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Summary. We obtain a large deviation principle (LDP) for the relative size
of the largest connected component in a random graph with small edge
probability. The rate function, which is not convex in general, is determined
explicitly using a new technique. The proof yields an asymptotic formula for
the probability that the random graph is connected.

We also present an LDP and related result for the number of isolated
vertices. Here we make use of a simple but apparently unknown character-
isation, which is obtained by embedding the random graph in a random
directed graph. The results demonstrate that, at this scaling, the properties
`connected' and `contains no isolated vertices' are not asymptotically
equivalent. (At the threshold probability they are asymptotically equivalent.)

Mathematics Subject Classi®cation (1991): 60F10, 05C80

1 Introduction

The central object of study in this paper is the random graph G�n; p�, with
p � O�1=n�. The random graph G�n; p� is constructed on n vertices by in-
cluding each of the n�nÿ 1�=2 potential edges independently with probability
p. Much is known about the ®rst order properties of such graphs. For ex-
ample, if p � c=n and c > 1, the size (in vertices) Xn of the largest connected
component is asymptotically an, where a > 0 satis®es a � 1ÿ eÿac. (The
precise statement is that the sequence Xn=n converges in probability to a.)
The other components are all of order log n in size. This is the so-called
`giant component', and it only appears when c > 1. As with many other ®rst
order results for random graphs, little is known about the nature of ¯uctu-
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ations from the mean, other than some crude probability estimates. The main
result of this paper is a large deviation principle for the sequence Xn=n. We
also obtain an explicit expression for the rate function using a new technique.
Some informal discussion and illustration of this technique is presented in [4].

We also present an LDP for the number of isolated vertices in the random
graph G�n; c=n�. Here we use a seemingly unknown characterisation of the
distribution of the number of isolated vertices. As a kind of corollary (for-
mally it is, technically it isn't) we demonstrate that the properties `connected'
and `contains no isolated vertices' are not asymptotically equivalent at this
scaling. At the threshold probability ± that is, for the random graph G�n; p�
with

p � log n
n
� c

n

± the two properties are asymptotically equivalent, with probability ap-
proaching eÿe

ÿc
: This is a famous result due to Erdos and ReÂ nyi (see, for

example, [5]).
The standard reference on random graphs is the book of BollobaÂ s [1]; the

lecture notes of Spencer [5] provide a useful introduction. For an overview of
the main results on sparse random graphs, see [2]. The giant component is
the subject of recent paper by Janson et al. [3], where some very sharp results
are presented.

2 Preliminaries

For completeness we will record here some de®nitions and basic facts. Let Zn

be a sequence of random variables taking values in f0; 1; . . . ; ng. A rate
function on �0; 1� is a lower semicontinuous mapping I: �0; 1� ! �0;1� such
that for all y 2 �0;1� the level set fx: I�x� � yg is closed in �0; 1�. We say the
sequence Zn=n satis®es the LDP in �0; 1� with rate function I if, for all Borel
sets B in �0; 1�,

ÿ inf
x2B�

I�x� � lim inf
n

1
n log P �Zn=n 2 B�

� lim sup
n

1
n log P �Zn=n 2 B�

� ÿ inf
x2 �B

I�x� :

An easy fact that we will make use of is the following: if I is continuous, and

lim
n

1
n log P �Zn � �xn�� � ÿI�x� ; �1�

uniformly for x 2 �0; 1�, then Zn=n satis®es the LDP in �0; 1� with rate func-
tion I .
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3 The largest connected component

Write X �n; p� for the size (in vertices) of the largest connected component in
the random graph G�n; p�. It is well-known (see, for example, [5]) that, for
c > 1, the sequence X �n; c=n�=n converges in probability, as n ! 1, to the
unique positive solution to the equation a � 1ÿ eÿca, which we will denote
by ac. If c � 1, then X �n; c=n�=n converges in probability to zero. For con-
venience we will set ac � 0 for 0 < c � 1.

The main result of this section is the following. Set m�y� � log�1ÿ eÿy�.
Theorem 3.1 For c > 0, the sequence X �n; c=n�=n satis®es the LDP in �0; 1�
with rate function given by

Ic�x� � ÿkxm�cx� � kx log x� �1ÿ kx� log�1ÿ kx� � cxÿ k�k � 1�cx2=2

for xk � x � xkÿ1, where x0 � 1 and

xk � sup x :
x

1ÿ kx
� 1ÿ eÿcx

n o
:

Note that if c � 1, then x1 � 0 and

Ic�x� � ÿxm�cx� � x log x� �1ÿ x� log�1ÿ x� � cx�1ÿ x�
on �0; 1�, and this is a convex rate function. If c > 1, the rate function Ic is not
convex. A plot of I3 is shown in Fig. 1.

