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Summary. We prove a central limit theorem for strictly stationary
random ®elds under a projective assumption. Our criterion is similar
to projective criteria for stationary sequences derived from Gordin's
theorem about approximating martingales. However our approach is
completely di�erent, for we establish our result by adapting Linde-
berg's method. The criterion that it provides is weaker than martin-
gale-type conditions, and moreover we obtain as a straightforward
consequence, central limit theorems for a-mixing or /-mixing random
®elds.
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1 Introduction

Let �Xi�i2Z be a stationary sequence of random variables with mean
zero and ®nite variance, and write Sn �

Pn
k�1 Xk. As far as we know,

one of the best way to prove the asymptotic normality of nÿ1=2Sn is to
approximate Sn by a naturally related martingale with stationary
di�erences. More precisely, assume that the sequence is ergodic and
that nÿ1E�S2n� converges to a strictly positive r2, then Sn behaves as-
ymptotically like a sum of n martingale di�erences, each with variance
r2. Therefore, under fairly weak additional condition, the central limit
theorem can be deduced from the martingale case. This approach was
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®rst explored by Gordin (1969). Next, Hall and Heyde (1980), D�urr
and Goldstein (1984) or more recently Voln�y (1993), used Gordin's
approach to provide projective criteria for the central limit theorem.
These criteria imply Ibragimov's central limit theorem for stationary
and strongly mixing sequences (1962).

Unfortunately, we cannot follow this way to study stationary
random ®elds, because the r-algebras which naturally appear are no
more nested. Nevertheless it is still natural to ask for projective cri-
terions which imply the existence of central limit theorems for sta-
tionary random ®elds. This question has been partially answered over
the past few years, ®rst by considering martingale-type conditions (see
Nahapetian and Petrosian (1992) and Nahapetian (1995)), and then
by studying the case of conditionally centered random ®elds (see
Jensen and K�unsch (1994), JanzÏ ura and Lachout (1995), and Comets
and JanzÏ ura (1995) in the non-stationary case). This notion has been
®rst introduced by Guyon and K�unsch (1992) in order to study the
asymptotic behaviour of a certain estimator of the interaction for the
Ising model at the critical temperature. In that case, the mixing co-
e�cients have no good properties of decrease and one cannot used
any mixing theorems, whereas conditional centering applies to certain
®elds subordinated to the Ising model. Conversely, it is easy to un-
derstand that martingale-type conditions as well as conditional cen-
tering may fail to hold for a large class of random ®elds with long
range interaction: for instance, one cannot infer from any of these
assumptions Bolthausen's central limit theorem for strongly mixing
random ®elds (1982) (result recently improved by Perera (1996) in the
unbounded case).

Many proofs of these theorems are based on a method introduced
by Stein (1973). However, this method does not always lead to opti-
mal assumptions, as Bolthausen notes in Remark 1 of his article. As a
matter of fact, to control the terms which naturally appear by fol-
lowing Stein's approach, one needs to make strong assumptions about
the moments of the random ®eld, or to introduce some unnecessary
mixing coe�cients. Stein's method has been also used by Gordin
(1993) who proves a central limit theorem for dynamical systems. We
agree with the author when he writes in the concluding remarks of his
paper, that a natural application of his approach could be the central
limit theorem for random ®elds. However, until now, we are unable to
compare the conditions that it might provide with ours.

Our aim in this paper is ®rst to propose a projective criterion
comparable to the L1 criterion stated by Gordin (1973) in the case of
stationary and ergodic sequences, and second to present a self-nor-
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malized sequence whose limit, under this assumption, is a standard
gaussian. To establish our results, we use Lindeberg's method intro-
duced in 1922 to study independent sequences of random variables,
adapted by Billingsley (1961) and Ibragimov (1963) to the case of
stationary and ergodic martingale di�erence sequences, and by Rio
(1995) to the case of strongly mixing sequences. In order to exhibit our
criterion, we extend a decomposition proposed by Rio to our context.
The tools that are needed are quite di�erent from the strongly mixing
case, because the remainder terms cannot be controlled with the help
of covariance inequalities as in Bolthausen, Rio or Perera. Since our
approach needs to be more precise, we obtain as a straightforward
consequence the a-mixing condition expected by Bolthausen (see
again Remark 1 of his paper). Another interest of this approach is that
it does not require any assumption about the ergodicity of the random
®eld. Consequently, the normalized partial sum sequence converges in
distribution to a mixture of gaussian law. More precisely, let I be the
invariant r-algebra, the limit is a product of anI-measurable variable
by an independent standard gaussian.

This paper is organized as follows: Section 2 sets up the notations
and the preliminary results which will be useful in the sequel. In
Section 3, our main results are stated. In Theorem 1 the normalized
sequence converges in distribution to a mixture of gaussian law, where
the variance term g is a positive I-measurable random variable.
Theorem 1 provides also a consistency estimator of g. In Corollary 1,
we give a random normalization which ensures the asymptotic nor-
mality of the partial sum sequence. In Corollary 2, we are interested in
the degeneracy of the variable g. Corollary 3 is devoted to mixing
assumptions, and to be complete, Theorem 2 proposes the ®nite-di-
mensional version of Theorem 1. The results are proved in Sections 4,
5, 6 and 7.

2 Preliminaries

In order to develop our results, we need some preliminary notations.

2.1 Real random ®elds

Let us consider the space R with its borel r-algebra B. By a real
random ®eld we mean a probability space �RZd

;BZd
;P�. We denote

by X the identical application from RZd
to RZd

, and by Xi the pro-
jection from RZd

to R de®ned by Xi�x� � xi, for any x in RZd
. From
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now on, the application X , or the ®eld of all projections �Xi�i2Zd will
designate the whole random ®eld �RZd

;BZd
;P�.

For k in Zd , Tk denotes the translation operator from RZd
to RZd

which is de®ned by: �Tk�x��i � xi�k. An element A of BZd
is said to be

invariant if Tk�A� � A for any k in Zd . We denote by I the r-algebra
of all invariant sets. A random ®eld is said to be strictly stationary if
Tk � P � P, for any k in Zd . Throughout, X is a strictly stationary
random ®eld with E�X0� � 0 and E�X 2

0 � < �1.
On Zd we de®ne the lexicographic order: If i � �i1; i2; . . . ; id�, and

j � �j1; j2; . . . ; jd� are distinct elements of Zd , the notation i <lex j
means that either i1 < j1 or for some p in f2; 3; . . . ; dg, ip < jp and
iq � jq for 1 � q < p. Note that the lexicographic order provides a
total ordering of Zd .

Let the sets fV k
i : i 2 Zd ; k 2 N�g be de®ned as follows:

V 1
i � j 2 Zd : j <lex i

� 	
;

and for k � 2:

V k
i � V 1

i \ j 2 Zd : jiÿ jj � k
� 	

where jiÿ jj � max
1�k�d

jik ÿ jkj :

For any subset C of Zd , let FC be the r-algebra de®ned by:
FC � r�Xi : i 2 C�. To conclude this section, let us de®ne the tail r-
algebra Fÿ1 � \k2N�FV k

0
. Then, using the same argument as in

Georgii (1988) Proposition (14.9), the following result holds:

Proposition 1. Let X be a stationary random ®eld. ThenI is included in
the P-completion of Fÿ1.

