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1. Introduction

The Hopfield model centers on a certain random function defined on the
space Ty = {—1,1}". An element € of Iy will be called a configuration
(because physically it describes a configuration of N spins). The randomness
is brought by an independent sequence (;;);<y <), ©f Bernoulli random
variables (P(1;; = 1) = P(n;, = —1) = 1/2). For k <M, m = (11;4);<y 1ep-
resents a certain configuration. These M random configurations play a spe-
cial role and are called the prototypes. We will consider the quantities (called
the overlaps).

my(€) = (}VZ ’7i,k€i>

i<N

that measure how close € is from #;. The random function of interest (called
the Hamiltonian) is

(1.1) H(e)z—%ka(e)z :

Of course, H(e) depends upon N, M, and the variables (,;). The variables
(n;4) are thought to be fixed at the beginning of any study of H, and are
called the quenched variables. All the quantities we will write depend upon
the quenched variables; but the dependence almost always remains implicit.
On the other hand, when necessary we will indicate the dependence of H in N
and M.

The factor N/2 is a convenient normalization. The function H(e) phys-
ically represents the energy of the configuration e. When € = n,, we have
mk(e)2 =1, and the corresponding term gives a large contribution. Then
(within normalization) H (e€) is a particularly simple choice of a function that
tries to be small at each prototype. It should be clear then that somehow a
system governed by (1.1) “remembers” the prototypes, and, while the present
model was apparently introduced by Pastur and Figotin, it is its rediscovery
and interpretation by Hopfield as a model for memory that made it popular.
(While a discussion of the actual relevance of this model to the inner
workings of our brains is better left, say, to [T-D-C], it should be obvious
that anything as simple as (1.1) can at best be an extreme simplification).

It will turn out to be necessary to have one of the prototypes play a
special role, and for this reason, given iz > 0, we will generalize (1.1) into

(1.2) H(e) = —%VZ my(€)* — hNm (€) .

k<M

One could of course distinguish p prototypes, by replacing the last term by
N Zkgp hxmy(€); one could also introduce a term —h ),y ¢ to represent an
“external field”. These variations, however, require no new idea, so we feel
more appropriate to stick to the simplest case (1.2).
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The system governed by (1.2) will be subjected to ““thermal noise™, that is,
its properties will be described by the Gibbs measure

—N

(1.3) Gle) =2 exp(—pH (€))

where Z =27V 3"_exp(—pH (€)) and where the summation is over € € Zy.
The parameter f in (1.3) physically represents the inverse of the temperature.
The lower the temperature, the larger is 5, and the more the specific prop-
erties of H influence G. This Gibbs measure is the main object of the study of
this paper.

The Hopfield model is somewhat connected to a famous model for spin
glasses, the Sherrington-Kirkpatrick (SK) model. Both models exhibit, at
low temperature, a mysterious “‘spin glass” phase. An important difference
however is that the extra parameter M makes the high temperature phase of
the Hopfield model richer, and hence more worthy of study. While writing
the present paper, the author realized that some of his methods were already
of interest when applied to the technically simpler SK model. This prompted
the writing of [T4]. The present paper is almost self-contained; however the
key ideas underlying several sections are already present in a simplified and
more accessible form in [T4].

With the exception of Section 9, all the results of the present paper
concern the “physically trivial” range of the parameters of the model (i.e.,
outside the spin glass phase). For these values, the physicists have been able
to discover beautiful formulas [A-G-S] that agree with numerical simula-
tions, and are believed to be correct. The derivation of these formulas relied
upon the replica method, that is remarkably far from being mathematically
rigorous. Providing rigorous proofs for these results is a challenge, some of
which is met in the present paper.

A number of properties of the Hopfield model are better studied as
N — oo. The most interesting case (and the only one that will be studied in
this paper) is when M = M (N) grows with N by staying “proportional” to N,
the so called case of many patterns. We will follow the tradition to consider
the ratio o« = M/N as a parameter of the system, even though this notation
creates an irresistible urge to treat « as a continuous parameter (and at times
to write formally incorrect statements).

We now turn to a detailed description of our main results. Beside the
Gibbs measure, another object of prime importance is the free energy
F =log Z (although a physicist might use instead f~'log2VZ). This is a
random function, of course, and when need arises to clear ambiguity, we may
write Fy (o, f, h) rather than F (here, as always, « = M /N), or we may specify
only some of the parameters. The importance of F stems from the fact that
taking derivatives makes Z appear as a denominator. Thus quantities actu-
ally physically measurable appear as partial derivatives of F, e.g.
OF /0 = (—H (€)) is the average energy of a configuration. Average here
means for the Gibbs measure, and, for a function 4: Xy — IR, (4(€)) denotes
its integral for the Gibbs measure, i.e.
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(A(6)) = 35 S Ale) exp(—H (<))

For simplicity, a quantity such as (4(e)) will be called a bracket.

In Section 2, we consider the case # =0, (1 + /o) < 1. Arguments that
are specific to this case allow a detailed study.

The free energy, and most of the quantities we study depend upon the
quenched variables. To study this dependence we denote by £ and P ex-
pectation and probability relative to these.

Our first result bears on the fluctuations of Fy.

Theorem 1.1. Consider oy, py with (1 + \/ag) < 1, and assume h = 0. Then
there is a constant K, depending only upon oy, f, with the following property. If
o <ay, <Py, then we have, for u > 0:

(1.4) P(FN(ﬁ) > %[log <ll_ﬁ> + u> <e™

(1.5) P<FN([3) <A;[10g(liﬁ) —u> gKexp—ME2 .

The proof of this result parallels the proof of [T4], Theorem 2.1. The
main ingredients are a second moment calculation (after truncation) and
concentration of measure arguments.

It is claimed in [Sca-T] that Fy(f) + M/2log(1 — f§) converges in distri-
bution as N — oo to normal (non standard) r.v. This result goes in a
somewhat different direction than Theorem 1.1, which presents inequalities
true for all N (a formulation better adapted to the potential physical content
of the theorem). It was also pointed out to me by two colleagues that the
complicated estimates of [Sca-T] are not easy to validate.

Ever present in our topic is the idea of replicas. A p-replica is simply a
product space (2%, GP) (for the same realization of the quenched variables).
A prime use of replicas is the possibility to write a product of two brackets as
a single bracket by the formula

(1.6) (4(€))(B(€)) = (A(e)B(€)) .
There the bracket on the right represents an integral on (2,2\,, G?), and the
generic point of X% is (e, €'). Formula (1.6) will be called the replica trick. It is
nothing else than the formula EXY = EXEY valid for independent r.v. The
notation (1.6) does not attempt to distinguish whether the bracket represents
an integral on Xy or X%; this should be clear from the context.

Another use of replicas is to define important parameters of the system,
such as

(1.7) TN=N72<(€~€/)2>

where of course €€ =),y € €.
There the bracket again means [(e - € )* dG(€) dG(€'). For simplicity, we
will say that €, € are thermally independent. The idea under (1.7) is (as all
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great ideas) basically simple. Suppose that it happens that € points mostly in
one single direction (when distributed for G). Then an independent copy €
will point in the same direction, so N~2(e - € )2 will often be of order one. On
the other hand, 7y being small means lack of polarization. Quite naturally,
this is the case at high temperature, as the following result shows.

Theorem 1.2. For fy(1 + \/ag) < 1, h = 0, there exists K depending upon oy, f
only such that if o < ag, p < By we have

(1.8) E<e (e 6/)2> <K

and in particular

(1.9) Eexp ¥ty <K .

Since the Hamiltonian (1.1) is defined in terms of the overlaps, it is
natural to consider the overlap vector m(e) = (my(€)),)» and the parameter

((m(e)-m(€))”) .

Theorem 1.3. For fy(1+ \/09) <1, h =0, there is K depending only upon
oo, By and an event Qqy of probability > 1 — 27N such that

Elgo<expW> <K .

As the temperature decreases, so does the thermal noise, and at some
point (for o small) the influence of the prototype appears. To state our result,
for 1 > 0, > 0, we consider the largest root m* = m*(f5, ) of the equation

(1.10) m* =th f(m" + h)

where th denotes the hyperbolic tangent. Thus m* =0 only if A =0, < 1.
We denote the canonical basis of RM by (€x)r<1-

Theorem 1.4. There exist two numbers Li,L, with the following property.
Consider B> 0 and o < m**/L;.

a) If h=0,p > 1, consider the set C of configurations € such that m(e€) is
NOT within distance Lz(oc/m*z)l/2 of a point m*e;(k < M)

b) If'h > 0, consider the set C of configurations € such that m(e) is NOT within
distance Lz(cx/m*z)l/2 of m*e.

Then, for some constant K independent of N,
E(G(C)) < Kexp(-N/K) .

In some sense Theorem 1.4 describes a memory effect since the Gibbs
measure is then supported by the union of 2M small balls (or even one small
ball for & > 0).
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A result of the same nature (but with worse estimates) was first proved in
[B-G-P]. The correct estimates, in the case # = 0, were independently an-
nounced in [T3] in the case f > 1, f — 1 small and proved for all > 1 in
[B-G 2]. (This requires an additional simple argument compared to the case
fp — 1 small). Actually, Bovier and Gayrard prove Theorem 1.4 by deducing
it from deeper and more precise facts. The approach we will use (which is
essentially the approach of our first proof) succeeds in avoiding a number of
the obstacles that Bovier and Gayrard have to conquer.

Theorem 1.4 will be proved in Section 3. In Section 4, we start to discuss
the main topic of the paper, the so called replica-symmetric (RS) solution of
the Hopfield model. This “solution” is a set of equation between the main
parameters of the model, relations that will be described below. These re-
lations were discovered in [A-G-S] using the replica method. It is a priori not
clear what really lies behind these remarkable formulas, and the first purpose
of Section 4 is to draw the overall picture, as we see it. The second purpose of
Section 4 is to explain what are the underlying ideas of the technical work
ahead, and in some sense this section consists in a considerable amplification
of the part of the present introduction up to (1.18)

Before proceeding any further, let us write the basic equations of the RS
solution.

Consider a standard normal r.v. g, and the system of equations

(1.11) p=Eth f(gv/r+ p+h)
(1.12) q = Eth’B(gv/r + pu+h)

where we have set » = ag(1 — (1 — q))_z. Then (hopefully) these equations
define two functions p, g of o, 5, & (a fact that is not so obvious and for which
we know no reference). The RS solution predicts that

(1.13) I&EI;ON‘IEFN(a,ﬁ,h) = RS(a, B, h)
where
@B Bq

~ B 51— g) + Elogeh fgv/r + u+h)

Given a domain D of IR?, we will say that “the RS solution holds in the limit
in D if (1.13) holds for (o, 8, /) € D.

The main results of the paper rely upon induction over the number N of
spins, and iterative use of certain estimates. In Section 5, we learn how to
relate a system with (N + 1) spins to a system with N spins. We then make a
first use of iteration to obtain the following.

Theorem 1.5. There is fy > 0 such that (for each h) the RS solution holds in
the limit for p < P.

The method of proof of Theorem 1.5 is based on iterative estimates of the
quantity
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(1.15) EN=E<N‘2 > (<€i6j>_<€i><6j>)2> :

1<ij<N
The basic idea is simply to prove that
Eyn.1 < CEy + small term

for C < 1; Iteration then yield that Ey is small, a key step in establishing the
validity of the RS solution. The method unfortunately produces an irre-
trievable loss of information that forces restrictive conditions on f. To go
beyond Theorem 1.5, one needs rather to estimate iteratively a quantity such
as

(1.16) E > ((mme) — (mi)(my))?
1<k (<M

This turns out to be a task of an entirely different magnitude. The main effort
of the author went into developing techniques to do this; these techniques are
presented in Section 6. These estimates identify leading terms and smaller
order (error) terms. The problem then is to control the error terms. Quite
interestingly, Theorem 1.4 is of a great help in this direction. The culmina-
tion of these efforts will result in the following:

Theorem 1.6. There exists a number L with the following property. If h > 0, and
either

1
L
then the RS solution holds in the limit.

(1.17) B<2,0< (m*4+(1—ﬁ)2)orﬁ22,ugLiﬁ

While we do not know how to prove the validity of the RS solution
outside the domain of Theorem 1.6, we have succeeded in proving that the
Almeida-Thouless conditions

(1.18) afEch™B(gv/r + p+h) < (1 - B(1 - q))°

occurs in a very natural way. Unfortunately, it does not seem possible at this
stage to give even an informal version of the result that would be intelligible
(such an informal version is given in Theorem 4.2), and we urge the reader
who has reached this point, but is not interested in proofs to at least glance at
Section 4. In fact, we consider the exact identification of condition (1.18) by
mathematical methods (rather than by analysis of the eigenvalues of matrices
of dimension — 0...) as the greatest success of the approach that we de-
velop. Most remarkable is the fact that (1.18) occurs as the result of a long
computation where over a dozen of terms rather miraculously combine into
(1.18).

In Section 9, we investigate the zero temperature case. We give short
proofs of (improved versions of) several results of [Lou], concerning the
existence of energy barriers, for small o and the collapse of these as o — oc.
While these results apparently are today’s state of the art, they rely on
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somewhat ad-hoc methods and are rather unsatisfactory. (Thus, while it
could happen that some methods presented elsewhere in the paper will be of
long-lasting use, this is less likely for the results of this section, and the proofs
therefore are less detailed). The most frustrating questions concern the
evaluation of the minimum of H(e), for which only extremely crude results
are known. For example, there is overwhelming numerical evidence that for,
some values of o (say o = .1 ) there are local minima near the prototypes,
while the global minimum is not near any prototype, a fact we could not
prove.

Estimates for the norm of certain random matrices play an important
technical role in the Hopfield model. There is a well established and deep
theory of these [S]. On the other hand, one could get confused by the fact
that some papers on the Hopfield model have made use of complicated
results that are not quite as good as those of [S]. For clarification, we give in
an appendix a short self-contained proof of all what we need in this direc-
tion.

Now, a few words concerning the style. This paper attempts to be a fully
rigorous mathematical paper. There is, however a basic difficulty in the topic:
a number of secondary obstacles occur a great many times. These are easy to
pass, but the sheer accumulation of routine work needed to handle them in
complete detail every time would make the paper impossible to read (and to
write). The strategy has been to address in complete detail every such ob-
stacle at its first occurrence. After some point, when it is felt that the reader
should be convinced that handling the obstacle is now routine, the obstacle is
ignored altogether.

Throughout the paper, we will say that an event occurs with over-
whelming probability if the probability that it does not occur is bounded by
exp(—N/C), where C does not depend upon N. We denote by L a universal
constant, that may change at each occurrence. When it helps to distinguish
these constants they are labeled Ly, Ly, ...; this labeling remains valid for a
few lines only (thus the several constants L; occurring at various places are
not the same.) In contrast, constants that do not depend upon N, but might
depend upon «, 5, A, ... are denoted by K.

Acknowledgements. 1 am indebted to Pierre Picco for sending the paper [B-G-P] to me, a paper
that started my interest in the Hopfield Model, and to D. Loukianova for communicating her
thesis, that inspired much of Section 9. And, above all, it must be said that this paper would not
have been written without the encouragement of Erwin Bolthausen. (The reader will observe
that, as what should have been a three months project ended up only after over a year of very
intense struggle, the word “grateful” was omitted from the Acknowledgement).

2. High temperature, no external field

In this section, we will prove Theorems 1.1 to 1.3. We assume 4 = 0 unless
specified otherwise. We fix og, f; with fy(1+ /o) < 1, and we assume
o <og, f<p,. Forsimplicity we do not attempt to track the dependence of
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our bounds upon ay, iy, so we denote by K a constant depending only upon
o, Py, that may vary at each occurrence.

A large part of the proof of Theorem 1.1 is devoted to elementary mo-
ment estimates, that are presented in a series of lemmas that ends with
Corollary 2.5.

Lemma 2.1. For each € € Xy we have

@) g -p ™M < Eexp(—pH(©) < (1 - H) M

Proof. First, we observe that by independence we have

M

2
Eexp(~pi(e)) = | Eexp (Z ﬂ)

i<N

We now use the fact that if g is N(0, 1), for a € R we have
2

(2.2) exp% = Eexpag
so that
p ’ p
(2.3) Eexp— ( '7i,16i> = Eexp \/: ;1€
o \ & Vi
= Eexp N logch g\/—é
N

assuming, as we may, that g is independent of the #,;, and averaging over
these first. Here, of course chx = (e 4+ ¢7)/2. The elementary inequality
chx < expx?/2 yields a bound Eexp f2g%/2 = (1—p)~"/%

To prove the lower bound in (2.1), we first observe the following ele-
mentary result, that we state for further reference.

Lemma 2.2. The derivatives of the function logchx satisfy

2thx

(logchx)' = thx, (logchx)” = (chx) ™%, (logchx) = — o
ch’x

(logchx)® = 4(chx) ™ — 6(chx) ™ < 4 .

In particular, Taylor’s formula show that

o
~

X X

. >T
(2.4) logchx > 7%

so that (2.3) yields



186 M. Talagrand

2 2.4

= ! /—1 exp _r Ft 5| d

1-p 2n 2 6N(1-p)
> | / L. ( ’2) o~ ;

— exp| —= _
=Vi-p) v P\ 72 6N(1 — p)?
ST\ N)=T=p P\"N
where we have used in the forth line the inequality e ™ > 1 — x. O

Proof of Theorem 1.1. (Upper bound) The upper bound of (2.1) implies
EZ < (1 - ﬁ)fM/z, from which (1.4) follows by Markov inequality, since
FN = lOg Z. O

The following lemmas prepare the proof of (1.5) that is much harder.
2
Since By(1 + /%) < 1, we have o (1_—1/;0 - 1) < 1. Thus we can consider

p such that a(p — 1)*> < 1 and p > 1/(1 — B). We set 1o = Mp/2, our trun-
cation level.

Lemma 2.3. We have, for each € € Xy

(2.5) Eexp(~=BH(€))1{-ngzq) < (1— B exp (_ ]Ev)

Proof. Using Markov inequality and Lemma 2.1 we get, for ' > f that the
left hand side is bounded by

(1= )™M exp—Y[—log(l — B) +log(1 — ') + (B — B)p] -

The exponent is
M ﬁ — ﬁ/ /
7(log(l 1 _ﬁ,> +p(/3—ﬂ)) :

Taking B with p = 1/(1 — f') finish the proof, since log(l —x) +x < 0 for

0<x< 1. O
Lemma 2.4. Consider €,€ in Xy, and u=N"'e- €.
Then
(2.6) Eexp(—p(H (e) + H(€ ) —rie)-r(e)<21}
M

<(1=B) Mexp¥(p— 1) .
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Proof. We set I = {i < N;¢; = €};J ={i < N;¢ = —€}. Thus

card I = N(1 4+ u)/2, cardJ = N(1 —u)/2.
Use of the formula
(x4 + (x =y’ =27 +2)°
yields

Hie) + H(¢) = f% {Z (Z e,-n,.k> 2+ ) (Z emi’k> 2] .

k<M \ iel k<M \'ieJ

We write
1 B 14+u _ 1 —u
N 2cardl 2cardJ

and we use Lemma 2.1 with A(1 4 ) rather than f§ and card / rather than N
to get, by independence

(2.7) Eexp(—A(H(€) + H(€'))) < expMo(L,u)
where
1 1 1 1
o) =3 logr—ay Falee Ty

Now, using (2.7) for 4 < f8, and recalling that 2fy = pM, we get
Eexp(—p(H(€) + H(€))_ie)-n(er<a) < expM((f—2)p+ @(4,u)).

Thereby, to finish the proof it suffices to show that

. 1 22
. — A ! < =(p— .
(2.8) inf((f ﬂ)p+<p(ﬂ,u))_10g1_ﬁ+2(p 1)u
Let us denote by Z(u) the left hand side of (2.8).
Thus

h(u) = p(B = A(u)) + ¢(4A(u),u)
where A(u) is given by
¢
(29) p = (3u)u).
Hence
W (u) = g—(ﬁ (A(u),u).
To prove (2.8), it suffices to show that #'(u) < u(p — 1)*. Recalling (2.9), it
suffices to show that

ol0) 1910 2
. < _ .
(2.10) 6u_u<8/1 l)
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Setting D = 1 — 24+ 2*(1 — u?), algebra shows that
dp _Fu_ dp 1=i(1-w)

ou D’ 0L D
so that (2.10) becomes
2 2
Au < u/ (1+u* = 2(1 - uz))z.

D D?
i.e.

D< (144 —i(1—u?)’.
But this is true because

D=(1-2)=?2< (1= <1 =2+u>1+ )% 0

For a function 4 on Xy, we write

EA=2"Y"A(e)

so that in particular Z = E.exp(—fH (€)).
Corollary 2.5. For some 6 = é(a, ), we have

0
EE.Ee exp(_ﬁH(e))l{fH(e)Sto} exp(_ﬁH(el))l{fH(e’)Sto} expﬁ (6 ’ 6/)2

1 M
()

Proof. We fix € and € in Zy; we then see from Lemma 2.4 that

Eexp(—PBH (€)1 r(e)<i) exp(—PH (€)1 {_r(er<n)

<(5) g

because
Li_ne)<uny l—r(er<ny < V—n(e-He)<20} -

We see now that we can choose & such that 6 + o(p — 1)*/2 < 1/2. Then the
proof of Lemma 2.1 and the fact that € - € is distributed like »",_, 1, show
that -

€ €) < 1

2N T JT=y
The next two lemmas prepare to the use of concentration of measure

arguments. As we are dealing with Bernoulli r.v., these arguments require a

convexification procedure; that is, we extend the definition of H as follows.
For y = (yix) € [-1, 11V we define

7(

E.E.exp O
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k<M i<N

H(y’ 6) = Z (Zy:k@) .

We denote by ||y||, the euclidean norm of y, i.e. ||y\|2 = Zk,ylk and by ||yl
the norm of y seen as an operator from RY to RM | ie.