Fig. 1. A plot of the rate function I3
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The interpretation here is that the most likely way for G�n; c=n� to have a
largest connected component of size �xn, when xk � x � xkÿ1, is for it to have
exactly k connected components of that size.

Proof of Theorem 3.1. Let q�n; p� denote the probability that G�n; p� is
connected. For 1 � k � n we have

n

k

� �
�1ÿ c=n�k�nÿk�q�k; c=n�P X �nÿ k; c=n� < k� �

� P X �n; c=n� � k� �

� n

k

� �
�1ÿ c=n�k�nÿk�q�k; c=n�P X �nÿ k; c=n� � k� � : �2�

The upper bound is just Boole's inequality; the lower bound is the probability
of having exactly one component of size k, and none exceeding that size.

We will assume c > 1 until it is stated otherwise. Set

ln�x; c� � n
�xn�

� �
�1ÿ c=n��xn��nÿ�xn��q��xn�; c=n� :

Since X �n; c=n�=n! ac in probability we have that for any neighbourhood A
of ac,

lim
n
max
x2A

1
n log P X �n; c=n� � �xn�� � � 0 : �3�

Combining this with the inequalities (2) we see that

lim sup
n

1
n log ln�ac; c� � 0 ;

and

lim inf
n

max
x2A

1
n log ln�x; c� � 0 :

To proceed we need a technical lemma.

Lemma 3.1 For x 2 �0; 1� we have
lim
�&0

lim sup
n

sup
y: jxÿyj<�

1

n
log

q �xn�; c=n� �
q �yn�; c=n� �

���� ���� � 0 :

Proof. If a graph on l vertices is connected then, for each k < l, there exists a
subset of k vertices such that the restriction of the graph to those vertices is
connected. (For example, one can choose the k vertices by performing a
random walk on the graph until its range is k.) It follows that

q�l; p� � l
k

� �
q�k; p� :

Now let l � �xn�, k � �yn� and p � c=n, and consider the normalised loga-
rithmic limit to get that (for � su�ciently small)

lim sup
n

sup
xÿ�<y<x

1

n
log

q��xn�; c=n�
q��yn�; c=n� � xh 1ÿ �=x� �
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for 0 < y < x < 1. For a lower bound we observe that, again for l > k,

q�l; p� � 1ÿ �1ÿ p�l
h i

1ÿ �1ÿ p�lÿ1
h i

� � � 1ÿ �1ÿ p�k
h i

q�k; p�

� 1ÿ �1ÿ p�k
h ilÿk

q�k; p�
Here we are using, for the ®rst inequality, the natural embedding of
G�jÿ 1; p� in G�j; p�: G�j; p� is obtained from G�jÿ 1; p� by adding a vertex
and attaching it to each existing vertex independently with probability p; If
G�jÿ 1; p� is connected and the new vertex is not isolated, then G�j; p� is
connected. Now let l � �xn�, k � �yn� and p � c=n as before, and consider the
normalised logarithmic limit to get that

lim inf
n

inf
xÿ�<y<x

1

n
log

q �xn�; c=n� �
q��yn�; c=n� � � log 1ÿ eÿc�xÿ��

� �
:

The result follows. (

The above lemma allows us to conclude that

lim
n

1
n log ln�ac; c� � 0 ;

and hence that

lim
n

1
n log q��acn�; c=n� � acm�cac� ;

for some function m on �0;1� satisfying
h�ac� � acm�cac� ÿ cac�1ÿ ac� � 0 ; �4�

where

h�x� � ÿx log xÿ �1ÿ x� log�1ÿ x� :
Since c > 1 is arbitrary, and the range of c 7! cac is �0;1�, we can solve (4) to
deduce that m�y� � log�1ÿ eÿy�. We have thus shown that, for 0 < x < 1,

lim
n

1
n log q �xn�; c=n� � � xm�cx� : �5�

Now for any d > 0, there exists 0 < x < 1 and c > 1 for which d � cx, so it
follows from (5) that

lim
n

1
n log q�n; d=n� � m�d� : �6�

In particular, the convergence (5) can be extended to the case x � 1 and it
follows from Lemma 3.1 (the sequence has a kind of `approximate equi-
continuity') that the limit holds uniformly for 0 < x � 1.

