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Summary.We study the 2D Ising model in a rectangular box KL of linear size
O�L�. We determine the exact asymptotic behaviour of the large deviations of
the magnetization

P
t2KL

r�t� when L!1 for values of the parameters of
the model corresponding to the phase coexistence region, where the order
parameter m� is strictly positive. We study in particular boundary e�ects due
to an arbitrary real-valued boundary magnetic ®eld. Using the self-duality of
the model a large part of the analysis consists in deriving properties of the
covariance function hr�0�r�t�i, as jtj ! 1, at dual values of the parameters
of the model. To do this analysis we establish new results about the high-
temperature representation of the model. These results are valid for
dimensions D � 2 and up to the critical temperature. They give a complete
non-perturbative exposition of the high-temperature representation.

We then study the Gibbs measure conditioned by fjPt2KL
r�t�

ÿmjKLj j � jKLjLÿcg, with 0 < c < 1=4 and ÿm� < m < m�. We construct the
continuum limit of the model and describe the limit by the solutions of a
variational problem of isoperimetric type.

AMS Subject Classi®cation: (1991) 60F10, 60G60, 60K35, 82B20, 82B24

1 Introduction

We analyze the large deviations of the magnetization of the two-dimen-
sional Ising model in the phase coexistence region, paying attention to
boundary conditions. Our new results lead to a new approach of the
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wetting phenomenon, an important surface phenomenon, which can be
described in the Ising model [FP1], [FP2]. The theoretical physical aspects
of the problem (wetting phenomenon) are discussed in a separate pub-
lication [PV2].

1.1 Historical remarks

When there is a unique Gibbs measure the rate function describing the
large deviations of the magnetization is given by the speci®c free energy
of the model. It is therefore su�cient to control the bulk thermo-
dynamical properties of the model in order to compute large deviations
bounds. The situation is di�erent when two Gibbs states coexist (phase
coexistence region) because the large deviations of the magnetization are
now driven by boundary e�ects. Consequently we must control the surface
tension and surface free energies in order to get sharp large deviations
bounds.

In their famous papers [MS1] and [MS2] Minlos and Sinai started the
analysis of the large deviations of the magnetization for the D-dimensional
Ising model, D � 2, in the phase coexistence region. They showed that the
phenomenon of phase segregation is at the origin of the large deviations
behaviour of the magnetization. In the eighties the problem was considered
again for D � 2. First Schonmann [S] (see also [CCS]) established lower and
upper bounds for the large deviations with a completely di�erent approach,
which is non-perturbative as opposed to the work of Minlos and Sinai. Also,
with di�erent techniques, we have the works of FoÈ llmer and Ort [FO] and
[O]. A breakthrough was then made by Dobrushin, KoteckyÂ and Shlosman
in the late eighties [DKS]. They were able to get exact large deviations
bounds for the magnetization and to get a detailed description of the typical
con®gurations associated with large deviations in terms of the Wul� shape.
Their results are valid at low temperature and for periodic boundary con-
dition. After the announcement of these results P®ster [Pf2] obtained similar
results valid at low temperature for � boundary condition. His method
works as well for periodic boundary condition. Notice that the results de-
pend on the choice of the boundary condition; see [Sh] for a study of some
e�ects due to boundary conditions. More importantly, new tools are devel-
oped and several crucial estimates are done non-perturbatively. In particular
sharp upper bounds for the probability of long contours are derived using
moment inequalities (GKS-inequalities) and the self-duality of the model.
These new techniques allow to considerably shorten some parts of analysis of
[DKS]. Similar ideas appear independently in [ACC], where similar questions
are studied in the percolation model. Substantial improvements have been
obtained by Io�e [I1], [I2], who derived exact lower and upper bounds for the
large deviations of the magnetization for all temperatures below the critical
one. Deuschel and Pisztora [DPi] and [Pi] studied large deviations for per-
colation, Ising and Potts models, D � 3.
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1.2 Isoperimetric inequality and large deviations

Consider an Ising model in the ®nite box

KL :� t � �t�1�; t�2�� 2 Z2 : ÿr1L � t�1� � r1L ; 0 � t�2� � 2r2L
� 	

; �1:1�
where r1; r2 2 N are two ®xed numbers. Let r�t� � �1, t 2 KL, and de®ne

HKL � ÿ
X
ht;t0i:

t;t02KL

r�t�r�t0� ÿ
X

t2KL :
t�2��0

hr�t� ÿ
X

t2KL :t�2��2r2L
or t�1���r1L

r�t� : �1:2�

Here ht; t0i denotes a pair of nearest neighbours points of the lattice Z2. The
last two sums prescribed the boundary condition; h is a real parameter, the
boundary magnetic ®eld. The Gibbs probability measure associated with the
energy function HKL and inverse temperature b is

lh
L :� N�KL�ÿ1 exp�ÿbHKL� ; �1:3�

N�KL� is the normalization constant,

N�KL� :�
X

r�t���1 :
t2KL

exp�ÿbHKL� : �1:4�

Probability with respect to that measure is also denoted by P h
L � � �.

We study the asymptotic behaviour of P h
L �A�m; c� � when A�m; c� is the

event

A�m; c� :�
X
t2KL

r�t� ÿ m KLj j
�����

����� � KLj j � Lÿc

( )
: �1:5�

The solution to this problem is given in terms of a variational problem, which
is the following isoperimetric problem with constraints de®ned in the rec-
tangle

Q :� x � �x�1�; x�2�� : ÿr1 � x�1� � r1; 0 � x�2� � 2r2f g : �1:6�
The horizontal bottom part of the boundary of Q plays a special role; we set

wQ :� x 2 Q : x�2� � 0f g : �1:7�
Suppose that ŝ : R2 ! R is a positive convex function, which is positively
homogeneous of degree one and such that ŝ�x� � ŝ�ÿx�; the function ŝ de-
pends on the parameter b, ŝ�x� � ŝ�x; b�. Suppose also that
ŝbd � ŝbd�b; h� 2 R satis®es the condition

ŝbdj j � ŝ��1; 0�� : �1:8�
On the space of recti®able curves in Q we introduce the functional

W�C� :�
Z r

0

ŝ� _u�t�; _v�t�� dt �
h
ŝbd ÿ ŝ��1; 0��

i
C \ wQ
�� �� ; �1:9�

where �u�t�; v�t��, t 2 �0; r�, is a parametrization of the curve C; jC \ wQj is the
Lebesgue measure of the subset C \ wQ.
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We de®ne in the standard way the interior and exterior of C; volC is the
area of the interior of C.

Isoperimetric problem: Find the minimum of functional W among all closed
curves C � Q, with volC ®xed.

This isoperimetric problem is similar, but not equivalent to the problem
treated by Wul� [Wu] in his theory of crystal. The solution in our case
depends on the choice of ŝbd and on the shape of the box Q, see [KP]. The
problem considered by Wul� was solved by [D]; a detailed study is done in
[DKS]; see also [DP] for a recent completely di�erent proof. Ideas from [DP]
are used in the last section.

It is convenient to introduce m� � m��b�, the order parameter of the Ising
model (spontaneous magnetization). Suppose that m��b� > 0 i.e. b > bc, the
critical inverse temperature, and write the volume of C,

volC :� 4r1r2
m� ÿ m
2m�

; ÿm� < m < m� : �1:10�

(The parameter m has the interpretation of a mean magnetization: inside C
we have the phase with magnetization ÿm� and outside with magnetization
m�.) We set

W��m� :� inf
n
W�C� : C � Q ; volC � 4r1r2

m� ÿ m
2m�

o
: �1:11�

An important property is that the in®mum can be computed with C the
boundary of a convex body (use Jensen's inequality and the convexity of ŝ).

Theorem 1.1 Let h 2 R, b > bc, ÿm� < m < m�, c � 1=4ÿ d with
0 < d < 1=4. There exists a function ŝ : R2 ! R, which is positive, convex,
positively homogeneous of degree one, such that ŝ�x; b� � ŝ�ÿx; b� and a real
number ŝbd � ŝbd�b; h� 2 R verifying �1:8�, with the following property. IfW is
de®ned by �1:9� and 0 < g < d, then for L large enough

1

L
ln P h

L �A�m; c�� �W��m�
���� ���� � O�Lgÿd� : �1:12�

We prove even stronger results, similar to those of [Pf2] (see Theorems 11.1
and 11.2). This allows us to take the continuum limit in which we scale every
lengths by 1=L, so that all results are formulated in the ®xed box Q. Let D�m�
be the set of macroscopic droplets at equilibrium in Q,

D�m� :� V � Q : Vj j � m� ÿ m
2m�

jQj ; W�@V� �W��m�
� �

: �1:13�

For each V 2 D�m� we have a magnetization pro®le,

qV�x� :� m� if x 2 QnV,
ÿm� if x 2V .

�
�1:14�

Let f be a real-valued function on Q; we set
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d1� f ;D�m�� :� inf
V2D�m�

Z
Q

dx j f �x� ÿ qV�x�j : �1:15�

For each x we de®ne a magnetization pro®le qL�x; x� on Q. We subdivide the
box KL by the cells of a grid of lattice spacing 2�La�. In each cell C of the grid
mC�x� is the empirical magnetization,

mC�x� :� 1

jCj
X
t2C

r�t��x� : �1:16�

Then we set, for each x 2 Q,

qL�x; x� :� mC�x� if Lx 2 C �1:17�
where Lx is the point x 2 Q scaled by L.

Theorem 1.2 Let b > bc, h 2 R, ÿm� < m < m� and c � 1=4ÿ d > 0. Then
there exist a positive function e�L� such that limL!1 e�L� � 0 and two real
numbers j > 0 (see (12:42)) and 1 > a > 0 such that for L large enough

P h
L d1�qL� � ; x�;D�m�� � e�L�f g jA�m; c�� � � 1ÿ expfÿO�Lj�g : �1:18�

1.3 Outline of the paper

The proof of Theorems 1.1 and 1.2 are long. The basic strategy is taken from
[Pf2]. To understand the large deviations in presence of two Gibbs measures
we must study the phase boundaries, which in dimension two are random
lines. A large part of the paper is devoted to that question. We use a special
feature of the model, self-duality, to identify problems concerning the phase
boundaries (at low temperatures) with problems concerning the two-point
function (at high temperatures), which is de®ned as the covariance of the
Gibbs random ®eld with free boundary condition. We can therefore identify
the functions ŝ, respectively ŝbd, with the decay-rates of the two-point
function, respectively the boundary two-point function. The ®rst part of the
paper gives a complete non-perturbative exposition of the high-temperature
representation of the model, which is then used to study the two-point
function through its high-temperature representation, which is close to its
representation via the random-cluster model. This part of the paper is not
restricted to D � 2; it has its own interest and is written in an independent
way. In the second part we prove our main theorems.

We would like to stress here that we do not use stability properties of the
solution of the variational problem, even not the existence of such a solution.
The only property, which is important, is that W ��m� can be computed using
convex bodies. We also do not use the sharp triangle inequality property of ŝ
[I1].

Acknowledgements. We thank B. Dacorogna for discussion about the var-
iational problem, A. Patrick for discussion and private communication of his
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results and the referee for his constructive criticisms, which allow us to im-
prove substantially the revised version of the paper. After ®nishing this work
we received papers [CGMS] and [SS2], where related questions are con-
sidered in the case of free, respectively �, boundary condition.

2 Ising model, contours, duality and inequalities

We give a list of the main de®nitions. The notion of contour of subsection 2.2
is essential for the whole paper. Additional de®nitions are given in parts I
and II, when they are more speci®cally related to these parts. Throughout the
paper O�x� denotes a non-negative function of x 2 R�, such that there exists
a constant C with O�x� � Cx. The function O�x� may be di�erent at di�erent
places.

