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Summary. Let I be the circle �0; J � with the ends identi®ed. We prove long-
time existence for the following equation.

ut � uxx � g�u� _W ; t > 0; x 2 I

u�0; x� � u0�x�
Here, _W � _W �t; x� is 2-parameter white noise, and we assume that u0�x� is a
continuous function on I. We show that if g�u� grows no faster than
C0�1� juj�c for some c < 3=2, C0 > 0, then this equation has a unique so-
lution u�t; x� valid for all times t > 0.
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1. Introduction

It is well known that stochastic di�erential equations with Lipschitz coe�-
cients have unique solutions valid for all time. The same statement is usually
also true for stochastic partial di�erential equations (SPDE). Indeed,
sometimes one can go beyond Lipschitz coe�cients.

In this paper, we will only deal with SPDE driven by a 2-parameter white
noise _W � _W �t; x�. In this context, it was shown in [Mue91] that the fol-
lowing equation has a unique solution valid for all time.
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�ut � �uxx � �uc _W ; t > 0; x 2 �0; J � �1:1�
�u�t; 0� � �u�t; J� � 0

�u�0; x� � �u0�x�
Here, 1 � c < 3=2, and �u0�x� is a continuous nonnegative function on �0; J �,
vanishing at the endpoints. One of the key steps of the proof was showing
that �U�t� � R J

0
�u�t; x� dx is a continuous local supermartingale. Since �u�t; x�

can be shown to remain nonnegative, this implies that sup0�t<1 �U�t� <1
almost surely. Therefore, tall peaks of �u�t; x� are very thin, and would soon
be smoothed out by the action of the heat kernel. This heuristic idea is the
basis of the proof of long time existence given in [Mue91]. In [Kry94], Krylov
gives a second proof, for a more general class of equations. He derives certain
Sobolev space estimates for the solution, and then uses the boundedness of
sup0�t<1 �U�t� to show that �u�t; x� cannot blow up in ®nite time.

It was expected, at least by the author, that equations similar to (1.1), but
with signed solutions, would not have solutions valid for all time. Indeed, if
u�t; x� is such a solution, the analogue of �U�t� would be

U�t� �
Z

I
ju�t; x�j dx �1:2�

where I is the domain for x. However, there seems to be no reason why U�t�
should be bounded in t.

The goal of this article is to show that, on the contrary, long-time exis-
tence can hold for equations similar to (1.1), but with signed solutions. Let I
be the circle �0; J �, with the endpoints identi®ed, and let q�x; y� be the distance
from x to y along the circle I. That is, let

q�x; y� � min
k2Z
jxÿ y � kJ j :

We consider the following equation.

ut � uxx � g�u� _W ; t > 0; x 2 I �1:3�
u�0; x� � u0�x�

For convenience, we suppose that g�u� is a nonnegative function. Of course,
this does not lead to a loss of generality. Let C0 > 0 and

1 � c < 3
2 : �1:4�

We assume that g�u� is locally Lipschitz and satis®es

jg�u�j � C0�1� juj�c : �1:5�
Then we have

Theorem 1. Suppose that conditions (1.4) and (1.5) hold, and that u0�x� is a
continuous function on I. Then (1.3) has a unique solution valid for all t > 0.

Our main contribution is to compare u�t; x� with another random func-
tion v�t; x� which is easier to control. We introduce a bounded drift into (1.3)
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which forces solutions to stay positive with high probability. Call the new
solution (with the drift) v�t; x�, and suppose that v�t; x� satis®es

vt � vxx � f �v� � g�v� _W t > 0; x 2 I �1:6�
v�t; x� � v0�x�

where f �v� will be speci®ed later. Let

V �t� �
Z

I
v�t; x� dx

We show that except for the drift, V �t� is a continuous local martingale. Since
the drift is bounded, it cannot push V �t� up more than a ®nite amount, over a
®nite time. Thus, over a ®nite time, V �t� remains bounded.

Then we revert back to the argument of [Mue91] and [Kry94] to show
that with high probability v�t; x� does not blow up in ®nite time. A com-
parison theorem shows that u�t; x� � v�t; x�, so that with high probability,
u�t; x� does not blow up to �1 in ®nite time. The same argument applied to
ÿu�t; x� shows that with high probability, u�t; x� does not blow up to ÿ1 in
®nite time. To make our argument self-contained, we give what we believe is
a simpler substitute for the continuity estimates of [Kry94], at least for the
white noise case.

The following corollary of Lemma 2.7 may be of interest.