Iyll—sup{zukvly,k,Zuk_l >t <1} :

k<M i<N

NxM

Lemma 2.6. For x,y € [—1,1] we have

H(x+y,¢€) Z €EWij

i,j<N
where w;j = w;; and where

S w2, < el (Il + 1l3)

i,j<N

Proof. We write

H(y7 6) = ZN Z €i€j (Z)’;k)bk)

i,j<N k<M
so that

1

N Z(J/i,kxj,k + XikVik T XikXjk) -

k<M

Wij = —

Now

2
2012
Z (in,kyj,k> < Il N3

<N \k<M
and, using Cauchy-Schwarz

S (Son) <5 (59) (59

ij<N \k<M ij<N \k<M k<M
2
= [lx[l> - O

Given y in [—1, I]N “M we can consider the corresponding Gibbs measure
G, on Xy given by

Gy({e}) =272 "exp(—pH(y,€))

where Z = Z(y) = E.exp(—pH(y,€)). Integrals with respect to G, are de-
noted by (-),.
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Lemma 2.7. We have
1/2 1
<6Xpﬁ Z EiGle'J> Z CXp —ﬁ(z W12’1> <(€ . 6/)2>
ij<N y ij<N y
Proof. We use Jensen’s inequality in the space (Xy, G,) to get
<6Xpﬂ Z €i€jWiAj> > €Xp [)’< Z eiejwi7j> .
iJ<N y iJ<N y
and we use Cauchy-Schwarz, since ZimiSN<€"6j>.}2’ =((e- e’)2>y. O
Proof of Theorem 1.1. (Lower bound)
Step 1. We decompose Z as Z; + Y where
Y = E6 exp(—ﬁH(e))l{,H(e)S,o}
is the “main part” of Z and

Zy = Ecexp(—BH (€)1 {_H(e)>)

is small (but badly behaved). To see that Z; is small we use that from
Lemma 2.5

(2.11) EZy < (1 — ﬁ)M/zexp(—]%> .

It follows from Lemma 2.1 that

EY =EZ —EZ; > (1 — )™M/ G{ - exp(_%»

Since M /N < oy, considering separately the case where N is small yield
(2.12) EY > L1 —p™M*.

On the other hand, Corollary 2.5 implies that

(2.13) EY?<K(1-p™.

We then appeal to the following elementary fact (“‘Paley-Sygmund inequal-
ity”): for any r.v. ¥ > 0, we have

EY\ _ 1(EY)?

. > — | > = .
(2.14) P(Y 2)4EY2
With (2.12), (2.13) this yields
(2.15) P(y>La—-p™*>1 .

Step 2. In order to use concentration of measure arguments, it is necessary to
think of the quenched variables n = (1, ) as a point of the space {—1, 1
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provided with the uniform probability. The aim of this step is to show that
we can choose K large enough that P(4) > 1/K, where

4= {'1 e {1, Z> L1 - B2 (e €)P) < KN;

Il < &VA¥ |
Here, as before, ||n|| is the operator norm.

We consider ¢ > 0, and we write

N2
(2.18) <exp ¥> =7 2E.E. exp(—ﬁH(e) — BH(€') + (e - e’)z)

<Z73 (Ui + Uy)
where
Uy = EEol(_y(ey<iy L ((e)<n) exp ( — BH(€) — BH(€') + 3(e - €)?)
Us = EEo(1{_noz0) + L—n(ey=n}) exp ( — PH(€) — BH(€) + S(e - €)7) .
Thus
Us < 2ZeE 1(_py(e>1) €xp(—BH (€)) .

It then follows from Lemma 2.3 and Corollary 2.5 that we can choose 6 > 0
depending only upon o, §, such that (2.18) implies

(2.19) (expe-€)) <2201 +27'H

where EU; < K(1 — )™, Evy <K(1— p)™/2
Now, we know from (2.15) that we can find Ky such that P(B) > 1/Ky,
where

B={z>0-p""/K}

E<13<exp]%(e : e’)2>> <K.

i <frts?)

and since ||| < Kv/N with probability > 1 — e V/X (see Lemma 10.3) we
have shown that P(4) > 1/K. O

and (2.19) implies

Since

Step 3. Consider u > 0 and the set
c={zel-11""z@) <1 -pP)
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The definition of Z(z) shows the all important fact that C is convex. It
follows from general principles [T2] that we can find y in 4, z in C such that
x = g — y satisfies

[ 1
(2.20) lx]l, <K logl—3

where
P= P(Bm (-1, 1}”) = P(F <Mlog(1 - f) —u) .
With the notation of Lemma 2.6 we have
Z W < K<H"|§+M> .
G YT OAN N
The key observation is that

Z(z) = E.exp —fH(y,€) exp f(H(y,€) — H(z,€))
=Z(y)(exp B(H(y,€) — H(z,€))),

Combining Lemmas 2.6 and 2.7, and using the properties of 4, we have

7\ 2
x5

Z(z) > K '(1 - )™M exp —K<|x||2 + W)

Since z € C, this implies

B
u—K<K||x|]|,+—=| .
< (n I+ 2
Combining with (2.20),

1 K, 1
u<K+K log1—3+ﬁlog1—3

so that P < max (exp _ (u;(K)z, exp — N(u[;K) .

But, since obviously Z > 1, only the values of u < KN matter. Theorem
1.1. follows easily. O

Proof of Theorem 1.2. We write

<exp%(e . e’)2> < <exp%(e : e’)2>1/2

< Z—1U11/2 _|_Z—1/2Vll/2

where Uy, J; are as in (2.19). Now (1.5) implies that EZ~> < K(1 — ﬁ)M, SO
use of Cauchy-Schwarz finish the proof. O
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Proof of Theorem 1.3. For further purposes, we will prove a bit more than
what is needed for the proof of Theorem 1.3, by allowing the case 4 > 0.
Throughout the paper, for a function 4: Xy — R?(d < I,N,...), we write
A=A—(4). Thus é = € — (€). Note that, by symmetry, é = € when 4 = 0.

Consider the symmetric bilinear form on (RY)* given by m(x) - m(y)

where
m(x) = lz ;
= \w ;i i Xi .
k<M

i<N
We find an orthonormal basis (v,),.y of R" and numbers (/) <y Such that

(2.21) m(x)-m(y) =3 Jp(vy- X)(v,-y) .

PN

Thus for any natural number ¢, we have
0
(m(&)-m(&)" = (D 2p(v,- &)(v,- é’))
<N
= Z)“pn A H(vpr “€)(vy, - €) .

r<t

Here and below, the summation is over all choices of indexes p;,...,pr < N.
Using the replica trick, we get

((m(€) -m(e))") = ngl e (U, - ) (v, - €))?
<A (v, &) (v, - €))°

where A = max |4,|. To handle the summation in the last term, we perform
the same colrjﬁputation of before, taking now 4, = 1 for all p, to see that this

sum is
¢
<<Z(1’k - €) (v - é)) > - <(é : é’)[>
3
Thus, for all ¢,

(2.22) ((m(e)-m(&))") < A{(&-&))
and power series expansion show that
(e s m(e) - m(e))?) < (expie-€))
NA N
Now, using (2.21) for x = y = v, show that
4 < sup{lm(x) s ], < 1]

and, with probability > 1 — 27V, thisis at most N~!(1 + K\/&)Z. Theorem 1.3
follows. O
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We will use the following corollary of the proof.
Corollary 2.8. There exists a number K such that for all o, 3, we have
(2.23) E<(m(é) ~m(é’))2> < (1 +KVa) EN"2((e - &)%)
+ 0?27 VN?
Proof. We take expectation in (2.22) for ¢ =2; on the exceptional event
A>N"1(1 —&—K\/&)z we use the trivial bounds 4 < o,e-€ < N. O

More results can be proved. For example, Theorem 1.7 of [T4] extends
immediately to the present setting. An interesting question is whether The-
orem 1.8 of [T4] can be adapted too.

To conclude this section we show that when f < 1 (whatever the value of
o), the overlaps my(€)(k > 2) are small. In this result, we again allow the case
h#0.

Lemma 2.9. If f <1, h >0, for 2 <k <M and u > 0 we have

N(l — ﬁ)u2> :

(224)  EG({m() > u}) < ﬁexp(—z

Proof. We consider

Z, = E.exp (BTNZ m?(€) + BhNm, (e))

£k

so that Z > Z;. Denoting by Ej expectation at the variables ;, fixed for
{ # k, it suffices to prove that

(2.25) Er(Ecl {, e)2uy exp(—pH (€)))
(Y.

Indeed, after dividing by Z, since Z; does not depend upon (1 ;) <y, We see
that the left-hand side dominates Ey(G{m(-) > u}). To prove (2.25), for
f' > B, we write, using Lemma 2.1

N
Ex 1 {my(e)>u) €XP —ﬁz m(€)’
/

<exp(p— 1)y Brexp S mer < (1= ) oo (<55 - )

and we take ' = (1 + B)/2. O

3. Emergence of memory

In this section, we prove Theorem 1.4. In order to avoid a number of trivial
but confusing difficulties, we assume f > 1/2, and we leave the case f < 1/2
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to the reader. One should observe that the case f < 1/2, « <1 is in fact (in
principle) completely understood because we will calculate the limit of the
free energy in Section 5.

On RM, we consider the Gaussian probability y of density
W exp(—pN||z||*/2), where W is the normalizing factor W = (N/i/Zn)M/Z. We
will use the Hubbard-Stratonovich transformation, that is, we will consider
the measure G = G’ * y, where G is the image of G under the map € — m(e).
Since 7 is sharply concentrated on a ball of radius /a/p, it suffices to prove
that EG(C) < K exp(—N/K) for the sets C of Theorem 1.4.

Considering the vectors ; = (1;4),,, of RY, we define the function
(depending upon the quenched variables)

@) 02) =~ 2P 3 log ch B < + )

i<N

where ||z]|* = > t<u Zt- The following lemma occurs already in [P-F1], and
the simple proof is reproduced for the convenience of the reader.

Lemma 3.1. The density of G at z with respect to Lebesgue measure is
WZ 'expy(z).
Proof. This density is

PN

N
WZ 'E.exp (7|m(e)||2 B

=m0l + pasim(e))

=wZ 'exp —ﬁTN lz||*E. exp(BNz - m(€) + phNm, (€))
=WZ 'expy(z)
where we used the fact that
N(m(e) - z + hNm (€)) = Zei(”i'z—"hni,l) ]
i<N

Our first task is to find lower bounds for Z. We observe that, from
Lemma 3.1

(3.2) Z= W/ exp ¥ (z)dz.
]RN

Consider a number a to be determined later, and b = ff(a + /). We make the
change of variables z = ae; + v. We make an expansion of logch(b + ft) at
order 4 using Lemma 2.2, to get

N N
(33) Y (v)=y(z)=— %az + Nlogchb — % [v]|* — pNav - €

2

+ tthﬁﬂi,l('li - v) +2c‘f1—2bz(m : U>2

i<N

3
AL Z’?i.l('h -v)’ +_ZR1'('U)('1,- cv)?

3ch’h i<N i<N



196 M. Talagrand

where |R;(v)] < 1.
We observe that, for any rotation U of R, we have

Z= W/expn//N(v)dv: W/expr(U(v))dv.

If we denote by dU the Haar measure on the group of rotations, by Jensen’s
inequality we see that

(3.4) zZ> W/exp(/tﬂ”(U(v))dU) dv .

The idea there is that the inner integral greatly simplifies the expression (3.4).
Indeed, for any vector x of RM, and p € N

(3:5) [ vy av =g sl ol

where the number ¢, does not depend on x and v. To estimate ¢, we apply
(3.5) to a Gaussian vector X of covariance matrix the identity and we take
expectation, to get

cpE|| X||" = Eg”
where ¢ is N(0,1). Thus, ¢, =c¢3 =0, ¢, =M"', and, since E|X|*>

(E||X]|*)?, we have ¢4 < 3M 2.
Thereby since ||g;|| = M'/? for each i we have proved that

a*p
Z > WexpN —7+logchb

N N
< [exo(= 5 (1= L Yol = 95 ol ) o

By change of variable, we see that if X is as above

—M)2 2
> _ 7‘! _ 7‘!
Z <2n<1 % expN 3 + logchb

B
: EeXp( N(I - ﬁ/chzb)z)

We apply again Jensen’s inequality to the last term, and we use that
E||X||* < LM?. As for choosing a, it is appropriate to choose it to maximize
the main term

2

7“7+ logch B(a + h)

i.e. a =th f(a+ h) that is a = m* = m*(p, h).
We observe that

1
= 1—th’=1—th®B(m* +h) =1 —m™.
ch’h A )
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Also, the derivative of the function a — th f(a + &) decreases, so that if
m* >0 at @ =m* this derivative must be <1, so that B(1 —m*?) < 1. To
simplify notation, we set

(3.6) a =1-p1—m?); b= —ﬁ”;*z + logch f(m* + h)

(it might provide some insight to observe that »* is the free energy per site for
the Curie-Weiss model).

Throughout the section we consider only the case m* > 0 (i.e. either f > 1
or i # 0) so that a* > 0. We have shown the following.

Proposition 3.2. We have

1\ M2 . LBPaM
(3.7) zZ> (La*> exp<Nb - ) .

It should be observed that this bound holds for all values of «, 5, and of
the quenched variables.

Corollary 3.3. If
(3.8) o< —
we have

1 M/2
a

To understand a* better we note the following.

Lemma 3.4. We have

(3.9) T <d
If p > 1, we have
(3.10) a* <2m*min(l,f—1) < Lm™ .

Proof. If < 1, we have m*2 < 2a*. Indeed this means
m*? < 2(1 — B) + 2pm* .

Since m*? < 1, it suffices to distinguish the cases f < 1/2, > 1/2. We now
assume f§ > 1. First, it is obvious that m*(f, ) increases with 4. Next, as
B— 1, m*2(B,0) ~3(B — 1) so that

1= B(1—m*(B,0)*) ~2(p—1) .

Also, 1 — p(1 — m*(ﬁ,O)z) stays away from zero as f§ stays away from one.
To prove the second part of (3.10), one can assume 2 = 0, and the result is
obvious. To prove (3.9), i.e.
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*2

L

it suffices again (if L > 1) to consider the case # = 0, where this is obvious.
Now, to prove the first part of (3.10),

a=1-p(1—m?) <2m™
is true if 2m*> > 1. If m*> < 1/2, then
@ =1-p(l—m?) <1-p2
so it suffices to consider the case f < 2. But then

a=1-p(1-m?)=1—-p+pm?* <2m? . O

Sl_ﬁ+ﬁm*2:a*

In conclusion, for > 1, a* is of order m*>. (On the other hand, for
I<B<1,a =1-p+pm?is of order 1 — B+ m*, and, possibly m*? <
1 —p).

In trying to find upper bounds for y, we write, with some loss of infor-
mation

(3.11) logeh B(n; - 2+ hn;y) < logch B(|n; -z + h)
=o((n;-2)°)
where ¢(x) = logch B(\/x + ).
Lemma 3.5. We have
¢"(x) < —gmin(l,x_3/2> )
Proof. If ¢(x) = f(1/x), it is straightforward that
1
¢"(x) = yoeYe) (Vaf"(Vx) = f'(Vx)).

Here f'(y) = pth B(y + h), f"(y) = B*/ch*B(y + h), so that

R — )

B (zm— shzﬂ<ﬁ+h>>>

e ch?B(y/x + h)

< B (2t —sh2t
=832 chls

for t = f(v/x + h). Now, distinguishing the cases # < 1 and ¢ > 1, we see that

2t —sh2¢ |
———— < ——-min(#, 1
ch’s ~— L 1)

so that

¢"(x) < —gmin(l,x’yz) O
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Since m* < 1, it follows from Lemma 3.5 and Taylor’s formula that

(12 ol 2)) <o)+ /o) (-2 - m?)
— ffmin(1, ((n; - 2)* = m?)%)
Quite conveniently, we have

p

o) = o+ 1) =2

2

so that, by summation of the inequalities (3.12), and after regrouping the
terms we get

(.13 v < N 0 (Z(m 2 —N||z||2>
i<N
L2 min(L (-2 =),

The last term there is crucial. In order to study its influence, we fix z and we
write

2 2
(m;-2)" =zl + X

where

(3.14) Xi = Z NixMiezkze -
k£

2
Thus, if ¥, = ¥(z) = ((1],» ) - m*z) , we have

Y; = (X; +b)°

for b= ||z||* — m*2.

We observe that EX; =0, so that EY; = b* + EX?. We also observe that
EX} = Zk 7]
It is general fact that for a r.v. of the type (3.14) we have EX? < L(EX?)
[Bo]. Thus
EY? = EX! + 4EX’b + 6EX}b* + 4EX;b + b*
<L [(EXZ)Z + (EX?)b + 6EX2D* + bﬂ
< L(EX? + b*) = L(EY,).
Use of the Paley-Zygmund inequality (2.14) yields
(3.15) P(Y; > EY;/2) > L'

To simplify notation, we set

R(z)(=EY) = (2| =m™)* + > _z7.
=
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Lemma 3.6. Assume o < a*?/, B > 1/2. Consider the event Qq of Appendix 2
(Lemma 11-3), and Ly such that on Qy we have ||m(€)|| < Lo for all € € Zy (as
provided by (11.4)). Consider a subset A of R™. In order to prove that

(3.16) E(G(4)) < Kexp(—N/K)

(where K does not depend upon N) we can assume that A is within distance Ly of
the origin, and it suffices to prove that I1(4) < K exp(—N/K), where

I(4) = (LBNa*)M/?

(3.17) ></AeXp lg <83p<2(m-z)2—N|z|2>> — RL(Z)] dz

Proof. To prove (3.16) it suffices to prove that

(3.18) E(10,G(4)) < K exp(—N/K) .

The ball B of RN consisting of points within distance Ly of the origin satisfies

G(B) > 1 —exp(—N/K), so that we can assume 4 C B. Using Lemma 3.1

GA)=wz"! /explp(z) dz .

y
Using Corollary 3.3 and (3.13),

10,G(A4) < (LBNa*YM/? / exp U(z)dz
4

where
JORL (Z( % —N||z||2> ~BS min(1 %))
0 i<N

Now, using (3.15)

Eexp(—gmin(l,Yi(z))) < <1 —%) —&—]%exp(—lﬁimin(l,EY[(z)/Z)) :
Also,
(3.19) EYi(z) = R(z) < 3|z|* +2m™ < I,
because A C B. Thus, as > 1/2

Eexp(—gmin(l,)’i(z))> <1 —%R(z) < exp_% .

Thus
E(19,G(A)) < (LBNa™ ™/

x / exp [é (S;;f (;wi 2’ —N|z|2>> S

dz . O
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We will say that a set A that satisfies (3.16) is negligible. For a moment we
will use the estimate

(3.20) sup > ((n; - 2)” = Nljz|]*) < NLV3l|z|’

Q <N

of Lemma 11.3, so that

a1t < @) [ eon(prvala -52)
4 L
Lemma 3.7. If o < a*?/p, the set
A={z|z|| = ¢}

is negligible, where

(3.22) ¢ = max <2m*,L/31/2 <o¢10g (L\ﬁ/;*>>l/4> .

Comment. Here and below, the dependence in f are not important; only
crude and simple bounds are used for this.

Proof. For ||z|| >c, we have |z||* —m*2>c? —m*2 > 3c2/4, so that
R(z) > c2||z||*/2. Thus, if ¢ > L\/af, we have

N
1(4) < (LﬁNa*)M/z/ exp—z]* dz

llzll>c
Ne# N|z|*c?
< (LBNa*)M/? exp(— i) / exp — % dz
< Lfa* M/Zex Nc*
—\ 2 P 2L )
The result follows easily. O

Here we see the importance of the critical number

m*4

Lif*logL (”*fij

which is the value of « below which ¢ = 2m*.
To understand o* better, we note that by (3.10) we could also define

(3.23) o

x4
% m

=
Lif*logLi
*4

a*:”z for <1, m?>1-p
1

for f > 1

x4
« m

= %2 _
o " Lylog(Li(1 = B)/m*2) for f<1, m?<1-p
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The last two claims result from the fact that, for % <p<l,
a* =1— B+ pm*? is of order max(1 — g, m*?).

Corollary 3.8. If o < o, the set {z;||z]| > 2m*} is negligible.

From now on, we assume o < o*. To decide if a set 4 is negligible, we can
assume ||z < 2m* on 4.

Lemma 3.9. Consider 0 < & < 1/2. Then, if ||z|| < 2m*,

2

Vk <M, ||z m e > Em* = R(z )_2556”14

Proof. If |||z]| — m*| > &m* /16, then

R(z) = (2l = m?)* = Iz = m")*(|zl| +m")?
> Em* 256
Thus we can assume |||z|| — m*| < &m*/16. Now
4
Yoan=lalt =) 4 -
=) fe<mt
Assume that for each k we have z7 < (1 — d)||z||*, where 6 = ¢2/8. Then

A<=z =0-9)z’

k<M k<M

so that Y, 2z > d||z||* > om™ /4 and the proof is finished. Now, if z2
> (1—&/8)||z>, we have > < &|zl*/8, so that ||z — zee|
< ¢&llz)l/2v2 < Em/V2.

Also, since ||z]| > |z = (1 — €2/8)"?||z||, we have ||zx| — m*| < &ém* /4, so
that ||z — m*signzze;|| < Em*, a contradiction that finishes the proof. O

2
[,.e=(5)
Ivl<6 M

Proof. Of course we could use the formula for the volume of a ball. It is
however easier to write for 4 > 0

[ av<expit® [esp il dy
[lyll<0

= (9 M/zexp 20°

and to take 1 = M/262. O

Lemma 3.10. We have
M/2

We consider now the set

(324)  A={zeRY|z|| <2m"\Vk < M, |zt m e|| > Im*} .
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Using Lemma 3.9 we now see that when o < o (and the constant L; of (3.23)
is large enough), (3.21) yield

1(4) < (LﬁNa*)M/zexp(—N’ZM)/ dz .
A

Using Lemma 3.10 for 6§ = 2m*, we then get

¥ _x\ M/2 x4
e (B e )

< Kexp(—KN)

if the constant of (3.23) is large enough.
The set 4 of (3.24) is the complement of a union of balls. To be able to
reduce the radius of these, we need to improve upon (3.20).