2.1 Ising model

We use the following notation and terminology.
The lattice is Z2 :� t � �t�1�; t�2�� : t�i� 2 Z; i � 1; 2f g. Its elements are

called sites. We set L :� t 2 Z2 : t�2� � 0
� 	

and R0 :� t 2 Z2 : t�2� � 0
� 	

.
An edge, e � ht; t0i, is an unordered pair of elements t; t0 2 Z2 such that
t�1� ÿ t0�1�j j � jt�2� ÿ t0�2�j � 1. We sometimes identify the edge e � ht; t0i
with the unit length segment in R2 with end-points t; t0. The set of all edges is
E. An edge e is adjacent to t 2 Z2 if e � ht; t0i. Let B � E; the index of a site t
in B is the number of edges of B, which are adjacent to t. A con®guration x is
an element of the product space X :� fÿ1; 1gZ2

. The value of x at t 2 Z2 is
x�t�; r�t� is the random variable r�t��x� :� x�t�. Let K � Z2; FK is the r-
algebra generated by r�t�, t 2 K. We setF :�FZ2 . A function f is K-local if
it is FK-measurable and K ®nite.

Let K � Z2 be a ®nite subset; a con®guration x satis®es the K�-boundary
condition if x�t� � 1, t 62 K. For each edge e we introduce a non-negative
number J�e�, called coupling constant. The energy in K for the con®guration
x is

HK�x� :� ÿ
X

e�ht;t0i:
e\K 6�;

J�e��r�t��x�r�t0��x� ÿ 1� : �2:1�

The Gibbs measure in K with � boundary condition is by de®nition the
measure on �X;F� given by the formula

l�K�x� :� N��K�ÿ1 exp�ÿHK�x�� if x satisfies the K�-bd. cond.,
0 otherwise.

�
�2:2�

N��K� is the normalization constant so that l�K is a probability measure.
Expectation value with respect to l�K is denoted by P�K � � �, h � i�K or h � i�;JK . In a
similar way we de®ne the Gibbs measure in K with ÿ boundary condition. The
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free boundary Gibbs measure in K is by de®nition the probability measure on
fÿ1; 1gK de®ned by

lK :� N�K�ÿ1
Y

e�ht;t0i�K

exp�J�e�r�t�r�t0�� : �2:3�

N�K� is the normalization constant, called partition function,

N�K� :�
X

r�t�; t2K

Y
e�ht;t0i�K

exp�J�e�r�t�r�t0�� : �2:4�

Expectation value with respect to lK is denoted by PK� � �, h � iK or h � iJK.
Let K0L :� t 2 Z2 : ÿL � t�i� � L; i � 1; 2

� 	
. There exists a limiting

measure l� on �X;F�, l� :� limL!1 l�
K0L
. Expectation value with respect to

l� is denoted by P�� � �, h � i� or h � i�; J . The same construction is possible
with Kÿ-boundary condition instead of K�-boundary condition. The limiting
measure is lÿ. Similarly, there exists a limiting measure l on �X;F�,
l :� limL!1 lK0L . Expectation value with respect to l is denoted by P � � �, h � i
or h � iJ . Let J�e� � b for every edge e. Then all measures de®ned above are
translation-invariant. There exists bc :� 1=2 log�1� ���

2
p �, called critical cou-

pling, which is characterized by the following properties (see subsection 2.3):
the measures h � i�;b and h � iÿ;b are equal if and only if b � bc; the sponta-
neous magnetization m� � m��b� � hr�t�i�;b is strictly positive if and only if
b > bc. The two-point function hr�t1�r�t2�i is:

hr�t1�r�t2�i :� lim
L!1
hr�t1�r�t2�iK0L : �2:5�

It is translation-invariant, hr�t1�r�t2�i � hr�t1 � t�r�t2 � t�i, t 2 Z2. It is also
invariant under axial symmetries with horizontal, vertical and diagonal axis.
It is a non-trivial fact that

hr�t1�r�t2�i � hr�t1�r�t2�i� � hr�t1�r�t2�iÿ : �2:6�

2.2 Contours

A path is an ordered sequence of sites and edges, t0; e0; t1; e1; . . . ; tn, where
ti 2 Z2 for all i � 0; . . . ; n, and ej � htj; tj�1i 2 E, j � 0; . . . ; nÿ 1. By de®-
nition all edges of a path are di�erent, but not necessarily all sites of the path.
The initial point of the path is t0 and the ®nal point is tn. The initial edge of
the path is e0 and the ®nal edge is enÿ1. A path is closed if its ®nal point
coincides with its initial point; otherwise it is open. We say that a path is in a
subset A � Z2 if ti 2 A, 8 i � 0; . . . ; n; we say that it is in a subset B � E if
ei 2 B, 8 i � 0; . . . ; nÿ 1. A subset A � Z2 is connected if for any pair of
elements t; t0 2 A there is a path in A with initial point t0 � t and ®nal point
tn � t0. A subset B � E is connected if for any pair of elements e; e0 2 B there
is a path in B with initial edge e0 � e and ®nal edge enÿ1 � e0. Let t 2 Z2; the
plaquette p�t� of center t is the subset of R2,

p�t� :� s � �s�1�; s�2�� 2 R2 : js�i� ÿ t�i�j � 1=2 ; i � 1; 2
� 	

: �2:7�
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A subset A � Z2 is simply connected if the subset of R2, [t2Ap�t� is simply
connected in R2. The boundary of B � E is the subset of Z2

dB :� t 2 Z2 : index of t in B is odd
� 	

: �2:8�
Let B � E be a ®nite non-empty subset. We decompose uniquely (up to
orientation) B into a ®nite number of paths, such that they are pairwise
disjoint, when considered as subsets of E. (On the other hand sites may
belong to two di�erent paths.)

1. If dB � ;, then choose an edge e � ht; t0i in B and set t0 :� t, e0 :� e and
t1 � t0. The path is uniquely continued using rule A speci®ed in the picture
below and by requiring that it is maximal and that its ®nal point is t0. We
have thus de®ned a closed path. Repeat this construction until all edges of
B belong to some (closed) path.

2. If dB 6� ;, then choose ®rst t 2 dB, and set t0 :� t. Then choose e0 among the
adjacent edges to t0 according to rules A0 speci®ed in the picture below.
Initial points are marked by dots in the picture specifying the rules A0. The
path is uniquely continued using rules A and A0 and by requiring that it is
maximal and its ®nal point tn 2 dB. We have thus de®ned an open path,
since t0 6� tn. Repeat this construction starting with a new point of dB until
all points of dB are initial or ®nal points of open paths; if there are still edges
of B which do not belong to some paths, then do the construction 1. above.

The unoriented paths, which are de®ned by the above procedure, are called
contours; a contour is closed or open, if the corresponding unoriented path is
closed or open. The set of all contours of a con®guration is denoted by
c � fc1; . . . ; cng. The diameter of a contour c is

d�c� :� maxfjt�1� ÿ t0�1�j � jt�2� ÿ t0�2�j : t; t0 2 cg : �2:9�
The length of a contour, jkj, is the number of edges of k. The length jcj of a
family of contours c is the sum of the lengths of the contours of the family.

the dots denote initial points of open paths

Let fc1; . . . ; cng be a family of contours. Let E�c1; . . . ; cn� be the set of all
edges of these contours. We say that fc1; . . . ; cng is compatible if either
E�c1; . . . ; cn� � ;, or fc1; . . . ; cng corresponds to the decomposition of the set
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E�c1; . . . ; cn� into contours. If we want to add the condition that for a
compatible family fc1; . . . ; cng all edges of E�c1; . . . ; cn� are pairs of points of
K � Z2, then we say that the family is K-compatible. A contour is an un-
oriented path; it is however useful to choose sometimes an orientation and to
consider a contour as a unit-speed parametrized curve in R2,

�0; jkj� 3 s 7! k�s� 2 R2 ; �2:10�
with initial point k�0� � t1 and ®nal point t2. The contour is closed i� t1 � t2;
it is open if dk � ft1; t2g.

2.3 Duality

An important concept is the duality transformation [W]. It relates the
properties of the Ising model for the couplings J�e� � b < bc to the prop-
erties of the dual model for the couplings J ��e�� � b� > bc. When the di-
mension is two the model is self-dual. The proper framework to study the
duality transformation is the theory of cell-complexes. However we need
only elementary facts, so that we de®ne the duality transformation as fol-
lows. It consists of a geometric and an analytic part.

1. Geometric part. The dual lattice �Z2�� is
�Z2�� :� t � �t�1�; t�2�� : t�i� � 1=2 2 Z ; i � 1; 2f g : �2:11�

To each edge e of Z2 we associate a dual edge e� of �Z2��: it is the edge
which crosses e in the middle, when both edges, e and e�, are considered as
unit length segments in R2.

2. Analytic part. The *-transformation is the transformation x 7! x� de®ned on
fx : 0 � x � 1g into itself, given by the identity

expfÿ2xg � tanh x� : �2:12�
The �-transformation is such that �x��� � x; it has a unique ®xed-point
xc :� 1=2 log�1� ���

2
p �.

The critical coupling bc of the 2-dimensional Ising model has been identi®ed
to xc in [KW], using the duality transformation. Let J�e� be a non-negative
coupling constant. The dual coupling constant for the dual edge e�, J��e��, is
de®ned by the �-transformation, expfÿ2 J�e�g � tanh J��e��.

2.4 Correlation inequalities

The main tools for analyzing the Ising model are correlations inequalities,
also called moment inequalities. The Gibbs measures on K with K�-
boundary condition, Kÿ-boundary condition or free boundary condition are
special cases of the probability measure
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mK :�
exp

P
t;t02K J�t; t0�r�t�r�t0� �Pt2K k�t�r�t�

n o
normalization

: �2:13�

Let A � K and set

rA :�
Y
t2A

r�t� : �2:14�

A function f is increasing if

x�t� � x0�t� 8 t �) f �x� � f �x0� : �2:15�

Proposition 2.1 Let K be ®nite and J�t; t0� � 0 for all t; t0 2 K.

1. If k�t� � 0 for all t, then GKS-inequalities hold [Gr]

hrAimK
� 0 ; �2:16�

d hrAimK

dJ�t; t0� � 0 : �2:17�

2. If k�t� 2 R and f and g are two increasing functions, then FKG-inequality
hold [FKG]

h f gimK
� h f imK

hgimK
: �2:18�

3. If k�t� � 0 for all t, then GHS-inequalities hold [GHS]

d2 hr�t�imK

dk�t0�dk�t00� � 0 : �2:19�

Let t1; t2 2 Z2; a subset B � Z2 separates t1 from t2 if and only if t1 62 B, t2 62 B
and any path from t1 to t2 contains an element of B.

Proposition 2.2 Let J�e� be non-negative for all edges e and t1; t2 2 Z2.

1. If B � Z2 is a ®nite subset which separates t1 from t2, then

hr�t1�r�t2�i �
X
t2B

hr�t1�r�t�ihr�t�r�t2�i : �2:20�

2. Let J�e� � b, b > 0, for all edges e and t � �t�1�; t�2�� 2 Z2, such that
0 � t�1� � t�2�. Then

hr�0�r�t0�i < hr�0�r�t�i ; �2:21�
if either t0�1� � t�1� � 1 and t0�2� � t�2�, or t0�1� � t�1� and
t0�2� � t�2� � 1, or t0�1� � t�1� ÿ 1 and t0�2� � t�2� � 1.