2.2 Mixing coe�cients

Let �X;A;P� be a probability space. Given two r-algebras U and V
ofA, di�erent measures of their dependence have been considered in
the literature. We are interested by two of them. The strong mixing
coe�cient of Rosenblatt (1956) is de®ned by:

a U;V� � � sup jP�U�P�V � ÿ P�U \ V �j; U 2 U; V 2Vf g :
The /-mixing coe�cient has been introduced by Ibragimov (1962)
and can be de®ned by:

/ U;V� � � sup kP V jU� � ÿ P�V �k1 ; V 2V� 	
:

Between those two coe�cients, the following relation holds:

2a U;V� � � / U;V� � : �2:1�
Mixing coe�cients for real random ®elds.
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Let �RZd
;BZd

;P� be a real random ®eld. The mixing coe�cients
we will use in the sequel are de®ned by: if n 2 N; k; l 2 N [ f1g,

ak;l�n� � sup a FC1
;FC2

� �; jC1j � k; jC2j � l; d C1;C2� � � nf g ;
/k;l�n� � sup / FC1

;FC2
� �; jC1j � k; jC2j � l; d C1;C2� � � nf g ;

where d�C1;C2� � minfjjÿ ij; i 2 C1; j 2 C2g. For more about the
mixing properties of random ®elds with respect to those coe�cients,
see Doukhan (1994).

2.3 Toward a new central limit theorem for stationary random ®elds

Let C be any subset of Zd . We denote by jCj the cardinality of this set,
and we introduce:

@C � i 2 C : 9j j2C such that jiÿ jj � 1f g :
If C is a ®nite subset of Zd , SC denotes the partial sum of the random
®eld X over this set: SC �

P
i2C Xi. Throughout �Cn�n2N is a sequence

of ®nite subsets of Zd satisfying:

lim
n!�1 jCnj � �1 and lim

n!�1 jCnjÿ1j@Cnj � 0 : �2:2�

The L2-ergodic theorem (see Georgii 1988) ensures that jCnjÿ1SCn

converges to E�X0jI� in L2. In order to prove a central limit theorem
for jCnjÿ1=2SCn , it will be necessary to impose some conditions ensuring
that E�X0jI� � 0.

Proposition 2. Let Kn � �ÿn; n�d \ Zd . Assumptions �a� and �b� are
equivalent:

�a� lim
n!�1 jKnjÿ1

X
k2Kn

Cov�X0;Xk� � 0; �b� E X0jI� � � 0 a:s:

The condition �a� is very weak, and is automatically realized as soon
as we make some assumption concerning the dependency of the
variables. For example, if we de®ne, for all positive integers k and all i
in Zd , Ek�Xi� � E�XijFV k

i
�, �a� holds if we suppose that the martin-

gale-type condition E1�X0� � 0 is realized. However, in that case, the
classical central limit theorem may fail, for this kind of condition does
not imply the ergodicity of the ®eld. More precisely, if d � 1, Eagleson
(1975) has shown that the sequence nÿ1=2Sn converges weakly to a
mixture of gaussian law eE1=2�X 2

0 jI�, where e �N�0; 1� and e is in-
dependent of I. The fact that a single variable X0 appears through the
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conditional expectation with respect toI can be easily understood. As
a matter of fact, the martingale-type condition ensures that:
jKnjÿ1E�S2jKnjjI� � E�X 2

0 jI� a.s:
In view of the martingale case, it is natural to think that the con-

vergence of jKnjÿ1E�S2jKnjjI� may be important to obtain a central
limit theorem. This leads us to consider the condition:X

k2V 1
0

XkEjkj�X0�
�� �� 2 L1 ; �2:3�

which implies the convergence of jKnjÿ1E�S2jKnjjI�, as shown in the
proposition below.

Proposition 3. If X satis®es �2:3�, then E�X0jFÿ1� � 0 almost surely.
Moreover:X

k2Zd

E X0XkjI� �j j 2 L1 and lim
n!�1jKnjÿ1E

ÿ
S2jKnjjI

�
�
X
k2Zd

E X0XkjI� � a.s:

3 Central limit theorems

Throughout this section, �Xi�i2Zd is a strictly stationary random ®eld,
with E�X0� � 0 and E�X 2

0 � < �1. �Cn�n2N� is a sequence of ®nite
subsets of Zd satisfying �2:2�.

Now let us introduce the concept of stability (R�enyi 1963), which
enables us to interchange norming in the central limit theorem.

De®nition 1. Let �Yn�n2N be a sequence of real random variables, and let
Y be de®ned on some extension of the underlying probability space
�X;A;P�. Let U be a r-algebra ofA. Then �Yn�n2N is said to converge
U-stably to Y if for any continuous bounded function u and any bounded
and U-measurable variable Z, limn!�1E�u�Yn�Z� � E�u�Y �Z�.

Theorem 1. Assume that condition �2:3� is satis®ed, and set g �P
k2Zd E�X0XkjI�. The following results hold:

(a) The random variable jCnjÿ1=2SCn converges I-stably to eg1=2, where
e �N�0; 1� and e is independent of g.
(b) For any N in N�, set GN � f�i; j� 2 Cn � Cn : jiÿ jj � Ng. Let qn
be a sequence of positive integers satisfying:

lim
n!�1 qn � �1 and lim

n!�1q3d
n E
ÿ
X 2
0

ÿ
1 ^ jCnjÿ1X 2

0

�� � 0 : �3:1�
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Then:

An � jCnjÿ1 max
�
1;

X
�i;j�2Gqn

XiXj

�
ÿ!P g :

As a direct consequence, we obtain the following corollary:

Corollary 1. Assume that condition �2:3� is satis®ed. Then, with the
same notations as in Theorem 1, �jCnjÿ1=2SCn ;An� converges in distri-
bution to �eg1=2; g�. Assume moreover that P�g > 0� � 1. Then
�AnjCnj�ÿ1=2SCn converges in distribution to e.

Remark 1. Let us describe an important class of random ®elds which
satis®es condition (2.3): let X and Y be two stationary centered ran-
dom ®elds. As in Jensen and K�unsch (1994), we say that X is condi-
tionally centered with respect to Y if E�X0jYi; i 6� 0� � 0 and X0 is
r�Yi; jij � K�-measurable for some integer K. Since r�Xi; i 2 V k

0 � is
contained in r�Yi; i 6� 0� for k > K, it follows immediately that con-
dition (2.3) is satis®ed. This kind of random ®elds has also been
studied by Comets and JanzÏ ura (1995) in the non-stationary case.
They obtain a central limit theorem, assuming that the random
variables have uniformly bounded fourth moments. It is rather in-
teresting to compare conditional centering as it is de®ned here with the
notion of martingale-di�erence random ®elds considered by Naha-
petian (1992, 1995).

Corollary 1 gives an example of sequence whose limit is a Gaussian
law, by choosing a random norming. Situations like this one under
which we can obtain the asymptotic normality are of a special interest.
Applying Proposition 2, the next corollary gives a condition which
ensures the degeneracy of g.

Corollary 2. Let N be a positive number, and set: X N
i � �Xi ^ N�

_�ÿN�. Assume that condition �2:3� is ful®lled. Assume moreover that
for any k in Zd , and any positive integer N :

lim
n!�1 jKnjÿ1

X
i2Kn

Cov X0X N
k ;XiX N

i�k

ÿ � � 0 �3:2�

Then Theorem 1 holds with: g � r2 �Pk2Zd E�X0Xk�:
Remark 2. Assume that the random variables Xi have ®nite fourth
moments, then we do not need any truncation. In view of Proposition
2, the condition which ensures the degeneracy of g can be replaced by:

lim
n!�1 jKnjÿ1

X
i2Kn

Cov X0Xk;XiXi�k� � � 0 for any k in Zd :
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As a consequence of Theorem 1, we obtain central limit theorems
under a-mixing or /-mixing assumptions.