Lemma 3.11. On the event Qy of Appendix 2, for v,z in RM we have
> (m:-2)> = Nljz|)* < LvaN |z = vf[|v]l + Lv/aN]|z - o]
i<N

2 2
+y (n-v)" = N .
i<N

Proof. Setting y = z — v, we have

> -2 = Nzl =D (-9 = NIyl + > (- v)* = NJo|?

i<N i<N i<N
+2<Z(ﬂi')’)(’1i‘”)—Ny"U> . Ul
i<N
For p > 1, we consider
Arp={z € R 277 m* < |z —m*ex|| <277m*} .

Using Lemma 3.11 for v = m*e;, and observing that (y, - v)* = ||v|)* for all i,
we see that

S ;- 2)* = Nzl < LyaN2*m?
i<N

so that, using (3.17) and Lemma 3.9,

«\M /2 —— 2_2pm*4
1(Axp) < (LBNa)""exp N ( LB/o2 Pm™ — 7 dv
lvll<6

for 0 = 27Pm*. Use of Lemma 3.10 yield

L *27217 wd\ M/2 2—2p *4
I(Arp) < <[3a—m) exp(— e )

o 2L

when 277 > Lﬁ(oc/m*z)l/z. We then see that /(4 ,) < Kexp(—N/K) when-
ever
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Lpa*
m*Z

272p > Lﬁz *

lo
m*2 g

Thus we have proved the following.

Proposition 3.12. If the constant Ly of (3.23) is large enough, and if o < o*,

then the set
1/2
%0 Lfa*
C= {z;Vk<M7 |z & m* e > (L[jz(log ﬁg) }
m m

is negligible.

Since a* /m*? < 2, this proves Theorem 4.1 when 4 = 0, f stays bounded.
The weakest point of this result is the poor dependence in f; but this is
unimportant, since we will use a different argument for f§ large.

In the case 4 > 0, we will prove that the set C can be replaced by

2 1/2
L *
(3.25) Co = {Izl; |z —m"er]| > (Lﬁ “log fa ) } -

m*2 m*2

The difficulty there is that when f > 1, /& can be arbitrarily small compared to
m*. As discovered in [B-G-P], concentration of measure provides the answer.

Lemma 3.13. Assume h = 0. Then for any set A C RM there exists a number u
such that

2
OStSN:»PUogE(A)—uzr)szexp<_%’) .

To provide motivation, we first prove the following.

Proposition 3.14. If 0 < h < m* /L, we can replace C by Cy in Proposition 3.12.

Proof. Consider, for k <M, n € {—1,1}, the ball By, centered at nm*e; of
radius §. Let us denote by Gy the measure corresponding to the case 4 =0
(for the same value of the quenched variables). Then, by symmetry, the
distribution of Gy(By,) does not depend upon &, 1.

Thus, there is u such that

— Nt
(3.26) P(Vk,n,|log Go(Bky) — pt| > t) < 2N exp (— ?) .
Let us now try to compare Go(By,) with G(By,). Given y with [|y|| < m*/6,
we have, assuming the radius of By, to be at most m*/6 that

TE€EB 1ty =21 2>2m"/3
z€B1+y=2z1 < -2m"/3
k#l,z€Bry+y=2z1<m"/3 .

The influence of the term Nhm;(€) on the Hamiltonian implies that
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(3.27) (k) # (1,1) = Gl(Bk,n +y) < exp(th*/.’))Gf)(Bk,,] +)
(328) G/(Bl,l -l—y) > exp(2th*/3)G6(Bl,1 -l—y) .
where G’ (resp. Gj) is the image of G (resp. Gy) under the map € — m(e).

Now, we recall the Gaussian measure y defined at the beginning of this
section. We have

Mm*? Nm*?
1 > m* < — = —
y(lyll > m*/6) < exp( o ) exp( 7 )

and thus, by integration of (3.27), (3.28) with respect to y we have

o . Nm*Z
(3.29)  (k,n) # (1,1) = G(Biy) < exp(Nhm" /3)Go(Bx,y) + exp (— 7 ) .

(3.30) G(By 1) > exp(2Nhm* /3) (EO (B1.1) — exp (-N ’2’2» .

Now, by (3.26), the event
(3.31) Vk,n,|log Go(Biy) — p| < Nhm* /12

has a probability at least 1 — Kexp(—N/K). Under (3.31), we have from
(3.29), (3.30)

(3.32) (k) # (0,1) = G(By,y) < exp (5]\;”2’”*> e + exp (- er*2)

(3.33) G(By)) > exp (7]\;h2m*> <e“ — exp <— er*2>> :

Thus, from (3.33), since G is a probability,

u —TNhm* Nm*?
e’ <exp 1 +exp| — 7

and, using & < m*/L, this is at most 2 exp(—Nhm*/2).
Plugging in (3.32) we get

U G(Byy) < 4N exp <_Ni2m )

(km#(1,1)

and this finishes the proof. O
Proof of Lemma 3.13. We first observe that it has been shown in [T1],
Theorem 6.8 that if # < N, we have (when o < 1)

2
-1 —ul >0 < _r
P(|p " logZz ,U0|_l)_12exp( N

for a certain y,. Thus, it suffices to show that for any subset 4 of IR", such
that ||z|| < L for z € 4, we have, for a certain p,,
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2
>t) < -—— .
For w e [-1,1]V™, we define

Y(w,z) = —BTN 2] + Z logch B(Z WikZk + hw,»J) :

i<N k<M

P(’ﬁ“ log/A exp y(z) dz — iy

This is a convex function of w, and so is
w— /A expy(w,z)dz
so that
f(w)=p" log/A expy(w,z)dz

is such that the sets {f(-) <u} are convex. Moreover, since logch has a
derivative <1, we have

|lﬁ(W, Z) - lp(w/7 Z)

< (llzll + )V N{jw = w'|
and thus
Sw) =) < (L+R)VN|w—w], .

The conclusion then follows from [T2], Theorem 6.6. O

Unfortunately, Proposition 3.14 requires & < m*/L. However, the diffi-
culty was the case 4 small. The case where /4 is comparatively large can be
handled by separate arguments, that we start now. We make the change of
variable z = m*e; + v, and from (3.1) we get

N N
(3.34) Y(z) =— %m*z - % vl — pNmv - €,
+ Zlogchﬁ(m* +h+ 10 v)
i<N

To take care of the last summation, we observe the elementary inequality,
true for b > 0 and all x

thb b
<22 _Z
logchx <x 5 +logchb 2thb

that we rewrite as
282
(3.35) logch (b + px) <logchbd +xﬁthb+Tthb .

We use this for b = f(m* + h) so that thb = m*, and we get
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W(z) < Nb* — ﬁTN [vlf* + pm* (Z niM;-v—Ney - U)

i<N

pm
+ mz% v)’

i<N
where 5* is defined in (3.6), so that on the event Qy of Appendix 2,
W(z) < — Nb* + Lpm™ /o[ v||

BN h 2
S eva-

Consider, for R > 0, the set
C={zR<|v| =|z—me,)| <2R} .

Proceeding as usual, and since we assume 4 > m*/L, we see that

. M)2
B(1a () < (4 ﬂRz) exp LV Jf_Rz)

o 2L

so that we can take R as small as Lm*+/a, and have C negligible.
It turns out that

o La\?
3.36 Vo< | —log—
( ) m \/& — (m*Z Ogm*2>
since m* < 1. Thus we have proved the following.

Proposition 3.15. If h > 0, o < o the set

> 1/2
o Lpa*
C:{z,||z—m*e1|2L( [jzlog ﬂi) }
m m

Proof of Theorem 1.4. Proposition 9.2 (to be proved in Section 9) shows that
given a constant Lo, that there is f3, a9, such that if > f,, o < o9, then

E(G(C)) < Kexp(—N/K), where

is negligible.

(3.37) C={gVk <M, |lztmel > 1} .

Moreover, for f > f,, we can assume m* > 1/2.

We observe that if § < f,, Proposition 3.12 (when 4 = 0) and 3.13 (when
h # 0) prove Theorem 1.4. We consider the case f > f,, and & = 0. It suffices
to show that in (3.37) the radius ;' can be replaced by Ly/a. We have to find
a substitute for (3.3) (where a = m*, b = f(m* + h)). For a lower bound, we
simply use the convexity of logchx. For an upper bound, we observe that
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p 2
3.38 logch(b + pr) < logchb + prthb + ————¢
(3.38) gch(b + pr) < log B 2 (o )2)

+§f21{t\znr/2} :

The case |¢| > m*/2 follows from (3.35), while the case |¢| < m*/2 follows
from Taylor’s formula, since, if |t| < m*/2, we have (logch(b + pt))" <
p*ch™2(pm*/2). We use this for 1 = n1(m; - v) to get by summation from
(3.34) that

W'y + ) < N~ o 4 N (Zm ), v) ey -v)

i<N

B’ 2, P 2
T 2 W) 5D (W 0) Lz )

Since f > f,, m* > 1/2, we can assume f/ch’(fm*/2) < 1/4. On the event
Q of Appendix 1, we have

> (- v)* < 2| < 2N /L

i<N

where L is the constant of (3.36). Thus if

4 — 16
we have cardJ < 32N/L3. If 32/L3 is smaller than the constant d of Lemma
11.4, on the event Q; of this lemma we then have

2 2
> -0 gz 2y < Nol*/2

i<N

*2 1
JZ{iSN;(m-vYZm >} ,

Combining these gives
bm'er + ) < N5~ L o+ Ly
By a routine computation already done many times, it follows that we can
replace Ly by L/« in (3.37).
It now remains only to consider the case & £ 0, > f,. If h < m*/L, we
deduce it from the case # = 0, using the proof of Proposition 3.14, and (3.36)

if h>m*/L.
Theorem 1.4 is proved. O

4. The issues of the replica-symmetric solution

The first attempt to justify the RS solution by rigorous means is to be found
in [P-S-T]. The authors assume that
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(4.1) VarN~! Z(e,->2 -0
i<N

and try to derive from this condition the equations (1.11), (1.12), where u, ¢, r
are natural parameters of the system. The rather subjective matter of as to
which extend the arguments given there are correct, complete and rigorous is
better left to the reader’s own appreciation, but, in order to avoid confusion,
we are at least obliged to say that, in our opinion, this paper could easily give
the impression that it misses a number of points. Personally we have felt that
it was better to give too many rather than not enough details.

Why consider condition (4.1)? It seems to us that the main reason is
historical; the main motivation is the physicists’ prediction that (4.1) fails at
low temperature (in the “spin glass” region). Thus it is natural from this
point of view to assume that (4.1) hold as a condition to ensure that we are
outside the spin glass region and then prove that the RS solution holds. (The
much more delicate question of deciding when (4.1) actually hold is then left
by [P-S-T] for future research.)

Let us now consider the condition

(4.2) E%<(é : e')2> 0.

We recall that here, as well as in the rest of the paper we use the notation 4 to
mean 4 — (A), where 4 is a map from Xy to RY.

Even though this is certainly not apparent at this stage, there is a very
close link between (4.1) and (4.2). It does not seem to be known how to show
the equivalence of (4.1) and (4.2) unless one uses the (somewhat mysterious)
technique of ““perturbated Hamiltonians”. It is simply for this reason that the
authors of [P-S-T] consider the Hamiltonian

(4.3) H(e) = Ho(e) =1 VN D gumi(e) =0 ) diei

2<k<M i<N

where Hy(€) is given by (1.1), and where (gx),-,,, (¢:);,<y are independent

Gaussian sequences. The last two terms are intended to be small perturbation

terms with limited influence on the limit of the free energy per site. The last

perturbation term of (4.3) allows to prove the equivalence of (4.1) and (4.2),

following a technique that will be used on several occasions in Appendix 1.
Consider now the condition

(44) E{(in - 1i)?) =0 .

Here, as well as in the rest of the paper, we simplify notation by thinking of
m(e€) as a function m on Xy, of which m' is a (thermally) independent copy. It
is proved in [P-S-T] (and in Corollary 2.8) that (4.2) implies (4.4), and a
simple argument will be given in Section 5 to show the converse. The reason
for the first perturbation term in (4.3) is that it allows to prove the equiva-
lence of (4.4) and of the technically useful fact that
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(4.5) Var(Z mi) -0,

k<M

(with the same method as for the equivalence of (4.1) and (4.2)). However, we
must insist that:

(4.5) Condition (4.4) (or, equivalently, (4.2)) is the central feature of the RS
solution.

Let us now explain this statement. The basis of our approach is to try to
calculate all quantities of interest by induction upon N. The first step is that
program, Proposition 5.1 below, is simple algebra. This proposition brings to
light the importance of the quantities (exp ¢y - m), where 1 = (1)<, 1S in-
dependent of all the other random sequences. It is obviously very helpful to
know how to approximate such a quantity, an idea already central to [P-S-T]
(Lemma 2.2 there)

Lemma 4.1. For t < 1, we have

(4.6) (expty - m) = exp(tn - (m) +5(||m||*) + Ry)

where

(4.7) E|Ry| < K((E{(sin-1id)*))'? +E<Z mz‘>
k<M

+ E((lsl|” = ([lsn]|*))*) + K exp(~N/K)

With a little more effort one could replace the term (E{(ri - i)*))"/? by its
square, but this makes little difference under (4.4). It turns out from general
principles (also used in [P-S-T]) that the term E{(||r||* — (||]*))*) has a
vanishing contribution so that, under (4.4), E|Ry| — 0 provided

(4.8) E<Z mg> -0 .

k<m

It turns out that Er? — 0 is easy to get, and we will consider the condition

(4.9) E< > m§> -0
2<k<M

that is thus essentially stronger than (4.8).
Not only (4.9) allows to show that

(expin - m) = exp (i - (m) +5(|m|*))

it implies that conditionally upon all the other r.v. variables other than 5, the
quantity » ., ni(my) is essentially gaussian, and (4.7) gives us a really
complete description of the r.v. {exp ¢y - m).

One can then use Proposition 4.1 to obtain a relation of the type
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(4.10) (Uny1, Uns1, Ryi1) = Wopn(tiy, Uv,Ry) + small error

where py,Ry,Uy are some important parameters of the system (e.g.
py = E(m;)), where N denotes the number of sites, and where ¥,z is some
explicit function.

Suppose now that we know that there is a point (i, u, r) (depending upon
o, B, h) such that the following occurs

(411) (,u,u,r) = qja,/f,/’l(luvuvr) .

(4.12) There is a neighborhood V of (u,u,r), such that if (g, u;,r) € V and
(:un+l y Unt1, rn+1) = lPot,/i’,h (:um Up, rn)a the sequence (:unv Up, V,,) converges to
(ruv u, r)'

Assume moreover that for some N we can prove (uy, Uy,Ry) € V. Then
we are in very good position to iterate (4.10), and to be able to prove the
convergence of (uy, Uy, Ry) towards (u,u,r). Equations (1.11) and (1.12) are
then a transcription of (4.11). There is then a simple heuristic argument
(given after Proposition 7.10) to understand the full result (1.14).

While the function ¥, g, is rather explicit, it is not simple, and the range
of values of (u,u,r) where (4.11) and (4.12) hold is by no means obvious. In
the range of Theorem 1.5, it is easily checked that ¥, g, is a contraction. In
the range of Theorem 1.6, we will provide an ad-hoc (infinitely tedious)
argument. Condition (4.12) is of particular interest. It amounts to say that
the eigenvalues of the differential of ¥ at the fixed point (4.11) are of absolute
value < 1. While deciding for which values of the parameters this holds is in
principle elementary mathematics, I could not muster the energy to do it.

Before we discuss the critical condition (4.8) and (4.9), we prove Lemma
4.1. We will not explicitly use this lemma, because the relation (4.10) will
follow almost immediately from the machinery developed to prove (4.4). Still
the proof is very instructive, and contains a simple occurrence of many of the
basic ideas of this paper. It relies upon a simple second moment computation
that allows considerable simplification of previous arguments, such as those
used in [P-S-T]. (The reader might rather find, at first glance, that what we do
is more complicated than the argument of [P-S-T], but must keep in mind
that we aim at a different level of rigor).

Proof of Lemma 4.1. We consider an independent copy 5’ of 5, and we set
X = (exptn-m), X' = (expty - m) ,

so that

(4.13) Eyw(X —X')? = 2E,(X — E,X)* .

We consider a (thermally) independent copy m’ of m and we use the replica
trick to write

(X —X')* = (exptn - (s + it)) + (exp ty - (st + ri))
—2(expt(n-m+y' -n))
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so that
Eyy (X = X')* = 2(exp(|lan||* + || |I*) (exp(isin - st +1*B1) — exp1*B2)) )
where, for j = 1,2,[B)| < L(Y <y, i} + 1in).

Now, there is an event € (described in Lemma 11.3) in the quenched
variables such that ||, |m|* <K when this event occurs, while
P(Qy) > 1 — Ke V/X_ Using the bound |e* — 1| < |x|ell, we then see that on
Qo

(4.14) E,,H,W(X—X’)2 ( |m - m|) + <Z mk>> .
k<M
E,X = {expb|m|* +B)
where |B] < L(>,.,, 7). and thus, on Q,

<ka> + (Il - <|m|2>|>] .

k<M

2
EyX —exp (%)

Combining with (4.13), (4.14) we see that on €y, using Cauchy-Schwarz, and
the fact that (3", ) <K,

2 2
£ (X~ exps i)
X <Z m2> o (i s ) + (> <||m|2>>2>]

k<M

Writing x = yexp R for R = logZ, we see that |R| < K|x —y| wheny > 1l and x
stays bounded. Using crude estimates (such as |y - rit| < M) when @y does not
occur, the result follows taking expectations. O

Remark. This proof is the first occurrence of a general fact. In our estimates,
the influence of the fact that sup [[m(e)|| < K holds only outside an event of
probability exp(—N/K) rather that holding always results only in exponen-
tially small permutation terms (while the main terms are of order at least
N71). In order to make the proofs easier to read we will from this point on
ignore these small effects, and behave, in all further estimates as if it were true
that ||m(e)|| < K for all choices of quenched variables.

Let us now turn to the study of condition (4.2). Again, this is the crucial
point, and the relations (4.10) represent the end rather than the beginning of
the “real” proof, but of course the reader that is mainly motivated by the
fanciful formula (1.14) should jump directly to (7.14).

To prove that a quantity Ey depending of N (and possibly of the pa-
rameters o, 5, 4, ...) is small, we will simply try to prove that
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(4.15) Eyxy1 < 0Ey + small term

where 0 < 1, where the value of the parameter on the right is not too much
different from the values on the left. It then suffices to iterate this relation a
few times to prove that Ey is small.

We first put this idea to use in Section 5. We prove a bound of the type
(4.15) for Dy = E{(é- €)?*), and where N is of course the number of spins.
This is rather easy to do, and establishes (4.2) in the range of Theorem 1.5.
As in this range of parameters (4.9) is automatic, we have then already
passed the main obstacles towards the proof of this theorem.

The problem with this first attempt is that there seems to be no way to
make a precise estimation of Ey.; as a function of Ey. On the other hand, it
will be possible to estimate the quantity (4.4) by induction over N. As the
term m; is better handled separately, throughout the paper we will use the
vector u = (my),, of RM™!; we will always denote by v a thermally in-
dependent copy of u. Thus, we wish to study E((i-©)?) rather than
E((m-n?)?). The centering implicitly contained in the notation i is not
amenable to easy computations so we replace it by symmetrization
i =u—u', where ' is a new thermally independent copy of u. At an early
stage of the writing of this paper, we observed that computation of
E((@-©)*) by induction involve the quantity £((&- v)?). As it was not ob-
vious to relate these two quantities except by the trivial inequality

E((@-9)%) < 4E((i- v)*)

it appeared a better bet to study the larger one namely Cy = E{(& - v)?). We
know now how to relate these two quantities by applying a beautiful idea of
F. Guerra (Proposition 10.9 below) but we see no reason not to keep
studying Cy.

The first step in the study of Cy, is algebraic: one makes an expansion
and separate the occurrences of ey, (or its copies) from the other terms.
This is done in Proposition 6.1 below, that yields a representation of Cy; as
a sum of eight terms. The most dangerous of these is a sSum £ 5, ey 1iHr s
where 7, is an independent Bernoulli sequence. Each term H; , is potentially
of the same order as Cy. Fortunately H; , depends only rather little of #,, so
there is huge cancellation. If the variables #, were gaussian rather than
Bernoulli, use of integration by parts as in E(gf(g)) = Ef'(g) would take
care of the situation. In Proposition 6.2, we develop a substitute to inte-
gration by part, a substitute that expresses Cy4; as a combination of rea-
sonable quantities such as ((@ - v)||v||%), etc. and that produces a reasonable
looking error term.

Even if at that stage we could use Lemma 4.1 to approximate quantities
of the type (expty - m) by C(expty - (m)), where C does not depend upon 1,
we would still face the fact that these quantities, when they occur in a de-
nominator (as in Proposition 5.1) are not easy handled. The only way we
could imagine was a conditioning argument upon the variables 5 - (m). Such
an argument was successfully used in a similar but technically much simpler
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situation, in the last section of [T4]. Unfortunately we do not know how to
make conditioning with respect to a sum Y n,a; where the , are Bernoulli.
To go around the problem we show that the variables (1;),-, can be replaced
by standard normal variables with not essential worsening of the previous
error terms. This is the purpose of Proposition 6.3. Of course an essential
point is that this can be done before we have succeeded in getting any real
information about the system, and is very different from saying (as becomes
obvious much later in the proof) that the variables - (m) are nearly
Gaussian. This essential technical step opens the way to conditioning argu-
ments, and to appropriate expressions. This is the part that requires real care,
because for the purpose of identifying the line (1.18) one must carefully
account for each first-order contribution. This is the purpose of Proposition
6.4, and the reader who finds this complicated should try to imagine the kind
of energy it took to realize that (6.19) is a successful attack.