3. The two-point function hr�0�r�t�i is invariant under symmetries with hor-
izontal, vertical and diagonal axis.

Proposition 2.2.1. is proven in [Sim] and 2. in [MM]. (To prove the strict
inequality follow the proof of [MM] and apply the inequalities of section 3.5
in [FP1].)
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Part I: Ising model at high temperature

We present here results concerning the Ising model on Z2 for b < bc (i.e.
above the critical temperature). They are essential tools for the study of the
large deviations estimates at low temperature and are of interest in-
dependently of the large deviations analysis. Our method is non-perturbative
and the validity of these results is for all b < bc. Some results are not re-
stricted to D � 2.

3 High-temperature representation

We recall the high-temperature representation of the model. The goal is to
derive formula (3.13) which gives a representation of the two-point function
in terms of random lines. The correct point of view here is to consider the
free boundary Gibbs measure on a graph. All graphs considered in this paper
are subgraphs of the graph �Z2;E�. We use the following conventions. If a
subgraph of �Z2;E� is speci®ed by its set of vertices K � Z2, then by de®-
nition the set E�K� of its edges is the set of all edges e � ht; t0i with t; t0 2 K. If
it is speci®ed by a set B of edges, then by de®nition the set of vertices is the set
of all sites t of Z2 which are boundary points of edges of B.

The partition function N�K� can be written asX
r�t�; t2K

Y
e�ht;t0i2E�K�

cosh J�e��1� r�t�r�t0� tanh J�e�� : �3:1�

We expand the product in (3.1). Each term of the expansion is labelled by a
set of edges ht; t0i: we specify the edges corresponding to factors tanh J�e�.
Then we sum over r�t�, t 2 K; after summation only terms labelled by sets of
edges with empty boundary (see (2.8)) give a non-zero contribution. Any
term of the expansion of (3.1), which gives a non-zero contribution, can be
uniquely labelled by a K-compatible family c of closed contours. Let e be an
edge, c a contour and c0 a compatible family of contours; we set

w�e� :� tanh J�e�; w�c� :�
Y
e2c

w�e�; w�c0� :�
Y
c2c0

w�c� : �3:2�

If c0 � ;, then w�c0� :� 1; w�c� is the weight of c. The partition function is

N�K� � 2jKj
Y

e2E�K�
cosh J�e�

X
c: dc�;
K-comp:

w�c� : �3:3�

It is natural to introduce the normalized partition function

Z�K� :�
X

c: dc�;
K-comp:

w�c� : �3:4�

More generally, given any K-compatible family c0 we set
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Z�Kjc0� :�
X

c: dc�;
c[c0 Kÿcomp:

w�c� : �3:5�

In particular

Z�K� � Z�Kj;� ; �3:6�
and

N�K� � Z�K�2jKj
Y

e2E�K�
cosh J�e� : �3:7�

Remark: For normalized partition functions we may have

Z�K1� � Z�K2� �3:8�
with K1 6� K2. Indeed, the condition for equality is that the graphs
�K1;E�K1�� and �K2;E�K2�� have the same set of closed contours.

On the set of all families of K-compatible closed contours we de®ne a
probability measure

PK� c � :�
w�c�
Z�K� : �3:9�

Let c0 be a K-compatible family of contours, not necessarily closed. We set

qK�c0� :� w�c0� Z�Kjc
0�

Z�K� if c0K-compatible;

0 otherwise.

(
�3:10�

If c0 is a K-compatible family of closed contours, then

qK�c0� � PK� fc : c0 � cg � : �3:11�
Let us consider the numerator of the two-point function hr�t1�r�t2�iK,X

r�t�; t2K

Y
e�ht;t0i2E�K�

cosh J�e��1� r�t�r�t0� tanh J�e��r�t1�r�t2� : �3:12�

We expand the product as above. The presence of the variables r�t1� and
r�t2� implies that the only terms in the expansion of the numerator of
hr�t1�r�t2�iK, which give non-zero contributions, are those labelled by
compatible families of contours containing one open contour k such that
dk � ft1; t2g. The two-point function has the simple expression

hr�t1�r�t2�iK � Z�K�ÿ1
X

k: K-comp:
dk�ft1;t2g

Z�Kjk�w�k� �
X

k: K-comp:
dk�ft1;t2g

qK�k� : �3:13�

De®nition 3.1 Let e be an edge and B�e� the set formed by e and all edges
adjacent to e. The edge-boundary of e is the contour D�e� 3 e of the decom-
position of B�e� into contours. Let A � E; the edge-boundary D�A� of A is
D�A� :� [e2AD�e�.
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Two edges e; e0 and a contour c with their edge-boundaries D�e�; D�e0�; D�c�

The notions of compatibility and edge-boundary are related.

Lemma 3.1 Let c0 be a family of compatible contours (closed or open). Then a
non-empty compatible family of n closed contours c � fc1; . . . ; cng is compa-
tible with c0, that is c [ c0 is compatible, if and only if no edge of ci is an edge of
D�c0�, 8 i � 1; . . . ; n.

Proof. Suppose that c [ c0 is compatible and ei 2 E�ci�. Then ei 62 E�c0� since
compatibility implies E�c0� \ E�c� � ;. We show that ei 62 D�c0�. Suppose
that ei 2 D�c0� and E�ci� \ E�c0� � ;. Then one end-point t of ei is of index at
least three in D�c0� [ E�ci�: t has index 2 in ci since ci is closed, and at least
one in E�c0�. This implies that the decomposition of c0 [ E�ci� into contours is
not �ci; c

0�, hence ci and c0 are not compatible.

Suppose that e1; e2 is a pair of edges adjacent to a site t of c0 such that
fe1; e2g \ D�c0� � ;. Then the decomposition of E�c0� [ fe1; e2g into contours
is �c0; fe1; e2g�. Therefore, if E�ci� \ D�c0� � ;, then ci is compatible with c0.

(

Let B � E be a ®nite set of edges. Let G�B� be the graph de®ned by B. On
G�B� we consider the Ising model de®ned by formula (2.4), taking the pro-
duct over the edges of the graph. Its normalized partition function is
Z�G�B��.
Lemma 3.2 Let K, B � E�K� and c0, a family of K-compatible contours, be
given. If the graph G�B� has the same set of closed contours as the graph
G�E�K�nD�c0��, then

Z�G�B�� � Z Kjc0
� �

: �3:14�

Proof. By hypothesis (see (3.8))

Z�G�B�� � Z G E�K�nD c0
� �� �� �

: �3:15�
The conclusion follows now from Lemma 3.1. (
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4 Exponential decay-rate

4.1 Two-point function

In this subsection we suppose that J�e� � b � 0 for all edges e of Z2.

De®nition 4.1 Let t1; t2 2 Z2 and n 2 N. The decay-rate of the two-point
function is de®ned on Z2 by

s t2 ÿ t1; b� � :� lim
n!1ÿ

1

n
ln r nt1� �r nt2� �h ib : �4:1�

Proposition 4.1 Let J�e� � b � 0 for all edges e of Z2. The decay-rate has the
following properties.

1. The decay-rate is non-negative and is a decreasing function of b.
2. If t1; t2 2 Z2, then hr�t1�r�t2�ib � expfÿs�t2 ÿ t1; b�g.
3. If b � bc, then s�t; b� � 0 for all t.
4. If b < bc, then s�t; b� > 0 for all t 6� 0.
5. Let j � j be the Euclidean norm; the function s�t; b�=jtj, t 6� 0, can be ex-

tended by continuity to any x 2 R2 with jxj � 1; it is de®ned on R2 by
s�x; b� :� jxj � s�x=jxj; b�. It is invariant under the axial symmetries with
horizontal, vertical and diagonal axis. There exists a constant K such that
for any x and y, jxj � 1 and jyj � 1,

s�x; b� ÿ s� y; b�j j � Kjxÿ yj : �4:2�

Proof. Points 3. and 4. are consequences of the duality transformation and
of [LP] (see also remark below). The continuity statement (4.2) is proved in
[Pf2] section 6 (Lemmas 6.4 and 6.5). For the sake of completeness we prove
the existence of the limit (4.1) and point 2. of the proposition. By GKS-
inequalities and translation invariance we have with t � t2 ÿ t1 and
n � n1 � n2,

r�0�r�nt�h i � r�0�r n1t� �h i r n1t� �r�nt�h i � r�0�r n1t� �h i r�0�r n2t� �h i : �4:3�
Hence the standard subadditivity argument gives

lim
n!1ÿ

1

n
ln r�0�r�nt�h i � inf

n
ÿ 1

n
ln r�0�r�nt�h i : �4:4�

(

Remark: The decay-rate is known explicitly, see [MW] chapters XI and XII.
In particular x � �1; 0� is a minimum of s�x; b� on the unit sphere.

4.2 Boundary two-point function

In this subsection we consider the model on the semi-in®nite lattice L. We
choose the coupling constants
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J�e� :� b � 0 if e � t; t0h i with t =2R0 or t0 =2 R0 ,
hb � 0 if e � t; t0h i with t 2 R0 and t0 2 R0 .

�
�4:5�

The boundary two-point function is de®ned for t1; t2 2 R0 by

r t1� �r t2� �h iL:� lim
L!1

r t1� �r t2� �h iK0L\L : �4:6�

It is invariant under translations t 2 R0,

hr t1 � t� �r t2 � t� �iL � hr t1� �r t2� �iL : �4:7�

De®nition 4.2 Let t1; t2 2 R0 and n 2 N. The boundary decay-rate of the
boundary two-point function is de®ned on R0 by

sbd t2 ÿ t1; b; h� � :� lim
n!1ÿ

1

n
ln r nt1� �r nt2� �h ib;hL : �4:8�

Proposition 4.2 Let b � 0 and h � 0. The boundary decay-rate has the fol-
lowing properties.

1. The boundary decay-rate is non-negative and decreasing in b and h.
2. If t1; t2 2 R0, then hr�t1�r�t2�ib;hL � expfÿsbd�t2 ÿ t1; b; h�g.
3. For any t 2 R0, sbd�t; b; h� � s�t; b�.
4. If b � bc, then sbd�t; b; h� � 0 for all t 2 R0.
5. If b < bc, then sbd�t; b; h� > 0 for all t 6� 0. Moreover there exists a positive

hc�b� > 1 so that for t 2 R0, t 6� 0,

s�t; b� � sbd�t; b; h� if h � hc�b�;
s�t; b� > sbd�t; b; h� if h > hc�b� : �4:9�

Remark: The proof of the ®rst part of Proposition 4.2 is the same as that of
Proposition 4.1. Points 3. to 5. are proven using the duality transformation
and results of [FP2]. In particular, in [FP2] the following inequalities are
proven for b < bc,

1 � exp 2b 1ÿ hc�b�� �f g � 1ÿ exp ÿ2 b� ÿ b� �f g
1ÿ exp ÿ2 b� b�� �f g : �4:10�

Abraham computed hc�b� explicitly [Ab]; the boundary two-point function
can also be computed explicitly [P]. Let b̂ be de®ned by

exp ÿ2b̂
n o

:� tanh b ; �4:11�
and hw�b̂� by the equation

exp 2b̂
n o

cosh 2b̂ÿ cosh 2b̂hw b̂
� �n o

� sinh 2b̂ : �4:12�
Then hc�b� is de®ned by

exp ÿ2b̂hw�b̂�
n o

� tanh bhc�b� : �4:13�
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5 Basic estimates

We prove basic estimates for the high-temperature representation. These
estimates are non-perturbative, valid for all b < bc

1 and not restricted to
dimension two. The main ideas are from [Pf2] section 6. The basic quantity in
the high-temperature representation is qK�c�, see (3.10); it is a function of the
coupling constants J . The dependence of qK�c� on J is studied in Lemmas 5.2
and 5.3. Lemmas 5.4 and 5.5 are essential.