The crux of the above argument, and hence the entire proof, is that it
reveals an explicit scaling property of the function q, namely that

q�xn; c=n� � q�ayk; y=k� ;
for appropriately chosen y and k.

It follows from (3) that for x > �1ÿ x�ac�1ÿx� (that is, for x > x1),

lim
n

1
n log P X �1ÿ x�n� �; c=n� � � xn� � � 0 ;

and so we have
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lim
n

1
n log P X �n; c=n� � �xn�� � � h�x� � xm�cx� ÿ cx�1ÿ x� �: A�x; c� �7�

uniformly on the interval x1 < x � 1. (Here we are using the easy facts that
the limits

h�x� � lim
n

1

n
log

n
�xn�

� �
and

ÿcx�1ÿ x� � lim
n

1
n log �1ÿ c=n��xn��nÿ�xn��

h i
are uniform.) To determine the rate function on the entire interval we ®rst
need another lemma.

Lemma 3.2

lim
n

1
n log P X �n; c=n� < xn� � � A�x; c�

uniformly on the interval x1 < x � ac.

Proof. By considering the respective component sizes we enumerate the
possibilities and apply the principle of the largest term to get that

lim sup
n

1
n log P X �n; c=n� < x1n� �

� sup ÿy1 log y1 ÿ y2 log y2 � � � ÿ yk�1 log yk�1f
� y1m�cy1� � � � � � ykm�cyk�
ÿ cy1�1ÿ y1� ÿ cy2�1ÿ y1 ÿ y2� ÿ � � � ÿ cykyk�1 :

k 2 Z�; 0 < yi < x1; 8i; x1 < y1 � � � � � yk � 1ÿ yk�1g
It is easy to check, using convexity arguments, that this supremum is ache-
ived on the set y1 � y2 � � � � � yk � x1=k. (The function y 7! ym�cy� ÿ y log y
is concave and the third line is amenable to an elementary inductive argu-
ment.) Hence,

lim sup
n

1

n
log P �X �n; c=n� < x1n�

� sup
k

�
ÿ x1 log�x1=k� ÿ �1ÿ x1� log�1ÿ x1� � x1m�cx1=k�

ÿcx1 � k � 1

2k
cx21

�
:

It is now tedious but straightforward to check that this supremum is attained
at k � 1, where it takes the value A�x1; c�. Applying the principle of the
largest term once again (using the uniform convergence in (7)), we have

lim
n

1
n log P �X �n; c=n� < xn� � A�x; c�

for x1 < x � ac; the uniformity of this convergence follows from the fact that
the argument is monotone (in x) and A is continuous. (
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Using this lemma, we can now recursively apply (7) and (2) on successive
intervals �xk; xkÿ1�, k � 2; 3; . . . to get that

lim
n

1

n
log P X �n; c=n� � �xn�� � �

Xkÿ1
j�0
�1ÿ jx�A x

1ÿ jx
; c�1ÿ jx�

� �
uniformly on �xk; xkÿ1�. It is easily veri®ed that this agrees with the formula
for Ic in the statement of the theorem.

If c � 1 we can use (2), (3) and (6) to conclude that

lim
n

1
n log P �X �n; c=n� � �xn�� � A�x; c�

uniformly on �0; 1�. This completes the proof of the theorem. (

We have also proved (6):

Theorem 3.2 For any c > 0,

lim
n

1
n log P�G�n; c=n� is connected� � log 1ÿ eÿc� � :

BollobaÂ s [2] discusses some related results on connectedness. The closest
in spirit to this result is the work of Wright [6] on the enumeration of con-
nected graphs. For example, it is shown that C�n; n� k�, the number of
connected graphs on n vertices with n� k edges, is asymptotically

fknn��3kÿ1�=2 1� O�k3=2=n�
n o

for k � o�n1=3�. (A recursion is given for the sequence fk.) This scaling has
been useful for studying the largest connected component for the critical
graph (c � 1) ± see, for example, [2] ± but there is insu�cient information
here about higher values of k to determine the asymptotics in Theorem 3.2.
BollobaÂ s [2, Corollary 5] obtains the universal upper bound

C�n; n� k� � C02
ÿknn��3kÿ1�=2 ;

for some constant C0, but for G�n; c=n� this leads to a trivial upper bound on
the probability of connectedness.