Corollary 1.1. Assume that conditions (1.4) and (1.5) hold. Let v0�x� be con-
tinuous, positive, and bounded away from 0. If f �v� � vÿa with a > 3, then
v�t; x� remains strictly positive for all time.

We do not know if the inequality a > 3 is sharp.
One might try to study ju�t; x�j, and thus give a direct analysis of U�t�.

Several recent papers deal with SPDE with re¯ection, for example [DMP92].
This paper show that ju�t; x�j satis®es an SPDE with singular drift occurring
at the zeroes of u�t; x�. However, we could not see how to get enough in-
formation about the drift to control U�t�.

We do not expect (1.3) to have a long-time solution if g�u� increases too
rapidly with u. Indeed, in [MS95] it was shown that if u0�x� is not identically
0, then (1.1) has a solution u�t; x� such that sup0�x�J u�t; x� blows up to �1
in ®nite time, with positive probability.

As mentioned above, our second contribution is to give a new proof that
solutions to (1.1) do not blow up in ®nite time, for c < 3=2. This proof was
inspired by [Kry94], but is only loosely related. We show that the formation
of tall, thin peaks is incompatible with certain estimates on the HoÈ lder
continuity of solutions.

Now we discuss the rigorous meaning of (1.3), following the formalism of
Walsh [Wal86], chapter 3. Before giving details, we set up some notation. Let
G�t; x; y� be the fundamental solution of the heat equation on I. If G�t; x� is a
function of 2 variables, we let G�t; x� be the fundamental solution of the heat
equation on R. In other words
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G�t; x� � 1�������
4pt
p exp ÿ x2

4t

� �
:

It is well known that

G�t; x; y� �
X1

k�ÿ1
G�t; xÿ y � kJ� :

We regard (1.3) as shorthand for the following integral equation.

u�t; x� �
Z

I
G�t; x; y�u0�y� dy �

Z t

0

Z
I

G�t ÿ s; x; y�g�u�s; y��W �dy ds� �1:7�

where the ®nal term in (1.7) is a white noise integral in the sense of [Wal86],
Chapter 2. Because g�u� is locally Lipschitz, standard arguments show that
(1.3) has a unique solution u�t; x� valid up to the time sL at which ju�t; x�j ®rst
reaches the level L for some x 2 I. Letting L!1, we ®nd that (1.3) has a
unique solution for t < s, where s � limL!1 sL. If s <1, one has

lim
t"s

sup
x2I
ju�t; x�j � 1 :

Our goal is to show that s � 1 with probability 1.
More generally, we regard

vt � vxx � f �v� � g�v� _W ; t > 0; x 2 I

v�0; x� � v0�x�
as a shorthand for the following integral equation.

v�t; x� �
Z

I
G�t; x; y�v0�y� dy �

Z t

0

Z
I

G�t ÿ s; x; y�f �v�s; y�� dy ds

�
Z t

0

Z
I

G�t ÿ s; x; y�g�v�s; y��W �dy ds� �1:8�

Lastly, we will always work with the r-®eldsFt generated by the white noise
up to time t. That is, Ft is the r-®eld generated by the random variablesR t
0

R
I /�s; x�W �dx ds�, where / varies over all continuous functions on

�0; t� � I.

2. Some lemmas

In this section, we give some lemmas which we will need for the proof of
Theorem 1. One of our most important goals is to show that we can modify
our solution u�t; x� so that it remains positive. This result is given in the last
lemma in this section.

Our ®rst goal is to show that a nonnegative function with a given mod-
ulus of continuity and a large supremum must also have a large L1 norm.
Later we will show that our solution u�t; �� has a certain modulus of conti-
nuity, and has bounded L1 norm. This argument will show that u�t; �� re-
mains bounded.
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Lemma 2.1. Let 0 < g < 1, and let f �x� be a nonnegative function whose do-
main is I. Suppose that for all x; y 2 I, we have

jf �x� ÿ f �y�j � Aqg�x; y� �2:1�
and that Z

I
f �x� dx � K : �2:2�

Then,

sup
x2I

f �x� � max �2A�1=�g�1�Kg=�g�1�; 2K=J
h i

Proof. Let M�f � � supx2I f �x� and I�f � � RI f �x� dx. Suppose that, on the
contrary,

M�f � > max �2A�1=�g�1�Kg=�g�1�; 2K=J
h i

: �2:3�
Since f is continuous, there exists x0 2 I such that M�f � � f �x0�. Note that
(2.3) implies that K=M�f � < J=2. We claim that there exists x1 2 I such that
f �x1� � M�f �=2 and q�x0; x1� � K=M�f �. If not, we would have
f �x� > M�f �=2 for all x 2 I satisfying q�x; x0� � K=M�f � � J=2, that is, on
an interval of length 2K=M�f �. Then we would have I�f � > �2K=M�f ���
�M�f �=2� � K, which contradicts assumption (2.2). Therefore, x1 exists and
has the properties claimed.