All results are established for a ®nite graph K, which is always a subgraph
of Z2 or L. Implicitly all contours are de®ned on the graph K. We do not
always write explicitly the parameters b and h to simplify the notations.
However, in cases we want to emphasize the coupling constants J in the
partition functions we write for example Z�K; J� instead of Z�K�.
Lemma 5.1 Let b < bc.

1. If J�e� � b for all edges e, then for any t1; t2 2 K,X
k:

dk�ft1;t2g

qK�k� � r t2� �r t1� �h ib� exp ÿs t2 ÿ t1; b� �f g : �5:1�

2. If K � L, h � 0 and J�e� is de®ned by (4.5), then for any t1; t2 2 R0 \ K,X
k:

dk�ft1;t2g

qK�k� � r t2� �r t1� �h iJL� exp ÿsbd t2 ÿ t1; b; h� �f g : �5:2�

3. If K � L, h � 0 and J�e� is de®ned by (4.5), then for any t1; t2 2 K,X
k:E�k�\E�R0��;

dk�ft1;t2g

qK�k� � exp ÿs t2 ÿ t1; b� �f g : �5:3�

Proof. 1. follows from formula (3.13), GKS inequalities and Proposition 4.1.
2. is proved in the same manner.
3. The case h � 1 is easy. Indeed,X

k:E�k�\E�R0��;
dk�ft1;t2g

qK�k� �
X
k:

dk�ft1;t2g

qK�k� � r t1� �r t2� �h ib;hK : �5:4�

hr�t1�r�t2�ib;hK is increasing in h and in K. Therefore hr�t1�r�t2�ib;hK

� hr�t1�r�t2�ib. The result follows from 1.

1 It is natural in this context to de®ne bc as the smallest b such that s�t; b� is equal to zero (see
Def. 4.1). Due to results of Aizenman, Barsky and Fernandez [ABF] this bc coincides with the
previous de®nition in terms of the spontaneous magnetization. For D � 2 this follows from [LP],
see Proposition 4.1.
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Let h � 1. The condition E�k� \ E�R0� � ; implies that w�k� is in-
dependent of h; assume that

Z Kjk; h� �
Z�K; h� �

Z Kjk; 1� �
Z�K; 1� if h � 1 ; �5:5�

which is proven in the next lemma. ThenX
k:E�k�\E�R0��;

dk�ft1;t2g

qK�k; h� �
X

k:E�k�\E�R0��;
dk�ft1;t2g

qK�k; 1� �5:6�

and we conclude using the preceding case. (

Lemma 5.2 Let c0 be a K-compatible family of contours. Then

Z Kjc0; J
� �
Z�K; J� �5:7�

is decreasing in J�e� for any e.

Proof. Let

B :� E�K�nD c0
� �

; �5:8�

and G�B� the graph de®ned by this set of edges. Let K�B� be the set of vertices
of G�B�. By Lemma 3.2 we have

Z Kjc0; J
� �

� Z�G�B�� : �5:9�

Therefore

ln
Z Kjc0; J
� �
Z�K; J� � ln

N�K�B��
N�K� � ln

Y
e2E�K�nB

cosh J�e� � jKj ÿ jK�B�j� � ln 2 :

�5:10�
If e � t; t0h i 2 B, then

@

@J�e� ln
Z Kjc0; J
� �
Z�K; J� � r�t�r t0� �h iK�B�ÿ r�t�r t0� �h iK� 0 ; �5:11�

by GKS-inequalities, since K�B� � K. If e � ht; t0i 2 E�K�nB, then

@

@J�e� ln
Z Kjc0; J
� �
Z�K; J� � ÿ r�t�r t0� �h iK� tanh J�e� � 0 ; �5:12�

since by GKS-inequalities

r�t�r t0� �h iK � r�t�r t0� �h ift;t0g� tanh J�e� : �5:13�
(
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Lemma 5.3 Let J�e� � 0. Let c0 be a K-compatible family of contours.

1. qK�c0; J� is decreasing in J�e� for all edges e 2 E�K�nE�c0�. In particular
qK�c0; J� is decreasing in K.

2. Let K0L :� ft 2 Z2 : jt�i�j � Lg. Then the following limits exist,

q c0
� �

:� lim
L!1

qK0L c0
� �

; qL c0
� �

:� lim
L!1

qK0L\L c0
� �

: �5:14�

Moreover, q�c0� � qK�c0� and if K � L, then qL�c0� � qK�c0�.
3. Let J be given by (4.5) and K � L. If 0 � h � 1, then qK�c0; b; h� � q�c0; b�.

If 1 � h, then qK�c0; b; h� � qL�c0; b; h�.
4. Let J be given by (4.5) and K � L. Assume that no edge of D�c0� is adjacent

to a site of R0. Then

qK c0; J
� �

� q c0; b
� �

� exp
(
ÿb2

X
e�ht;t0i2D c0� �

X
t00 :

t00�2��1

ÿ
eÿs t ÿ t00; b� � � eÿs t0 ÿ t00; b� ��) :

Proof. Lemma 5.2 implies that qK�c0; J� is decreasing in J and therefore also
in K. This proves 1., 2. and 3..

We prove 4.. We have qLnR0
�c0; J� � q�c0; b�; hence

qK c0; J
� �

� qL c0; J
� �

� qLnR0
c0; J
� � qL c0; J

� �
qLnR0

c0; J
� � � q c0; b

� � qL c0; J
� �

qLnR0
c0; J
� � :

�5:16�
We estimate the last quotient. Let

Js�e� :�
J�e� if e 62 D c0

� �
,

sJ�e� if e 2 D c0
� �

.

8<: �5:17�

Then Z�K; J0� � Z�Kjc0; J�, since only family of closed contours c, such that
c \ DK�c0� � ;, give a nonzero contribution to Z�K; J0�. On the other hand we
have Z�K; J1� � Z�K; J�. Therefore

ln
Z Kjc0; J
� �
Z�K; J� � ln

N K; J0� �
N K; J1� � � ln

Y
e2D�c0�

cosh J�e�

� ÿ
Z 1

0

ds
d
ds
lnN K; Js� � � ln

Y
e2D�c0�

cosh J�e� �5:18�

� ÿ
X

e�ht;t0i2D�c0�
J�e�

Z 1

0

ds r�t�r t0� �h iJs
K� ln

Y
e2D�c0�

cosh J�e� :
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Therefore

qL c0; J
� �

qLnR0
c0; J
� � � exp ÿ

X
e�ht;t0i2D�c0�

b
Z 1

0

ds r�t�r t0� �h iJs
Lÿ r�t�r t0� �h iJs

LnR0

� �8<:
9=; :

�5:19�
GKS-inequalities give

r�t�r t0� �h iJs
Lÿ r�t�r t0� �h iJs

LnR0
� r�t�r t0� �h i�;Js

LnR0
ÿ r�t�r t0� �h iJs

LnR0
: �5:20�

The �LnR0��-boundary condition in (5.20) is obtained by introducing an
external ®eld on R0 and then letting this ®eld go to 1. Notice that
ÿr�t�r�t0� � r�t� � r�t0� is an increasing function, so that by FKG-inequal-
ities

r�t�r t0� �h i�;Js
LnR0
ÿ r�t�r t0� �h iJs

LnR0

� r�t�h i�;Js
LnR0
ÿ r�t�h iJs

LnR0
� r t0� �h i�;Js

LnR0
ÿ r t0� �h iJs

LnR0
: �5:21�

De®ne new coupling constants J 00�e�,

J 00�e� :� Js�e� if e not adjacent to R0,
aJs�e� otherwise.

�
�5:22�

hr�t�i�;Js
LnR0
� hr�t�i�;J 00LnR0

with a � 1 and hr�t�iJs
LnR0
� hr�t�i�;J 00LnR0

with a � 0.
Hence

r�t�r t0� �h i�;Js
LnR0
ÿ r�t�r t0� �h iJs

LnR0

�
X

t00:
t00�2��1

b
Z 1

0

da
�

r�t� ; r t00� �h i�;J 00LnR0
� r t0� � ; r t00� �h i�;J 00LnR0

�
; �5:23�

where

r�t� ; r t00� �h i�;J 00LnR0
:� r�t� r t00� �h i�;J 00LnR0

ÿ r�t�h i�;J 00LnR0
� r t00� �h i�;J 00LnR0

: �5:24�
GHS-inequalities imply that hr�t� ; r�t00�i�;J 00LnR0

is decreasing in a; putting a � 0
we get

r�t� ; r t00� �h i�;J 00LnR0
� r�t� ; r t00� �h iJ 00LnR0

� r�t� r t00� �h iJs
LnR0

; �5:25�
because the last expectation value is with respect to the Gibbs measure on
LnR0 with free boundary condition and consequently by symmetry

r�t�h iJs
LnR0
� 0 : �5:26�

GKS-inequalities imply now

r�t�r t00� �h iJs
LnR0
� r�t�r t00� �h ib� exp ÿs t ÿ t00; b� �f g : �5:27�

Summarizing, we have
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0 � r�t�r t0� �h i�;Js
LnR0
ÿ r�t�r t0� �h iJs

LnR0
�5:28�

� b
X

t00:
t00�2��1

exp ÿs t ÿ t00; b� �f g � exp ÿs t0 ÿ t00; b� �f g� � :

We conclude using (5.19) and (5.28). (

Lemma 5.4 Let J�e� � 0 and t; t1; t2 2 K. Let k1 be an open contour with
dk1 � ft1; tg and k2 be an open contour with dk2 � ft; t2g, so that k � k1 [ k2 is
an open contour with dk � ft1; t2g. ThenX

k:dk�ft1;t2g
t2k ;K-comp

qK�k� �
X

k1:dk1�ft1;tg
K-comp

qK k1� �
X

k2:dk2�ft;t2g
K-comp

qK k2� �

� r t1� �r�t�h iK r�t�r t2� �h iK; �5:29�X
k1:dk1�ft1;tg

K-comp

qK k1 [ k2� � � 2 qK k2� �
X

k1:dk1�ft1;tg
K-comp

qK k1� � ; �5:30�

qK�k� � qK k1� �qK k2� � : �5:31�

Proof. We prove (5.29).