At the end of Section 6, we will have the tools to express Cy . (and in fact
a lot of other parameters of a N + 1 spin system) as a sum of terms de-
pending of a N spin systems. Some of these look like main terms; the others
look like error terms, of a lower order. Of course it is natural to try to handle
as many of the error terms through general principles. For this reason, rather
than the Hamiltonian (4.3), we will use the Hamiltonian.

(4.16) H(e) = Ho(e) — yo(N) Z gimy(€)

2<k<M

where y > 0, (gi);«), are as in (4.3) and where ¢(N) is a certain function of
N (chosen for example as N'/?). To distinguish this Hamiltonian from (1.1) it
will be called the perturbed Hamiltonian, while (1.1) is the original Hamil-
tonian. The miracle of this perturbation term is that, when ¢(N )2 /N — 0 as
N — o0, it has a vanishing influence on the value of the free energy per site.
Yet the existence of this term allows to prove strong regularity conditions, as
will be shown in Appendix 1. There are certainly reasons to feel uneasy
about what can appear as unnatural “tricks”. Possibly this uneasiness will
disappear when our understanding deepens. More importantly is must be
said that this perturbating term in the Hamiltonian should simply be seen as
a labour saving device rather than as an essential tool; and we feel that, with
extra work, (involving no new ideas or techniques) one should be able to
dispense from using it. We have however felt that in the present stage, it was
better to present the shortest possible proofs. The reader observes that the
perturbation term in (4.16) does not include the case k = 1. There is no
compelling reason for including or not this term. It makes no difference.

We have felt that it would be confusing to present now the special
techniques that take advantage of the perturbation term (4.16), so these are
relegated to an Appendix, to which the reader will be referred when the need
arises. It is the use of these techniques that requires a technical device (that
was already used in [T4]), namely smoothing by integration of the parame-
ters over a small domain.



Rigorous results for the Hopfield model with many patterns 215

General principles however do not allow to control all the error terms. In
particular to control some of the error terms in the computation of Cy, one
must (not surprisingly) control

Ay = E< > m2>
2<k<M
and show first that this is small. The study of Ay is then undertaken also by
induction over N, fortunately requiring no new techniques, and turning out
to be only a side story . This story has an amusing twist, as computation of
Ay by inductions forces to consider an auxiliary quantity By. As the com-
putation of By by induction uses 4y, one is led to consider combinations
pAn + By. These behave very well, because for a// values of the parameters,
one (almost) have a relation

(4.17) pAn+1 + By < 0(pAy + By) + error terms,

where 0 < 1. This does not say that the error terms are easy to control; but
one is certainly led to conjecture that lim Ay = 0 whatever the value of the
parameters.

Despite all this work, in order to make the iteration succeed one seem to
require some extra information. In Section 7, we exploit the information
obtained in Section 3 for this purpose and we complete the proof of Theo-
rem 1.6.

The purpose of Section 8 is to identify the Almeida-Thouless line, and it
seems worthwhile to explain in detail what we do there. Assuming that the N
spin system is close to what the RS solution predicts, we compute Cy| as a
function of parameters of the N spin system. The results reads

(4.18) Cyy1 =0Cy + Error terms + terms involving higher moments.

The most striking feature is that 8 < 1 if and only if (1.18) holds. The error
terms of (4.18) are small from general principles. The higher moment terms
are just that; terms such as E((& - v)4>, etc. We observe now that for a r.v.
0 <X <1, with EX small, the only way that EX 2 is not much smaller than
EX is if a significant part of EX comes form values of X close to 1. The only
way it could fail that E{((@-v)*) = o(E((@-v)?)) is if a large part of
E((@-v)*) would come from values where | - v| is of order one. Rather it is
to be expected that the tails of u# - v look like Gaussian, and that the sets
where u - v is of order 1 have exponentially small contribution. We formalize
in Definition 8.1 the fact that higher moments should be of small order and
Conjecture 8.2 asserts that this is the case for the functions (&-v)® and
> yeseps mi. It must be emphasized in the strongest possible way that this
conjecture is extremely weak. Should it fail, the corresponding pathology
would be considerably more surprising to me than the wildest predictions of
the Parisi solution. This of course does not mean that we see how this
conjecture could be proved. Certainly the related conjectures of [T4], in a
technically much simpler situation, should be studied first. Going back to
(4.18), the meaning is as follows. If for NV spins, the system is close to the RS
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solution, then (unless extreme pathology occurs) the condition (1.18) means
that the (fundamental) constraint “Cy small” is stable against addition of
one extra spin. It is unfortunately necessary to give slightly more complicated
statement, because, while the condition “Cy small” is certainly the crucial
one, the condition “Ay small ” is also important.

Theorem 4.2. (Informal version) Under (1.18), if the N spin system is close to
the RS solution, the conditions ““Cy and Ay small” are stable against addition
of one spin (unless extraordinary pathology occurs).

Even though we have not written it in complete detail, the reader should
be convinced after reading Section 8 that, under the same conditions, con-
dition (1.18) is necessary for the stability of the condition “Cy small”’ against
addition of one spin.

In order to find the exact domain of parameters where the RS solution is
stable against addition of one extra spin, the “only” work to do is the
analysis of (4.12), a task with little relationship with the area of interest of the
author, and that is thus better left to others.

As an excuse for studying the stability of the RS solution against addition
of one spin, it must be pointed out that apparently the physicists do not have
arguments that the RS solution is the true solution: they only show a type of
“stability”. The relationship between their notion of stability and stability
against addition of one spin is unclear to me.

Upon reading our proof of Theorem 1.7, A. Bovier and V. Gayrard [B-
G3] discovered a very beautiful different proof of the fact that, in the range of
that theorem, Cy and 4y are small, (a fact that, as already mentioned, is the
cornerstone of (1.14)). This proof is quite simpler than ours, at least if one
assumes a certain rather delicate convexity property of the function ¥ of (3.1)
they had proved earlier. This raises the question of whether this convexity
property is a central feature or a lucky coincidence. It should be at least said
that our simple minded method (they simply consists of computing every-
thing by induction on N!) worked quite well in the case of the SK model,
where no convexity is apparent, and that convexity properties do not yet
appear able to reach either Theorem 4.2. We also hope to demonstrate in
further work the wide range of uses of the iteration method.

5. A first look at iteration

A first purpose of this section is to learn how to relate a situation for N + 1
(or N + 2) sites with a situation for N sites. As a first application of the
iteration method, we then show that (4.2) holds in the range of Theorem 1.5.
The function ¢ of this section is that of (4.16). In the sequel, given
€€ Xy, eny1 € {—1,1}, we identify (€, ey, ) with an element of Xy .

Proposition 5.1. Consider a fresh sequence 5w = (n,) of Bernoulli r.v., and set
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B'=BN/(N+1), B =h(N+1)/N, 7' =79(N +1)/o(N)
7=70(N + D)/N, T =Hn+7 > gy -

2<k<M

Then, for a function A on Zy.1,(A(€, ent1)) has the same distribution as

(5.1 7! Z (A(€76N+1)€XPGN+1/3I('1‘m+F)>o

eny1=%1

where

Z= Z (expens 1B (n-m+1T)),

ent1=%1

Here (-) denotes thermal average with respect to the Hamiltonian

(5.2)  Hyii(€,ens1) = 2(N+ Z( Z ’71k61> —h Z Ni1€i

k<M \i<N+1 i<N+1
o(N+1) < >
—p Y D e |
N+1 2<k<M \i<N+1
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at inverse temperature [3, while (-), denote thermal average for the Hamiltonian

o=y (z n) WY e

k<M i<N i<N
V(/’
N Z Z"’kq 9
2<k<M \i<N

. /
at inverse temperature f3 .

Comment. What this means is that we can reduce the computation of the
distribution of thermal averages for a system with N + 1 spins to the com-
putation of thermal averages for a system with N spins. In doing so, the
inverse temperature changes from S to f, and the parameters o, 4,y change
slightly. It will become apparent later that these shifts in parameters play no

role whatsoever.
Proof. We have

Ee,wﬂ EA(e, ent1) exp(—BHy 11 (€, eny1))
> ev—+1 Ecexp(—BHy1(€; en1))

Now, straightforward algebra shows that, setting 1, = 1y, 4

—BHy1(€,en41) = — f'Hy(e) + ﬁM/z(N + 1)

+€N+1ﬁ Z”k ka@"‘r

k<M 1<N

(A(e,eni1)) =
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The result follows. (The reader will note that the value of m in (5.1) is indeed
the value corresponding to an N-spin system.) O

In the sequel we will use formulas corresponding to Proposition 5.1 in the
case where the bracket is not an average over Xy, but over 2% . Gener-
alization is immediate.

Our next task is to relate the quantities in (4.2) and (4.4). Setting
oy = (N"2{(&- &)%), and expending the dot product, we have

py =N? Z (éi€)
ij<N
so that, by symmetry
Epy <4N~' 4+ E(é6)?
and, consequently

Epyiy <ANT' + E(éniién o)

In order to evaluate the last term, we need a version of Proposition 5.1 to
relate a system of N + 2 spins with a system of N spins. With obvious no-
tation, the reader will check that (4(e, ex+1, ey12)), at inverse temperature f,
and for parameters %, y, has the same distribution as

(53) z! z (A(e, ent1,env2)V (en+1, env+2))g

ent1,en+2=%1

where

7 - Z (V(ent1,eni2))o -

ent1,en2=%1

Here, (-), denotes thermal average of a system with N spins, inverse tem-
perature f = BN/(N +2), parameters o = aN /(N +2), h' = h(N +2)/N,
' =v0(N +2)/¢(N), and

(5-4) V(5N+1;5N+2) = CeXp (€N+1ﬁ/('l -m+ F) + €N+2ﬁ/('1/ -m+ F/)
B
+ N——|—2€N+] EN421 - '1/>

where 5,1’ are independent fresh Bernoulli sequences, where ' = N/
(N+2),

o(N +2
F:hlﬂl-ﬁ-)’% Z i
2<k<M

N+2
F/:h/n’1+y—(p( N ) Z gl -
25k<M

We now leave the reader perform the simple algebra needed to obtain from
(5.3) that
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. 16
Eléniiénsa)’ = E<22 (X — Y)2> ;

where
X = (L) (=1, =1)g Y = (1, =1))o(V(=1,1)) -
Using the inequality e* > 1 + x to find a lower bound for Z, we then get
Eléniéna)’ < LE(X —Y)* .

To lighten the presentation, we will leave to the reader to show (arguing as in
Proposition 3.3 of [T4]) that the last term in (5.4) has a smaller order in-
fluence, and we will pretend that it is not there. Using 2-replicas we write

X={(expf(n-(m—m')+y (m—m))),
Y=(expf(n-(m—m')—n' - (m—m))), .

We set n = m — m’, and we consider a (thermally) independent copy n* of n.
Thus, using 4-replicas

X*=(expf(n-(n+n)+9 - (n+n))),
XY = (expB(n-(n+n")+4 - (n—n))), .

We now denote by E,, expectation as only n,n" vary; we assume f < 1/2,
which is not a restriction to prove Theorem 1.5. Then we have

Ep(X = Y)? = 2B, (X> — XY)
B 2
= <exp7(2||n +n| +B)>
0

ﬁ/Z %112 *112 /
= (&xp 5 ([l +n*[|" + [ln — o*[" + B)

where [B|, [B| < L[> ;<) n} + n;*]. Thus

0

By (X = ¥)" = (exp B + ") (exp(2B>n - w* + B) — exp(B)),.

We use the inequality |e¥ —x — 1| < Lix* for x <L (Since « <1 we can
pretend by Lemma 11.3 that ||m| < L, and hence ||n||, ||r*|| < L). We ob-
serve that B> < L|B|, and that

(n-n*exp B(|ln)]* + [ln"|*))y = 0

by symmetry (say, exchange of the first two replicas). Thus

corr (o))
k 0

We now observe that it is an easy consequence of Lemma 2.9 that
E(m})y < L/N?. Thus, since (n}), <L(m}), and since ((Zn-n*)2>0 =
4((m - i')?), we have shown the following, where ty = ((rin - it')*),,.
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Proposition 5.2. If o < 1, < 1/2, we have
Epyo(e ,7,h) < §+ LB Exx (o .7, 1)
where o/ = aN /(N +2), and ',y , i are as before.
Combining with Corollary 2.8, we then get that

EpNJrZ(uvﬁ?Vah) S %—"_ ﬁzLEpN(a,aﬁ/ay/7h/) .

Thus if we take fi, such that L < 1/2, use of iteration conclude that
Epy < L/N (for o < 1). This information is the main step in the proof of the
validity of the RS solution. The other arguments are by no means trivial. To
avoid repetition they are presented in complete detail only in the more dif-
ficult situation of Theorem 1.6. The reader who does not wish to use the tools
of Section 6 to establish the recursion relation 7.22 can do so using Lemma
4.1 (and some tools from Section 10). Analysis of this recursion relation is
made simpler than in the case of Lemma 7.9 because the matrix V' there can
be shown to be a contraction for f small.

6. The basic techniques of iteration

The inefficient part of the approach of Section 5 apparently lies in the esti-
mate

(6.1) E{(rin-1i)*) < (1 4+ KVa)E((e- €)?).

If we inspect the proof of Corollary 2.8, we observe that (with the notation of
the proof of Theorem 1.3), by rank consideration, at most M of the numbers
J, are different from zero, so that N~! >_pen #p < . One could then hope in
(2.22) the terms Ay, ..., 4, would contribute like their average rather than
like their maximal value. If this were the case we could improve (6.1) by a
factor Lo on the right, and we could hope to extend the argument of Sec-
tion 5 to the region off small rather than § small. The above heuristic ar-
gument appears however to be plain nonsense, and the situation to be
considerably more subtle.

Rather than trying to improve upon (6.1), we will directly study by in-
duction the quantity

(6.2) Cy = Cw(o, B,h,y) = E{(@-v))

Here the last equality follows as usual by expending the dot product. The
notation & holds for “symmetrization”; that is, # = u — u’, where u,u’ are
thermally independent. So the bracket in ((@-v)?) in an average in a 3-
replica. Similarly, @y = my — mj.

We observe that we can write
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. 1 -
my :Ni-f—l Z ni,kei

i<N+1

where €; is the difference of two independent copies of ¢;, or, more precisely,
the i component of € = € — €, where €, € are thermally independent. We
substitute in (6.2) to get, writing n, rather than ny_ 4,

1 -
(6.3) Cvi1 ==+ E D> nialEm) (mme)
+ i<N+12<k (<M

=E > nlév i) (memy)
2<kI<M

using the symmetry between the sites. We now want to reduce to a system of
N spins, so we must remove the dependence of 7y, my, my upon the last spin.
Also, the normalization factor N 4+ 1 in m; must be changed into N. So we
write

1
6.4 =—
(64) TN
where uy = % > i<y Mig€e, and similarly from my, my. We find eight terms.

Proposition 6.1. We have (M) Cy =375 C¥) | where

CJ(VILZE Z Ny (En1tte) (ugue)
2<ki<M

|
Cz(sz)rl =E Z ~— (Eny 1) (enr1ute)

En+1Mp + N——&—lw

rcrem Y
1 .
C](\?J)rl =F Z N’?kW<€N+1W><”k€N+1>
2<k <M
1 -
Yl =E > ﬁ’?z<(€N+l)2><€N+1W>
2<k <M
1 -
Cz(vsll:E Z ﬁﬂk<(€N+1)2><6N+‘W>
2<k <M
1 -
CJ(\/()J)rl =F Z mnk((6N+1)2><”k6N+l>
2<k 0<M
1 ..
=E Y v
2<k <M

|
Coh =E Y sal@a))
2<k A<M
We would be in trouble if these terms were equally important. Fortunately
this is not the case. Roughly speaking, what happens is that the correlation
between the terms #;,#, and the brackets following them is weak enough
that, (as far as order of magnitudes are concerned) these terms play the role
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of a factor 1/N. For this reason, the leading terms of the previous decom-
position are for p = 1,2, and all the others are of lower order. Certainly this
is not obvious now. What we will do is to study in great detail the most
dangerous term, that is C,(\,ll, through general estimates. We will then sketch
how to deal with Cz(v 1> by that time the reader will most likely agree that the
other terms are much easier to handle.

We want to transform the product of brackets in C,(\,lll into a single
bracket. For this, we consider (on Xy.;) the vector (u;),.,.,, and two
thermally independent copies (u¢) <y, (V0)<pcp- We Write u = (ur)yyeps
(omitting the first coordinate), and similarly we define ', # = u — ', and v.

To simplify the vocabulary, we describe the above procedure by saying
that ', v are “thermally independent copies of u”’, being understood that it is
in fact the pairs (u},u'), (v1,v) that are independent copies of (u;, u).

Thus we have

COLi=E Y mlvaimw) =E Y nlevavi-v)) .
2<k A<M 2<k<M

The quantity v (& - v) does not depend upon the last spin, so that we can
appeal to the version of Proposition 5.1 for a 3-replica.

First, we observe that our sequence (7;) is indeed the same as occurs in
that Proposition.

Next, we observe that in (5.1) the product denoted there by y - m includes
the term #;m,; (which is now denoted #n,u;). We will now abuse notation and
still write 5 for the vector (1;),<;<,; The product i - u does not include the
term #,u;, and this term has to be included separately. We set

T=im+7 Y gy
2<k<M

where 7 = yo(N + 1)/N. Then we have

(65 C\L=E Y &
2<k<M

X < Z (en+1 — ey o - v)V(eN+1,€};+1,6%+1)>
EN+1Ey 6 =T

0

where
(6.6) V(en+1, €§v+1a€;\//+1) =exp ff'(ex1n-u+ 6§v+1'7 U+ EX/H'] v
+ i (eniur + ey gty + €y 1) + (evir + ey ey )T
and where
1
(6.7) Z=§< Z expﬁ’eN+1(n~u+n1u1+F)>
enp1=%1 0

The meaning of (), is as in Proposition 5.1.
We note that ey — €y, = O unless €y | = —ey1. Thus, (6.5) reduces to
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2<k<M E0=+1

(6.8) il =E Y %< 3 gvk(a.v)£>o

where
(6.9) &=6(E0)=expB(En-u+0n-v+ Enig + Onyoy +0I) .

Now, we have to address the problem of understanding the correlation of #,
with the other terms. If the r.v. i, were to be Gaussian, we would use
integration by parts. Let us denote by f;(¢) the function obtained by re-
placing #; by ¢ wherever 1, occurs in the expression

iZ3< Z évk(ﬁ~v)§> .
0

&0==+1

Thus

(6.10) Col =E > nifilny) -

If we could integrate by parts, we would find C,(\,lJ)rl =E) e i) We
will show that this is true modulo a small error.
For any smooth function f on IR, we have (integration by parts)

1

SO =)= O+ + [ 5@ -0 0

-1
and thus, using (6.10)

(6.11) Col —E > film)

2<k<M

1
<> [ ewla.

2<k<Mm V1

We turn to the evaluation of the last term. Writing f;(f) = ¥Z =3, fk(p)(t) is
sum of terms of the type

Const. Y@ z(0) ... 7() 7-p=3

where ¢y + ¢, + - - - + £, = p. (Here we need only p = 3; the case p = 4 will be
needed later.)
Using the replica trick, each of these terms can be written

(6.12) (2Z)P3/3’1’< > (i ) - -xp(s>
&0p,..,0,=%£1 0

Here

éa:eXpﬁ/<,1.il—|—11. (Z 9mjé> _|_;71<Z H@U%) + (Z 94>F> ,
0<<p 0<e<p 0<t<p

with the convention that #, is everywhere replaced by ¢. The bracket repre-
sents an integral over Z‘ﬁ,%; the variables v’, 0 < ¢ < p are (thermally) in-



224 M. Talagrand

dependent copies of the overlap vector u; and, for £ = 1,..., p,x, is one of the
quantities

Eity + 00v) + Tgr; 00 + Tgx -

We expend the product x;---x,. We use the inequality [[[,., | <
L(p Ze<p+]|yp | to get that each term (6.12) is bounded by a sum of terms

(6.13) (|- v|l |6),

where x; is one of vy, i, v, (¢ = 0,...,p), 7.

We take expectations, integrate for —1 <z < 1; keeping in mind that,
since @(N) < /N, we have 7% < N~2, we then see that the right hand side of
(6.12) is bounded by

K
(6.14) <<|u v|<}§{uk+uk +vk+wk>>> +ﬁ

where (wy) is an independent copy of (v;) (we could in fact put K/N rather

than K/v/N).

Proposition 6.2. (Integration by parts) Within an error at most (6.14), we can
write

1 9 10 11
(6.15) Cz(vil ~ Cz(vil + Cz(v+)1 + Cz(v+>2
where

Cih = }ﬁ'E z-3< PORCRORA( 0>>
0

E0=+1

£0=+1

) :—/>’E z" <Z 59(ﬁ-v)|vllzf(é,9)>
0

3 _
Cyn=-3PE(Z 4< > G- v)(v-wEE 06 (s >>
&0,0=+1 0
Sfor &(&,0) given by (6.9) and
&'(0) = exp B'(on - w+ dnpywy + 0I).

Proof. We use (6.12); we compute f/(1;) and regroup the terms, using
formulas such as - v =}, ;. tixvr. We then find the terms described in
the statement of the Proposition, plus some other terms, that arise from the

fact that I depends upon 3. Viewing f(¢) as a quotient, there are two such
terms. The one occurring when taking the derivative of the numerator is

yng <Zf@vku v) > .
0
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To compute the expectation we integrate by parts in g, at all the other
variables fixed. We then take absolute values, and the expectation in the
variable 1, (g¢),4- We then get a bound 72 KE(|vx|)o. To evaluate the sum

over k, we use that 12
Z |vg| < \/1\_4<Z vi) )

k<M k<M

Since 72 < Ko(N)?/N? < K/N, the result follows. (The term coming from
the denominator is handled similarly.) O

So, we now have to learn how to compute C](\f)ﬂ, 9 </ < 11. An essential
ingredient of the main computation will be a conditioning argument with
respect to a variable of the type » )y, bxn,- To make this argument pos-

sible, the following is an essential step.