But then, using assumption (2.1), we would have

M�f �
2
� jf �x0�j ÿ jf �x1�j
� f �x0� ÿ f �x1�j j
� Aqg�x0; x1�

� A
K

M�f �
� �g

:

Solving for M�f �, we ®nd

M�f � � �2A�1=�g�1�Kg=�g�1�

which contradicts (2.3). This proves Lemma 2.1. (

Secondly, we specialize Theorem 2.5 of Kotelenez [Kot92] to show that
adding a nonnegative drift to (1.3) can never lead to a smaller solution. Note
that equation (2.11) below is really a shorthand for an integral equation
similar to (1.7).

Lemma 2.2. For i � 1; 2, let fi�v� be a Lipschitz function on R, and suppose
that v�i��t; x� is a solution to the following equation.
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v�i�t � v�i�xx � fi�v�i�� � g�v�i�� _W t > 0; x 2 I �2:4�
v�i��t; x� � v�i�0 �x�

For i � 1; 2, assume that v�i�0 �x� is a continuous function on I, such that
v�1�0 �x� � v�2�0 �x� for all x 2 I. Also assume that f1�v� � f2�v� for all v 2 R. Let
T be the minimum of the blow-up times for v�1��t; x� and v�2��t; x�. Then, with
probability 1,

v�1��t; x� � v�2��t; x�
for all �t; x� 2 �0; T � � I.

Proof. Lemma 2.2 would follow immediately from Theorem 2.5 of [Kot92], if
g�v� were a Lipschitz function. Let Tn be the ®rst time t that maxi�1;2
supx2I jv�i��t; x�j � n. Thus, for t � Tn, replacing g�v� by gn�v� � g�ÿn_
�n ^ v�� does not a�ect v�i��t; x�, i � 1; 2. Since gn�v� is Lipschitz, Theorem 2.5
of [Kot92] implies that with probability 1, v�1��t; x� � v�2��t; x� for all �t; x� 2
�0; Tn� � I. Taking n!1, we get the conclusion of Lemma 2.2. (

Thirdly, we estimate the modulus of continuity of our solution u�t; ��.
More precisely, we estimate the modulus of a random function NH �t; x� re-
lated to the ®nal term in the integral equation (1.7). Suppose that H�s; y� is a
nonanticipating random function such that jH�s; y�j � L for all s; y almost
surely. The following estimate is similar to those in [Mue91], among other
places. Let

NH �t; x� �
Z t

0

Z
I

G�t ÿ s; x; y�H�s; y�W �dy ds�

and note that NH �t; x� is similar to the ®nal term in (1.7), except for the L. We
have:

Lemma 2.3. For T > 0 and 0 < j < 1=4 there exist constants c0;C1 > 0 de-
pending on T ; j and J such that for all D > 0,

P sup
0�t�T

sup
x;y2I;x6�y

jNH �t; x� ÿ NH �t; y�j
q2j�x; y� > D

 !
� exp ÿ c0D

2

L2

� �
: �2:5�

and

P sup
0�s<t�T

sup
x2I

jNH �t; x� ÿ NH �s; x�j
�t ÿ s�j > D

� �
� exp ÿ c0D

2

L2

� �
�2:6�

provided that

exp ÿ c0D
2

L2

� �
� C1 :

Note that we need only prove Lemma 2.3 for s; t; x; y dyadic rationals
(numbers of the form k2ÿn) since then, standard arguments show that NH has
a continuous version.
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First, (2.6) is a special case of Proposition A.2 of Sowers [Sow92]. The
proof of (2.5) rests on the following estimates, proved in [Sow92], Proposi-
tion A.1 and equation (A.4).

Lemma 2.4. Let

D1�t; x; y� �
Z t

0

Z
I

G�t ÿ r; x; z� ÿ G�t ÿ r; y; z�� �2 dz dr

D2�s; t; x� �
Z s

0

Z
I

G�t ÿ r; x; z� ÿ G�sÿ r; x; z�� �2 dz dr

D3�s; t; x� �
Z t

s

Z
I

G�t ÿ r; y�� �2 dy dr

For j 2 �0; 1=4� and T > 0, there exists a constant c depending on T ; j and on
the length of I, such that for 0 � s < t � T and x 2 I, we have

D1�t; x; y� � cq4j�x; y�
D2�s; t; x� � cjt ÿ sj2j

D3�s; t; x� � cjt ÿ sj2j

Sowers only states that D1�t; x; y� � cq2j�x; y�. However, his proof works
with no changes if 2j is replaced by 4j.