Let k be an open contour with dk � ft1; t2g, considered as a unit-speed
parametrized curve. Let s� be the largest s 2 �0; jkj� so that k�s�� � t. We
decompose k into fk1; k2g by cutting k at t and we set

k1 � k�s� : s 2 0; s�� �f g and k2 � k�s� : s 2 s�; jkj� �f g : �5:32�
Notice that by de®nition k2�s� 6� t for any s > s�, that is, k2 has exactly one
adjacent edge to t. (The way we cut k depends on the choice of the or-
ientation of k.) De®ne the graph G#�k2� by its set of bonds,

e#
� 	 [ E�K�nD k2� � ; �5:33�

e# is the edge of D�k2�, which is adjacent to t, but does not belong to k2 2. We
claim that

Z Kjk1 [ k2� � � Z G# k2� �jk1
ÿ �

: �5:34�
First, by de®nition

D k1 [ k2� � � D k1� � [ D k2� � : �5:35�
Let c, dc � ;, be K-compatible with k1 [ k2. By Lemma 3.1

E�c� \ D k1 [ k2� � � ; : �5:36�
Therefore by (5.35)

2 We want that k1 be a contour of the graph G#�k2�, so that e# must be an edge of G#�k2�.
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E�c� � E G# k2� �
ÿ �

; �5:37�
and

E�c� \ D k1� � � ; : �5:38�
This implies that c is K#-compatible with k1. Conversely, if c, dc � ;, is
G#�k2�-compatible with k1, then

E�c� \ D k1� � � ; : �5:39�
Suppose that e1; e2 are two edges of E�c�, which are adjacent to t. This is
possible only if the edge e� of k2, which is adjacent to t, belongs to D�k1�. But
this means that c is K-compatible with k1 [ k2. Using this result we getX
k:dk�ft1;t2g

t2k

Z�Kjk�
Z�K� w�k� �

X
fk1;k2g�k

Z�Kjk�
Z�K� w k1� �w k2� �

�
X

fk1;k2g�k

w k1� � Z Kjk1 [ k2� �
Z G# k2� �
ÿ � w k2� �

Z G#�k2�
ÿ �

Z�K� : �5:40�

If we sum in (5.40) over all k1, given k2, and use (5.34), then we obtain the
two-point function of the Ising model on the graph G#�k2�:X

k1

w k1� �
Z G# k2� �jk1
ÿ �
Z G k2� �� � � r t1� �r�t�h iG#�k2�� r t1� �r t� �h iK�

X
k1:dk1�ft1;tg

qK k1� � :

�5:41�
We can interpret in a similar way the remaining sum,X

k2

w k2� �
Z G# k2� �
ÿ �

Z�K� : �5:42�

We have

Z G# k2� �
ÿ � � X

c:dc�;
G#�k2�-comp

w�c�

�
X

c:dc�; ; e# 62c
G#�k2�-comp

w�c� �
X

c:dc�; ; e#2c
G#�k2�-comp

w�c� : �5:43�

By construction, all open contours k2 have only one edge adjacent to t. In the
®rst sum all closed contours of c are compatible with k2, while in the second
sum there is one closed contour containing e#; we glue this contour together
with k2 to form a new open contour of index 3 at t. ThereforeX
k2

w k2� �
Z G# k2� �
ÿ �

Z�K� �
X

k:dk�ft;t2g
K-comp

w�k� Z�Kjk�
Z�K� �

X
k:dk�ft;t2g

K-comp

qK�k� � r�t�r t2� �h iK :

�5:44�

Large deviations and continuum limit 455



We prove (5.30). The ®rst part of the proof is the same up to (5.40) and
(5.41), so that we getX

k1:dk1�ft1;tg
K-comp

qK k1 [ k2� � � w k2� �
Z G# k2� �
ÿ �

Z�K�
X

k1:dk1�ft1;tg
K-comp

qK k1� � : �5:45�

Let G�k2� be de®ned by its set of bonds, which is E�K�nD�k2�. Then we write

w k2� �
Z G# k2� �
ÿ �

Z�K� � w k2� � Z G k2� �� �
Z�K�

Z G# k2� �
ÿ �
Z G k2� �� � : �5:46�

Using (3.7) we can bound the last quotient by 2. We conclude using Lemma
3.2,

w k2� � Z G k2� �� �
Z�K� � w k2� � Z Kjk2� �

Z�K� � qK k2� � : �5:47�

We prove (5.31). Since Z�G#�k2�� � Z�G�k2��,

qK�k� � w k1� �w k2� � Z Kjk1 [ k2� �
Z�K�

� w k1� � Z Kjk1 [ k2� �
Z G k2� �� � � w k2� � Z G k2� �� �

Z�K�
� w k1� � Z Kjk1 [ k2� �

Z G# k2� �
ÿ � � w k2� � Z G k2� �� �

Z�K�
� qG#�k2� k1� � � qK k2� �
� qK k1� � � qK k2� � �5:48�

by Lemma 5.2. (

Lemma 5.5 Let b < bc.

1. If J�e� � b for all edges e, then for any t0; . . . ; tn 2 K, with tn�1 � t0,X
k:dk�;

t0;...;tn2k

qK�k� � exp ÿ
Xn

i�0
s ti�1 ÿ ti� �

( )
: �5:49�

2. If h � 0 and J�e� is de®ned by (4.5), then for t; t1; t2 2 K � L,X
k:dk�ft1;t2g;t2k
E�k�\E�R0��;

qK�k� � exp ÿs t ÿ t1� � ÿ s t2 ÿ t� �f g : �5:50�

3. If h � 0 and J�e� is de®ned by (4.5), and each ki, i � 1; . . . ; k, is a closed
contour, with ti0; . . . ; tini 2 ki, then �ti�ni�1� � ti0�Xk

i�1

X
ki:ti0;...;tini2ki

E�ki�\E�R0��;

qK k1; . . . ; kk� � �
Yk

i�1
exp ÿ

Xnj

j�0
s ti� j�1� ÿ tij
ÿ �( )

: �5:51�
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Proof. 1. follows from Lemma 5.4, GKS inequalities and Proposition 4.1.
The proof of 2. is a consequence of Lemmas 5.1 and the equivalent of
Lemma 5.4. The only modi®cation in the proof of that lemma comes from
the constraint E�k� \ E�R0� � ;. Before interpreting (5.42) we ®rst take h � 0
in (5.42). The reason for doing this is to prevent that the contour, which we
get by gluing an open contour and a closed contour, gives a contribution to
the sum when it intersects E�R0�. (

Lemma 5.6 Let b < bc, h � 0 and J�e� be de®ned by �4.5�; let K � L. The
diameter of c is d�c�. There exist a positive constant a � a�J� and a constant
C�a� such that for l � C�a�

PK� 9 c ; d�c� � l � � jKj � O�l2� expfÿa � lg : �5:52�
C�a� � O�1a ln 1

a� for small a.

Proof. We give to all closed contours an origin by choosing a total order on
the lattice:

t < t0 () t�2� < t0�2� or t�2� � t0�2� and t�1� < t0�1� : �5:53�
The origin is also the initial point of the contour, viewed as a parametrized
curve, which is counterclockwise oriented. To each c with diameter d�c� > l
we associate a sequence of points on the lattice as follows:

1. t00 is the origin of c. If t00�2� � 0, then s0 is the last time such that
c�s0��2� � 0; we set t0 :� c�s0�. (t0 is the largest point of c such that
t0�2� � 0.) Otherwise t0 :� t00.

2. Let s1 be the ®rst time such that c leaves the square of center t0 and side
l=2; we set t1 :� c�s1�.

3. Let s2 be the ®rst time greater than s1 such that c leaves the square of
center t1 and side l=2; we set t2 :� c�s2�.

4. The procedure is iterated until it stops.

Thus for all closed c we have a well-de®ned ordered sequence of points
�t00; t0; t1; . . . ; tn�.

For x � �x�1�; x�2�� 2 R2 let jxj1 :� jx�1�j � jx�2�j. Since b < bc, s�x� > 0;
we de®ne a as the largest positive constant such that s�x� � 2ajxj1, 8 x 2 R2.
Clearly

PK� 9 c d�c� � l � �
X
t2K

X
d�c��l
t0
0
�c��t

qK�c� ; �5:54�

since PK� 9 c � � qK�c� : Suppose that the points t00; t0; t1; . . . ; tn are ®xed. ThenX
c: dc�; ;d�c��l

t0
0
;...;tn�12c

qK�c� � exp ÿsbd�t00 ÿ t0� ÿ
Xn

i�0
s�ti�1 ÿ ti�

( )

� exp ÿsbd�t00 ÿ t0�
� 	

exp ÿ�a=2�nlf g ; �5:55�
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with tn�1 � t00. ThereforeX
c: t0

0
�c��t ;d�c��l

qK�c� �
X

t0

exp ÿsbd�t00 ÿ t0�
� 	

�
X
n�2
�2�l� 2��n exp ÿ�a=2�nlf g : �5:56�

We can choose C�a� so that for l � C�a�,X
c: t0

0
�c��t ;d�c��l

qK�c� � O�l2� expfÿa � lg : �5:57�

Remark: In the second part of the paper, we will have to consider the case
h � 1, which corresponds to sbd � 0. In this case the statement of the lemma
is modi®ed as follows

PK� 9 c ; d�c� � l � � jKj2 � O�l2� expfÿa � lg : �5:58�

6 Random-line representation of the two-point function

6.1 Two-point function

Let b < bc and suppose that J�e� � b for all edges e. We study here the
covariance of the Ising model at the thermodynamic limit, through its ran-
dom-line representation. The main goal is to obtain a subset of the random-
lines, which gives the main contribution to the covariance3

Let L be the set

L :� k : k � ; or k is an open contour, dk � f0; tg ; 0 6� t 2 Z2
� 	

: �6:1�
Let q�k� be the quantity of formula (5.14) when k is an open contour; set
q�k� � 1 when k � ;. We have

v : �
X
k2L

q�k�

� 1�
X

0 6�t2Z2

X
k: dk�f0;tg

q�k�

�
X
t2Z2

hr�0�r�t�i : �6:2�

The quantity v is the susceptibility of the model. It is ®nite since b < bc, see
e.g. Lemma 5.1. On L we de®ne a measure M with ®nite mass v, by setting

3 In this paper we do this by using monotonicity properties of the covariance. It is possible to
improve these results [PV1], if we make use of the sharp triangle inequality of the decay-rate s,
see [I1].

458 C.-E. P®ster and Y. Velenik



M�k� :� q�k� : �6:3�
Let f0! tg denote the event fk 2L : dk � f0; tgg. Then the two-point
function is equal to

hr�0�r�t�i �M� f0! tg � : �6:4�
The next proposition gives one of the main estimates of the paper. Let t 2 Z2;
if jt�2�j � t�1�, then set

Bt :�
(

s 2 Z2 : 0 � s�1� � t�1� ; t�2� ÿ t�1�
2

� s�2� � t�1� � t�2�
2

)
; �6:5�

if jt�1�j � t�2�, then set

Bt :�
(

s 2 Z2 :
t�1� ÿ t�2�

2
� s�1� � t�2� � t�1�

2
; 0 � s�2� � t�2�

)
: �6:6�

The boundary of Bt is de®ned as

@Bt :�
(

t0 2 Bt : 9 s 62 Bt ; jsÿ t0j � 1

)
: �6:7�

Proposition 6.1 Let b < bc, J�e� � b for all edges e, t � �t�1�; t�2�� 2 Z2, with
0 � t�2� � t�1� and a 2 N with 2a < t�1�. Let Bt be the square box (6.5) and
@Bt be its boundary (6.7). ThenX

k:dk�f0;tg
k inside Bt

q�k� � hr�0�r�t�i
h
1ÿ O�jt�1�j exp ÿO�a�f g�

i
exp ÿO�a�f g : �6:8�

k inside Bt means that k � Bt and that no edge of k, except the ®rst and the last
one, is adjacent to a site of @Bt.

Proof. The proof is divided into two parts. The ®rst part is inspired by a
similar result of [I1]; the second part follows a similar result proved in [Pf2].

First part. We choose two points ua 2 Z2 and va 2 Z2 such that

1. ua is the point on the vertical line ft0 : t0�1� � ag with ua�2� minimal and
ua�2� � a � �t�2�=t�1��.

2. va is the point on the vertical line ft0 : t0�1� � t�1� ÿ ag with va�2� maximal
and va�2� � t�2� ÿ a � �t�2�=t�1��.

Then we choose two open contours k1 and k2 inside Bt with dk1 � f0; uag and
dk2 � fva; tg, such that k1 and k2 have minimal lengths.