Corollary 3. Let us consider the two following assumptions:X
k2Zd

Z a1;1�jkj�

0

Q2
X0
�u� du < 1 ; �3:3�

where QX0
denotes the cadlag inverse of the function HX0

: t!
P�jX0j > t�, and X

k2Zd

/1;1�jkj� < 1 : �3:4�

The following results hold:
(a) �3:3� implies �2:3�, and hence also Theorem 1(a)(b).
(b) Under condition �3:4� Theorem 1(a) holds.
(c) Assume that �3:3� or �3:4� is realized, and moreover that:
limk!�1 a2;2�k� � 0. Then, with the same notations as in Theorem 1,
g � r2 �Pk2Zd E�X0Xk� a:s:
Remark 3. Bolthausen (1982) proves a central limit theorem for sta-
tionary and a-mixing random ®elds (see Guyon (1993) for a non-
stationary version of this theorem), but he fails to make assumptions
on a1;1 only (see Remark 1 of his paper). To compare our result with
Bolthausen's, let us note that if E�jX0j2�d� <1 for some d > 0, then
the condition

P1
m�1 mdÿ1ad=2�d

1;1 �m� <1 is more restrictive than con-
dition �3:3�.

We remark that in Bolthausen's article, the conditional expectation
with respect to the r-algebra I does not appear. Indeed a2;2�n� is
required to be asymptoticaly negligible, and this implies the degen-
eracy of g. In fact, one can see that this condition on a2;2�n� is stronger
than assumption of Corollary 2, since it implies that r�X0;Xk� is in-
dependent of I for any k in Zd .

To conclude this section, let us state a multivariate version of
Theorem 1.

Theorem 2. Let �Ci;n�i2�1::q� be a sequence of disjoint subsets of Zd .
Assume that condition �2:3� is ful®lled. Then:

SC1;n

jC1;nj1=2
:
:
:

SCq;n

jCq;nj1=2

0BBBBB@

1CCCCCA ÿ!
D

e1g1=2

:
:
:

eqg1=2

0BBBB@
1CCCCA
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where �ei�i2�1::q� �N�0; Id� and �ei�i2�1::q� is independent of g.

4 Proofs of propositions and corollaries

Proof of Proposition 2. Since E�X0� � 0 the condition �a� of Propo-
sition 2 can be expressed as follows:

lim
n!�1 jKnjÿ1E X0SKn� � � 0 :

By the L2-ergodic theorem, we infer that condition �a� is equivalent to
E�X0E�X0jI�� � 0, and the result easily follows.

Proof of Proposition 3. We start by proving that E�X0jFÿ1� � 0 a.s.
We denote by E1 the conditional expectation with respect to Fÿ1,
and by EI the conditional expectation with respect to I. By the
backward martingale convergence theorem, we know that
limn!�1 kEn�X0� ÿE1�X0�k2 � 0. Now, for any k in V 1

0 :

E jXkE1�X0�j� � � E jXkEjkj�X0�j
ÿ �� kX0k2kEjkj�X0� ÿE1�X0�k2 ;

hence EjXkE1�X0�j converges to 0 as jkj ! �1. Let us introduce the
set K1

n � Kn \ V 1
0 . Applying the L2-ergodic theorem to the random

variables jXkj, and the Cesaro mean convergence theorem, we infer
that:

E EI�jX0j�jE1�X0�j� � � lim
n!�1 jK

1
njÿ1

X
i2K1

n

EjXiE1�X0�j � 0 :

By Proposition 1 and Jensen's inequality, EI�jX0j� � EI�E1�jX0j�� �
EI�jE1�X0�j� a.s. Hence we have that E�EI�jX0j�jE1�X0�j� �
E�jE1�X0�jEI �jE1 �X0�j��, which ensures that EI�jE1�X0�j� � 0
a.s., and ®nally E1�X0� � 0 a.s.

The second point is to prove that
P

k2Zd E�jE�X0XkjI�j� < �1.
By Proposition 1 and the fact that Fÿ1 �FV k

0
, we have, for all k in

V 1
0 :

E jE X0XkjI� �j� � � E jE X0XkjFÿ1� �j� � � E jXkEjkj�X0�j
ÿ �

:

Since E�X0XkjI� � E�X0XÿkjI�, we infer that:X
k2Zd

E jE�X0XkjI�j� � �E�X 2
0 � � 2

X
k2V 1

0

E jE�X0XkjI�j� �

�E�X 2
0 � � 2

X
k2V 1

0

E jXkEjkj�X0�j
ÿ �

< �1 :
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The last point is to prove that limn!�1 jKnjÿ1E�S2Kn
jI� �Pk2Zd

E�X0XkjI�. For any subset C of Zd and any k in Zd , let
Cÿ k � fiÿ k; i 2 Cg. By stationarity of the random ®eld:

jKnjÿ1E S2jKnjjI
� �

�
X

k2K2n

jKnjÿ1jKn \ Kn ÿ k� �jE X0XkjI� � :

Now jKnjÿ1jKn \ �Kn ÿ k�jjE�X0XkjI�j � jE�X0XkjI�j, and also
P

k2Zd

jE�X0XkjI�j < �1 a.s. Since limn!�1 jKnjÿ1jKn \ �Kn ÿ k�j � 1, we
may apply the dominated convergence theorem, yielding:

lim
n!�1 jKnjÿ1E

ÿ
S2jKnjjI

� �X
k2Zd

E X0XkjI� � a.s:

Hence the result follows.

Proof of Corollary 1. Corollary 1 is an immediate consequence of the
following lemma:

Lemma 1. Let Xn and Yn be two sequences of real random variables
de®ned on �X;A;P�. Let U be a r-algebra of A. Assume that Xn

converges U-stably to X and that Yn converges in probability to some U-
measurable random variable Y . Then �Xn; Yn� converges in distribution
to �X ; Y �.

Proof. Let f and g be two continuous bounded functions, and assume
moreover that g is 1-Lipchitz. Clearly:

jE f �Xn�g�Yn� ÿ f �X �g�Y �� �j � kf k1Ejg�Yn� ÿ g�Y �j
� jE g�Y � f �Xn� ÿ f �X �� �� �j :

The stability of the convergence of Xn to X ensures that the second
term of the right hand inequality is asymptotically negligible, and the
convergence in probability of Yn to Y together with the fact that g is
1-Lipchitz imply that limn!�1Ejg�Yn� ÿ g�Y �j � 0. Hence
E�f �Xn�g�Yn�� converges to E�f �X �g�Y �� and the result follows.

Proof of Corollary 2. By Proposition 2 and assumption (3.2),
E�X0X N

k jI� � E�X0X N
k � a.s: Now, applying the dominated conver-

gence theorem, we get that:

lim
N!�1

E X0X N
k jI

ÿ � �E X0XkjI� � a.s. and

lim
N!�1

E�X0X N
k � �E�X0Xk� :

Finally for all k in Zd : E�X0XkjI� � E�X0Xk� almost surely. Since
(2.3) is realized, we infer that:
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g � r2 �
X
k2Zd

E�X0Xk� and jCnjÿ1=2SCn ÿ!
D
N�0; r2� :

Proof of Corollary 3. First, we note that �c� follows immediately from
Corollary 2.

To prove �a�, let us remark that:

EjXkEjkj�X0�j � Cov
ÿjXkj

ÿ
`Ejkj�X0��0 ÿ `Ejkj�X0�<0

�
;X0

�
:

By Theorem 1.1 in Rio (1993), it follows that

EjXkEjkj�X0�j � 4

Z a1;1�jkj�

0

Q2
X0
�u� du ;

which proves �a�.
To prove �b�, we need a conditional version of Peligrad's inequality

(1983). A complete proof of this inequality will be done in Appendix.