Next, we use Lemma 2.4 to get some probability estimates on the dif-
ferences jNH �t; x� ÿ NH �t; y�j and jNH �t; x� ÿ NH �s; x�j.
Lemma 2.5. For j 2 �0; 1=4� and T > 0, there exist constants c;C > 0 de-
pending on T ; j and on J , such that for 0 � s < t � T and x; y 2 I, x 6� y, we
have

P jNH �t; x� ÿ NH �t; y�j > D� � � exp ÿ cD2

L2q4j�x; y�
� �

�2:7�

P jNH �t; x� ÿ NH �s; x�j > D� � � exp ÿ cD2

L2�t ÿ s�2j
 !

�2:8�

provided that the right hand sides in the above 2 equations are both less than or
equal to C.

Proof. First note that

NH �t; x� ÿ NH �t; y� �
Z t

0

Z
I

G�t ÿ s; x; z� ÿ G�t ÿ s; y; z�� �H�s; z�W �dz ds�
�2:9�

We use the fact, given in [Wal86], Chapter 2, that for a predictable term
R�t; x�,

M�t� �
Z t

0

Z
I

R�s; x�W �dx ds�
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is a continuous local martingale, and hence is a time-changed Brownian
motion B�r�t��. Walsh also shows in [Wal86], chapter 2, that

Mh it�
Z t

0

Z
I

R2�s; x� dx ds �2:10�

Standard martingale theory implies that the time scale r�t� � hMit. Now we
apply these facts to MH � NH �t; x� ÿ NH �t; y�. Let rH �t� denote the corre-
sponding time-change. Note that by (2.9), (2.10), and Lemma 2.4 we have

rH �t� � cL2q2j�x; y� : �2:11�
Using (2.17), the re¯ection principle for Brownian motion, and standard
estimates for the normal density, we ®nd

P
ÿjNH �t; x� ÿ NH �t; y�j > D

� � P sup
0�t�cL2q2j�x;y�

jB�t�j > D

 !
� 4P B�cL2q4j�x; y�� > D

ÿ �
� exp ÿ cD2

L2q4j�x; y�
� �

if the ®nal term is small enough. Here, the constant c may vary from line to
line. This proves (2.7). The proof of (2.8) is similar, and we leave it to the
reader. (

Now we use Lemma 2.5 to prove (2.5) in Lemma 2.3. For simplicity of
notation, we restrict ourselves to the case in which the length of I is 1,
although our argument would carry over to the general case. In [Wal86],
chapter 3, Walsh shows that solutions u�t; x� are continuous with probability
1. Therefore, if R � R is the set of dyadic rationals, (numbers of the form
k2ÿn), it su�ces to show (2.5) with t; x; y restricted to R. Since 0 < j < 1=4
we may choose �j such that j < �j < 1=4. Let A1�i; j; m; n; D; b� be the
event that

jNH �i2ÿm; �j� 1�2ÿn� ÿ NH �i2ÿm; j2ÿn�j � bD2ÿ2n�j :

Let A2�i; j;m; n;D; b� be the event that
jNH ��i� 1�2ÿm; j2ÿn� ÿ NH �i2ÿm; j2ÿn�j � bD2ÿm�j

and setting m � 2n, let

A�b� �
\1
n�1

\22n

i�1

\2n

j�1

�
A1�i; j; 2n; n;D; b� \A2�i; j; 2n; n;D; b��

Using Lemma 2.5, we have

P Ac� � �
X1
n�1

6 � 22n exp ÿ cb2D224n��jÿj�

L2

� �
�2:12�

� exp ÿ c0b2D2

L2c

� �
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Lemma 2.3 follows from (2.12) once we have shown that

Lemma 2.6. If b > 0 is small enough, and if the eventA�b� occurs, then for all
dyadic rationals t 2 �0; 1� and x; y 2 I, we have

jNH �t; x� ÿ NH �t; y�j � Dq2j�x; y� :