We can also deduce the following result on the law of the number of edges
in the random graph, given that it is connected.

Corollary 3.3 Let Ed
n denote the number of edges present in the random graph

G�n; d=n�. For 0 < c < d,

lim sup
n

1

n
logE �c=d�Ed

n j G�n; d=n� is connected
h i

� log
1ÿ eÿc

1ÿ eÿd

� �
:

Proof. Using the fact that G�n; c=n� can be represented as the intersection of
independent realisations of G�n; d=n� and G�n; c=d� on the same set of n
vertices, we see that
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q�n; c=n� � q�n; d=n�P G�n; d=n� < G�n; c=d�j G�n; d=n� is connectedf g
� q�n; d=n�E �c=d�Ed

n j G�n; d=n� is connected
h i

:

Here, < denotes `is a subgraph of'. The statement now follows from Theorem
3.2. (

4 The number of isolated vertices

Denote by D�n; q� the random directed graph constructed on n vertices, with
each of the n�nÿ 1� potential directed edges included independently with
probability q. It is clear that the number of isolated vertices in G�n; p�, which
we will denote by V �n; p�, has the same law as the number of isolated vertices
in D�n; 1ÿ �����������

1ÿ p
p �. Now the number of vertices Y in D�n; q� with no `in-

coming' edges has a binomial distribution with parameters n and �1ÿ q�nÿ1;
conditional on Y , the number of isolated vertices in D�n; q� has a binomial
distribution with parameters Y and �1ÿ q�nÿY .

Thus, for s � 0,

EsV �n;p� �
Xn

k�0

n
k

� �
rk�1ÿ r�nÿk 1ÿ �1ÿ s��1ÿ p��nÿk�=2

h ik
;

where r � �1ÿ p��nÿ1�=2. Setting p � c=n and applying the principle of the
largest term we get,

f �s� :� lim
n

1
n logEsV �n;c=n�

� sup
0�x�1

x log 1ÿ �1ÿ s�eÿc�1ÿx�=2
h i

� h�x� ÿ cx=2
n
��1ÿ x� log 1ÿ eÿc=2

h io
:

The GaÈ rtner-Ellis theorem does not apply here, because the scaled cumulant
generating function K�h� :� f �eh� is not steep.

We can, however, deduce (setting s � 0) that

g�c� :� lim
n

1
n log P �V �n; c=n� � 0�

� sup
0�x�1

x log 1ÿ eÿc�1ÿx�=2
h i

� h�x� ÿ cx=2� �1ÿ x� log 1ÿ eÿc=2
h in o

:

�8�
Observe that

P V �n; p� � k� � � n
k

� �
�1ÿ p�nÿ1 . . . �1ÿ p�nÿkP V �nÿ k; p� � 0� � ; �9�

and so

lim
n

1
n log P V �n; c=n� � �xn�� � � h�x� ÿ cx�1ÿ x=2� � �1ÿ x�g�c�1ÿ x�� :
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Uniform convergence follows from the next lemma, the proof of which is
identical to that of Lemma 3.1 (exactly the same bounds are used) and the
fact that the mapping x 7! �1ÿ x�g��1ÿ x�c� is continuous on �0; 1�. Set
r�n; p� � P �V �n; p� � 0�.
Lemma 4.1 For x 2 �0; 1� we have

lim
�&0

lim sup
n

sup
y: jxÿyj<�

1

n
log

r �xn�; c=n� �
r��yn�; c=n�

���� ���� � 0 :

We have proved:

Theorem 4.1 For c > 0, the sequence V �n; c=n�=n satis®es the LDP in �0; 1�
with rate function given by

Jc�x� � ÿh�x� � cx�1ÿ x=2� ÿ �1ÿ x�g�c�1ÿ x�� :
Note that we could have used (9) and the easy fact that V �n; c=n�=n

converges in probability to eÿc to determine the limit function g, using the
technique described in the introduction: Jc�eÿc� � 0 implies that

g�d� � log�d=a� ÿ �aÿ d�2=�2d� ;
where a > 0 satis®es 1ÿ eÿa � d=a. (Note that this also provides an easy
alternative to solving the optimisation in (8)!)

Finally, one can verify that g�d� is strictly bigger than m�d�, for each
d > 0. As we remarked in the introduction, the properties `connected' and
`contains no isolated vertices' are not asymptotically equivalent at this
scaling.
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