Proposition 4. Let �X;A;P� be a probability space, and U;V;F three
r-algebras ofA such that U andV are independent ofF. Let X and Y
be two random variables from �X;A;P� to R such that X is U-mea-
surable in Lp�P�, and Y is V-measurable in Lq�P�, where p and q are
two positive numbers with pÿ1 � qÿ1 � 1. We de®ne Cov�X ; Y jF� �
E�XY jF� ÿE�X �E�Y �. Then:
jCov X ; Y jF� �j � 2/1=p F _U;V� �/1=q F _V;U� �kXkpkY kq a:s:

Now, to prove the asymptotic normality, we apply the truncation
technique as in Ibragimov and Linnik (1971). Using the same notation

as in Corollary 2, let X N
k � �Xk ^ N� _ �ÿN�, and fX N

k � Xk ÿ X N
k . We

denote by SN
Cn
the sum of the new centered ®eld X N ÿE�X N � over the

set Cn and we set fSN
Cn
� SCn ÿ SN

Cn
. By assumption the equation (3.4):P

k2Zd /1;1�jkj� <1 is satis®ed. Applying (2.1), 2a1;1�jkj� � /1;1�jkj�
and (3.4) implies that:

P
k2Zd a1;1�jkj� <1: Now, we can apply

Corollary 3�a� to the random ®eld X N . As a matter of fact, the de®-
nition of QX N

0
ÿE�X N

0
� as the inverse cadlag of the tail function

HX N
0
ÿE�X N

0
� : t! P�jX N

0 ÿE�X N
0 �j > t�, ensures that QX N

0
ÿE�X N

0
� � 2N .

Therefore:X
k2Zd

Z a1;1�jkj�

0

Q2
X N
0
ÿE�X N

0
��u� du � 4N2

X
k2Zd

a1;1�jkj� <1

This means that (3.3) is realized, and Corollary 3�a� ensures that the
random ®eld X N ÿE�X N � satis®es condition �2:3�. Consequently, the
series

P
k2Zd Cov�X N

0 ;X
N
k jI� converges in L1. Now, set gN �

P
k2Zd

Cov�X N
0 ;X

N
k jI�. Let Z be any bounded I-measurable random vari-
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able, and u be a bounded 1-Lipschitz function. To obtain the theo-
rem, we have to prove that, under �3:4�,

lim
n!�1E

ÿ
Z
�
u
ÿjCnjÿ1=2SCn

�ÿ u
ÿ
eg1=2

��� � 0 :

Clearly:

E
ÿ
Z
�
u
ÿjCnjÿ1=2SCn

�ÿu
ÿ
eg1=2

��� �
E
ÿ
Z
�
u
ÿjCnjÿ1=2SCn

�ÿ u�jCnjÿ1=2SN
Cn
���

�E
ÿ
Z
�
u
ÿjCnjÿ1=2SN

Cn

�ÿ u�eg1=2N �
��

�E
ÿ
Z
�
u
ÿ
eg1=2N

�ÿ u�eg1=2��� :
By Theorem 1�a�, the second term of the right hand expression con-
verges to 0 as n! �1. Let us now study the ®rst term of the right
hand expression:��EÿZ�uÿjCnjÿ1=2SCn

�ÿ u
ÿjCnjÿ1=2SN

Cn

����� � kZk1jCnjÿ1=2E1=2
ÿ�fSN

Cn

�2�
:

Now, by Proposition 4:

jCnjÿ1E
ÿ�fSN

Cn

�2� � kfX N
0 k22

X
k2Zd

/1;1�jkj� :

Since kfX N
0 k2 converges to 0 as N ! �1, the ®rst term of the right

hand expression can be chosen as small as we wish. Now, to ensure
that the third term of the right hand expression is asymptotically
negligible, it is enough to prove that limN!�1gN � g almost surely.
The dominated convergence theorem implies that:

lim
N!�1

Cov X N
0 ;X

N
k jI

ÿ � � E X0XkjI� � a.s:

Let us remark that the convergence of /1;1�n� to zero implies that for
all k in Zd , r�Xk� is independent of Fÿ1. Therefore, applying Prop-
osition 1 and Proposition 4:

Cov X N
0 ;X

N
k jI

ÿ � � kX0k22/1;1�jkj� a.s.
Since �3:4� is realized, we may apply once more the dominated con-
vergence theorem yielding:

lim
N!�1

X
k2Zd

Cov X N
0 ;X

N
k jI

ÿ � �X
k2Zd

E X0XkjI� � � g a.s:

This ends the proof of �b�.
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5 Proof of the main result

In this section we prove Theorem 1�a�. The two main references
concerning this part of Theorem 1 are Ibragimov (1963) and Rio
(1995). From the ®rst article, which deals with stationary and ergodic
martingales di�erences sequences, we get the structure of our proof.
From the second one we borrow a decomposition which can be
adapted to our case although we do not use mixing assumptions.

Notations 1. Let f be a one to one map from �1;N � \N� to
f ��1;N � \N�� � Zd , and �ni�i2Zd a real random ®eld. For all integer k
in �1;N � we introduce:

Sf �k��n� �
Xk

i�1
nf �i� and Sc

f �k��n� �
XN

i�k

nf �i� :

with the convention: Sf �0��n� � Sc
f �N�1��n� � 0.

Let C be a bounded subset of Zd . To describe this set, we de®ne the
one to one map fC from �1; jCj� \N� to C by: fC is the unique function
such that for 1 � m < n � jCj, f �m� <lex f �n�.

Let Cn be a sequence of ®nite subsets of Zd , satisfying (2.2). We
introduce the sequence of one to one maps fCn . In the sequel, we will
omit the index Cn.

Notations 2. From now on, we consider a strictly stationary random
®eld �Xi�i2Zd which satis®es the condition (2.3) and �ei�i2Zd an i.i.d.
random ®eld independent of X , such that e0 �N�0; 1� (a classical
argument ensures the existence of two such ®elds). We introduce the
two sequences of ®elds: Y n

i � jCnjÿ1=2Xi and cn
i � jCnjÿ1=2eig1=2. In the

sequel, we will omit the index n.

Notations 3. Let h be any Borel function from R to R. For
0 � k < l � jCnj � 1, we introduce: hk;l�Y � � h�Sf �k��Y � � Sc

f �l��c��:
With the above convention: hk;jCnj�1�Y � � h�Sf �k��Y �� and

h0;l�Y � � h�Sc
f �l��c��. For sake of brevity, we will often write hk;l in-

stead of hk;l�Y �.
We denote by B4

1�R� the unit ball of C4
b�R�: h belongs to B4

1�R� if
and only if it belongs to C4�R� and satis®es max0�i�4 kh�i�k1 � 1:

5.1 Lindeberg's method

Let Z be a I-measurable random variable bounded by 1. We shall
prove that, under the assumptions of Theorem 1, for all h in B4

1�R�:
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lim
n!�1E

ÿ
Zh
ÿjCnjÿ1=2SCn

�� � E
ÿ
Zh�eg1=2�� : �5:1�

We use Lindeberg's decomposition:

E
ÿ
Z
�
h
ÿjCnjÿ1=2SCn

��ÿE
ÿ
h
ÿ
eg1=2

���
� E

ÿ
Z
�
hjCnj;jCnj�1 ÿ h0;1

��
�
XjCnj

k�1
E
ÿ
Z
�
hk;k�1 ÿ hkÿ1;k

��
: �5:2�

Now:

hk;k�1 ÿ hkÿ1;k � hk;k�1 ÿ hkÿ1;k�1 � hkÿ1;k�1 ÿ hkÿ1;k :

Applying Taylor's formula we get that:

hk;k�1 ÿ hkÿ1;k�1 � Yf �k�h0kÿ1;k�1 �
Y 2

f �k�
2

h00kÿ1;k�1 � Rk ;

and

hkÿ1;k�1 ÿ hkÿ1;k � ÿcf �k�h
0
kÿ1;k�1 ÿ

c2f �k�
2

h00kÿ1;k�1 � rk ;

where jRkj � Y 2
f �k��1 ^ jYf �k�j� and jrkj � c2f �k��1 ^ jcf �k�j�.