Proof. To simplify notation, we may assume without loss that x; y are posi-
tioned such that q�x; y� � jxÿ yj. To further simplify the explanation, we
only deal with the case in which T � 1. Let t � :t1t2 . . . tn�t� be the base 4
expansion of t, and let x � :x1x2 . . . xn�x�, y � :y1y2 . . . yn�y� be the base 2 ex-
pansions of x and y, respectively. Let k�x; y� be the smallest index k such that
xk�1 6� yk�1. For any index i > 0, let �ti � :t1 . . . ti. In other words, �ti is t
truncated at the ith digit. De®ne �xi and �yi in the same way, and note that
�xk�x;y� � �yk�x;y�. It is easy to check that there is a constant �c not depending on
t; x; y such that

jt ÿ �tk�x;y�j � �cjxÿ yj2
jxÿ �xk�x;y�j � �cjxÿ yj
jy ÿ �xk�x;y�j � �cjxÿ yj

and

jxÿ yj � �c2ÿk�x;y� :

Let p0 � ��tk�x;y�;�xk�x;y��. We claim that there exists a path from p to �t; x� with
a ®nite number of steps, with each step having the form
�k2ÿ2n; `2ÿn� ! �k2ÿ2n; �`� 1�2ÿn� or �k2ÿ2n; `2ÿn� ! ��k � 1�2ÿ2n; `2ÿn�.
Furthermore, there are at most 4 such steps for each value of n. Such a path
can be constructed by adding back the missing digits in �tk�x;y� and in �xk�x;y� one
by one. In other words, each step has the form �:t1 . . . tm; : x1 . . . xm�
! �:t1 . . . tm; :x1. . . xm�1�, or �:t1 . . . tmÿ1j; :x1 . . . xm� ! �:t1 . . . tmÿ1�j� 1�;:x1
. . . xm�1� where j � 0; 1; 2. Call p0; . . . pm the points along this path.

Now assume that event A�b� holds. Using Lemma 2.6, we ®nd that

jNH �t; x� ÿ NH �p0�j �
Xm

i�1
jNH �pi� ÿ NH �piÿ1�j

� 4
X1

k�k�x;y�
bD2ÿk=2

� �cb2ÿk�x;y�=2

� 1
2jxÿ yj1=2 :

if 0 < b < 1=�c. By a similar argument, we ®nd that if 0 < b < 1=�c and if
A�b� holds, then
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jNH �t; y� ÿ NH �p0�j � 1
2jxÿ yj1=2 :

Therefore,

jNH �t; x� ÿ NH �t; y�j � jxÿ yj1=2 :
This completes the proof of Lemma 2.6, and hence also of Lemma 2.3. (

Fourthly, we show that by adding the appropriate drift to (1.3), we can
force solutions to remain positive.

Lemma 2.7. Suppose that T > 0 and a > 3. For each e > 0, there exists a
d0 > 0 such that if 0 < d < d0 then the following holds. Let
f �v� � �jvj _ �d=2��ÿa, and let c0 be the constant appearing in Lemma 2.3.
Suppose that v�t; x� satis®es

vt � vxx � f �v� � g�v� _W t > 0; x 2 I �2:13�
v�t; x� � v0�x�

and assume that v0�x� is a continuous function on I satisfying v0�x� � d for all
x 2 I. Let v�t; x� � 1 if t is greater or equal to the blow-up time for v�t; x�.
Then

P inf
0�t�T

inf
x2I

v�t; x� < d=2

� �
< e :

Proof. First, since a > 3, it follows that

1

a� 1
< 1=4 :

Choose j such that 1=�a� 1� < j < 1=4. Note that if d=2 � u � 2d, then

�2d�ÿa � f �u� � �d=2�ÿa: �2:14�

Let

b � 2ÿaÿ2d1�a :

For simplicity, assume that M � T=b is an integer; if not, increase T a bit. We
wish to compare v�t; x� with a random function w�t; x� such that

P inf
0�t�T

inf
x2I

v�t; x� ÿ w�t; x�� � � 0; inf
0�t�T

inf
x2I

w�t; x� � d=2

� �
� 1ÿ e �2:15�

Note that (2.15) implies Lemma 2.7. We de®ne w�t; x� as follows. For
k � 0; . . . ;M ÿ 1, and for kb � t < �k � 1�b and x 2 I, let w�t; x� satisfy
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wt�t; x� � wxx�t; x� � f �w�t; x�� � g�w�t; x�� _W �t; x� �2:16�
w�kb; x� � d :

Let sw be the blow-up time for jwj. Let w�t; x� � 1 if t � sw. Let
L � supd=2�u�2d g�u�, and let

Dk�t; x� �
Z t

kb

Z
x2I

G�t ÿ s; x; y�f �w�s; y�� dy ds

Nk;L�t; x� �
Z t

kb

Z
x2I

G�t ÿ s; x; y� g�w�s; y�� ^ L� �W �dy ds� :