Proposition 6.3. (Gaussian smoothing). In equation (6.15) we still make an
error at most of type (6.14) when we assume now, in the definition of
Cf\f)H(E:% 10,11) that the variables ()., (but NOT n,) are standard
normal rather than Bernoulli.

Proof. The method we use was invented by Trotter to prove the CLT
without using characteristic functions. Consider a function S from R~ to
R. Given independent N (0, 1) variables (gx),.,.,, and independent Bernoulli
variables (1;),<;<,, We want to compare Ly = ES(15,-++,1,) and Ly =
ES(g2,- -+ ,gum). To do this we consider Ly = ES(g2, -, gk, Nes1» > Myr) and
we write

|ILi — Ly| < Z|Lk+l — Ly .
7

In other words, we replace the #,’s by the g;’s one at a time. Consider, for a
given k, the function

Ji(t) =892, G My - - Mar) -
Thus

70 -’
Silt) = E =/ (0) = 3 Ji (u)du
j=0 J: 0 .
Using the fact that the first three moments of #;, and g, coincide, we have

Lkt — Lel = |E(filgr) — filn))| < Elgel* sup |f,§“><u>|+Esug 1 )]

[t <lgi] || <

The function f; is the same as before. Very much the same estimates as those
used in Proposition 6.2 finish the proof. O

In the ?revious propositions, we have conducted the calculation in the
case of Cf\,l 1 because it should be obvious how to conduct this calculation in
the other (simpler) cases we need, so that it was useless to state a general
result. On the other hand, the main calculation is more delicate, and it helps

to formulate a general principle that will cover all the further needs. The
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framework is as follows. We consider a small integer p (say, p < 10). For
¢ < p consider thermally independent vectors w, distributed like u. We
consider J, € {—1,1}, and we set 4 =73, J,. We consider a real-valued

function f = f(y;,w1,...,w,), and the bracket
(6.16)
U= <fexp B ('I' <Z 50"[) + 1 Z(Sg(wuj +H)+ 47 Z gknk>> .
{<p (<p 2<k<M 0

We consider

Z—;Z<expﬁ'<5n~u+m(u1+h')+57 > gk”k>>0 ‘

¢=+1 2<k<M

Consider now a standard normal r.v. ¢ that is independent of all the other
variables. We consider the r.v.

(6.17) Y = B'(gll{)oll + m ((ur)g +#)) -

Proposition 6.4. In order to evaluate E(U/ZF), we can use the approximate
equality

U
(6.18) E(ﬂ) ~T+ 1+ +1V+V

where

_ . (expdAY
1= £(20 7 100

o [expdY L
I = ﬁ E( ch’Y <f25[5g/W[ . W(/>O)

<

I = —p2E (e:fl’p‘;y <fz wé.b> )
0

<p

o expA4Y .
IvV=_p AE( 7 <fz(sm-b> )
0

<p

s thy -
Vﬁ/pE<eprYchpY I 0w b .
0

(<p

The error made while using (6.18) is at most 3, E(j) where
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1<p+2
E(2) = KE<|f| R b)2>

1<p+2 0
E(3) = K(Ef) Elul® = (lu]*)e)*)0) ">
E(4) = K(EfY) P (E{(ur — (u1)y)")'"” -

Proof. The first task is to show that the term containing 7 creates only lower
order effects. Let us denote by ¥ the quantity defined as U, but with 7 = 0.
We simply write

E(1) = KE<|f| > (e W)2>

VU _
E|Z——|<E[V|expd7 > gimy— 1
z z 2<k<
<k<M
N 172
g(EVz)l/2 E<epr7 Z gknk—1>
25kEM

Since M < ap?(N)/N < a, a straight forward computation yields a bound
Ko(N)?/N, that goes to zero if, say, p(N) = N'/3.

At this stage we have seen an example of each of the arguments needed to
show that the perturbation term in the Hamiltonian creates only errors that
go to zero with ¢(N)*/N. Before the real work starts, it is better, for the
clarity of the exposition to decide once and for all that all terms containing 7
will be ignored, and that we can pretend we work with the original Hamil-
tonian rather than with the perturbed Hamiltonian.

Throughout the end of Section 8, we will use the notation b = (u),. The
key idea, also central in [T4] is that a bracket (exp 'y - u), depends upon y
essentially through 5 - b. Thus, if we write

(exp B'(En -+ (uy + h')))g = exp f'én - blexp f'én - it +ny(ur + 1)),

the last bracket should be essentially independent of , so almost equal to its
expectation in . Approximating ||i]|* and u; by their averages for (-)o, we are
led to set

2
618)  Z=ch Bl b ml{u)y + K expl (i),

=AchY

/2 .
where A = exp5- ([l *)o, Y = B'(n - b+, ((ur)y + I)).
We will write
U U U@zr-zr) Uze-2zry
(6.19) Zomt T T g
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The expectation of the terms on the right will first be computed conditionally
on 5 - b. Thus, we first must learn how to compute such expectations.
For a vector x of RY~!, we write

b(x-b)
S(x) =
="

Thus R(x)-b =0 so that R(x)-n is independent of x - b, while S(x) - g is
proportional to g - b.

We denote E; conditional expectation given # - b. The typical computa-
tion is that, for a vector x of R®~!, we have

R(x)=x—-S(x) .

Eygexpn - x = Egexp(n - R(x) +n - S(x))

- LT st0)

Thus

2
+Bn- S<Z5éw)

<p

+ B (Z Or(wie + h/)) >0 :

<p

p?
EyU = <fexp2

R < > 5m)

<p

The game now is to extract from this a manageable expression, allowing
small errors.

We observe that (by construction) (w;), = b, so that w, = wy, — b. Since
R(b) = 0, we have R(w;) = R(#,). Since ||x||* = |R(x)||* + [|S(x)||*, we then
have

/D 2
(6.20) EoU = <fT expﬁ— > ey >
2 <p 0
where
(6.21) T = exp (/3/11 : S(Z 54"’@) + p'm (Z de(wie + h'))
<p <p
B> ’
-5 s <Z 5m>
<p
We write

> Sowy

<p

— Z|\Wz||2+2z5z5efw W

<p <t

We use the inequality
(6.22) le¥ —x — 1] < x%eM
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to see that we can write
2
(6.23) %U:M+<fﬂl+W§:&®wwmﬂm#;E]WN?
<t <p 0

where E|X;| < E(1).
We write

<2 2 2 .
wel|” = |[well” — ||B]|> + 2¥, - b

and we use again (6.22) to obtain

(6.24) EoU =X + X
- <fT<1 By 010w e —b”zzw-b>
o< 1<p
< exp B S (il = 167)
2
<p 0

and [X3| < E(2).
Now

2 2 2 2 2
[[wel|= = 18117 = lwell™ = C[wel[ 5o + (el g
so that, recalling 4 = exp%z(Hile)O, we can use |e* — 1| < |x|e* to write

EU =X +X+X3 +Ap<f7<1 +ﬁ'22515/ W'W'—ﬂlzzwwb>>
0

<t <p
(6.25)
where (using Cauchy Schwarz) we see that
E|Xs| < K(E()o) > E{(lul* = (lul*)o)?))"* -
A similar argument shows that we can write
(6.26) E)U=X1+X+X5+ Xy, + U
for
U =Ap<ﬂ“’<1 +[3/225151’ Wo - Wy — ﬁ/zzw, .1,> >
<t <p 0

where 7" is defined like 7, except that we replace wy ¢ by (wi ), = (u1),, and
where

EolXa] < K(E{/)o)' ™ (E{(r = (1)o))o)""? -
Since S(b) = b, and >, 0¢ = 4, we have
T' = exp(Bdn-b+ FmA((uw)o + ) +n-be - |[b]*c*/2)

where
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ch=p'S <Z 5m) :

<p

Now we are interested in evaluating E(U/Zq), where 0 < ¢ < p. Since Z>1,

writing
U E U
“(7)-+(5)
VAl VAl

we see that we can replace U by U, of (6.23). We will first integrate in the
gaussian variable g = 5 - b (then in the quenched variables). To integrate in g,
(we denote this by E,) we observe the following elementary fact. If W is a real
valued function, and ¢ is N(0, ¢?), we have

(6.27) E, (W(g) exp (cg - ?)) =EW(g +ca?) .
Now, we can write
(6.28) EW(g +ca®) = EW(g) + ca®EW'(g9) + %
where

|2| < 0204E< sup [W'(g+ t)|> .

|t|<ca?
In our case,
(g) = — P B 49
(ch B'(g +m (Gur)o + 1))

so that

thY

oy, &XDB A9 exp g
Wig) =F4 ch?y B ch?y

and |W"(t)| < K exppf'|t]. Since 6* = ||b||*, we have

6‘62 = ﬁ/ (Z 5/Wg . b) .

(<p
To evaluate E(U; /ch?Y), we write
U,

Eq ch?y

= Ap(ngW(g + ca®) exp f'n; A((u Yo +H))o

where

f=f<1+ﬁ’22515/ w-w—ﬁ’zzw«b>

=<t {<p
and then we use (6.28). The expected value of the remainder term is bounded
by E(2). Thus, within errors >, E(j), we can approximate E(U/ch?Y) by
the sum of the following terms
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_ expdY | -
(6.29) AP qE(cth (f)0>
_ expA4Y .
(6.30) AP=4B2 AE CE—qY<f§ 5éw-b>
{<p 0
AY
31 —AP1p? s hY E Wy -
(6.31) AP “gE hiY t f(<p Oowy - b 0

The reason we can put f rather than f in (6.30), (6.31), is that doing this
creates only further errors of the type E(1), £(2).

Consider now the case g = p. Taking in account that Z? = 4Pch”Y, we see
that (6.29) is the term I + II + III of Proposition 6.4, while (6.30) is IV and
(6.31) is V. Thus, to finish the proof, we have to show that the last two terms
of (6.19) produce a contribution controlled by the error term -, E(j).

First, we consider the case of the second term of (6.19). We write it as a
sum of terms of the type

A A Uz U’
q—p—l(7 _ q __ - = _ 7
(6.32) vzirNZ = 2)/20 = E o
for p+ 1< g < 2p, where U’ = UZ?7~! and we write
Uz U’ 1 n _ U’
where

!

DT = 74 (expB'(n-u—+mn(u + "))

and D~ is defined similarly with a minus sign in the exponent. We use the
replica trick to make each numerator appear as of the type (6.16). Now we
have ¢ variables wy,...,w,. Most importantly, /' depends only upon
Wi,...,wpy, so that, by independence, (fW,-wy), =0 = (fW,-b), unless
£,¢" < p. It should then be obvious that if one considers the terms (6.29) to
(6.31) arising from D, D~, U’ /297", these terms cancel out when calculating
E((D* +D7)/2—U'/Z9). As for the error terms, they are controlled by
> ;<4 E(j). (Observe that in the definition of £(1) to E(2), we have taken
¢,0" < p+ 2 to make sure that terms where ¥, W), are independent of f occur,
as these terms occur in the control of D", D7)
Now, to control the last term of (6.19), we write

d

We bound |U| by the expression of the type (6.16), replacing f by |f]. We
then proceed as in the case of the previous term. O

U(zr — 2¢)?
Z2°rzr

) <E(Ul(z" - 27)) .
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The error terms E(3),E(4) are not dangerous. While it cannot be guar-
anteed that these terms are small for a given value of the parameters,
Proposition (10.8) shows that they are small once we average over the pa-
rameters. To simplify notation we will denote by .&/y a nonnegative term
(depending upon f,7, k) that has the property that

lim Aydfdhdy =0 .
N=00 ) p<pyh<hofyl<t
These terms are “automatically small” in the sense that we already know
they are small, in contrast with other terms that will be proved small through
iteration.
Controlling the error terms E(1), £(2) is trickier. We will use two different
techniques to do this; this is the object of the next two sections.

7. The small « region

In this section we prove Theorem 1.6. We will first assume f§ < 2, which is the
difficult case. We will then indicate the modification to make in the case
p>2. We will make use of the results of Section 3, and in particular
Proposition 3.15. (The reader will check that this Proposition remains valid
for the perturbated Hamiltonian.) We assume that for a certain number S,
we have

(7.1) E(G({[lm —m’e\[| = $})) < Kexp(—=N/K) .
There, G is the same Gibbs measure as in the bracket (-),,.
In particular
E(G({[lu]l = S})) < Kexp(=N/K)
since the vector u simply forgets the first coordinate of the overlap vector m.
As usual, we will ignore the exponentially small terms arising from the
fact that it is not true that ||u|| < S always.

To study Cfng we observe that it is the average of 4 terms (corresponding
to the choices of &, 0), that are all of the type of Proposition 6.4 for p = 3 and
wi=uw,=u w3 =v,f= (it-v)2 )

All terms such as [{f (W - we))ol, |{f ¥, - b)),| are bounded by (f),S?, so that
we have

Lemma 7.1. Under (7.1) we have

12 Al < PE( G (@0, ) + RS 0P + B

where

E(S)SKE<<|&-U| > (u,ﬁ+u;4+v2+w2)>> :
0

2<k<M
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The term E(5) above arises from the error made while “integrating by
parts”, and as usual ¥ = ﬁ’(g||b|| +n((u)g + 1)).

Let us now study C](\, 41+ In that case, with wi, wy, w3 as before, we have
fu, ', v) =@t v|v|]% so that (f)o = 0 and there is no contribution from the
term I of Proposition 6.4. We claim that the other contributions are bounded
by KS2((@t - v)*),. The factor 2 arises from ||v||>. We also observe that

(If e - Bl < (F2)(Ove - b))y
(e - ol < (P25 (O - o))y
Now, by Jensen’s inequality
(7.3) (g - b)) = ((it- b))y < (@~ v)*),
(7.4) <<we~w>2> < 2(W-v))y < 2{(- ), -

The contrlbutlons of CN 1 are handled the same way, and (7.2) remains
valid with CN . rather than C]\;) )

To estimate the contribution of c? integration by parts is not needed,

N+1’
and we have
IM—-1_1
(7.5) C,(\,z)l _——E—< (n-v)expB(én-u
SR AP

+0n-v4-&hﬁ1+0ndvl+h9)>
0

We use Proposition 6.4 with f =& - v, so (- v), = 0. The terms II to IV are
bounded by KE{(i - 'v)z Yo using (7.3), (7.4). No subtlety is needed because the
factor a (or rather MT‘I) in (7.5) will be very small. Collecting all estimates, we
now have

Lemma 7.2. Under (7.1) we have

1
h2
In order to use a relation such as (7.6), we need information on Egch_zY.

We will use some notation from Section 3, (except that all parameters have
now a “‘prime”’), i.e.

m*=thf(m* +#) anda* =1— (1 —m")?* .

(7.6) Cny1 < ﬁE< ((m - )2>0) +K(S? + o)E((a - v)2>0 +E5)+ Ay .

Lemma 7.3. Under (7.1), with probability at least 1 — K exp(—N /K), we have
1
B'E, <l—a + LR (S*+m'S) .
FEy 2y B )

Proof. Consider the function
1

X)) = Ej——— |
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Then ¢ (0, f'(m* +h')) = 1 —m*2, so that
B0, (m* +1)=1-a" .
Next,

so that
B'o(0,y) <1—a" 4 2max(|y|, f'(m* + i)y — p'(m" + 1)) .

Finally, using integration by parts

0 th
‘8x go(x,y)‘ = —2Egg@(xg +y)‘ < 4lx|
since the derivative of the function th(z)ch~2(z) is bounded by 2, and thus
o(x,y) < 2¢° +0(0,y) .

We use these estimates for x = f||b|| < f'S,y = B ((mi),+#) so that
ly — B'(m* +K)| < B'S (and we note that m* > h'). O

Thus, we now have
(7.7) Cyii <(1—a +K(Sm*+ 8>+ a))Cy +E(5) + .oy .

There, Cy = ((@-v)*), = Cn (o, B, 1, 7).
We first consider the case § < 1, which is easier because Lemma 2.9 shows
that the term E(5) is of the type .7y.

Lemma 7.4. There is a number L such that if 0 < h < 1,% < B <1, we have

L 2

Proof. We recall that a* = 1 —  + pm*> > 1 — . (For simplicity we will not
distinguish between 8 and f’.) Thus it suffices to achieve

2t < (B -1 4 m) = Cyn < (ﬂ)cwm |

Sm* 4+ 8% +a < a'/Ly .

(The constant K of (7.7) is now universal as f8, 4 are bounded.)
Since m*>2<1, we have a*>1—p+pm?>m", and thus
(B—1) +m?2 <24
If « < m*?/L;, Proposition 3.15 shows that we can take
S < (Lloc/m*z)l/2 < Lo'/* .
On the other hand, if m*?> < Lja, (and o < @*?/2) Lemma 3.7 shows that we

can take
a*Z l/4 a*Z 1/4
S<2m*+L<oc10g a) <2L<oclog oc) .

The result follows easily. O
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Thus, if , < 1, and

1
oy < Zmax(|l - ﬁ0|27m*4(.307h0))

we can find a neighbourhood Dy of (f,4), and 6 < 1 such that if we set
In(o) = / Cw (o, B, h,y) dBdydh
(B,h)€Dy,|y|<1

then, for all « in a neighbourhood of oy, we have
Iv+1(0) < Oly(o) + ay

where ay — 0, so that lim 7y («) = 0 for all « in this neighborhood of og. This
is the main step in proving the validity of the RS solution. The other steps
will be delayed until the end of the section, and detailed in the more delicate
case 1 < f <2, to which we turn now. We assume that o < m*“/L; Propo-
sition 3.13 shows that we can choose L large enough that (with overwhelming
probability)

1 m*Z

——<1-
chY L
The problem with (7.5) is that I do not see how to control £(5) unless I can
show that

(7.8) E,

e

2<k<M

is small. Thereby, it seems that this term should be studied prior to a study of
Cy. Fortunately, the techniques we have developed do bear on Ay.

Lemma 7.5. (Expansion) We have
2
K N
Ay1(o, Bihyy) SN‘F (ﬁ) E Z ’7k<€N+1”13c> .
2<k<M
Proof. We write
1
4 _ 3
e =N 1 KZ}\/Q’?;,k’”k

so that by symmetry Ay 1 = E) 54y nelen+1m;). We then replace my by its
value (6.4). OJ

Lemma 7.6. (Integration by parts) We have

(7.9) E( > '1k<€1v+1u}z>> <ﬁ'E< doowh- > <€N+1”}§><€N+lvk>>

2<k<M 2<k<M 2<k<M

+KE< > ug> :
2<k<M
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Proof. This should be obvious once understood the proof of Proposition 6.2,
after we observe that (3 ujv}) < (X uf).

Next, we transform the brackets (-) into brackets (-), and we appeal to
Proposition 6.4. It should be apparent that under (7.1) we have

E< > u2> < (1+KS2)E< > u,‘§> :
2<k<M 2<k<M 0

Concerning the term Zz<k<M<€N+1”2><EN+IUk> we transform it in a single
bracket, and we use Proposition 6.4 for f =3 ), uivg. The terms I
contribute as E(th Y (D0 cpens UiVk) ) The contribution of all the other

terms can be bounded by KS?E(}, ., ui), using that (3 uvi),<

<Z”k>

Thus we have proved the following.

Lemma 7.7. Under (7.1) we have

Ay < (/3’+KS2)E<< Z u2> ) [3E<th2 < ukvk> ) + .y .
2<k<M 0 2<k<M

We rewrite this as
1
(7.10)  Ayy <KS AN+/3E< oy < > )
2<h<M

+ﬁ/E<<< Z u2> —< Z uivk> )chY) —l—J?/N .
2<k<M 0 2<k<M 0

If we compare with what we did in Corollary 7.5, the first two terms are
promising. But to handle the third term, there seems to be no other way than
to consider the new quantity

(B T

2<k<M 2<k<M

At this point appears the drawback (or, if one prefers, the charm) of our
method; it tends to take us further and further from the original problem. On
the other hand, there is only a small number of expressions such as 4y, By
that one can write down, so at some stage we are bound to succeed in getting
real information.

To study By.1, we go through expansion, integration by parts, use of
Proposition 6.4. The term (> m{) 1s handled as for 4y. For the term
SO (m}) (my), we replace my by (N 4 1)~ > i<n+1 Mix€i in the last bracket only,
and after use of (6.4) we get

3
By < (370 E( S nelfev-ud) - <u2><eN+1>>) FEIN

2<k<M
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Using integration by parts, we then have

By+1 < PE Z ((uf) — (enrrug) (ens1ve)
25kM
— (enrud)(enr1) — (up) (i) + 2(u)) (en 1) (en+10x))
+KE< Z u2> .
2<k<M

Each term of the first summation is transformed in a bracket (-),, to which
we apply Proposition 6.4. It is quite fortunate that the contributions of the
terms I1 to V can all be bounded by KS*E(Y",;), U4 ),; such is also the case
of the error terms E(1),E(2). As for the contributions of the terms I, the
situation is saved by the fact that each term ey simply creates a factor th Y,
independently of where it is located. Thus cancellation occurs. Using that
th’Y = 1 — 1/ch’Y, and that

()= () () )= (o),
we have proved the following.

Lemma 7.8. Under (7.1) we have

(7.12)
By </3’E<Ch12Y << > u2> -y <u;§vk>0>> +KS* Ay + Ay .
0

The only remaining obstacle is that the small term KS?4y contains Ay
rather than By; and, conceivably, Ay > By. On the other hand, should
By < Ay, then (7.10) is the inductive relation we want; so we should try to
combine (7.10) and (7.12). Given a number p > 0, it follows from (7.10),
(7.12) that

(713) PANn+1 + By

1 2 Z 4
- ﬁE<<Ch2Y+pth Y> <p<2<k<Muk>0
+< 2 u:> _< 2 uivk> ))
<k [ g 2<k<M 0

+ KS*(pAn + By) + oAy .