Let k0 be an open contour with dk0 � fua; vag which is inside Bt. We
assume that ua is the initial point. Let s1 2 �0; jk0j� be the integer time de®ned
by the condition that t1 :� k0�s1� 2 k1 so that t1�1� is minimal; similarly let
s2 2 �0; jk0j� be the integer time de®ned by the condition that t2 :� k0�s2� 2 k2
so that t2�1� is maximal. This gives a partition of k0 into three open contours;
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we sum over the ®rst and last ones using (5.30) of Lemma 5.4. We get the
upper boundX

k0:dk0�fua;vag
k0 inside Bt

q�k0� �
X
t1;t2

X
k:dk�ft1;t2g
k inside Bt

4 q�k�hr�ua�r�t1�ihr�t2�r�va�i : �6:9�

Let k be an open contour of the sum (6.9); we extend k, using the contours k1
and k2, to an open contour k, so that k is inside Bt and dk � f0; tg: k is the
union of k01, k and k02, with k01 the part of k1 from 0 to t1 and k02 the part of k2
from t2 to t. By Lemma 5.4 we have

q�k� � q�k01�q�k�q�k02� : �6:10�

Using Lemma 5.3 (replace J�e� by J 0�e� � 1 for all e 62 D�k0j�), we can show
that

q�k0j; J� � expfÿO�jk0jj�g; j � 1; 2 : �6:11�
Thus

4 q�k� � q�k� expfO�a�g ; �6:12�
since jk0jj � O�a�. Therefore, after summation over t1 and t2 in (6.9),X

k0:dk0�fua;vag
k0 inside Bt

q�k0� � expfO�a�g
X

k:dk�f0;tg
k inside Bt

q�k� : �6:13�

Second part. We prove a lower bound forX
k:dk�fua;vag
k inside Bt

q�k� �
X

k:dk�fua;vag
q�k� ÿ

X
k:dk�fua;vag

k\@Bt 6�;

q�k�

� hr�ua�r�va�i ÿ
X

k:dk�fua;vag
k\@Bt 6�;

q�k� : �6:14�

Suppose that dk � fua; vag and k \ @Bt 6� ;. We consider k as a unit-speed
parametrized curve from ua to va. Let s be the ®rst time k touches @Bt; we set
r :� k�s�. We haveX

k:dk�fua;vag
k\@Bt 6�;

q�k� �
X
r2@Bt

X
k:dk�fua;vag

k3r

q�k� �
X
r2@Bt

hr�ua�r�r�ihr�r�r�va�i : �6:15�

Suppose that r 2 @Bt belongs to the vertical left part, or to the horizontal
bottom part of @Bt. For simplicity assume that �t�2� ÿ t�1��=2 2 Z. Let ua be
the point obtained by a re¯ection of ua with axis ft0�1� � 0g, or ft0�2� �
t�2�ÿt�1�

2 g. Then by symmetry, GKS inequalities and translation invariance

hr�ua�r�r�ihr�r�r�va�i � hr�ua�r�r�ihr�r�r�va�i � hr�ua�r�va�i : �6:16�

460 C.-E. P®ster and Y. Velenik



The set S,

S :� fs0 : js0�1� ÿ ua�1�j � js0�2� ÿ ua�2�j � ag ; �6:17�
separates ua and va. One checks that we can apply Proposition 2.2, so that for
any s0 2 S,

hr�s0�r�va�i � hr�ua�r�va�i : �6:18�
Therefore

hr�ua�r�va�i �
X
s02S

hr�ua�r�s0�ihr�s0�r�va�i

� hr�ua�r�va�i
X
s02S

hr�ua�r�s0�i

� expfÿO�a�ghr�ua�r�va�i : �6:19�
A similar argument holds for the remainding part of @Bt, exchanging the role
of ua and va. HenceX

k:dk�fua;vag
k inside Bt

q�k� � hr�ua�r�va�i 1ÿ O�jt�1�j expfÿO�a�g�� �

� hr�0�r�t�i 1ÿ O�jt�1�j expfÿO�a�g�� � : �6:20�
(

6.2 Boundary two-point function

There is a similar random-line representation for the boundary two-point
function. The coupling constants are given by (4.5). Let

LL :� fk � L : k � ; or k is an open contour, dk � f0; tg ; 0 6� t 2 Lg :
�6:21�

We de®ne a measure on LL by setting

ML�k� :� qL�k� : �6:22�
The total mass of ML is

vL :�
X

k2LL

qL�k� �
X
t2L
hr�0�r�t�iL ; �6:23�

and by GKS-inequalities vL � v. We have, for x 2 R0,

hr�0�r�t�iL �ML�f0! tg� : �6:24�

Proposition 6.2 Let b < bc, h � 0 and J�e� be de®ned by (4.5). Let t 2 R0 with
0 < t�1� and a 2 N with 2a < t�1�. Let Bt be the square box

Bt :� fs 2 L : 0 � s�1� � t�1� ; 0 � s�2� � t�1�g �6:25�

Large deviations and continuum limit 461



and @Bt be its boundary

@Bt :� ft0 2 Bt : t0�1� � 0 ; t0�1� � t�1� ; t0�2� � t�1�g : �6:26�
Then X

k:dk�f0;tg
k inside Bt

qL�k� � hr�0�r�t�iL

� 1ÿ O
ÿjt�1�j5=2 expfÿ2asbd��1; 0��g

�h i
expfÿO�a�g : �6:27�

k inside Bt means that k � Bt and no edge of k, except the ®rst and the last one,
is adjacent to a site t0 2 @Bt.

Proof. We de®ne ua :� �a; 0� and va :� �t�1� ÿ a; 0�. The ®rst part of the
proof is identical with the one of Proposition 6.1. Thus we haveX

k:dk�f0;tg
k inside Bt

qL�k� � expfÿO�a�g
X

k:dk�fua;vag
k inside Bt

qL�k� : �6:28�

Consider k such that dk � fua; vag with initial point ua. Assume that k
touches the boundary of the box Bt at t�. Let k�s�� :� t�. There are two
cases.
1. t��2� � t�1�. Then there is a last time s1 such that s1 < s� with k�s1� 2 R0

and a ®rst time s2 > s� such that k�s2� 2 R0. Let s� :� s��1; 0��. Using sym-
metry and monotonicity properties of the decay-rate and Lemma 5.1 we getX

k:dk�fua;vag
t�2k

qL�k� � O�expfÿ2t�1�s�g� : �6:29�

We write the right-hand side of (6.29) as

O�expfÿ2t�1�s�g� � O�expfÿ2t�1�s�g�
hr�ua�r�va�iL

hr�ua�r�va�iL : �6:30�

The lower bound on the boundary two-point function of Section 7.2, Pro-
position 4.2 and t�1�s� � s�t�, with t � �t�1�; 0�, imply that

O�expfÿ2t�1�s�g�
hr�ua�r�va�iL

� O
�
jt�1�j3=2 expfÿs�t�g

�
: �6:31�

Summing over t�, we getX
t�:t��2��t�1�

X
k:dk�fua;vag

t�2k

qL�k� � hr�ua�r�va�iLO
�
jt�1�j5=2 expfÿs�t�g

�
: �6:32�

2. t��1� � 0 or t��1� � t�1�. From Lemma 5.4 and GKS inequalities we ob-
tain
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X
k:dk�fua;vag
t�2k ; t��1��0

qL�k� � hr�ua�r�t��iLhr�va�r�t��iL

� hr�ÿua�r�t��iLhr�va�r�t��iL
� hr�ÿua�r�va�iL
� hr�ÿua�r�va�iL
hr�ua�r�va�iL

hr�ua�r�va�iL

� hr�ua�r�va�iLO
�
jt�1�j3=2 expfÿ2sbd�ua�g

�
: �6:33�

We conclude as in the proof of Proposition 6.1 (sbd�ua� � a � sbd��1; 0��),X
k:dk�fua;vag
k inside Bt

qL�k� � hr�ua�r�va�iL 1ÿ O
ÿjt�1�j5=2 expfÿ2sbd�ua�g

�h i

� hr�0�r�t�iL 1ÿ O
ÿjt�1�j5=2 expfÿ2sbd�ua�g

�h i
: �6:34�

7 Correction to the exponential decay

We need lower bounds for the two-point function and the boundary two-
point function in section 10, in order to get precise estimates for the re-
mainder terms.

7.1 Lower bound for the two-point function

We need a bound of the following kind,

hr�0�r�t�i � C
expfÿs�t�g
jtjk ; �7:1�

for some positive k. Such a bound can be derived ([PL], [DKS]) with k � 1=2
for small b by perturbative methods; see also [G], [BLP2], and in particular
[BF], where the connection with the Central Limit Theorem for the random
lines k is made explicit. In case of the Bernoulli percolation Alexander proves
such bounds for the corresponding quantity in a non-perturbative way [A1]
with k � 420 if D � 2 and k � 2328 if D � 3; see also [A2]. In this paper we
use the bounds obtained from the work of McCoy and Wu [MW] chapters
XI and XII.

Lemma 7.1 Let J�e� � b, b < bc, for all edges e of Z2. Then there exists a
constant C such that for all t 6� 0,

hr�0�r�t�i � C�����jtjp expfÿs�t�g : �7:2�
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7.2 Lower bound for the boundary two-point function

Proposition 7.1 Let J�e� be given by (4.5), b < bc and t 2 R0.

1. Let h � 1. Then there exists a constant C such that for t 2 R0,

hr�0�r�t�ib;1L �
C

jtj3=2
expfÿsbd�t�g : �7:3�

2. For all h � 0

hr�0�r�t�ib;hL � �tanh b�2 � hr�0�r�t�ib;1L : �7:4�
3. Let h > hc�b� (see Proposition 4.2). Then there exists a constant C � C�h; b�

such that

hr�0�r�t�ib;hL � C expfÿsbd�t; b; h�g : �7:5�

Remark: Since hc�b� � 1, we can write (7.3) as

hr�0�r�t�ib;1L �
C

jtj3=2
expfÿs�t�g : �7:6�

Proof. 1. follows from [MW] chapter VII; see also [P].
By GKS inequalities the boundary two-point function decreases if we set

h � 0 and J�e� � 0 for all edges e adjacent to a site t0 2 R0, except the vertical
edges adjacent to t0 � 0 and t0 � t. It is now not di�cult to sum over the
variables r�0� and r�t� explicitly and to get (7.4). This proves 2.

We prove 3., assuming Lemma 7.2. Given x1; x2 2 R0, we de®ne the in-
terval �x1; x2� as the set

�x1; x2� :� ft 2 L : x1�1� � t�1� � x2�1� ; t�2� � 0g : �7:7�
Let a 2 N, t�1� > a and t � �t�1�; 0�. We set tk :� kt for k � 1; 2; . . . ; n, and

I :� �t1 ÿ �a; 0�; t1� : �7:8�
We have

hr�0�r�tn�iL �ML� f0! tng � �7:9�
�ML Ec

I j f0! tng
� �

ML f0! tng� � �ML EI \ f0! tng� � ;
where EI is the event fk \ I 6� ;g and Ec

I the complementary event. We
choose a so that

M Ec
I j f0! tng

� � � 1=2 ; �7:10�
which is possible according to Lemma 7.2 if t�1� is large enough. Thus we
have
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hr�0�r�tn�iL � 2ML EI \ f0! tng� �
� 2

X
u2I

X
k:dk�f0;tng

u2k

qL�k�

� 2ahr�0�r�t1 ÿ �a; 0��iLhr�t1�r�tn�iL : �7:11�
We have used Lemma 5.1 and the monotonicity property of the boundary
two-point function, which is proven in the same way as the corresponding
property for the two-point function on Z2. By GKS inequalities and trans-
lation-invariance

hr�0�r�t1 ÿ �a; 0��iL
hr�0�r�t1�iL

� hr�0�r�t1 ÿ �a; 0��iL
hr�0�r�t1 ÿ �a; 0��iLhr�t1 ÿ �a; 0��r�t1�iL

� 1

hr�0�r��a; 0��iL
: �7:12�

If we set

C� :� hr�0�r��a; 0��iL
2a

; �7:13�

then

hr�0�r�tn�iL � Cÿ1� hr�0�r�t1�iLhr�t1�r�tn�iL : �7:14�
We can iterate this result,

hr�0�r�tn�iL � Cÿn
�
�
hr�0�r�t1�iL

�n
: �7:15�

Therefore, if t�1� is large enough, then

ÿsbd�t; b; h� � lim
n!1

1

n
lnhr�0�r�tn�iL � ÿ lnC� � lnhr�0�r�t�iL : �7:16�

(

Lemma 7.2 Let b < bc, h > hc�b�, x1; x2; t 2 R0, such that 0 < x1�1� < x2�1�
< t�1�, and I :� �x1; x2� (see (7.7)). Then there exist e positive, ne and C1 such
that for all x1; x2 with jx2 ÿ x1j � ne