Since �Y ; �ei�i6�f �k�� is independent of ef �k�, it follows that
E�Zcf �k�h0kÿ1;k�1� � 0, and furthermore E�Zc2f �k�h

00
kÿ1;k�1� � E�ZjCnjÿ1

�gh00kÿ1;k�1�. We obtain:

E
ÿ
Zh
ÿjCnjÿ1=2SCn

��ÿE
ÿ
Zh
ÿ
eg1=2

�� �XjCnj

k�1
E
ÿ
Z
ÿ
Yf �k�h0kÿ1;k�1

��
�
XjCnj

k�1
E Z Y 2

f �k� ÿ
g
jCnj

� �
h00kÿ1;k�1

2

� �

�
XjCnj

k�1
E�Rk � rk� : �5:3�

Arguing as in Rio (1995), it is easily proven that
limn!�1

PjCnj
k�1 E�jRkj � jrkj� � 0.

On the other hand, if we de®ne the random variable gN by
gN �

P
k2KNÿ1 E�X0XkjI�, the following upper bound Ejgÿ gN j �

2
P

k2V N
0

EjE�X0XkjI�j holds for any positive integer N . Hence ac-
cording to condition (2.3), limn!�1Ejgÿ gN j � 0, and consequently
Theorem 1�a� will be proved if we show that:
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lim
N!�1

lim sup
n!�1

XjCnj

k�1
E
ÿ
Z
ÿ
Yf �k�h0kÿ1;k�1

��
�E Z Y 2

f �k� ÿ
gN

jCnj
� �

h00kÿ1;k�1
2

� �
� 0 : �5:4�

5.2 First reduction

In this section, we focus on
PjCnj

k�1 E�Z�Yf �k�h0kÿ1;k�1��. Since Y does not
satisfy a martingale type condition, this term has a non negligible
contribution.

Notations 4. For all N in N� and all integer k in �1; jCnj�, we de®ne:

EN
k � f �1; k� \N�� � \ V N

f �k� and SN
f �k��Y � �

X
i2EN

k

Yi :

For any Borel function g from R to R, we de®ne: gN
kÿ1;l �

g�SN
f �k��Y � � Sc

f �l��c��: (Afterwards, we shall apply this notation to the
successive derivatives of the function h.)

Our aim in this section is to show that:

lim
N!�1

lim sup
n!�1

XjCnj

k�1
E
ÿ
Z
ÿ
Yf �k�h0kÿ1;k�1

�
ÿ Yf �k��Sf �kÿ1� ÿ SN

f �k��h00kÿ1;k�1
� � 0 : �5:5�

First we use the decomposition:

Yf �k�h0kÿ1;k�1 � Yf �k�h0
N

kÿ1;k�1 � Yf �k��h0kÿ1;k�1 ÿ h0Nkÿ1;k�1� :
Let m be a one to one map from �1; jEN

k j� \N� to EN
k such that

jm�i� ÿ f �k�j � jm�iÿ 1� ÿ f �k�j. This choice of m ensures that
Sm�i��Y � and Sm�iÿ1��Y � are FV jm�i�ÿf �k�j

f �k�
-measurable. On the other hand,

the fact that c is independant of Y together with the ®rst result stated
in Proposition 3 imply that E�ZYf �k�h0�Sc

f �k�1��c��� � E�h0�Sc
f �k�1��c����E�ZE�Yf �k�jFÿ1�� � 0. Therefore:

��EÿZYf �k�h0
N
kÿ1;k�1

��� � �����X
jEN

k j

i�1
E
ÿ
ZYf �k�

�
h0�Sm�i��Y � � Sc

f �k�1��c��

ÿ h0
ÿ
Sm�iÿ1��Y � � Sc

f �k�1��c�
�������� :

CLT for stationary random ®elds 411



Since Sm�i��Y � and Sm�iÿ1��Y � are FV jm�i�ÿf �k�j
f �k�

-measurable, we can take

the conditional expectation of Yf �k� with respect to FV jm�i�ÿf �k�j
f �k�

in the

right hand side of the above equation. On the other hand the function
h0 is 1-Lipschitz (see Notations 3), which implies that��h0ÿSm�i��Y � � Sc

f �k�1��c�
�ÿ h0

ÿ
Sm�iÿ1��Y � � Sc

f �k�1��c�
��� � ��Ym�i�

�� :
Therefore��EÿZYf �k�

�
h0�Sm�i��Y � � Sc

f �k�1��c�� ÿ h0
ÿ
Sm�iÿ1��Y � � Sc

f �k�1��c�
�����

� E Ym�i�Ejm�i�ÿf �k�j�Yf �k��
�� �� ;

and

��EÿZYf �k�h0
N
kÿ1;k�1

��� �XjEN
k j

i�1
E Ym�i�Ejm�i�ÿf �k�j�Yf �k��
�� �� :

Consequently:

XjCnj

k�1
E
ÿ
ZYf �k�h0

N
kÿ1;k�1

������
����� �XjCnj

k�1

XjEN
k j

i�1
jCnjÿ1E Xm�i�Ejm�i�ÿf �k�j�Xf �k��

�� ��
�
X
k2V N

0

E XkEjkj�X0�
�� �� :

Since (2.3) is realized, this last term is as small as we wish by choosing
N large enough.

Applying again Taylor's formula, it remains to consider

Yf �k�
ÿ
h0kÿ1;k�1 ÿ h0Nkÿ1;k�1

� � Yf �k�
ÿ
Sf �kÿ1� ÿ SN

f �k�
�
h00kÿ1;k�1 � R0k ;

where jR0kj � 2jYf �k��Sf �kÿ1� ÿ SN
f �k���1 ^ jSf �kÿ1� ÿ SN

f �k�j�j. It follows
thatXjCnj

k�1
EjR0�k�j � 2

XjCnj

k�1
jCnjÿ1E jX0j

X
i2KN

jXij
 !

1 ^ jCnjÿ1=2
X
i2KN

jXij
 ! !

� 2E jX0j
X
i2KN

jXij
 !

1 ^ jCnjÿ1=2
X
i2KN

jXij
 ! !

:

By the dominated convergence theorem, this last term converges to
zero as n! �1, and (5.5) follows.
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5.3 The second order terms

It remains to control

W1 � E Z
XjCnj

k�1
h00kÿ1;k�1

Y 2
f �k�
2
� Yf �k�

ÿ
Sf �kÿ1� ÿ SN

f �k�
�ÿ gN

2jCnj

 ! !
:

�5:6�

Notations 5. We introduce the two sets:

CN
n � i 2 Cn : d fig; @Cn� � � Nf g and

IN
n � 1 � i � jCnj : f �i� 2 CN

n

� 	
;

and the function g from RZd
to R such that:

g�X � � X 2
0 �

X
i2V 1

0
\KNÿ1

2X0Xi :

For k in �1; jCnj�, we set: DN
k � gN ÿ g � Tf �k��X �.