Now, using (7.7), with overwhelming probability

1 1
E, | —5— + tth) <Pp+(1=p)pE,——
B g<0h2Y P <Bp+( p)B I 2y

*2
<SB-Dp+1-(-p%

0
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As m*> > (B — 1)/L;, we can choose p universal constant such that, setting
Ay, = pAy + By we have

*2
Ay, < (1 —’Zl +KS2)A;V+&/N .

Consider now By, ho, and oy < m** (B, ho)/L. We can find a neighborhood J
of &, a neighborhood Dy of (f, ), such that if D = Dy x [0, 1], then, for o in
J, we have

JN+1(OC) < GJN(OC,) +ay

where ay — 0, 0 < 1, and
(7.14) () = [ Bty (o poh) dBndy
D

Consequently, limy_,o Jy () = 0 for all « in J.
As we know now how to control the term E(5), we see that if
In(o) = [, Cn(at, B, h,y) dBdhdy, then we have

A}T;OIN(oc) =0 .

We now turn to the proof of the validity of the RS solution. We introduce
the parameters

Ry=E > (m)’
2<k<M

Wy=E Y (m)
2<k<M

Uy =E Y (i) =2(Wy — Ry)
2<k<M

ty = E{m1)

Oy = Ele))’

Let us first consider the case of Wy. Then, with our usual notation

Wy =E Z <m,2{>

2<k<M
1
ey (y nrn>
2<k<M<N + 1,57
=E Z 77k<€N+lmk>
2<k<M
M—1

=——F+F N (En1ux) -
vt

We now use integration by parts, and Proposition 6.4 to transform this
expression. What is nice, is that now that we have done the hard work, we
know that the error terms are automatically small (and still denoted by .«7y),
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in the sense that their integral over the domain D considered in (7.14) goes to
zero. Integration by parts yields

2<k<M

(715) Wyl =a+ ﬂ/E< Z (u,%) — (ukeN+1>2> + Ly .
Use of Proposition 6.4 yields

(7.16) Wy = o+ Wy — ﬁE(th2Y Z (uk>§> + .y,

2<k<M

where as usual Y = f'(g[|b]| + 1, ((u1)y + 1)),
Hb” = Z <uk>éa and WN = WN(a/aﬁlvy,7h/) .

2<k<M

(Since we now know that E{(& - v)2>0 is small — after averaging over f8, 4,y —
only the terms I have to be considered, and every factor ey gives rise to a
term thY).

Proceeding in a similar fashion, for Uy, we get

1 -
111 U =20 - Q) + 5 )y ) +
Computing Oy, is a straightforward use of Proposition 6.4, and
(7.18) Ovy1 = Eth’Y + o7y .
To compute py, i, we observe first that
iy = Eny(ensr) + Ly

and we use Proposition 6.4 (and the fact that f there may depend upon #,) to
get

(7.19) fy g1 = E(mthY) 4+ o/ .
We now substitute (7.18) into (7.17) to obtain
1 1 )
+ pE 7 + Ay .
oy 08 (S 0 ) + o
We replace Wy 1 by Ryy1 + Uyy1/2 in (7.16), and we combine with (7.18) to
obtain

(7.20) Uysi = 20E

_ 2 1 2 By a2
(721) Ryy1 = aEth Y+3E(Chzy<||u|| o) +5E(RY(JalR)) + o/

At this point we observe that
1BI = [1Ga)o |1 = (llal*)o = (Il — B>}
so that
Var|||* < 2Var(|u*)y + 2Var{||lu — b]*), -



240 M. Talagrand

We appeal to Proposition 10.5 to see that the first term is of the type .o/, and
to Proposition 10.7 to see (now that we control Cy!) that the second term is
also of the type .o7y. It is at this point that the perturbed Hamiltonian is
needed. Consider the function @, from R® to itself that transforms the
point (x,y,z) into the point (x',)/,Z") given by

xX' =FEthY
= (20 + BY)E ——
( By) Ty
1 B
7 = oaEth’Y + BzE +L5yEth’Y
B ch?y 27

where Y = B(g+/z +x + h). Then, using the symmetry of g to get rid of the
terms 17, (7.19) to (7.21) become

(7.22) (tys1, Unt1, Rvi1) = @upn(iy, U, Ry) + Ay

where .o/ has the obvious meaning, and where yu,, Uy, Ry are as usual for
o, B K,y Since (a,B,h) stays in an arbitrarily small neighborhood of
(20, By, ho), using Theorem 1.4, we see that for all N, setting mo = mo (S, ho),
we have

(s U Rv) € 4 = { gl =) < Loy (20 bl < 20 25
m m
We define by induction 49 ,, = 4 and Aﬁfﬁ_’h = @y pu(4; 4,). It is now
simple to show by induction over p that for each p, we have

(7.23) sup lim dlSt((,uNH, UNH,RNH),AgM) dBdhdy =0 .

aeJ N—o Jp

Lemma 7.9. The set ﬂ Aaﬁh consists of a single point.
Proof. This very tedlous proof should be omitted at first reading. We would
be done if ¢ = &, 5, were a contraction. The differential of @ is the matrix

F—L A
b ch'y 0
y— | Qo+ By) (2004 By)B
B en2 |
tC JEhY  BE L+ 1B

where t = fiz — o — fy/2,
8E 1 B aE 1 0

=— = — A =—EthY .
Ox " ch?y dz ch’y Oz
Thus, setting Q = Eth’Y, we have
thY
C=-2pE——
B ch’y

so that, by Cauchy-Schwarz,
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(7.24) IC| <2B/0 .

Using integration by parts, we have

B ( thY) 5 (1—2sh2Y>
B="—E(g—— ) =pE(—F——
vz gcth b ch*y

so that
(7.25) |B| <28 .
Similarly,

B 2\ﬁ/EEchng B _BZE ctllll;;
so that
(7.26) 4l < PO .

Despite these estimates, and the fact that

0o

(7.27) ] < Lﬁm
0

it does not seem that V' is a contraction (for the euclidean norm). On the
other hand, if (e, e, e3) denotes the canonical basis of R3, in the basis
(A1e1, lrey, e3), the matrix of V becomes

B(1—0) 0 A1ar3
(7.28) V' = j—fazl p(l1—0) Arans
a31//11 a32/)v2 ﬁ(l —Q)—F[ﬁ

where
|ars| = |4] < L\/O
o
laa1| = |20 + By)C| < Lm—sz\/@
OCO \/—
SV O
mo2

oo
|az1| = |¢C| §Lm\/§

0

|azs| = |20+ py)C| < L

|as. | =§Q <LQ .

(We recall that f < 2).

If we can find /,, 4; (independent of (8, %) € Dy, (x,y,z) € 4) such that V'
is always a contraction, the proof is finished. Assuming o /m(’g2 < 0, in an
effort to minimize the largest off diagonal term of V’, we take

1/3 —-1/3
Ay = %o 1/6 Ay = oo 1/3
mSZ 0 m62 0
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where Qy is the maximum value of Q over a € J, (f,h) € Dy, (x,y,z) € 4. The
. . ) 1/3
maximum off diagonal term of ¥’ is then at most L(TZ—O) Qé/ 3 To show that
0
V' is a contraction under the condition oy < mi*/L’, it then suffices to check
that

1
Fmax(mi?, 00) + B(1 - 0) < 1
which follows easily from the method of Lemma 7.3. O

We denote by (u,u,r) the unique point of 1, A’; 4> the dependence in the
parameters being kept implicit. Thus (7.23) implies

(7.29) lim / (luy — 1 + Uy — u| + [Ry — r|)dBdhdy =0 .
— Jp

Since (w,u,r) is a fixed point of @, setting ¥ = f(g/r+u+h) and
q= Eth’Y, we get the equations

(7.30) u = EthY
(7.31) u= 20+ pu)(1 —gq)
(7.32) r:fxq—l—ﬂr(l—q)—i—%(l—q) .
The second equation yields
20(1 — q)
7.33 py=—" 97
(7.33) 1—p(1—9q)
and the third then yields
og

(7.34) Fr=————— .

(1= (1~ q)

We now turn to the proof of (1.13). When o = 1/N(M = 1) the Hopfield
model reduces to the simple Curie Wiess model, so that N~'EFy ~ RS is easy
in that case. Thus it suffices to prove that

Oy _ ORS

Ou ~ Ou

Since Fyy is defined only for values of « of the type M /N (M > 1), the left-
hand side of (7.35) makes no sense apriori. So we extend the definition of

Ey(o, B, h,y) to all values of o > 1/M by linear interpolation in o (at f8, A,y
fixed). In that way, we have

(736) %(aaﬁaha)}) N<FN<051 +]ifvﬁaha‘y> FN(alaﬁvh7V))

(7.35) N-

where a; = M /N, for the integer M with M/N < o < (M + 1)/N and where
the derivative is understood as a right derivative.
Consider a fresh Bernoulli sequence (1;),- Then (7.36) implies



Rigorous results for the Hopfield model with many patterns 243

2
_1 OFy B
(7.37) EN ‘W(a,ﬂ,h,y)=E10g<eXPﬁ<Zemi> >

i<N

where the bracket is for the values oy, 5, 4,7 of the parameters. To compute
the right-hand side of (7.35), we observe that if in (1.14) we think of the right-
hand side as a function of independent variables o, 5,4, 1, q,r, equations
(1.11), (1.12), (7.34) mean that the partial derivatives of this function in
i, q,r, are zero. This makes it obvious that

(7.38) ORS 1 (1 — ﬁﬁ(? 0 log(1 — B(1 — Q))> :

do 2
The key to (1.13) is the following precise version of (7.35).
Proposition 7.10. If Dy is a small enough neighborhood of (By,ho)(By < 2,

ho > 0) we have
p 2
Elog<expﬁ (KEN emi> >

! Pq
) (m— log(1 = B(1 - f])))

uniformly over o < L((By — 1)* +m*?(By, ho)).

Indeed, once this is proved, we integrate over o (using (7.37), (7.38)) to get

lim
N—oo Jp

dpdhdy =0

lim
N—oo Jp

1
NEFN<a7ﬂuhuV) —RS(d,ﬁ,h)‘dﬁdth =0

Since Dy is arbitrarily small, and since Fy and RS are convex functions of
B, h,y, (1.13) follows.
The basic fact is the elementary formula (left to the reader). If ¢ < 1,

a2

c 5 1
. E S = .
(7.39) ”e"p(“9+29 ) T2 P21

The heuristic argument goes as follows. We write

(7.40) <exp2€v (e- 11)2> =E <exp \/Ege . 11>
= Egexp \/gga : n<eXp \/ggé : n>

where a = (). We know that (4.5), and hence (4.3) hold. The argument of
Lemma 4.1 (used at many other places) then shows that

2
(7.41) <exp \/ggé . n> ~ <exp'§iNZéf> .

i<N
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We certainly hope that } é2 to be nearly constant, so equal to

() i) = s

so that (7.41) should yield

<6Xp \/%gé : n> ~ expg(l -9 .

Using (7.39), (7.40), we get
B 2> ! b (a-u)
eXp——I(€- >y CXP = .
< Poy (€W V1=p1—=9q) PONT=B(1 )
Taking logarithm and expectation conclude this scheme of proof.

It is unfortunately a nontrivial task to justify rigorously the previous
approximations.

Proof of Proposition 7.10. A first observation is that

log<exp%(e : n)2> < %N

so that the influence of exponentially small events (in the quenched variables
imlicit in (-) and #) is negligible. Appealing to Proposition 3.14, we can
pretend that if

o La*\'?
C= eeZN,|m1(e)—m*|§L(—*log *2>
m m

where m* = m*(f,h), then G(C) > 1—exp(—N/K) > 1/2, and, appealing
again to Proposition 3.14, this time for M + 1 rather than for M, we can
pretend also that

<exp%(e-t])2> <(1 +eN/K)<1cexp%(e-q)2> .

Thus, setting

TN = 10g<1C exp%(e . 1])2>

we have to show that

RS
(7.42) lim [ |Ty — 887 dBdhdy =0 .

N—oo D

Lemma 7.11. Consider an event Qy = Qu(a, f, 7, h) (depending upon o, f,y, h
in a measurable way). If

(7.43) lim [ P(Qy)dpdhdy =0

N—oo D
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then

(7.44) lim | E(lg,Ty)dfdhdy =0 .

N—oo Jp

In this statement, and the rest of the proof, we make the convention that
it is understood that all limits are uniform on o satisfying condition (1.17).

Proof. If § is a positive number (to be specified below) we have the inequality

(7.45) (x+y)° < (1 +%)x2+ (1+0))
This implies
(7.46) Ty <logU +logV
for

p 2
(7.47) UeXPZN( > (;nnllm )

2
(7.48) V= <lcexp— (Z” — 1y ym”) ) > .

Using Cauchy Schwarz to wrlte E(lg, Ty)* < P(lg\) (T2), it suffices from
(7.46) to show that E(log U) < K,E(log V) < K. The first statement is
obvious. For the second, we write, for e € C

(7.49) N7! Z(ei - ’]i,lm*)2 =14+m?—-2N"! Zemi‘lm*
i<N i<N
=1+m? —2m*m (€)
=1 —m"? +2m*(m* — m(€))

La\ 12
<1—-m?+Lm' (—log a )

since € € C. By arguments already used, we see that if the constant of (1.17)
is small enough, (and if Dy is small enough), we can find ¢ > 0 such that for
(B, h) in Dy, and € in C we have

(7.50) BA+NTD (g —nm ) <1-6 .

i<N

(The term (1 + &) rather than (14 d) is required for further purposes). A
straightforward extension of Lemma 2.1 shows that

—1/2
Eexp= (Za, ) < (1—2&?)
i<N i<N

and thus from (7.50) we see that EV < K. Since V' > 1/2 (as G(C) > 1/2) it
follows that E(log V)* < C.
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We now construct the events Qy to which we will apply Lemma 7.11.
Lemma 7.12. We can find a sequence oy — 0 such that the event

N~ Z<€t>2 —q

i<N

(7.52) Qy = {G(B) <1-2dyor

>5N}mc

satisfies (7.43).

Proof. We first show how to control the event

{ %Z@f—q‘ Z5N} :

i<N
From (7.18) and (7.28), we have

SEY (@ g

i<N

lim

Jim | dpdhdy =0 .

Thus it suffices to show that

2
. 1
Jim A mE(Z@Z —EZ<6,>2> dfdhdy =0

i<N J<N

or, equivalently, that if i # j

lim /’E<6,->2<6j>2 - qz’dﬁdhdy ~0 .
D

N—oo

The reader should feel that to prove this is standard (reduction from N to
N — 2 spins) now that we know (7.29) and we have the tools of Section 6.
Since ()% = 1 — (¢)?, it suffices now to show that

2
1
lim | —E E -S| Vdpdhdy =0
m [ (- 50) )

or, equivalently, that, for i # j

. 1 5. 2.
Jlim D—zE(<e$ej.> - <ei>2<ej)2) dfdhdy =0 .
Straightforward algebra shows that

(G6) = (e (6)* = 4éd) (e (e) -

Thus is suffices to show that

1
(7.53) lim N—E(éiéj>2dﬁdh dy=0 .

N—oo D 2

The computation of E (éiéj>2 , or, more conveniently, of E <€i€j>2 should again
be felt as easy. O
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Combining Lemmas 7.11 and 7.12, to prove (7.41) it then suffices to prove
that (denoting by Qf the complement of Q)

ORS

We start by a preparatory lemma.

Lemma 7.13. a) If x,y > 1/2, we have

(7.55) |logx — logy| < log(1+2Jx —y|)
b) If U,V >0,t> 1, we have

(7.54) lim

N—oo [p

dpdhdy =0 .

(logU)?

. log(1 <
(7.56) og(l +UV) <+ 20

Proof. Since (a) is obvious, we prove only (b). If U < ¢, we have

log(1+0UV) <log(1+1¢V) <tV .
If U >t, we have U > 1, and

(log U)?
log¢

Comment. The use of (b) is that if E(logU)ZSK, EV — 0, then
Elog(1+UV) — 0.

Lemma 7.14. Consider the set B of (7.52) and

B
Ty = log<1,9expﬁ(e-t])2 .

log(1+UV) <log(U(1+V)) <logU+V < +V

Then
lim /Elgc |Ty, — Tv|dpdhdy =0 .
N—oo Jp N

Proof. Using (7.55), we have

|TN — TIH < 10g<1 +2<lc\BeXp%(6 1])2>> .

Proceeding as in Lemma 7.11, we have

Ty — Ty| < log(1 +2UV)

Lo
where U is given by (7.47) and V by (7.48), except that we have replaced 1¢
by I¢\z. Using Holder’s inequality for Gibbs measure, we have

2\
V<G<C\B>%<1cexp£ <Zm — 1y am* ) >

i<N

Appealing to (7.50), we then see that EV < K 5()/ (79) The result then follows

from Lemma 7.13. O
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Lemma 7.15. Consider
_ B B oo 2
¢y = exp \/];ga n( 1sexpy g ;ei

and Ty = log Ey¢,, where E, denotes expectation in g only. Then

(7.57) lim [ Elg|Ty — Ty|dBdhdy =0 .
D

N—oo

To provide motivation for this last effort, we show why this proves (7.54),
and finishes the proof of Proposition 7.10. Using (7.39), we have

i<N i<N

) 1 Bla-n)’
e log<13 \/1 - ﬁ(N*I > e'%) epo(l — BN Y é?)> '

We use the definition of B to control Y-, ¢ from above and from below; we
then take expectation in n, and use the definition of Qy to control ||a|| and
G(B). The result follows.

Proof of Lemma 7.15. We set

@) = exp g\/ga : n<13 exp g\/gé : n>

so that 7y, = logE,¢;. In view of Lemma 7.14, we can replace Ty by T}, in
(7.57). Appealing to (7.55), we write (since G(B) > 1/2)
Ty — Tyl < log(1 + 2Ey|p, — ,]) -
For & > 0, we have, with obvious notation
Eglo) — @y <&+ UV
where

1
1+0

U(Eg\fpl - 902|1+o>

V= (Py(loy — @a] > &)

Aslog(x + &) < & +logx for ¢ > 0, x > 1, it suffices to show by Lemma 7.13
that for any ¢ we have

(7.58) E(logU)* <K
(7.59) lim | EVdfdhdy =0 .
N—oo D

We start by writing |¢@; — @,| = @3¢, for

¢3 = exp g\/?\,a n
<13(6Xp \/ggé -y — exp \/%gz > éf)>‘ :

i<N

(e
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Thus, from Hélder’s inequality

h)
| (1+6)2

T2 1 _
. oo L (1+6)2 12 .
U=, ot o) (B0 ) (B0l )T

Using (7.50), one sees that the expected value of the last term remains
bounded; then (7.58) follows easily. To prove (7.59), it suffices to prove that

lim /P(an — @yl = &)dBdhdy =0 .
N—oo Jp

Since for each 7 > 0,P(p; > ¢') < K/t, (because Elog ¢; < K) it suffices to
show that

iim [ Plod > Sapand; =0
N—oo Jp
Now, it suffices to show that for each value of ¢

lim [ E'(¢p4)dpdhdy =0

N—oo Jp
where E' denotes conditional expectation at g given. But this follows from
(7.53) and the fact that, as shown by the argument of Lemma 4.1, for each
value of g we have

Flon <k (((e2) "3

(One of the difficulties that make the present proof delicate is that it is not
true that E,K(g) < o0). The proof is finished. O

Finally, we explain how to handle the (much easier) case where f > 2.
(More precisely, we will consider only the case ff > f,, where f, is a large
enough constant. This is sufficient because the analysis done for f < 2 also
holds for < f, possibly with different constants). The main difficulty in the
case f < 2 was that the crucial coefficient SJE—1— was possibly dangerously
close to one. chy

We will show that this is not possible for > f5,, o < 1/K log . We now

have m* > 1/K, and (7.1) holds for § = \/a/K, so that (u;), > 1/K. We have
gl 1

ch’y ~ ch(/2)

Since (7.1) implies ||b]| < K+/a, we thus have

+P(lglb]l = (ur),) -

1 1 1
S _
Py St exp( Koc)

so that BE1/ch®Y is small for § > f, and o < 1/K log f. This dependence of o
in f would be of the correct order. Unfortunately, analysis of the error terms
of Proposition 6.6 (a somewhat non-trivial task left to the reader) requires
the condition Lof < 1.
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8. Stability

In this section we study the properties of the system when the parameters are
close to a given value ay, ffy, ho. We fix a small interval J around ay, a small
cube Dy around (f, ko). We set D = Dy x [0, 1]. The sentence “for the pa-
rameters in J x D means “for («, f§,h,7) € J x D”.

Considering a function U of f, 4,7y, we will write

amzluwﬁw

By the expression “A random function gy from 2§, — R defined on D™ we
mean a (measurable) function gy from D x {—1, 1} »x RM=! x 3% to R;
that is, gy depends upon the parameters, the quenched variables, the coef-
ficients (g ), Of the perturbed Hamiltonian, the spins.

Fixing all these quantities except the spins, we can integrate g with respect
to the Gibbs measure, take expectations, and integrate over D to define
I1(E{g)) (that depends upon « only).

Definition 8.1 (Condition (EI)). We say that a family (fy) of positive random
functions defined on D satisfies condition (EI) (for “equintegrable’) if, given
p >0, there exists py >0 and Ny > 0, such that for each N > Ny, for each
random function g defined on D, valued in [0, 1], we have, for each o in J,

(8.1) I(E{g)) < pr = 1(E(fng)) < pI((E{/¥)) -

What this means is simply that, when computing I(E(fy)), the contri-
bution of sets that are very small for the Gibbs measure, of rare events, and
of exceptional sets of parameters, is vanishingly small compared to I(E(fy)).