If t � sw, let Dk�t; x� � Nk;L�t; x� � 1. Then for kb < t < �k � 1�b and x 2 I,
and assuming that d=2 � w�s; x� � 2d for kb < s � t and x 2 I, we have

w�t; x� � d� Dk�t; x� � Nk;L�t; x�: �2:17�
For k � 0; . . . ;M ÿ 1, let Wk be the event that for kb < t < �k � 1�b and
x 2 I,

d=2 � w�t; x� � 2d

and that for x 2 I,

w��k � 1�b; x� � d :

Let Nk be the event that for kb < t � �k � 1�b and x 2 I,

Nk;L�t; x�
�t ÿ kb�j
���� ���� � d1ÿj�1�a�2ÿ2ÿ2a�j�a�2� :

Note that for k � 0; . . . ;M ÿ 1, we may use the Markov property, proved in
[Wal86], chapter 3, and Lemma 2.3 from this paper to conclude that since
1ÿ j�1� a� < 0, if d is small enough then

P Nc
k

ÿ � � exp ÿc0d
2ÿ2j�1�a�Lÿ22ÿ4ÿ4a2j�a�2�

� �
<

e
T
2ÿaÿ2d1�a � eb

T
� e

M
: �2:18�

Now we show that onNk, w�t; x� remains bounded between d=2 and 2d for
kb � t � �k � 1�b and x 2 I, and w��k � 1�b; x� � d for x 2 I, and hence
Nk �Wk. Suppose thatNk occurs. Let t� be the ®rst time t 2 �kb; �k � 1�b�
such that for some x 2 I, w�t�; x� � d=2 or 2d. If there is no such time, let
t� � �k � 1�b.

Our ®rst goal is to show that onNk, t� � �k � 1�b. Since t� ÿ kb � b, and
recalling the de®nition of b, it follows that for x 2 I,

0 � Dk�t�; x� � b sup
d=2�u�2d

f �u�

� b
d
2

� �ÿa
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� 2ÿaÿ2d1�a d
2

� �ÿa

� d
4
:

Also, since Nk occurs, if x 2 I and if t� < �k � 1�b, then by the de®nition
of b,

Nk;L�t�; x�
�� �� � �t� ÿ kb�jd1ÿj�1�a�2ÿ2ÿ2a�j�a�2�

< bjd1ÿj�1�a�2ÿ2ÿ2a�j�a�2�

� 2ÿaÿ2d1�aÿ �
d1ÿj�1�a�2ÿ2ÿ2a�j�a�2�

� d2ÿ2ÿ2a :

Therefore, if x 2 I and if t� < �k � 1�b, then
w�t�; x� ÿ dj j � Dk�t�; x�j j � Nk;L�t�; x�

�� ��
<

d
2

and therefore t� � �k � 1�b.
Our next goal is to show that on Nk, if x 2 I, then w��k � 1�b; x� � d.

But

w��k � 1�b; x� � d� Dk��k � 1�b; x� � Nk;L��k � 1�b; x�
so it su�ces to show that

Nk;L��k � 1�b; x��� �� � Dk��k � 1�b; x� �2:19�
However, since t� � �k � 1�b,

Dk��k � 1�b; x� � b inf
d=2�u�2d

f �u� �2:20�

� b�2d�ÿa

� 2ÿaÿ2d1�a�2d�ÿa

� d2ÿ2aÿ2

Since Nk occurs,

Nk;L��k � 1�b; x��� �� � bjd1ÿj�1�a�2ÿ2ÿ2a�j�a�2� �2:21�
� d2ÿ2aÿ2 :

Together, (2.20) and (2.21) imply (2.19), and therefore imply that if x 2 I,
then w��k � 1�b; x� � d. This completes the proof that Nk �Wk.

Let

N �
\Mÿ1
k�0

Nk :

Using induction, we now prove that ifN occurs then d=2 � w�t; x� � v�t; x�
for 0 � t � T and x 2 I. Recall our de®nition of Nk. It follows that if the
event Nk occurs, then d=2 � w�t; x� for 0 � t � T and x 2 I, and that
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w�t; x� � v�t; x� for 0 � t � b and x 2 I. Suppose that we have shown that
w�t; x� � v�t; x� for 0 � t < kb and x 2 I. Since Nkÿ1 occurs, we have

v�kb; x� � lim
t"kb

v�t; x� � lim
t"kb

w�t; x� � d � w�kb; x� :

Therefore, using Lemma 2.2, we conclude that w�t; x� � v�t; x� for
0 � t < �k � 1�b. So the induction is complete, and we conclude that if N
occurs then v�t; x� � d=2 for 0 � t � T and x 2 I.