ML k \ I � ;f g j f0! tg� � � C1 exp ÿe x2 ÿ x1j jf g : �7:17�

Proof. We have

ML f0! tg� � � r�0�r�t�h iL : �7:18�
Let k be a random line such that dk � f0; tg and k \ I � ;. Let s1 be the last
time when k touches R0 at the left hand side of I , and let s2 be the ®rst time
that k touches R0 at the right hand side of I . We set u :� k�s1� and v :� k�s2�.
We necessarily have u�1� < x1�1� < x2�1� < v�1�. From Lemmas 5.4 and 5.1
we get
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ML k \ I � ;f g \ f0! tg� � �
X
u;v

exp ÿs�vÿ u�f g r�0�r�u�h iL r�v�r�t�h iL :

�7:19�
By GKS inequalities

r�0�r�t�h iL� r�0�r�u�h iL r�u�r�v�h iL r�v�r�t�h iL ; �7:20�
so that

ML k \ I � ;f g j f0! tg� � �
X
u;v

expfÿs�vÿ u�g
r�u�r�v�h iL

: �7:21�

We know that

lim
n!1ÿ

1

n
ln r�0�r nt1� �h iL� s�bd ; �7:22�

where
s�bd � sbd t1� �; t1 � �1; 0� : �7:23�

Let 0 < 2e < s� ÿ s�bd; s� � s t1� �. We can ®nd ne so that for all n � ne,

lim
n
ÿ 1

n
ln r�0�r nt1� �h iL� s�bd � � ; �7:24�

so that

r�0�r nt1� �h iL� exp ÿn s�bd � e
ÿ �� 	

: �7:25�
From this inequality and s�uÿ v� � juÿ vj � s�

ML k \ I � ;f g j f0! tg� � �
X
u;v

exp ÿ�juÿ vjf g : �7:26�

Using u < x1 < x2 < v the lemma follows. (

Remark: Using Proposition 7.1 we can improve Lemma 7.2. There exists a
constant C such that for any interval I � �x1; x2� we have

ML k \ I � ;f g j f0! tg� � � C exp ÿ s� ÿ s�bd
ÿ � � x2 ÿ x1j j� 	

: �7:27�

Part II: Ising model at low temperature

We study the large deviations of the magnetization of the Ising model for
b > bc (i.e. below the critical temperature). We analyze in particular
boundary e�ects. Some estimates of part I are essential. The results are valid
only for the two-dimensional case.

We have written part I with coupling constants b and h in order to
simplify the notations, and because this part has its own interest. However,
the proper notations would be b� and h�, since these coupling constants are
the dual coupling constants of b and h. In particular h � 0 in part II cor-
responds to h� � 1 in part I.
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8 Low-temperature representation

There is a representation of the Gibbs measure in K with � boundary con-
dition in terms of contours, which is similar to the one of (2.4). To each
con®guration x, which satis®es the K�-boundary condition, we associate a
family c � c�x� of compatible contours on the dual lattice �Z2��: let E��x� be
the subset of edges

E��x� :� e� : r�t��x�r t0� ��x� ÿ 1� � � ÿ2; t; t0h i � ef g : �8:1�
We decompose the set E��x� into compatible contours c. Two important
remarks: All contours c of c�x� are closed, i.e. dc � ;; We do not obtain all
families of compatible contours as it is the case for the high-temperature
representation. This motivates the

De®nition 8.1 A family of compatible contours c in K� is K�-compatible if and
only if there exists a con®guration x satisfying the K�-boundary condition,
such that c is the family of contours of x.

Let K � Z2. The set K� � �Z2�� is by de®nition the set

K� :� t� 2 Z2
ÿ ��

: t� is a corner of a plaquette p�t�; t 2 K
n o

: �8:2�
Any family of contours of a con®guration x satisfying the K�-boundary
condition is in K�. Given a closed contour c on the dual lattice �Z2�� there
exists a unique con®guration xc having c as single contour and such that
x�t� � 1 for all t, except for a ®nite number. The interior of c is

int c :� t 2 Z2 : xc�t� � ÿ1
� 	

: �8:3�
The exterior of c is ext c :� Z2nint c. The volume of c is

vol c :� jintcj : �8:4�
A contour c of a con®guration x is external if there is no other contour c0 of
the con®guration such that int c � int c0. Let c be a contour of a con®gura-
tion x satisfying the K�-boundary condition. The closure of the interior of c
in K, int c, is the union of int c and the set of all t 2 Knint c, such that
x0�t� � 1 for any con®guration x0 with the properties: 1) x0 satis®es the K�-
boundary condition; 2) c is an external contour in x0: 4 The closure of the
exterior of c in K, ext c, is the union of ext c and the set of all t 2 Knext c, such
that x0�t� � ÿ1 for any con®guration x0 with the properties: 1) x0 satis®es
the K�-boundary condition; 2) c is an external contour in x0.

Let J ��e�� be the dual coupling to J�e�. The �-weight of a contour is
w��c� :�

Y
e�2c

tanh J� e�� � �
Y
e�2c

exp ÿ2 J�e�f g : �8:5�

4 int c depends on the rule A; if K is large enough it is independent of K.
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The normalization constant N�K�� appearing in the de®nition of l�K can be
written as

N�K�� �
X

x

Y
e�ht;t0i:
e\K6�;

exp J�e� r�t��x�r t0� ��x� ÿ 1� �f g

�
X

c:dc�;
K�-comp:

Y
c2c

Y
e�2c

exp ÿ2 J�e�f g

�
X

c:dc�;
K�-comp:

Y
c2c

w��c� : �8:6�

Let K � Z2 and c0 be a family of K�-compatible closed contours. We set

Z� Kjc0; J
� �

:�
X

c:dc�;
c[c0 K�-comp:

w��c� : �8:7�

If c0 � ;, then
Z� Kj;; J� � � Z��K; J� : �8:8�

Lemma 8.1 Let K be a ®nite subset of Z2; J�e� be non-negative coupling
constants. Then

N�K; J�� � Z��K; J� : �8:9�
Let c0 be a family of K�-compatible closed contours. Then the probability
P�K �c0�, computed with respect to the measure l�K , is given by

P�K c0
h i
� w� c0

� � Z� Kjc0; J
� �

Z��K; J� : �8:10�

If K is simply connected, then any family of K�-compatible contours is K�-
compatible; furthermore

Z��K; J� � Z K�; J �� � �8:11�
and

P�K c0
h i
� w� c0

� � Z K�jc0; J �
� �
Z K�; J �� � � qK� c0

� �
: �8:12�

Proof. (8.11) follows by comparing the high-temperature and low-tempera-
ture representations. If K is simply connected then we construct explicitly the
con®guration x starting from the boundary for any family of K�-compatible
contours. (
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9 Phase of small contours

A basic idea in [DKS] is the introduction of an intermediate length-scale in
the analysis of the large deviations of the magnetization. One distinguishes
between small and large contours. We study here the large deviations for the
magnetization under the condition that all contours of a con®guration x are
small. Our main result is Proposition 9.1. It is inspired by the appendix of
Schonmann and Shlosman in [SS1]; see also Io�e [I2] and Pisztora [Pi] for
related and former results of this kind.

9.1 De®nition of the phase of small contours

Let l be some positive integer; we set

B�0; l� :� t � �t�1�; t�2�� 2 Z2
ÿ ��

: ÿl � t�i� < l ; i � 1; 2
n o

: �9:1�
De®nition 9.1 Let s 2 N. A contour c is s-small, or small, if there is a translate
of B�0; s=2� which contains c.

Let K be a ®nite subset of Z2. The phase of small contours is described by
the conditioned measure

P�;sK � � � :� P�K � j all contours s-smallf g� � : �9:2�
The expectation value is denoted by �h i�;sK , or P�;sK � � �. It is convenient to use

Is
K�x� :�

1 if x satisfies the K�-boundary condition
and each contour of x is s-small,

0 otherwise .

(
�9:3�

The function x 7! Is
K�x� is increasing. Furthermore, if K is the union of two

disjoint connected components K1 and K2, then

Is
K�x� � Is

K1
�x� � Is

K2
�x� : �9:4�

The main property of the phase of small contours is the decoupling property
expressed in the next lemma.

Lemma 9.1 Let J�e� � 0 for all edges e. Let l; s 2 N, and set K1 :� B�0; l�,
K2 :� B�0; l� s� 1�. Suppose that K � K2.

1. Let f be K1-local and g KnK2-local. Then

f gh i�;sK ÿ fh i�;sK � gh i�;sK

�� �� � max
K1�K0�K2

fh i�;sK ÿ fh i�;sK0

��� ��� � jgjh i�;sK : �9:5�
2. If furthermore f is increasing and g positive, then

f gh i�;sK � fh i�K2
� gh i�;sK : �9:6�

If furthermore f is decreasing and g positive, then

f gh i�;sK � fh i�K1
� gh i�;sK : �9:7�
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Remark: In the proof of Lemma 9.1 we only use (9.4), the Markov property
and FKG-inequalities. Lemma 9.1 is therefore also true if we replace the
measure l�K by another measure, which has the Markov property, as long as
FKG-inequalities remain valid; for example we may consider the Ising model
with arbitrary external ®eld.

Proof. By de®nition

f gh i�;sK �
f g Is

K


 ��
K

Is
K


 ��
K

: �9:8�

Suppose that c is an external contour in a con®guration x and that
Is
K�x� � 1. Then

K2 6� int c : �9:9�
Moreover, if

int c \ KnK2� � 6� ; ; �9:10�
then

int c \ K1 � ; : �9:11�
Let c1�x�; . . . ; cn�x� be all external contours of x such that

int ci�x� \ KnK2� � 6� ; ; i � 1; . . . ; n ; �9:12�
we de®ne the random set

K�x� :� KnK2� �
[

i�1;...;n
int ci�x� : �9:13�

We have by Markov property and (9.4)

f gh i�;sK �
X
K00�K

f g j K� � � � K00f gh i�;sK � P�;sK K� � � � K00f g� �

�
X
K00�K

fh i�;sKnK00 � g j K� � � � K00f gh i�;sK � P�;sK K� � � � K00f g� � : �9:14�

If P�;sK �fK� � � � K00g� 6� 0, then K1 � KnK00 � K2. Hence, the result follows
from

f gh i�;sK ÿ fh i�;sK � gh i�;sK

�
X
K00�K

fh i�;sKnK00ÿ fh i�;sK

� �
g j K� � � � K00f gh i�;sK � P�;sK K� � � � K00f g� � : �9:15�

Suppose that f is increasing and g positive. FKG-inequalities and
K1 � KnK00 � K2 imply that

fh i�;sKnK00 �
f Is

KnK00
D E�

KnK00

Is
KnK00

D E�
KnK00

� fh i�KnK00� fh i�K2
: �9:16�
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Hence (9.6) follows from (9.14) and (9.16). (

We derive some consequences of Lemma 9.1 for the model with the coupling
constants

J�e� :� b � 0 if e � t; t0h i, t�2� � 0 and t0�2� � 0,

hb � 0 if e � t; t0h i, t�2� � ÿ1 or t0�2� � ÿ1 .