By de®nition of g and of the set IN
n , we have, for any k in IN

n :

g � Tf �k��X � � X 2
f �k� � 2Xf �k�

ÿ
Sf �kÿ1��X � ÿ SN

f �k��X �
�
:

Therefore, for k in IN
n :

jCnjÿ1DN
k � jCnjÿ1gN ÿ Y 2

f �k� ÿ 2Yf �k�
ÿ
Sf �kÿ1��Y � ÿ SN

f �k��Y �
�
:

The assumption (2.2) ensures that limn!�1 jCnjÿ1jIN
n j � 1. Hence, it

remains to prove that

lim
N!�1

lim sup
n!�1

E Z
XjCnj

k�1
jCnjÿ1h00kÿ1;k�1DN

k

 !
� 0 : �5:7�

5.4 Conditional expectation with respect to the tail r-algebra

Our aim in this section is to replace DN
k by E�DN

k jFÿ1�. We introduce
the expression:

HN
n �

XjCnj

k�1
E

Z
jCnj h

00
kÿ1;k�1 g � Tf �k��X � ÿE g � Tf �k��X �jFÿ1

ÿ �� �� �
:

For sake of brevity, we have written h00kÿ1;k�1 instead of h00kÿ1;k�1�Y �.
Using the stationarity of the ®eld we get that

HN
n �

XjCnj

k�1
E

Z
jCnj h00kÿ1;k�1 � Tÿf �k�

� �
�Y � g�X � ÿE�g�X �jFÿ1�� �

� �
:
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For any positive integer p, we decompose HN
n in two parts:

HN
n �

XjCnj

k�1
J1k �p� �

XjCnj

k�1
J 2k �p� ;

with

J 1k �p� � E
Z
jCnj

ÿ
h00pkÿ1;k�1 � Tÿf �k�

��Y � g�X � ÿE g�X �jFÿ1� �� �
� �

and

J2k �p� � E
� Z
jCnj h00kÿ1;k�1 � Tÿf �k� ÿ h00pkÿ1;k�1 � Tÿf �k�

h i
�Y �

� g�X � ÿE g�X �jFÿ1� �� �
�

(cf. notations 4 for the de®nition of h00pkÿ1;k�1). The backward mar-
tingale theorem applied to the sequence E�g�X �jFV p

0
� implies that

limp!�1EjE�g�X �jFV p
0
� ÿE�g�X � jFÿ1�j � 0, and consequently,

lim
p!�1 lim sup

n!�1

XjCnj

k�1
J1k �p�

�����
����� � 0 :

Now,XjCnj

k�1
J k
2 �p�

�����
����� � E

"�
2 ^

X
jij<p

jXij
jCnj1=2

�
jg�X � ÿE g�X �jFÿ1� �j

#
:

Hence, applying the dominated convergence theorem, we conclude
that limn!�1HN

n � 0. It remains to consider:

W2 � E Z
XjCnj

k�1
h00kÿ1;k�1jCnjÿ1E DN

k jFÿ1
ÿ � !

: �5:8�

5.5 Truncation

Notations 6. For any integer k in �1; jCnj�, and any M in R� we in-
troduce:

BN
k �M� � E DN

k jFÿ1
ÿ �

`jE DN
k jFÿ1� �j�M and

�BN
k �M� � E DN

k jFÿ1
ÿ �ÿ BN

k �M� :
The stationarity of the ®eld ensures that for all k in �1; jCnj�,

Ej �BN
k �M�j � Ej �BN

1 �M�j: Now, applying the dominated convergence
theorem, we have: limM!�1Ej �BN

1 �M�j � 0. It follows that
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lim
M!�1

XjCnj

k�1
E
ÿ
h00kÿ1;k�1jCnjÿ1 �BN

k �M�
� � 0 :

Therefore, instead of W2 it remains to consider:

W3 � E Z
XjCnj

k�1
h00kÿ1;k�1jCnjÿ1BN

k �M�
 !

: �5:9�

5.6 An ergodic lemma

The next result is the central point of our proof.

Lemma 2. For all M in R�, we introduce

bN �M� � E gN ÿE g�X �jFÿ1� �� �`jgNÿE g�X �jFÿ1� �j�M jI
ÿ �

:

Then

lim
M!�1

bN �M� � 0 a:s: and lim
n!�1E bN �M� ÿ

1

jCnj
XjCnj

k�1
BN

k �M�
�����

����� � 0 :

Proof of Lemma 2. Let u�X ���gN ÿE�g�X �jFÿ1��`jgNÿE�g�X �jFÿ1�j�M .
Using the function u, we write bN �M� � E�u�X �jI�. The fact that
limM!�1 bN �M� � 0 follows from the dominated convergence theo-
rem. As a matter of fact, limM!�1 u�X � � gN ÿE�g�X �jFÿ1�, and
u�X � is bounded by jgN ÿE�g�X �jFÿ1�j, which belongs to L1. This
implies that:

lim
M!�1

bN �M� � E gN ÿE g�X �jFÿ1� �jI� � a:s:

Since I is included in the P-completion of Fÿ1 (see Proposition 1),
and bearing in mind that gN is I-measurable, it follows that
limM!�1 bN �M� � gN ÿE�g�X �jI� a:s: By stationarity of the ran-
dom ®eld, E�X0XkjI� � E�X0XÿkjI�, which implies that

E g�X �jI� � �
X

k2KNÿ1

E X0XkjI� � � gN

and the result follows.
To prove the second point of Lemma 2, we apply the L1-ergodic

theorem. First note that

BN
k �M� � gN ÿE g � Tf �k��X �jFÿ1

ÿ �� �
`jgNÿE g�Tf �k��X �jFÿ1� �j�M

� u � Tf �k��X � :
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Consequently:
PjCnj

k�1 BN
k �M� �

P
i2Cn

u � Ti�X �, and the L1-ergodic
theorem ensures that jCnjÿ1

P
i2Cn

u � Ti�X � converges in L1 to
E�u�X �jI�. This means exactly that

lim
n!�1E bN �M� ÿ

1

jCnj
XjCnj

k�1
BN

k �M�
�����

����� � 0 ;

and the proof of Lemma 2 is complete.
As a direct application of this lemma, we see that:

E Z
XjCnj

k�1
h00kÿ1;k�1

bN �M�
jCnj

 !�����
����� � EjbN �M�j ;

is as small as we wish, by choosing M large enough. So, instead of W3,
we consider:

W4 � E Z
XjCnj

k�1
h00kÿ1;k�1

BN
k �M� ÿ bN �M�

� �
jCnj

 !
: �5:10�

5.7 Abel transformation

W4 �E
XjCnj

k�1

Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
Z h00kÿ1;k�1 ÿ h00k;k�2
� �" #

�E Zh00jCnj;jCnj�2
XjCnj

k�1

BN
k �M� ÿ bN�M�

� �
jCnj

 !
:

Now

E Zh00jCnj;jCnj�2
XjCnj

k�1

BN
k �M� ÿ bN �M�

� �
jCnj

 !�����
�����

� E bN �M� ÿ
1

jCnj
XjCnj

k�1
BN

k �M�
�����

����� :
Then, applying Lemma 2, we get that:

lim
n!�1 E Zh00jCnj;jCnj�2

XjCnj

k�1

BN
k �M� ÿ bN �M�

� �
jCnj

 !�����
����� � 0 :

Therefore it remains to prove that, for any positive integer N and any
positive real M ,
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lim
n!�1E

XjCnj

k�1

Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
Z h00kÿ1;k�1 ÿ h00k;k�2
� �" #

� 0 :

�5:11�

5.8 Last reductions

We use the same decomposition as in Section 5.1:

h00k;k�2 ÿ h00kÿ1;k�1 � h00k;k�2 ÿ h00k;k�1 � h00k;k�1 ÿ h00kÿ1;k�1 :

Applying Taylor's formula:

h00k;k�2 ÿ h00k;k�1 � ÿ cf �k�1�h
000
k;k�2 � sk and

h00k;k�1 ÿ h00kÿ1;k�1 � Yf �k�h000kÿ1;k�1 � Sk ;

where jskj � c2f �k�1� and jSkj � Y 2
f �k�. To examine the remainder terms,

we consider:

E
XjCnj

k�1

1

jCnj
Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
ZX 2

f �k�

 !
:

The de®nition of BN
i �M� and of bN �M� enables us to write, for all

integer k in �1; jCnj�,Xk

i�1
jBN

i �M� ÿ bN �M�j � 2M jCnj :

Therefore:

E
XjCnj

k�1

1

jCnj
Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
ZX 2

f �k�`jXf �k�j>K

�����
�����

� 2ME�X 2
0 `jX0j>K� ;

and, applying the dominated convergence theorem, this last term is as
small as we wish by choosing K large enough. Now, for all K in R�,
Lemma 2 ensures that:

lim
n!�1E

XjCnj

k�1

1

jCnj
Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
ZX 2

f �k�`jXf �k�j�K

 !
� 0 :

So, we have proved that

lim
n!�1E

XjCnj

k�1

Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
ZSk

 !
� 0 :
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In the same way, we obtain that

lim
n!�1E

XjCnj

k�1

Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
Zsk

 !
� 0 :

Moreover, since �X ; �ei�i6�f �k�1�� is independent of ef �k�1� we have:

E
Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
cf �k�1�Zh000k;k�2

 !
� 0 :

Finally, it remains to consider:

W5 � E
XjCnj

k�1

Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
ZYf �k�h000kÿ1;k�1

" #
: �5:12�

Let p be a ®xed positive integer. Since jh000kÿ1;k�1 ÿ h000pkÿ1;k�1j �
jSf �kÿ1��Y � ÿ Sp

f �k��Y �j, we can apply the same truncation argument as
before: ®rst we choose the level of our truncation by applying the
dominated convergence theorem, and then we use Lemma 2. So, it
follows that

lim
n!�1E

XjCnj

k�1

Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
ZYf �k� h000kÿ1;k�1 ÿ h000pkÿ1;k�1

� �" #
� 0 :

Therefore, to prove Theorem 1�a� it is enough to show that:

lim
p!�1 lim sup

n!�1
E
XjCnj

k�1

Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
ZYf �k�h000

p
kÿ1;k�1

" #
� 0 :

�5:13�
Let m be a one to one map from �1; jEp

k j� \N� to Ep
k , satisfying

jm�i� ÿ f �k�j � jm�iÿ 1� ÿ f �k�j. We use the same argument as in
Section 5.2:

h000pkÿ1;k�1 ÿ h000
ÿ
Sc

f �k��c�
� �XjEp

k j

i�1
h000
ÿ
Sm�i��Y � � Sc

f �k��c�
�

ÿ h000
ÿ
Sm�iÿ1��Y � � Sc

f �k��c�
�
:

Since BN
i �M� ÿ bN �M� isFÿ1-measurable, Proposition 3 implies that

E
BN

i �M� ÿ bN�M�
� �

jCnj Z
Xf �k�
jCnj1=2

h000
ÿ
Sc

f �k��c�
� !
� 0 :

Therefore, using the conditional expectation, we ®nd:
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E
XjCnj

k�1

Xk

i�1

BN
i �M� ÿ bN �M�

� �
jCnj

 !
ZYf �k�h000

p
kÿ1;k�1

" #

� 2M
XjCnj

k�1

XjEp
k j

i�1
Ej 1

jCnjXm�i�Ejm�i�ÿf �k�j�Xf �k��j

� 2M
X
k2V p

0

EjXkEjkj�X0�j :

Since (2.3) is realized the last term is as small as we wish, by choosing
p large enough. Hence (5.11) holds, which ends up the control of W4.

Finally we have proved (5.1), and the proof of Theorem 1�a� is
complete.

6 Proof of Theorem 1(b)

Obviously, instead of An, we can consider:

A0n � jCnjÿ1
X
�i;j�2Gqn

XiXj :

So we have to prove that under conditions (2.3) and (3.1), A0n is a
consistent estimator of g.

For any positive integer N , put:

AN
n �

1

jCnj
X
�i;j�2GN

XiXj and gN�1 �
X
k2KN

E�X0XkjI� :

First we need to prove that AN
n is a consistent estimator of gN�1.

Clearly:

AN
n �

X
k2KN

1

jCnj
� X

i2Cn\�Cnÿk�
XiXi�k

�
:

The assumption (2.2) implies that limn!�1 jCnjÿ1jCn \ �Cn ÿ k�j � 1,
and the L1-ergodic theorem enables us to conclude that AN

n converges
to gN�1 in L1.

The second step is to compare A0n to AN
n . Since Ejgÿ gN�1j is as-

ymptotically negligible, the consistency of A0n will be established if we
prove that for any positive number d:

lim
N!�1

lim sup
n!�1

P jA0n ÿ AN
n j > d

ÿ � � 0 : �6:1�

In order to prove (6.1) we shall adapt Lindeberg's method to our
context.
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Notation 7. Let the function u be de®ned by u0�0� � u�0� � 0 and
u00�t� � �1ÿ jtj�`jtj<1.

To study P�jA0n ÿ AN
n j > d� we use the function u. Since u is an

even function, increasing from R� to R�, (6.1) follows from the as-
sertion

lim
N!�1

lim sup
n!�1

E u�A0n ÿ AN
n �

ÿ � � 0 : �6:2�

Notations 8. For i in Zd let us introduce the sets Bn
i �N� �

fj 2 V 1
i \ Cn : N < jjÿ ij � qng. Bearing in mind notations 1, we

consider the one to one maps f � fCn and gk � fBn
f �k��N�.

For any integer j in �1; jCnj� and any integer l in �0; jBn
f �j��N�j� , we

de®ne:

Dj;l �
[jÿ1
k�1
fkg � ÿ�0; jBn

f �k��N�j
� \N�

� ![
fjg � �0; l� \N�� �� � ;

with the convention: D0;l � ;.
Let D be any subset of DjCnj;jBn

f �jCn j��N�j. We set:

DD � 2
X
�p;q�2D

Xf �p�Xgp�q�
jCnj :

Clearly, with the notations above, if qn > N

A0n ÿ AN
n �

2

jCnj
X
i2Cn

X
j2Bn

i �N�
XiXj :

To prove (6.2) we introduce the decomposition below:

E u�A0n ÿ AN
n �

ÿ � �XjCnj

j�1

XjBn
f �j��N�j

l�1
E u DDj;l

ÿ �ÿ �ÿE�u�DDj;lÿ1�� :

The de®nition of u00 an u0 ensures that: ku00k1 � 1 and ku0k1 � 1=2.
Hence, applying Taylor's formula, ju�x� h� ÿ u�x� ÿ hu0�x�j
� jhj�1 ^ jhj�. Therefore:

E u�A0n ÿ AN
n �

ÿ � �XjCnj

j�1

XjBn
f �j��N�j

l�1
2 E u0 DDj;lÿ1

ÿ �Xf �j�Xgj�l�
jCnj

� ����� ����
�
XjCnj

j�1

XjBn
f �j��N�j

l�1

2

jCnjE Xf �j�Xgj�l� 1 ^ jXf �j�Xgj�l�j
jCnj

� ����� ���� :
�6:3�
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Control of the main term.