A much stronger (but easier to understand) property would be an in-
equality

I(E(fy) < KU(E(fv)))*

as follows from Cauchy Schwarz inequality

HEfy)) < LEWG) PUEFD)N'?

It seems very likely that this stronger property holds over the entire range of
parameters for the two functions considered in the next conjecture.

Conjecture 8.2. When o, 8, h satisfy the condition of Theorem 1.7, if J and Dy
are small enough, the families of random functions (it -v)* and > ocken Mi
(from X3 and Xy respectively) to R satisfy condition (EI).

We now assume that J and Dy have been chosen so that the functions of
Conjecture 8.2 satisfy condition (EI). The subsequent results of this chapter
depend on this unproven fact. The reader can check that in fact quite less
would be necessary. But, at this stage of our ignorance, it seems simpler to
make a convenient blanket assumption. To simplify notation, we will denote
by A" (4y) a quantity (depending upon o, 8, k,7 only) with the following
property: Given p > 0, there is p; > 0 such that for each « in J,



Rigorous results for the Hopfield model with many patterns 251

(8.2) I(Cy) 1(Ay) < py = 1(N(An)) < pl(4N) -

Here Ay, Cy are as in Sections 6 and 7. Quantities ./"(Cy) are defined sim-
ilarly. The idea is simply that when trying to establish a relation
I(Ay11) < 0I(Ay), for 0 < 1, if we know that I(4dy) and I(Cy) are small,
terms .4 (4y) are irrelevant.

The following explains one way to use condition (EI). The notation is as
in Proposition 6.4.

Lemma 8.3. We have

(8.3) E< > m,§> = N (dy)

(8.4) E(UVY = A (4y)

for U = ZszSM uivk or U = ZszSM u,‘(‘, V = |we-wp| or V=|wb|.

Proof. Inequality (8.3) should be obvious if one observes that

(B = ((2)1)

for w= (3 rsen mk)l/2 and thus E{w) <4 /2. To prove (8.4), we first re-
duce to the case U = Y, ;) 1} by writing

(g ({g) ({{5e)

2<k<M
We then observe that E(V) < LCy by (7.3), (7.4). O

Using Lemma 8.3 to control the error terms it should be obvious, fol-
lowing the computations of Lemmas 7.5 to 7.7 that

Lemma 8.4. We have

Ayt < 5E< o2y < Z u2>>
2<k<M 0
+/3’E<th2Y<< > u2> —< > u,iuk> )) + oy + N (Ay)
2<k<M 0 2<k<M 0

1
By gﬁ’E( 5 << Z u,‘i> —< Z uivk> >> + oAy + N(Ay) .
b Y \\oZz /[, \25Em 0

Combining these relations, we will be able to take care of Ay, and we go
back to the main point, the study of Cy., that is of C 41 and Cz(v) First we
study CN> The error (6.14) is now A (4y), so we study C/(\fll,é =9,10,11
through Proposition 6.4. The error terms E(1),E(2) are A4°(Cy) (appealing
again to (7.3), (7.4)). Thus, we have to account for the contributions of the

terms I to V. This is easy for CN+1 The contribution of I is
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(5.5) 5 (S 0 )

and the contributions of II to V are ./"(4y). Concerning Cz<vl£)1 and C](\,lpl, a
bit of patience is needed. We regroup the contributions of each term after
averaging over the signs & 0, 9.

h’y

Study of Cg\l,i)l. To use Proposition 6.4, we take w; = u, wy = u', w3 = v,

01 =2¢& 0 =—¢ 03 =0.

Contribution of the terms I and III. These are zero. This is obvious for I, and
for III this follows from cancellation when summing over ¢.

Contribution of the term II. This is

/3
b S or (S0 (ool i + oo - coid ), )

E0==+1

— 15z (o) 9ol

Contribution of the term IV. This is

= wE( 022 (. >||v||2<<a-b—a/-bw@-b»o)

qﬁil
b>||v||2>o)

1
/3 - -
=f("F u-v .
95 (e (@0
Contributions of the term V. This is

S

2
3ﬁ Z é@E(exp@Y 7 ((it-v)||v||2(«fi4-b—51’/-b+9i;~b)0)

E0==1
th’y
ch’Y

=3 (@ 0@ D)ol )

Study of CE\I,EI. There we have one more variable wy = w, and 04 = 6.

It should be obvious that if one applies Proposition 6.4 to the case of
f=(u-v)(v-w), or = v)(v-b), all the contributions are A(Cy).
Thus, writing

v-ow=|b*+v-b+v-w

we can replace f = (it v)(v-w) by f = ||b||*(@- v), up to terms that are
A (Cy). The contribution of the terms I and III is zero as in the case of C](\,E)l

Contribution of the terms II. This is
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343
U 555(76Xp(5f0)y<(a.v)||b||2(—u-u’+ga(u-@—aﬂv)
8 i ch’Y

L ES(w— il - W)+ 080 - w>>0>

th’y
— 73 /3E<
p ch?

oy (i )1, )

Contribution of the terms IV. This is

_3p'3
38/3 > §5E<(5+0)

E0.0==%1

exp(d +0)Y
ch*y

((-v)|B]* (&b — &l - b

+efi;.b+5w.b)>0>

= —3[3’3E(<Ch12y+$2§) (Gt ) (@ b)||b|2>o>

Contribution of the term V. This is

12873 0+ 0)Yth
X con( SR I o) PG i b
&,0,0==+1

+0i;~b+5w-b>>

th’y
= 128°E
p ( a

iy (@ 0@ BB, )

We leave to the reader to perform a similar (but simpler) computation for
Cf\,ll to find a total contribution for C,(\,J)rl of

2y
aﬁ’2E<Chlzy<(il . 'v)2>0 — 3ZE4Y<(17 : b)2>o) .

We regroup the terms, observing that ((it - v)(# - b)), = <(u b)? >o» and ob-
serving that, (using Lemma 10.11) we can replace ||v|> by (||u|* Yo every-
where. We thus have proved the following.

Proposition 8.5. We have
1 t -
o sﬁ’E(( o w37 S I + 8 )<<u-v>2>o)

2 04
s (L 1817 - g w N s oy @8
(8.6) + oy + JV(AN) + A (C)

Keeping the notation of Section 7, consider now Yy = B'(gvRy +
wy + #'). Using Propositions 10.5, 10.8, it should be clear that (8.6) implies
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1 i , th*Yy af ) o
8.7 Cyi1 KPE\—5—+——Wy—3 Ry +—— | E((u-
( ) N = ﬁ (ChZYN ChZYN N ﬁ ChZYN N Ch2YN <(u v) >0
thYy th’Yy 1 th>Yy
+32E<4 Ry — B—wy — p—— —oc—)
[3 ﬁCthN N ﬁChZYN N ﬁChZYN N ChZYN

X E((it- b))y + oy + N (Ay)

+ A (Cw) +KE({(@ - v)*)o 0 (|1B]* — Ry)

where ¢ is a function valued in [0, 1] such that lim,_ @(x) = 0. We now show
that the last term of (8.7) is A"(Cy). Applying Definition 8.1 to the random
function g = ¢(||b||* — E||b||), it then suffices to observe that I(g) goes to
zero as N — 0 and /(Cy) goes to zero by Propositions 10.5 and 10.7 (observe
that (15> = (Jul® — [la]]*),).

Now we appeal to Guerra’s identity (Proposition 10.9), that, with our
notation can be written as

(8.8) AE((u- b)*)y = 3E||b|* + E((u - v)*) + Ay
and we note that

((u- ")2>o —2((u- b)2>o
((u- b))y — 2|8

—
—

N

S
=

[
~
S)
Il
NN

so that (8.7) implies

(8.9) E((@t-v)?)y = 3E{(it- b))y + Ay .
Combining with (8.7), we now have

Proposition 8.7. We have

1 3 Uy 2 1
(8.10) Cyi1 < (ﬁE(cthN) + (/3 — tob )Em) Cn

+ Ly + N (Cy) + N (Ay) .

We can now prove the following precise version of Theorem 4.2.

Theorem 8.7. Consider o, 3, h such that
1
aﬁzE 1

ch®B(gv/r + pu+h)
where w,r,q are as in (7.30) to (7.32). Under Conjecture 8.2, we can find J, D
small enough, we can find 0 < 1, we can find p > 0,¢y > 0, and a sequence
ay — 0 such that, if one sets Dy = Cy + pAy + By, then for all o in J we have

](DN) < 6071(|RN — I’|) < 60,[(|Un — M|) < €
= ](DN+1) < HI(DN) +ay .

<(1-B(1-¢)’
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Here u=a(1—q)/(1 - B(1 - g)).
Proof. First, we pick J and Dy small enough that for values of the parameters
in J x Dy we have
o 1

E—3
B(L—q)  ch*Blgy/r + p+h)

(8.11) Bl —q) +1— <0 <l.

Next, we consider 0; < 0, < 03 < 0 < 1, and the (random) subset Dy of D
given by

Dy =< (B,h); PE——+ | p> =+ E >0, .
N {(/ ) ﬂ ChZYN </ 2 OC[)) Ch4YN 2

Thus (8.10) implies

(8.12)
I(Cyi1) < 0I(Cy) + KI(Cylp,) + I(LN) +I(N(Cx)) +I(AN(4AN)) .
Next, we observe that if in the expression
1 > Un 2>
£ + —foaf” |E
B Ch2 YN (ﬁ 2 ﬁ Ch4 YN

we substitute Ry = r and Uy = u, we find the left-hand side of (8.11). This
implies that, given p; > 0, we can find ¢, such that if

(8]3) 1(|RN—VD < €, [(|UN—M|) < €

then 7(1p,) < p;. Using Definition 8.1, we see that ¢, can be found such that
(8.13) implies

(8.14) I(Cy1) < 031(Cy) +1(Ay) +1(N(Cy)) + (AN (4N)) -

Next, using the argument of Proposition 8.6, it follows from Lemma 8.4 that

1
Ayt < ﬁANEW + BBNEth* Yy + o/ y + N (Ay)
ch Iy

1
Byi1 < BBNE N +.y+ N (Ay) -

C 2Y[\/

so that

1
PAN+1 + By < ﬁ(E N

T + pEchYN> (pAy + By) + Ay + N (Ay) .

We fix p small enough that (1 — g) + pg < 6, for all values of the param-
eters in J x Dy. The argument that led to (8.14) (together with the fact that
By < Ay) show that if ¢y is small enough, (8.13) implies

(8]5) ](pAN+1 +BN+1) < 93I(pAN —|—BN) + oAy + /V(AN) .
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Combining with (8.14) we get
(8.16) I(Dy+1) < 031(Dy) + oy +1(N (Ay)) +I(AN(Cy)) -

Thus, if ¢y is small enough
](CN) <€071(AN) <60:>1(DN+1) SH[(DN)+GN . O

9. Zero temperature

In this section we study the random function

Hie) = -5 > mi(e)

k<M

Thus, (except in Proposition 9.2), we assume /4 = 0.
First, we prove the simple fact that, for o small, the minima are located
close to the prototypes.

Proposition 9.1. Given t < 1, there is y(t) > 0 such that, if o < y(t), with
overwhelming probability we have

sup{z mi(e);Vk <M, |m(e)| < t} <1—9() .

k<M

Comment. Since, with overwhelming probability, the energy of each proto-
type is about —N (o +1)/2, (mi () = 1,3, me(n,)* ~ o), the minimum of
H is located near a prototype.

Proof. First, we observe that if 3, x? > b* and |x;| < t for each k < M, we
can find (ax);<y, With >, ) af = 1,]a] < /b, such that Y, xia; > 1.
(Indeed,  ar = xx (X cy x5)71/2 works). Thus, if b=1-7y(f) and
¢ =1t/(1 —y(z)), it suffices to show that

(9.1) sup{zakmk<e>;e e sy, lal <7, 3t < 1} < 1—y()
k<M k<M

with overwhelming probability. Using concentration of measure, and more
specifically Theorem 6.6 of [T2], it suffices to prove that

(9.2) Esup{Zakmk(e) re€ Xy lal <1 a < 1} <1 —29(1) .

k<M k<M

We observe that
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1
sup Z agmy(€) = SUPNZ € Z ik Ak
ecy k<M € i<N k<M

=S

i<N | k<M

The key point, that is easy and left to the reader, is to show that there is a
number b(¢) < 1 such that
1+¢
S @ <1LVk<M, g g%:ﬂ?
<M

Z i kW

k<M

<b(1) .

Thus, assuming as we may, y(¢) small enough that # < (1 +¢)/2, we see that
it suffices to prove that

1
NZOYM' _E‘Yi‘aD

i<N

EEsup{

;a:(ak),Zaig l} < 4o .

k<M

where Y;, = > ;) ;4@ To do this we introduce independent copies ¥/, of
Y4, so that we can replace |Y;,| — E|Y;,| first by |Y; | — |Y/,], then by ;| Y|
where (1;),y is a fresh Bernoulli sequence. The comparison theorem for
Bernoulli sequences [T1, Theorem 2.1] then allows to get rid of the absolute
values, and one is reduced to

Z il kA

i<N,k<M

;Zaigl}

k<M

1

E —

sup{N
1/2

L z(zm,k)z < Vi

k<M \i<N
using Cauchy-Schwarz. O

Here is a simple corollary, that was needed in Section 3. We use the
notation of this Section.

Proposition 9.2. Given 6 >0 there is o(d)>0,5(0) such that if
B> p(0),0 < a(d), we have EG(C) < Kexp(—N/K), where
C={eVk <M,||m(e) £ m e > 5} .
Proof. Since limg_.., m* = 1, we can replace m*e; by e,. We can then replace
C by
C'={eVk <M, |m(e)| <t}

for a certain ¢ depending on J only. Indeed, if, say, m;(e) > ¢, then all but a
proportion of (1 —¢)/2 of components of e differ from the corresponding
components of n,; It is then easily seen that, with overwhelming probability,

for each such €, m2(e) < a(t), where a(t) goes to zero with ¢.
Now, by Proposition 9.1, if « is small enough,
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S exp(-pr(e)) < 2 exp( 5 (1= y0) + pav )

ecC’

while

exp(—ptin) = exp( 5+ o)

so that it suffices to ensure that py(¢) > log4. [

Much of the rest of the present section is devoted to the study of the
energy function H(€) in the neighborhood of the prototype 5, (by symmetry,
all prototypes play the same role). It is very useful to think about a point €
close to i, as a small perturbation of 5,. As 5, plays now a special role, it is
convenient to assume that »,, =1 for all k. This does not change the dis-
tribution of H, as is seen by the transformation (¢;);.y — (€1 4);<y- Given a
subset / C {1,...,N}, we denote by g, the point obtained from #, by re-
versing the sign of all coordinates in /. Thus n,; = —1if i € I and = 1 oth-
erwise. By elementary algebra, we have the following.

Lemma 9.3. If n = card I, we have

n2 :
03) Hly) = Hln) + 20— 2 (Z 11) £23° S nmsln)
k>2

icl il k>2

Looking at this formula, we think of the term before the last as a per-
turbation term; To understand the last term we write

M—1
Z N () = N + Z NixSik
k>2 >2
where
1
Sike = NZ Mk -
J#
This provides motivation to study the sequence 7; = > -, 1, 4 Six-

Proposition 9.4. The random distribution Y, .y N~'87. converges weakly to
N(0, ) with probability one as N — oc. -

Comment. This result was obtained independently by the author [T3] and by
Bovier and Gayrard [B-G2].

Proof. Throughout the section, we set @(¢t) = P(g > t), where g is standard
normal. We fix ¢ in IR, and consider the set

4; = {('/’j,k); T, >t} .

We will prove that

2
1 t log N
(9.4) E<N;1A’_¢(ﬁ)> gK\/N .
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This is a quantitative version of what we want. The proof relies upon the

Berry-Essen theorem.

Lemma 9.5. [F, p. 542] If (X),. are centered independent r.v. then

p(3ee) ()<

i<N

(9.5) sup 3 '0

where 6* = 3 EX?, p* = Zi<NE|Xi|3~
i<N -
Since the variables (1;;Si4);~, are independent and centered, we first
deduce from the Berry-Essen theorem that

t L
PA)—@(—=]) | <— .
roo—o()| < 7
Thus, to prove (9.5) it suffices to prove that
t ) +KlogN
Ve VN

(9.6) i#j= P(4;NA4;) g@z(

The beautiful idea there, that I learned from [Lou] is to use the theory of
negatively associated r.v. [J-P]. Let us denote by P, the conditional proba-
bility given m = (my);,,, where m = my(;) = N~' ", 14 and by E,, the
corresponding expectation. The theory of [J-P] implies that

Pu(Ai N A)) < Pu(A:)Pu(4;)) -
Thus, for any event Q;, using Cauchy-Schwarz, we have
P(A;NA4;) < P(Q])+E(1g,Pu(4;NA4)))
< P(Q) + E(P(4)’Ta))
Thus it suffices to show that we can choose € with P(Q{) < 1/N and

t log N
P,(di)lg <@ — | +K
atn < o) + k5

M—1

T, = ankmk—— .

k>2

We rewrite T; as

Given m, the variables (1, ), are independent with respect to P,;; moreover
Ey(n;x) = my by symmetry. The variables

Y = omi — m,%
for k > 2 are thus independent centered with respect to P, and

T, = ZYHka

k>2 k>2
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Moreover, we have

(9.7 = z:EmYk2 = Z (m} — mi)
k>2 2<k<M

(9.8) = En|¥}| < sup |mk|<zm§) .
k>2 k<M

Using the Berry-Essen theorem (conditionally in m) we then have

(Zk>2mk _])>+3P

P,(4;) < CD(

Thus it seems a good idea to define 2; by

>oni =

k>2

< Cl,sup|mk\ <(C .

Elementary exponential estimates show that we can achieve P(Q;) > 1 — 1/N

with C, = L\/logN/V/N and C, = L\/alogN/+/N. The result follows by
more elementary estimates. O

Let us now try to explain the importance of Proposition 9.4. We rewrite
(9.3) as

2
99) M) = Hln) + 20—+ 230 Ry = () R
where Ry = % (310 (Xies ni’k)z — (M — 1)card[). Let us now think condi-
tionally upon the sequence 7}, the distribution of which is more or less known
by Proposition 9.4. Then (9.4) gives an explicit expression for H(1;), up to
the error term R;. It should be apparent that, when card / is small, R; is small.
Throughout this section, we denote, for 0 < 6 < 1

1 1
1(6) =0log=+ (1 —d)log——
(9) = log + (1 - ) log——
so that, by the Chernov bounds, as N — oo,
(9.10) card{/ C {l,...,N};card] < 6N} <expNI(J) .

Lemma 9.6. If we have

x —log(l +x) >2[T(5)

then, as N — oo, with overwhelming probability we have
VI c{l,...,N},card] < 6N = R; < 2Nuodx .
Proof. Lemma 2.1 shows that

a2 (S) <(r5)

k>2 i€l
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and optimization over u in the inequality

P(Y > 1) <exp(—ut)EexpuY
yields

2
P carldlz(zmk> > (M = D(1+3) Sexp(—Mz‘l(x—logaH)) |

k>2 \iel

The result follows easily. O

One popular topic about the Hopfield model at zero temperature is the
study of dynamics. A dynamic is a rule to construct, given a configuration e,
a new configuration €. The two most popular dynamics are as follows:

Rule 1. Change the sign of the spin for which the change creates the greatest
decrease for energy.

Rule 2. Select a spin at random. Flip the spin if this decreases the energy; do
nothing otherwise.

The idea is that the dynamics describes the spontaneous evaluation of the
“memory”’. The topic of interest is the evaluation of the dynamics upon
starting with ;. (Subsequent deviations from 5, are then errors made by the
memory.)

Whichever of the previous rules we choose, the dynamics decreases the
energy. This motivates the notion of energy barriers, that are a way to insure
that a dynamic never strays far from #.

Definition 9.7. We say there is an energy barrier at level n if
(9.11) Vic{l,...,N},cardl =n= H(n;) > H(m) .

Thus, the dynamics cannot cross the energy barrier, and hence can never
reverse more than » spins.

Proposition 9.8. Consider s > 0, and 6 = ®(s). Let

1-0 1 >
673/2

o oV 2mo
Assume that
(9.12) g(x—log(l +x)) > 1(5) .

Then, for N large enough, with overwhelming probability there is an energy
barrier at level n = [ON].
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Comment. Numerical computations (that carry absolutely no warranty) seem
to indicate that the Proposition proves that energy barriers exist up to values
of « larger than those of [Lou], [N].

Proof. The nicest feature of the proof is that it suffices to show that for some
0 > 0, we have

lim P( inf (H(n;)—H(n,))>60N)=0

N—oo cardI=m
and then the statement “with overwhelming probability” follows from
concentration of measure (This statement does not follow directly from the
proof).

Certainly we can pretend that 6 =n/N. Using (9.9), we see that if

card I = n,

n2
.13 (o) )} 20 =% S0 3R

so that

1 1 1
~—(H(p;) - H >0-0+=Y T,—=—R; .
o () = HO) 2= 8 4 ST = 5k
Consider s’ < s, and &' = @(s'), so &' > . Consider the set I* that consists of
the indexes i for which 7; takes its smallest » values, and J = {i < N;
T; < —/us'}. Proposition 9.4 shows that for large N we have
cardJ > n = 0N, so that I* C J. Since T; < 0 for i € J, we have

1 1 1
v Tzy) T2 ﬁ; Tilrsvasy -

i€l iel*

We leave the reader to deduce from Proposition 9.4 that, for any y > 0,

1 e 1 P
- ‘ _ e )2
N 2 Tlimeven 2 [/ Vi d””]
1 /2
_ —s'2/2
= — | —¢ =+
[v2n /]
with probability going to one as N — oo.
The result then follows easily from Lemma 9.6. O

Thus, the dynamics stays close to ;. As it can only decrease the energy,
the dynamic can stop only at a local minimum, that is a configuration € such
that one cannot decrease the energy by changing the sign of a single coor-
dinate. Since H is (in the vicinity of #,) a small perturbation of the function
of (9.19), one should expect that a local minima of H there will be close to the
global minimum of H (which is easy to identify). In order to prove this, it is
not sufficient that the remainder R; be small, it is also necessary that it should
be smooth. What is precisely needed that, given 7, there are not too many i
such that Ry or Ry, is rather different from R;. For example
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Ry — R = % Z Nik (Z 'ij,k)

2<k<M jel

To control this difference, one works conditionally on Sy = Zjel k- The
independence of the sums ), 7,,Six as i varies the exponential in-
equality they satisfy, and the control of Y=, _,,, 57, allow to show that for all
I, only few of these differences are not small. Optimization over the pa-
rameters, and a few pages of tedious and totally standard estimates yield
results such as [T3, Théoréme 9], the most remarkable fact (to be traced back
to Proposition 9.4) being that the accuracy of the approximations become
excellent as o — 0.

