lemma 2. So, it
follows that

Ll (L [BY (M) — By (M
Z(Z[ i )|1"n]ﬁN( )]>ZYf(k) (hgl—l,kﬂ _hllf”ik“)] =0

k=1 \ i=I

lim [E

n——+00

Therefore, to prove Theorem 1(a) it is enough to show that:

Lal / k_[pN _
Z(Z = (M)|rn|ﬁN(M)]>Z’G’(k)%'ipl,kﬂl =0

k=1 \ i=1

lim limsup E
P—=+0 pino

(5.13)

Let m be a one to one map from [I,|EF|]]NIN* to E¥, satisfying
|m(i) — f(k)] < |m(i — 1) — f(k)]. We use the same argument as in
Section 5.2:
|E7|
B e =1 (S5 @) =Y K" (Sun (Y) + 854 (7))

i=1
— 1" (S(i-1y(Y) + S5y (7)) -
Since BY (M) — By(M) is F _-measurable, Proposition 3 implies that

B{VM _ﬁNM X " c
IE<[ : )\1“,,| ( )}Z|r:|(f;2h (Sf(k)(?)))zo.

Therefore, using the conditional expectation, we find:
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Tl / k[N _
> (sl Wﬂrf“M”)zyf i

k=1 \li=1
1A

<2MZZIE| |1_, ’ IE\ml |(Xf( ))’

<2M Z EXE  (Xo)| -
kevy

E

Since (2.3) is realized the last term is as small as we wish, by choosing
p large enough. Hence (5.11) holds, which ends up the control of 1.

Finally we have proved (5.1), and the proof of Theorem 1(a) is
complete.

6 Proof of Theorem 1(b)

Obviously, instead of 4,, we can consider:
=07 Y X
(i.)€Gy,

So we have to prove that under conditions (2.3) and (3.1), 4/, is a
consistent estimator of #.
For any positive integer N, put:

T O X and vy = ) E(oXils) .
n (i,j)eGN keAy

N
A4, =

First we need to prove that 4" is a consistent estimator of #,,;.
Clearly:

1

=X )
keAy 1| i€, (T, —k)

The assumption (2.2) implies that lim,_ . [T, [T, N (T, — k)| = 1,

and the IL'-ergodic theorem enables us to conclude that AN converges

to fy,; in L.

The second step is to compare 4/, to AY. Since |y — ny.,] is as-
ymptotically negligible, the consistency of 4], will be established if we
prove that for any positive number o:

lim limsupP(|4', —4)|>0) =0 . (6.1)
N=+00 postoo
In order to prove (6.1) we shall adapt Lindeberg’s method to our
context.
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Notation 7. Let the function ¢ be defined by ¢'(0) = ¢(0) =0 and
@" (1) = (1 = [ty
To study P(]4’, — AY| > ) we use the function ¢. Since ¢ is an

even function, increasing from R, to IR, (6.1) follows from the as-
sertion

lim limsupE(p(4', —4))) =0 . (6.2)

—+00 p—+o0

Notations 8. For i in Z let us introduce the sets B'(N) =
{jevinl, : N<|j—i| <p,}. Bearing in mind notations 1, we
consider the one to one maps f = fr, and g = an

For any integer j in [1, |T',|] and any integer / i 1n [O | (N)|] , We
define:

j—1
Aja = (U{k} x ([0, 1B} (N)1] 0 N*)) U < (0,1nN")
k=1

with the convention: Ag; = 0.
Let A be any subset of Ajr |z () We set:

XX,

S (P)*9p(q)

Dy =2 E —_—

A I
(p.g)eA

Clearly, with the notations above, if p, > N

ZZXX

| i€l jeB!(N)

Aln o AN

To prove (6.2) we introduce the decomposition below:
Il"n\ 1By (VI

IE((p _AN Z ]E((p(DAj,l)) _]E((/)(DA]',I—I)) .
=1 =1

~.

The definition of ¢” an ¢’ ensures that: ||¢”||,, = | and ||¢’||., = 1/2.
Hence, applying Taylor’s formula, |o(x+5h) — ¢(x) — he'(x)]
< |h|(1 A |A]). Therefore:

[T |B."'(/')<N)| XX
X
Elp(t,— ) <3 Y 2B (o/(Dy, ) TE0)
=1 =1 "
IT,| 1B} (M)
2 X ()Xo
+ —|rn|]E‘Xf(/)Xg/(1)(l el )|

(6.3)
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Control of the main term.