Finally, we conclude that

P inf
0�t�T

inf
x2I

v�t; x� < d=2

� �
� P Nc� �

�
XMÿ1
k�0

P Nc
k

ÿ �
< e:

This proves Lemma 2.7. (

3. Proof of Theorem 1

Now we use Lemmas 2.1 and 2.7 to prove Theorem 1. Fix T ; e > 0. We wish
to show that with probability at least 1ÿ e, u�t; x� does not blow up to �1
before time T . That is, we will show

Lemma 3.1. For each e > 0,

P sup
0�t<T^s

sup
x2I

u�t; x� � �1
� �

� e : �3:1�

Theorem 1 would follow from Lemma 3.1 if we could show that with
probability at least 1ÿ e, u�t; x� does not blow up to ÿ1 before time T . But
this follows by applying Lemma 3.1 to ÿu�t; x�. Now we prove Lemma 3.1.

Proof. Let a > 3. Let v�t; x� satisfy (1.8), with f �v� � �v _ �d=2��ÿa and v0�x�
� v0 � max�1; supx2I u0�x��. Using Lemma 2.7, let d > 0 be chosen such that

P inf
0�t�T

inf
x2I

v�t; x� � d=2

� �
<

e
4
:

By Lemma 2.2, for 0 � t � T , x 2 I, we have u�t; x� � v�t; x�. Thus, it su�ces
to show that

P sup
0�t<T

sup
x2I

v�t; x� � �1
� �

� e :

Note that the maximum drift f �v� for v is

D0 � sup
u�d=2

f �u� � �d=2�ÿa :
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Actually, we will work with vL rather than v. Recall that vL and v agree up to
the ®rst time that g�v� reaches the level L. Using the integral equation (1.8),
and the fact that

R
I G�t; x; y�v0dy � v0, we have

vL�t; x� � v0 �
Z t

0

Z
I

G�t ÿ s; x; y�f �vL�s; y�� dy ds� Nv;L�t; x�
� v0 � D0t � Nv;L�t; x�

Now, using the Markov property of solutions, we have

vL�s� t; x� �
Z

I
G�t; x; y�vL�s; y�dy

�
Z t

0

Z
I

G�s� t ÿ r; x; y�f �vL�s� r; y�� dy dr

� Nv;L�t; x��hsx�
�
Z

I
G�t; x; y�vL�s; y�dy � D0t � Nv;L�t; x�

where Nv;L�t; x��hsx� denotes the standard time-shift of Nv;L�t; x� �
Nv;L�t; x��x�.

Now let

M�t� � D0J � �T ÿ t� �
Z

I
vL�t; x� dx :

We claim that M�t� is a continuous supermartingale for 0 � t � T . The
continuity of M�t� follows from the continuity of vL�t; x� in �t; x�. Next, using
the integral equation, the fact that ENv;L�t; x��x� � 0, and the standard fact
that Z

I

Z
I

G�t; x; y�vL�s; y� dy dx �
Z

I
vL�s; y� dy

we have that for s� t � T and s; t � 0,

E�M�s� t�jFs� � D0J � �T ÿ t� �
Z

I
vL�s; y�dy � D0Jt

� M�s�
Since M�t� is a supermartingale, there is a nondecreasing process A�t� with
A�0� � 0 such that M�t� � A�t� is a martingale. Next, let sM be the ®rst time
t � 0 that M�t� � 0, and let K�t� � M�t ^ sM� � A�t ^ sM �. Note that
M�0� � D0JT � v0J > 0, so sM > 0 almost surely. Then K�t� is a continuous,
nonnegative martingale. Hence, it is a time-changed Brownian motion which
remains nonnegative, and thus stochastically bounded. That is, there exists a
random variable K � K�x� such that supt�0 K�t� � K. Note that on the event
v�t; x� � 0 for 0 � t � T , x 2 I, we have that M�t� � K�t� � K for 0 � t � T .

Let r � rL be the ®rst time t 2 �0; T � that infx2I v�t; x� � d=2. If there is no
such time, let r � T . Let q � qL be the ®rst time t 2 �0; T � that
supx2I g�v�t; x�� � L. If there is no such time, let q � T . Then, by Lemma 2.2,
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for 0 � t � r ^ q, x 2 I, we have u�t; x� � v�t; x� � vL�t; x�. Therefore, to
prove Lemma 3.1, it su�ces to show that for some L > 0,

P rL ^ qL < T� � < 2e
3

:

However, using Lemma 2.7, we see that to prove Lemma 3.1, it su�ces to
show that

P qL < T� � < e
3
: �3:2�

Now, let K �K�K0� be the event that
sup
0�t<r

M�t� � K0 ÿ D0TJ

and choose K0 such that

P Kc�K0�� � < e
6
: �3:3�

Now let

�v�t; x� � v0 � D0t � Nv;L�t; x�

� vL�t; x� � D0t ÿ
Z t

0

Z
I

G�t ÿ s; x; y�f �vL�s; y�� dy ds

and note that

vL�t; x� � �v�t; x� :
Furthermore, on the event K�K0� and for 0 � t � T , we haveZ

I
�v�t; x� dx �

Z
I

v�t; x� dx� D0Jt �3:4�
� M�t� � D0TJ

� K0 :

For A > 0, let M�A� be the event that for all 0 � t � T and x; y 2 I,

NL�t; x� ÿ NL�t; y�j j � Aq�x; y�j:
By the de®nition of �v, we have that ifM�A� occurs then for all 0 � t � T and
x; y 2 I,

�v�t; x� ÿ �v�t; y�j j � Aq�x; y�j : �3:5�
Note that by Lemma 2.1, if K�K0� and M�A� occur, and if 0 � t � T and
x 2 I, then

v�t; x� � �v�t; x� � max �2A�1=�g�1�Kg=�g�1�
0 ; 2K0=J

h i
�3:6�

Let

L0 � L
C0

� �1
c

ÿ1
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and note that if 0 � v � L0 then by (1.5) we have g�v� � L and hence
g�v� ^ L � g�v�. Since c < 3=2, we may choose c0; j such that

c < c0

and

c0
2j� 1

< 1 :

Then we may choose L so large that

max
��2A�1=�2j�1�K2j=�2j�1�

0 ; 2K0=J
� � max

��2L
c0
c �1=�2j�1�K2j=�2j�1�

0 ; 2K0=J
�

<
L

C0
�3:7�

and

exp ÿ c0A2

L2

� �
<

e
6

�3:8�

where c0 was the constant appearing in Lemma 2.5. Thus, using Lemma 2.5
and (3.8), we ®nd that

P M�A�� � < e
6
: �3:9�

Also, Lemma 2.1 and (3.7) imply that if K�K0� and M�A� occur, and if
0 � t � T and x 2 I, then

vL�t; x� � L0 :

If this conclusion is true, then

g�vL�t; x�� � g�vL�t; x�� :
Therefore,

P qL < T� � � P K�K0�c� � � P M�A�c� �
<

e
6
:

Thus we have shown (3.2), and as remarked earlier, this su�ces to prove
Lemma 3.1. This also completes the proof of Theorem 1. (

Now we brie¯y outline the proof of Corollary 1.1. Fix T > 0 and e > 0,
and assume that v0�x� is bounded away from 0. Let v�t; x� satisfy (1.8) with
f �v� � �v _ �d=2��ÿa. We have already shown that with d > 0 su�ciently
small and if A�v� is the event that

inf
0�t�T

inf
x2I

v�t; x� � d
2
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then

P A�v�c� � < e :

However, on the event A, f �v�t; x�� � v�t; x�ÿa for 0 � t � T and x 2 I.
Therefore, if �v is the solution to (1.8) with f �v� � vÿa, then

P A�v�c� � < e :

Since T and e were arbitrary, this proves Corollary 1.1.
We remark that the proof of our main theorem would carry through with

very little change to the following situation. Consider Rd -valued solutions
u�t; x� to the following equation.

ut � uxx � g�u� _W ; t > 0; x 2 I �3:10�
u�0; x� � u0�x�

Here, _W � � _W1�t; x�; . . . ; _Wd�t; x�� is a vector of independent 2-parameter
white noises. We assume that u0�x� is a continuous function from I to Rd .
Funaki [Fun84] has considered such equations as a model for a random
string. We usually use the wave equation to model a string, but the heat
equation may be appropriate if the mass of the string is small and the string
moves in a viscous medium.

Let u � �u1; . . . ; ud� be the vector representation of u�t; x�. We could apply
our argument to each of the components ui. That is, for each i, we could add
a positive drift in the i direction to keep ui positive with probability 1. It
would then follow, as before, that Ui�t� �

R
I ui�t; x�dx is a local martingale

plus a bounded drift, provided 0 � t � T . We could again conclude that with
high probability, each component ui�t; x� is bounded in x for 0 � t � T . The
conclusion would be that u�t; x� does not blow up in ®nite time.

It should also be easy to replace g�u� by a function g�t; x; u� which is
Lipschitz in �t; x�, locally Lipschitz in u, and which grows no faster than
c�1� juj��3=2�ÿe.
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