On the other hand, for large o, there are no local minima very close to the
prototypes (although simulation [A-G-S] indicates that there does exist local
minima € with mj(e) > .1).

The best numerical results currently available seem to be given by the
following.

Proposition 9.9. Consider 0 < 6 < 1, and assume that
Yu € R, @(—8+/1(0) — 4u) exp(I(d) + f(u)) < 1

where f(u) = inf;~gexp(—iu + Elog(1 — & + 6e*)), g standard normal.
Then, if N and o are large enough, with probability going to 1 as N — oo
there is no local minimum € of H such that |m,(€)| > 1 — 2.

Comment. Numerical computation (based on a previous, less elaborate ver-
sion of this result) indicates that one can take 6 of values up to .16.

Proof. This proof is based on the observation that the arguments of the first
version of Loukianova’s work [Lou] greatly simplify if one lets & — oo rather
than trying to study what happens at given «, a fact that was also used by this
author in the final version of her work.

Given € in Xy, denote by € the point obtained from € by changing the
sign of ¢;. By algebra

H(e) — H(e) =2N Y ejn;my(€) —2M .
k<M
Thus, € is a local minimum if and only if
Vj<N, Z € mi(€) = o
k<M

We denote by P, the probability given the sequence (my(€));,,- The key is
again negative association to get

(9.14) P (€ local minimum) < HP’” ( Z €N xmi(€) > oc)

J<N k<M



264 M. Talagrand

To evaluate the last term, we proceed as in Proposition 9.4. Given j < N, for
P, the variables (€1, ),<), are independent, the expectation of €;n; . is my (€)
so that, setting

o> =a’(e) =) _(mi(e) —mi(e))

k<M

P, (Z e, xmi(€) > oc) < @(M) +§

k<M

we have

where we have used the fact that, for |Y| < 2, E|Y|* < 2EY2.
We leave the reader to check that for large o, the event

Q= {(n): Ve € 2y, Y mi(e) > o/2)

k<M

occurs with overwhelming probability. Now, for £ > 2,

P(lmy(€)| > t) < exp (_Nth)

so that for any set J C {2,...,M}

2
POk € J, Imi(€)] > 1) < exp<— %“) .

Thus given an integer p

Npt
P(3e € Zy;card{k € {2,...,M};|mi(€)| >t} > p) < MP2" exp(—%)

so that the set
Q = {(n;x) € Q1;Ve € Zy,card{k < M;|my(€)| > 2/\/p} < p}

has overwhelming probability for N large enough.
Now, on Q, we have

4
(9.15) S mile) <p+ S mie)
<t Pz
so that we have
(9.16) o > (l—i) Zmi(e)—p .
P/ i<m

Concerning the term ®(ox — Y, m;(€)/a), we bound it by 1/2if Y7, m}
(€) <o If Y,y mi(€) > o, we bound it by

o — ZkgM mlzc(e)

ol =2) —p

B=9¢
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using (9.15) (Observe that in the denominator a could be replaced by
> i<u mi(€); we have not tried to refine the argument along this line). Fi-
nally, observing by (9.16) that on @, for p > 8 and o large, we have
o* > a/16, we get from (9.14)

P(Q, N {e local minimum}) < i—&-l N+ B+i '
2 € S \/& 3 \/& .

The dangerous situation is that Y, _,, m3(€) can be large (so that B is close to
one). -

We now specialize to the case where € is close to iy, i.e. € = n;, [ small. To
control °, ., mi(y;), we rewrite (9.3) as

4n n\> 4 2
ZMsz)Z:ZM"IV—W“(ﬁ) S TR

k<M k<M iith]

In the proof of Lemma 9.6, we have seen that if y(o) is such that

> (/(2) — log(1 +¥())) > I(9)

then with overwhelming probability, when card I < [0N], we have
2
NRI < 4day(o)

and thus, since (ﬁ)2 <L

S min) < (1 4+3) + 4m(x) —> 37,

k<M i<l

so that we get

P(3 I,card ] < n,n;local minimum)
N
AN —1—ddoy(e) +33°, T\ L
<> <—+—>+<1> 1 RE
~\\2 Va 2(1—0) —p Ja
We want to show that this sum is <)V, for some 7 < 1.

Suppose now that we have a sequence u; < ... <u, = 4,/I(), and that
we know that if U; = T;/ /4,

%Z(],»Zul VI

i€l

and that

1
Ve < gq, card{] scard] < n,ﬁz U, > WH}(D(—&/I(&) —4u)¥ <N .

icl
Then, taking p large enough, and then « large enough, and observing that
we can take y(o) ~ 24/1(9)/a, the result will follow.
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Now consider independent r.v. & € {0,1} with P(&;) =1 =n/N. Using
the fact that the set {i;& = 1} has cardinality n with probability of order
1/ VN, it suffices to show that

1
exp NI(9)P <NZ &U; > u4+1> O(—8+/1(8) — 4ug)V <V .

icl

Now, for each 4

1 1 .
P(NZéiUi > ugH) < exp (—N(iwﬂ +N210g(1 — 0+ 56’“))) .

icl i<N

Given any value of A, the last term, with large probability, is close to
Elog((1 — 8) + de*)). The result follows easily. O

Remark. One can use large deviation estimates as in [Lou] to control the large
values of >~ m2(y,). This gives a smaller value of &, but the result then holds
with overwhelming probability.

As a last topic, we will consider the dilute Hopfield model. Consider a
number 0 < p <1, the “dilution parameter”. Consider independent r.v.
0;; € {0,1},E0;; = p (that are independent of the quenched variables). The
idea is that given spins (or neurons...) i and j interact directly if and only if
0;; = 1. The point is that no realistic model for the brain can assume that
every pair of neurons interacts, so one tries to show that the essential
properties of the model remain valid when only a small proportion of the
connections do exist. The Hamiltonian is given by

1
Hq(e) = TN Z €i€;Jij0i

ij<N

where Jij = >y, ;414 The factor 1/p at the denominator is to ensure that
the expected value over the 6;; is H(e). The key to the study of the dilute
Hopfield model is the following elementary fact.

Proposition 9.10. For every € in Xy, we have
o ot
0<t<NVM = P(|H —H >t) < - .
sts ([Ha(e) = H(e)| = )—eXp< LNoc(l-i—ac))

As a consequence, if Xy C Xy has a cardinal < 2"V, with overwhelming
probability, we have

sup [Hy(e) — H(€)] < LN, [2o(1 4 a) .
€€y p

Taking y = 1, it is then simple to see that there is Ly such that if p > Lyo and
o < 1/Ly, the dilute Hopfield model has an energy barrier around each
prototype, a result that was proved in [B-G1] by more complicated estimates.
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The proof of Proposition 9.10 relies upon the following observation, that
is of independent interest. Assume that (d),., are independent, J; € {0, 1},
Eé; = p, and consider numbers (a;),.,. To bound

P(Z(5z —plar > t>; P(Z(é@ —plag < —t>

(<R (<R

one can use the Chernov bounds, replacing each a; by a = (R™' Y, p a?) 12
To see this, we write

Eexpy (8¢ —p)ar=exp y_ fy(dar)

(<R (<R
where
fp(x) =log((1 — p)e ™ + pe! 7))

and we observe by calculus that the function f,(y/x) is concave, so that

> fo(hac) < Rfy(2a)

<R

so that

(9.18) P<Z(65 —plag > t) < (irjfexp(—),t —|—fp(ga))>R .

<R

Using the elementary fact that f,(x) < Lpx® for x < 1, we then see that if
>icpai < A%, then for 1 < pA’R, we have

2
P(Z(é‘ —plag > t> < exp (—ﬁ) 7

<R
t2

In the situation of Proposition 9.9, we have a;; = €€,J;;/2Np. In Lemma 11.3,
it is shown that with probability > 1 — exp(—M), the operator norm of the
matrix (1,;) from R to R" is at most Lv/N + M. Thus for any numbers

(bi)g<rs

and similarly

> (60— p)as

(<R

) (Z mﬁkbk> P LN + M) (Z bi) |

i<N \k<M fe<M

Taking by = n;;, and summing over j gives

> JE<LINM(N +M) = LN (1 +a) .
i,j<N

The proof is finished. ]
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10. Appendix 1: variance estimates

A basic tool for this section is that “the derivative of a random convex
function does not fluctuate more than the function itself ”. This principle,
when applied to the derivatives of the free energy with respect to the various
parameters is very powerful. However, as simple examples show, this prin-
ciple is not true at each point, but only “in average”. A possible rigorous
formulation is as follows.

Proposition 10.1. Consider a random convex function U defined on R. Then for
0 < v < xg, we have

o du x v
(10.1) / (VarE) dx < 1222 sup VarU(x) + 12;(EU(—3x0)

—Xo U x| <xo 0

+ EU(3x)) — 2EU(0))*

Proof. Replace U(x) by U(x) — U(0) —xEU’(0) to reduce to [T4, Proposition
4.3].

In order to use this result for U = F, the free energy for the Hamiltonian
(4.16), we need to control the variance of F.

Proposition 10.2. [S-T]. We have VarF < KN.

Comment. Thus, the free energy per site /N is of order | but has a variance
of order 1/N.

Proof. We fix N,M, 3, h,y. We indicate the dependence of F in the random
variables 1;;,gx by writing F =F(y,g), where 1= (;3);cys<py and
8= (gk)2§k§M'

Considering independent copies %', g’ of 5, g, we have

(10.2)  VarF(n,g) =3 E(F(n,9) ~ Fl.g)))
< E(F(n1,9)~F(n'.9))* +E(F(n'.g) - F(n'.g))* .

Fixing ', the function g — F(x', g), as a function on R”~!, has a Lipschitz
constant at most fyp(N)sup, ||m(e)|%, as follows from Cauchy Schwarz. A
general property of R provided with Gaussian measure [I-S-T], [L-T] show
that the last term of (10.2) is at most

LB @(N)’Esup ||m(e)||” < LB**¢(N)* < LF**N .

To study the first term of (10.2), it is shown in [T2] that when 42 = y = 0, this
term is at most LﬁzN . Inspection of the proof shows however that the in-
fluence of the terms containing 4,7 is at most the square of the Lipschitz
constant of the real valued function on RV*™ given by
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(10.3) z— Byo(N) Z gk%zzi,kﬁi + ph Zzi,lﬁi .

2<k<M i<N i<N

Use of Cauchy Schwartz show that this Lipschitz constant is at most

ﬁy ol (EZ<k<M qk)l/2 + Bhy/N. Thus, finally using again that ¢*(N) < N, we

see that VarF < KN. OJ
A typical application is as follows.

Proposition 10.3. For all 8,7y, we have

" Var(m) i < &
Var(m)dh < — .
/0 ‘ VN

Proof. We fix f,y, and we apply Proposition 10.1 to the function
U(h) = F(B, h,7), so that 2 = BN (m). To control the last term of (4.11), we
use that |[(m;)| <1, and that (easily) |U(h) — U(0)| < |h|N. O

Proposition 10.4. For each B, ho,

/ Var(||m||*) dpdhdy < K/vVN .
B<Bo:h<holy|<1

Proof After one sees the proof of Proposition 10.3, one would like to con-
s1der L 1t is however more convenient to consider

Up) = (ﬁ,ﬁ ﬁ> = log E.

eXP(ﬁNHm( )P+ hNmy(€) +yp(N) > gumi(e > ;

2<k<M

which is a convex function of f5. Thus

dU
B N(|m(e)]?)

the bracket being for the parameters (f5,4/f,7/).
To control the last term of (10.1) one uses simply that

[U(B) = U(0)] < BN sup |m(e)|
The result follows easily. O
Since ||m||* = |lu||* + m}, we have

Proposition 10.5. For each B, ho,
K
/ Var([ul) df dhdy <=
B<Bosh<ho /<1 N

We have applied Proposition 10.1 to ¢ aF and (essentially) to ¢ 9F . To handle
the case of - 9F e need the following
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Lemma 10.6. We have
(10.4) EF(B,h,0) < EF (B, h,y) < EF(B,h,0) + K (2)f**p(N)>.

Proof. We integrate first in the variables g;, using Jensen’s inequality to
integrate inside the log rather than outside, to get

EF(ﬁJw)SE<F(ﬁ,h,0)+ﬁ2V2¢(N)2 > |mk(€)|2) : U

2<k<M

A noteworthy consequence of (10.4) is the fact, already mentioned, that,
as N — oo, when ¢(N )2 /N goes to zero, the perturbation term of the
Hamiltonian has a vanishing influence on the free energy per site.

We now consider a thermally independent copy v of #, and the parameter
((it - »)%) (closely related to the parameter of (4.5)). The following is a rig-
orous version of the claim “(4.4) = (4.5)”.

Proposition 10.7. If N'/* < o(N) < N2, we have, for all f,h,

/1“2Vdr<||'||2>d S A 2/1 *E((i - 9)°)d
c u + b u-v V.

Proof. We start with the formula

(10.5) 5= > Po(N)gi(m)
N S
so that
B
ﬁwwﬂwﬁ=§+wwm,
where

R= )" yBoN) (i) — g(m) .

2<k<M
Using the formula
Var(X +Y) < 2VarX 4+ 2EY? |

we get
4 2 4 .2 oF 2 2 2
(10.6) B0 (N) Var(il’) < 2Var 5+ 2 (V) ER

To control the integral of the first term, we appeal to Proposition 10.1, using
Lemma 10.6 to control the last term of (10.1).

To control the second term, one expends the square and eliminate all
terms gy, by using the integration by part formula

(10.7) E((gxd)) = vBp(N)E((Amy) — (A)(my))



Rigorous results for the Hopfield model with many patterns 271

that hold for any smooth function 4 from Xy to IR. After a few lines of
straight forward algebra, we find that

(10.8) ER = " (m)*+ B o(NE Y (i)’

2<k<M 2<k (<M

Now, expending & -i' =), ;.\, iy, squaring and using the replica
trick show that the last expectation is E((it - ©)*). O

The previous arguments, based upon the control of the (average of) the
variance of partial derivatives of F have brought us precious information.
There are other averages that can be controlled, this time in a trivial fashion;
the averages of second partial derivatives of F. It is quite amazing that this
brings equally interesting information.

Proposition 10.8. For all , hy, we have

(10.9) /E((ml — (m))*)dBdhdy < %
(10.10) [ EmIP () apnay <
(10.11) [ B = () dpandy < 5

where the integrals are over 0 < < 5,0 <h < hy,—1 <y < 1.

Proof. We have, by a simple calculation

2
g_i = Np(m), ?;75 = N2 B ((mi) = (m1)*) = N*B*((m — (m1))*) .

This implies (10.9), since ‘?)—f; < KN. To prove (10.10) one use similarly the
function U of Proposition 10.4; (10.10) (and hence (10.11)) follows. O

Trying to use the same idea for ?;—f yields a remarkable consequence of
adding the perturbation term in (4.16). The following result is inspired by
[GI.

Proposition 10.9. (Guerra’s identity). For each [y, ho we have

K
204 2 2 2

v B E|\4((u- b)) = 3||b||” — ((w-v)")|dfdydh < — .
/ﬁgﬁoﬁhs%ﬁ_lsygl ((u-B)") = 3b]I" = ((u-»)") ﬁN

Here, b = (u) = ((mi))y<i<ps» and v is an independent copy of u.

Proof. We start again with (10.5), so that, by the integration by part formula
(10.7), we have

OF

B = y(ﬁw(N))2E< > (i)~ <mk>2>>

2<k<M

E

and thus
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azF = (Bo)"E({[lul]*) = [[@)|1*) + 2(Bo(N))'E

x> gel({mime) — (m)(me) — 2(me)({mimg) — (mi)(mq))) -
2<ki<M

Use of integration by part (10.7) to get rid of the factor g, yield after a
straightforward but tedious computation

62F 2 2
(10.12) = (Bo(N))E({||al*) = II()]*)

+72(Bo(N))*E(S + Ry + Ry + R;)

s= ) <8<mkme><mk><me>6<mk>2<me>22 > <mkmz>2>

2<k <M

Ri=2 > ((m) () — ) ) )

2<k A<M
Ro=2 > ((me)(m}) — (mom?) (m) )
2<k <M
Ry=Y_ ((mim]) — (m7)(m]))
2<k <M

Use of the replica trick show that

S = 8((u-b)") = 6]1b|* — 2((u - v)?)
Ri=Ry==2 %" (m){mi(|lull® = (lul*)))

2<k<M

Ry = ([lul®) = (|lu]*)*

Consider the function V = ||u|| (||lu||*) defined on Zy. Use of Cauchy-
Schwarz show that (m; V) < (m2)"/2(V2)'/? so that

[Ri| < 2(jm||?) (72)12
and R; = (V?). Thus (10.12) implies

2 o 1 62F
/y BIES|dpdy < ¢<N)4 dpdy
[ NPy — )Py | apay
(10.13) +2 / E((lmP) (V)2 + (V) dp dy

where all the integrals are for § < f5,h < hy,—1 <7y < 1. Now
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1 1

1 2
/ g2F 4 — g9
~ dy

17/27) oy

-1

where F is given by (10.5). Thus, using (10.6), and the bound
OF /9y(1) < F(2), the first term on the right-hand side of (10.13) is bounded
by Ko(N )72. This is also the case for the second term. Use of Cauchy Sch-
warz show that the last term is bounded by K(I+41'/?), where
1= [(V*)dp,dy. The result then follows from (10.11). O

11. Appendix 2: random matrices

We recall 5, = (ni’k)kSM.
Lemma 11.1. Consider v,w in R™, with ||v||, ||w|| < 1. Then we have
P<Z<<ni-v><ni-w> W) zr) < (cw-—gmin(n1))
=~ L N
forallt > 0.
Proof. We have
(11.1) (’11’"")("1"W)—U‘W:Xi:;’h,k’?i,zvkwi .

Now, EX; = 0, EX? = Y, ,vtw? < 1, so that, since X; is an order 2 chaos,
we have Eexp(|X;|/L) <2 by [Bo]. Bernstein’s inequality then implies the
result.

Lemma 11.2. If C is a bounded convex balanced set of RM, there is a subset R
of 2C such that C C convR, card R < 5¥.

Proof. 1t is easy to show that if R is maximal with respect to the property
x,y € R=x—y¢ C, then R works.
Lemma 11.3. There exists an event €y in the quenched variables such

(11.2) P(Q) < exp(—M)

On Qq, for each v,w in RM

(113) S On- ), w) < Nv-w o LN max(e, /a) v ] -

i<N

Comment. In particular, on Qg

(11.4) S0, v)* < N(1+ Lmax(o, v/a) o]

i<N



274 M. Talagrand

which expresses that the operator norm of the matrix (1, ) from R to RY is
at most VN (1 + Lv/a) if « < 1 and Lv/Na if o > 1.

Proof. Since

D (1 v) (- w) —vow)

i<N
is bilinear in v, w, to ensure (11.3), it suffices that

> (- v)(n; - w) = v+ w) < LiN max (e, v/a)

i<N

for v, win R, where R is the set constructed in Lemma 11.2 when C is the unit
ball of RM. Then Lemma 11.1 shows that the probability that this fails is at
most

1 . (L3
52M (exp Lmln(“]Noc,NLloc)) < exp(M)
if L, is large enough.
The following is less important, and will be used only once for a sec-
ondary result.

Lemma 11.4. There is 6y > 0, and oy such that, if o < oy there exists an event
Qy, with P(Q,) < exp(—=N/L), such that, on Qy, for all v in R, each subset J
of {1,...,N} with card J < ooN we have

N
S0 <SP
ieJ

Proof. Using Lemma 11.1, and the method of Lemma 11.2, we see that, given
J

N
Z(("i V) (- w) —veow) < 4
ic]
for all w, w of norm of RY < 1, with probability at least 1 — exp( SM — 2’—2 It
then suffices to take dy < 1/4 small enough that there are at most exp(N/2L,)
possible sets J. O

Note added in proof. After the paper was written I have observed a simple
argument showing that, with the notation of Section 7, we have

(> Un, RN) = (ty15 Un1 Rygr)

This is satisfactory, in the sense that it shows that there are no wild oscil-
lations of the parameters as one goes from N to N+ 1. Unfortunately, this
does not seem to allow much simplification in the proofs. Even if one argues
now that (uy, U,, Ry) is an almost fixed point of @, z , the need remains to
know that this map has a unique fixed point, and Lemma 7.9 is the only way
I know to prove it.
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In her recent preprint “On the Replica Symmetric solution for the
Sherrington-Kirkpatrick Model” M.V. Shcherbina presents a proof of the
validity of the RS solution in a large region of parameters for a version of the
SK model. This proof is very difficult to follow. She writes, “the same
method can be applied to the Hopfield Model”. Considering all the in-
tricacies of the Hopfield model, I sincerely hope that this is true. If correct,
this argument, that uses no apriori estimates, must contain some extremely
powerful ingredients. It seems to me that it is of great potential importance
that these be brought to light and clarified, but for this, we may have to wait
until the author provides a proof with complete details, and in a style that the
rest of us can understand.
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