Notations 9. For any integer j in [l,|T,|] and any integer / in
1, ]B?m (N)|], we define:

Cit ={(p:q) € Ajy—1 = min(|f (p) — f();19p(q) = fU)) < pu} and
Cﬁ] :Aj—l,l\cj,l .
With these notations,
Xen Xy 1 X
IE(cp'(DA,.,IJ—”,J} ‘g’“) =IE<<//(DC;7,> ”,Jr B )

Xr(pXg,1)
(¢ (Ds,.) — 9/ (06 ) L0

Js
Bearing in mind that ||¢” ||, < 1, it follows:
Xf(i)X 10 Xr()Xg,(0)
XX,
¥ E'%u A rch,,w] |

First of all, we focus on the first term of the right hand inequality.
Since ¢ (Dcc ) is F VWHW-measurable, the following inequality
holds: f0)

XX,
oo 55

Xo0) X
T, | Ble)-01X76)

Xo,()-10)

< B Buo-r01%o)

Hence, summing in j, [, we get that:
0| 1B (™)

Xrn X, 1
=1 1=l ' T

< Z E|X:Ei (Xo)| < Z E|X;[Ei(Xo)| -

ke, vy ke

This last term is as small as we wish, by choosing N large enough.
So, it remains to consider:

E

%(1 A (|Dc/-,,|)‘

If (p,q) € Cj; then |g,(q) — f(p)| < p, and |f(p) = f (/)| < 2p,. This

implies:
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Xen X, (1
E‘M (1A \Dc,.l|)‘
[T

20X X\ X)X, 0]
< E 1 - = .
< 22 ((A T ) T,

r—f (e, SR,

By the stationarity of the field, it follows:

Byl v x
E'%(l A \ch_,|)'
> (6.4)

(O ]

keN,, reNy,, sEN,,

To conclude this section, we need the following lemma which will be
proved in Appendix:

Lemma 3. Let X|,X>,X3,Xy4 be identically distributed real random
variables. Then:

E(X0X] (1A 20X))) < 2EQX2(1AXD)) .
By (6.4) and Lemma 3,

n
T, 1B )]

3% EF (1 a g, )| < 210, B

=1 =1

(6 ()

Now, [Ay,, P = (4p, + )3 ¢ and condition (3.1) implies that
2E(XZ(1 /\Xz/]F ]))\Azp | converges to 0 as n — +oo. This ensures
the control of the main term

To complete the proof, we need to control the second term of the
right hand inequality (6.3). By Lemma 3 again,

‘Fn| ‘B;l(/)(N)l 2|X X
101 Xg 0]
E‘Xm)me(l AT )‘

XZ
<2 (5 (10 ))

and the choice of p, implies the asymptotic negligibility of this term.
Hence (6.2) holds, which implies the consistency of A4,,.
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7 Appendix

Proof of Proposition 4. Let X| and X, be two positive random vari-
ables with o(X;) and ¢(X>) independent of % . Then almost surely,

+00 p+00
Cov(Xy, X| ) = / / PO > 1,0 > s|7)
0 0

— IP(X[ > t)IP(XQ > S) dsdt .

Clearly X =X, —X_and Y =Y, — Y, where X; = (X A0)and X_ =
—(X Vv 0). Hence,

|Cov(X, Y|Z) <|Cov(Xy, Y, |F)| + |[Cov(X_, Y_|F)|
+ |Cov(X_, Y |7)| + |Cov(Xy, Y_|F)| .
To control |Cov(X,, Y;|Z)|, we note that:
P(Xy >t Y, >s|F)—PX;y > )P(Yy >s)
= [E(Ly, >/ (E(lly,>|7 V%) = P(Y, > 5))|.7)]
<IPXy >0OQ(F VU,Y) as.
In the same way:

P(X. >1,Y. >s|7)—PX. >1)P(Y, >s)]
<IP(Yy >0O)Q(F VYV, U) as.

Hence,
P(X, >1¢,Y, >s|7)—PX, >0)P(Y, >s)]
SPX: >0O)Q(F VU AV)NPYL > O)Q(F NV, U) .
The same inequalities hold for (X_, Y_), (X_,Y;) and (X, Y_). Those
inequalities together with the fact that x, Ay, +x. Ay_ +x_ Ay,
+x_ Ay- <2(x4 +x-) A (vy +y-) yield:
+00 p+0o0
Cov(X, Y|#)| < 2/ / P(X| > )(F VU, 1)
o Jo

ANP(|Y| > t)p(F vV V", %) ds dt

Weseta=¢(F VUV ), b=¢d(F V7V ,%) and Hy(t) = P(|X| > ¢).
Bearing in mind the definition of Oy as the inverse cadlag of Hy, it
follows:
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+o00
ICov(X, Y|7)] // aHy (1) A bHy (s) ds di

+00 p+oo palb
2 / / / Ly<atty (0 Lu<bry (s) du ds dt
+00 p+oo palb
/ / / ]lQX u)>t 0y (¥)>s dudsdt
alb
32/ QX( )QY( >du a.s.
0

So, applying Holder’s inequality:

comno={[ ) ([ )
o o) ([rwa)”

<20'P(F v U, ) F V)XY, as.

IN

| /\

Proof of Lemma 3. Since 2lab| < (a* +b*) and (1 A (a® 4 b?)) <
(1 Aa?) + (1 Ab*), we have:

2E(|X10[(1A21X5X)) SEXG(1AXT)) + EWXF(1AX]))
+EXG(AXD)) + BX(1AXD)) .

Now let us recall a result due to Fréchet (1957) if Z and T are two
positive random variables, then E(Z7T) < fo Oz (u)QOr(u)du, where Oz
is the inverse cadlag of the tail function H;: t — IP(Z > t). Therefore:

EQr2(1 A X3)) / 01 (1) (1 A Oy (w))du = E(X?(1 AXD)) .

and the lemma easily follows.
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