Notations 9. For any integer j in �1; jCnj� and any integer l in
�1; jBn

f �j��N�j�, we de®ne:

Cj;l � �p; q� 2 Dj;lÿ1 : min�jf �p� ÿ f �j�j; jgp�q� ÿ f �j�j� < qn

� 	
and

Cc
j;l �Djÿ1;lnCj;l :

With these notations,

E u0�DDj;lÿ1�
Xf �j�Xgj�l�
jCnj

� �
�E u0�DCc

j;l
�Xf �j�Xgj�l�
jCnj

� �
�E �u0�DDj;lÿ1� ÿ u0�DCc

j;l
��Xf �j�Xgj�l�

jCnj
� �

:

Bearing in mind that ku00k1 � 1, it follows:

E u0�DDj;lÿ1�
Xf �j�Xgj�l�
jCnj

� ����� ���� � E u0�DCc
j;l
�Xf �j�Xgj�l�
jCnj

� ����� ����
�E

Xf �j�Xgj�l�
jCnj �1 ^ jDCj;l j�

���� ���� :
First of all, we focus on the ®rst term of the right hand inequality.
Since u0�DCc

j;l
� is F

V
jgj�l�ÿf �j�j

f �j�
-measurable, the following inequality

holds:

E u0�DCc
j;l
�Xf �j�Xgj�l�
jCnj

� ����� ���� � E
Xgj�l�
jCnj Ejgi�l�ÿf �j�j�Xf �j��
���� ����

� E
Xgj�l�ÿf �j�
jCnj Ejgj�l�ÿf �j�j�X0�

���� ���� :
Hence, summing in j; l, we get that:

XjCnj

j�1

XjBn
f �j��N�j

l�1
E u0�DCc

j;l
�Xf �j�Xgj�l�
jCnj

� ����� ����
�

X
k2Kqn\V N

0

EjXkEk�X0�j �
X
k2V N

0

EjXkEk�X0�j :

This last term is as small as we wish, by choosing N large enough.
So, it remains to consider:

E
Xf �j�Xgi�l�
jCnj �1 ^ �jDCj;l j�

���� ���� :
If �p; q� 2 Cj;l then jgp�q� ÿ f �p�j � qn and jf �p� ÿ f �j�j � 2qn. This
implies:
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E
Xf �j�Xgj�l�
jCnj 1 ^ jDCj;l j

ÿ ����� ����
�

X
rÿf �j�2K2qn

X
s2Kqn

E 1 ^ 2jXrXr�sj
jCnj

� � jXf �j�Xgj�l�j
jCnj

� �
:

By the stationarity of the ®eld, it follows:

XjBn
f �j��N�j

l�1
E

Xf �j�Xgj�l�
jCnj 1 ^ jDCj;l j

ÿ ����� ����
�
X

k2Kqn

X
r2K2qn

X
s2Kqn

E 1 ^ 2jXrXr�sj
jCnj

� � jX0Xkj
jCnj

� �
:

�6:4�

To conclude this section, we need the following lemma which will be
proved in Appendix:

Lemma 3. Let X1;X2;X3;X4 be identically distributed real random
variables. Then:

E�jX1X2j�1 ^ 2jX3X4j�� � 2E�X 2
1 �1 ^ X 2

1 �� :
By (6.4) and Lemma 3,

XjCnj

j�1

XjBn
f �j��N�j

l�1
E

Xf �j�Xgj�l�
jCnj 1 ^ jDCj;l j

ÿ ����� ���� � 2jK2qn
j3E X 2

0 1 ^ X 2
0

jCnj
� �� �

:

Now, jK2qn
j3 � �4qn � 1�3d and condition (3.1) implies that

2E�X 2
0 �1 ^ X 2

0 =jCnj��jK2q�n�j3 converges to 0 as n! �1. This ensures
the control of the main term.

To complete the proof, we need to control the second term of the
right hand inequality (6.3). By Lemma 3 again,

XjCnj

j�1

XjBn
f �j��N�j

l�1

1

jCnjE Xf �j�Xgj�l� 1 ^ 2jXf �j�Xgj�l�j
jCnj

� ����� ����
� 2jKqn

jE X 2
0 1 ^ X 2

0

jCnj
� �� �

;

and the choice of qn implies the asymptotic negligibility of this term.
Hence (6.2) holds, which implies the consistency of An.
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7 Appendix

Proof of Proposition 4. Let X1 and X2 be two positive random vari-
ables with r�X1� and r�X2� independent of F. Then almost surely,

Cov�X1;X2jF� �
Z �1
0

Z �1
0

P�X1 > t;X2 > sjF�

ÿ P�X1 > t�P�X2 > s� ds dt :

Clearly X � X� ÿ Xÿ and Y � Y� ÿ Yÿ, where X� � �X ^ 0� and Xÿ �
ÿ�X _ 0�. Hence,

jCov�X ; Y jF� � jCov�X�; Y�jF�j � jCov�Xÿ; YÿjF�j
� jCov�Xÿ; Y�jF�j � jCov�X�; YÿjF�j :

To control jCov�X�; Y�jF�j, we note that:
jP�X� > t; Y� > sjF� ÿ P�X� > t�P�Y� > s�j
� jE�`X�>t�E�`Y�>sjF _U� ÿ P�Y� > s��jF�j
� P�X� > t�/�F _U;V� a.s.

In the same way:

jP�X� > t; Y� > sjF� ÿ P�X� > t�P�Y� > s�j
� P�Y� > t�/�F _V;U� a.s.

Hence,

jP�X� > t; Y� > sjF� ÿ P�X� > t�P�Y� > s�j
� P�X� > t�/�F _U;V� ^ P�Y� > t�/�F _V;U� :

The same inequalities hold for �Xÿ; Yÿ�, �Xÿ; Y�� and �X�; Yÿ�. Those
inequalities together with the fact that x� ^ y� � x� ^ yÿ � xÿ ^ y�
�xÿ ^ yÿ � 2�x� � xÿ� ^ �y� � yÿ� yield:

jCov�X ; Y jF�j � 2

Z �1
0

Z �1
0

P�jX j > t�/�F _U;V�
^ P�jY j > t�/�F _V;U� ds dt

We set a � /�F _U;V�, b � /�F _V;U� and HX �t� � P�jX j > t�.
Bearing in mind the de®nition of QX as the inverse cadlag of HX , it
follows:
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jCov�X ; Y jF�j � 2
Z �1
0

Z �1
0

aHX �t� ^ bHY �s� ds dt

� 2
Z �1
0

Z �1
0

Z a^b

0

`u<aHX �t�`u<bHY �s� du ds dt

� 2
Z �1
0

Z �1
0

Z a^b

0

`QX �ua�>t`QY
u
b� �>s du ds dt

� 2
Z a^b

0

QX
u
a

� �
QY

u
b

� �
du a.s.

So, applying H�older's inequality:

jCov�X ; Y jF�j � 2
Z a

0

Qp
X

u
a

� �
du

� �1=p Z b

0

Qq
Y

u
b

� �
du

� �1=q

� 2
Z 1

0

aQp
X �u�du

� �1=p Z 1

0

bQq
Y �u�du

� �1=q

� 2/1=p F _U;V� �/1=q F _V;U� �kXkpkY kq a.s.

Proof of Lemma 3. Since 2jabj � �a2 � b2� and �1 ^ �a2 � b2�� �
�1 ^ a2� � �1 ^ b2�, we have:

2E jX1X2j 1 ^ 2jX3X4j� �� � �E�X 2
1 �1 ^ X 2

3 �� �E�X 2
1 �1 ^ X 2

4 ��
�E�X 2

2 �1 ^ X 2
3 �� �E�X 2

2 �1 ^ X 2
4 �� :

Now let us recall a result due to FreÂ chet (1957): if Z and T are two
positive random variables, then E�ZT � � R 10 QZ�u�QT �u�du, where QZ

is the inverse cadlag of the tail function HZ : t! P�Z > t�. Therefore:

E�X 2
1 �1 ^ X 2

3 �� �
Z 1

0

QX 2
1
�u��1 ^ QX 2

1
�u��du � E�X 2

1 �1 ^ X 2
1 �� ;

and the lemma easily follows.
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