�
�9:17�

We recall a result of [BLP2].

Lemma 9.2 For any b > bc there exists a�b� > 0 and K such that

rAh i�V1ÿ rAh i�V2
�� �� � K

X
t2A

X
t02V1DV2

exp ÿa�b� t ÿ t0j jf g ; �9:18�

where A � V1 \ V2 and V1DV2 � �V1nV2� [ �V2nV1�.
Lemma 9.3 Let J�e� be the coupling constants given by (9.17) with b > bc. Let
s 2 N and t 2 L with t�2� > 2s� 1. Let K � L, such that K contains the
square box

u 2 L : jt�i� ÿ u�i�j � 2s� 1 ; i � 1; 2f g : �9:19�
Then there exists a positive constant j � j�b� (see (9.31)) such that

r�t�h i�;b� r�t�h i�;s;JK � r�t�h i�;b�O s4
ÿ �

exp ÿj � sf g : �9:20�
Suppose furthermore that t0 2 K and

min t0�i� ÿ t�i�j j : i � 1; 2f g > 2s� 1 : �9:21�
Then

r�t� r t0� �h i�;sK ÿ r�t�h i�;sK � r t0� �h i�;sK

�� �� � O s4
ÿ �

exp ÿj � sf g � r t0� �h i�;sK : �9:22�

Proof. Let K1 be a translate of the box B�0; s=2� with t in its ``center''. Let K2

be the translate (same translation) of the box K2 of Lemma 9.1 with l � s=2.
The ®rst inequality follows from (9.6), with g � 1, and from FKG-inequal-
ities,

r�t�h i�;s;JK � r�t�h i�;JK2
� r�t�h i�;b : �9:23�

By (9.14) we have

r�t�h i�;s;JK �
X
K00�K

r�t�h i�;sKnK00 � P
�;s
K K� � � � K00f g� � : �9:24�

Only the terms with K1 � KnK00 � K2 give a non-zero contribution. There-
fore by FKG-inequalities
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r�t�h i�;s;JK �
X
K00�K

r�t�Is
KnK00

D E�;J
KnK00

Is
KnK00

D E�;J
KnK00

� P�;sK K� � � � K00f g� �

�
X
K00�K

r�t�Is
K1

D E�;J
K1

Is
K1

D E�;J
K1

�
Is
K1

D E�;J
K1

Is
K


 ��;J
KnK00
� P�;sK K� � � � K00f g� � : �9:25�

By FKG-inequalities and GKS-inequalities

r�t�Is
K1

D E�;J
K1

� r�t�h i�;JK1
� Is

K1

D E�;J
K1

� 0 : �9:26�

Since hIs
K1
i�;JK1
� 1 and hIs

Ki�;JKnK00 � hIs
K2
i�;JK2

, we get

r�t�h i�;s;JK � 1

Is
K2

D E�
K2

� r�t�h i�;s;JK1
: �9:27�

In K1 all contours are s-small, so that we have

r�t�h i�;s;JK � 1

Is
K2

D E�
K2

� r�t�h i�;JK1
: �9:28�

If the diameter d�c� of c is smaller than s, then c is s-small. Lemma 5.6 and
Lemma 8.1 give

1

Is
K2

D E�
K2

� 1� O s4
ÿ �

exp ÿsa b�� �f g ; �9:29�

with a�b�� of Lemma 5.6. Lemma 9.2 gives
r�t�h i�;JK1

ÿ r�t�h i�;b
��� ��� � O�s� exp ÿsa�b�f g : �9:30�

De®ne j�b� so that

max exp ÿsa b�� �f g ; exp ÿsa�b�f g� � � exp ÿj�b� � sf g : �9:31�
The second a�rmation is a consequence of (9.5) and (9.20). (

9.2 Large deviations in the phase of small contours

Proposition 9.1 Let J�e� � 0 for all edges e.
1. Let

var�K :� 1

jKj
X
t;t02K

r t0� �r�t�h i�Kÿ r t0� �h i�K r�t�h i�K
� �

: �9:32�

For any x � 0,
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P�K
X
t2K

r�t� ÿ r�t�h i�K
ÿ � � xjKj

( )" #
� exp ÿjKj x2

2var�K

� �
: �9:33�

2. Let l; s 2 N, K1 � B�0; l�, K2 � B�0; l� s� 1�. Suppose that K0 � Z2 is the
union of n0 disjoint translates Bi of the box K2 and that K00 is the union of n00

disjoint translates Bj of the box K2 such that K0 \ K00 � ;. Let
K :� K0 [ K00, N :� n0 � n00 and P s

K :� P�;s
K0 
 Pÿ;s

K00 .
Let

D�;s
K0 :� max

K1�K3�K2

1

K0j j
X
t2K0

r�t�h i�;sK0 ÿ
1

K1j j
X
t2K1

r�t�h i�;sK3

�����
����� ; �9:34�

Dÿ;s
K00 :� max

K1�K3�K2

1

K00j j
X
t2K00

r�t�h iÿ;sK00 ÿ
1

K1j j
X
t2K1

r�t�h iÿ;sK3

�����
����� ; �9:35�

x :� y � 2
4�s� 1��2l� s� 1�

K2j j � n0D�;s
K0 � n00Dÿ;s

K00

N
: �9:36�

If y � 0, then

P s
K

X
t2K

r�t� ÿ r�t�h isK
ÿ ������

����� � xjKj
( )" #

� exp ÿN
y2

2

� �
: �9:37�

Remarks: 1. A variant of 1. is: for any x � 0,

P�;sK

X
t2K

r�t� ÿ r�t�h i�K
ÿ � � xjKj

( )" #

� 1ÿ P�K 9 c not smallf g� �ÿ �ÿ1
exp ÿjKj x2

2var�K

� �
: �9:38�

2. We have a similar proposition if we consider Kÿ-boundary condition. In
particular 1. becomes in this case: for any x � 0,

PÿK
X
t2K

r�t� ÿ r�t�h iÿK
ÿ � � ÿxjKj

( )" #
� exp ÿjKj x2

2varÿK

� �
: �9:39�

Notice that by symmetry

varÿK � var�K : �9:40�

3. In applications, we usually have K � K0 [ K00 [ dK, with dK 6� ;. The
conclusion of Proposition 9.1 still applies, provided y is de®ned by

x :� y � 2
4�s� 1��2l� s� 1�

K2j j � n0D�;s
K0 � n00Dÿ;s

K00

N
� jdKj
jKj : �9:41�
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Proof. Let

fK�a� :� 1

jKj ln exp a
X
t2K

r�t�
" #* +�

K

: �9:42�

We have (see e.g. Lemma 5.1 in [Pf2])

P�K
X
t2K

r�t� ÿ r�t�h i�K
ÿ � � xjKj

( )" #
� exp ÿjKj x2

2 supa�0 d2
da2 fK�a�

 !
:

�9:43�
GHS-inequalities give

sup
a�0

d2

da2
fK�a� � var�K : �9:44�

We prove 2. The proof is similar to the proof of Lemma 9.1. We de®ne for
each boxBi a random variable Yi. Each boxBi is a translate of K2; denote by
B0i the translate of K1 by the same translation and set

Yi :� 1

K1j j
X
t2B0i

r�t� : �9:45�

Then

P s
K

X
t2K

r�t� ÿ r�t�h isK
ÿ ������

����� � xjKj
( )" #

� P s
K

XN

j�1
Yj ÿ 1

K2j j
X
t2K

r�t�h isK
�����

����� � N xÿ 2
4�s� 1��2l� s� 1�

K2j j
� �( )" #

:

�9:46�
We de®ne a random set K�x�. Let c1�x�; . . . ; cn�x� be all external contours of
x such that int ck has a non-empty intersection with at least two di�erent
boxes Bk; we set

K�x� :�
[

i�1;...;n
int ci : �9:47�

By construction,

K�x� \B0k � ; ; �9:48�
for all x such that all contours are s-small. If x̂ � xÿ 8�s� 1��2l� s
�1�=jK2j, then

P s
K

XN

j�1
Yj ÿ 1

K2j j
X
t2K

r�t�h isK
������
����� � Nx̂

( )" #

�
X
K0�K

P s
K

XN

j�1
Yj ÿ 1

K2j j
X
t2K

r�t�h isK
������
����� � Nx̂

( )
j K� � � � K0f g

" #
� P s

K K� � � � K0f g� � : �9:49�

474 C.-E. P®ster and Y. Velenik



Let K0 be such that P s
K�fK� � � � K0g� 6� 0, so that the variables Yi,

i � 1; . . . ;N , are independent with respect to the probability measure
P s

K� � j fK� � � � K0g�. Using (9.36) we get

P s
K

XN

j�1
Yj ÿ 1

K2j j
X
t2K

r�t�h isK
�����

����� � Nx̂

( )
j K� � � � K0f g

" #
�9:50�

� P s
K

XN

j�1
Yj ÿ Yj j K� � � � K0f g
 �s

K

ÿ ������
����� � Ny

( )
j K� � � � K0f g

" #
:

Since the random variables Yj are bounded by one, their variances are also
bounded by one, so that we conclude by using the elementary inequality: for
any x > 0,

Prob
XN

i�1
Yi ÿE Yi� �� �

�����
����� � nx

" #
� exp ÿN

x2

2

� �
: �9:51�

(

Comments: 1. In the proof of (9.37) we used a trivial bound on the variances
of the variables Yj. Since there is a constraint on the size of the contours we
expect that the variance goes to zero when jKLj ! 1; in such a case (9.37)
can be improved.
2. To apply this proposition we need to control the quantities r�t�h i�K , var�K ,
r�t�h i�;sK and (9.34), (9.35). We make some remarks concerning that point.
2a. Using Lemma 9.3, we obtain the following bounds,

D�;s
K0 � O s

@K0j j
K0j j

� �
� O s

@K1j j
K1j j

� �
; �9:52�

Dÿ;s
K00 � O s

@K00j j
K00j j

� �
� O s

@K1j j
K1j j

� �
: �9:53�

2b. If J�e� � b for all edges e and b > bc then FKG-inequalities give

r�t�h i�K� m� and r�t�h iÿK� ÿm� ; �9:54�
and we can use Lemma 9.2 to estimate

r�t�h i�Kÿm�
�� �� or r�t�h iÿK�m�

�� �� : �9:55�

Moreover, GHS-inequalities give

varÿK � var�K �
1

jKj
X
t;t02K

r t0� �r�t�h i�Kÿ r t0� �h i�K r�t�h i�K
n o

� 1

jKj
X
t;t02K

r t0� �r�t�h i�ÿ r t0� �h i� r�t�h i�
n o

�
X
t2Z2

r�0�r�t�h i�;bÿm��b�2
n o

: �9:56�
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The quantity

v :�
X
t2Z2

r�0�r�t�h i�;bÿm��b�2
n o

�9:57�

is called susceptibility. It coincides with the one de®ned by (6.2) when b � bc.
Indeed, in that latter case m� � 0 and hr�t�r�0�i�;b � hr�t�r�0�ib. It is ®nite
for b > bc in the 2D Ising model.
2c. Let the coupling constants J�e� be given by (9.17) with b > bc and h � 1.
Let K � L; GHS-inequalities imply

varÿ;b;hK � var�;b;hK � var�;b;1K � v : �9:58�
Moreover, for all t 2 L, t�2� � 1 we have by FKG-inequalities (see proof of
(5.20))

r�t�h iÿ;b;1KnR0
� r�t�h iÿ;b;hK � r�t�h iÿ;b;1K ; �9:59�

so that we can use Lemma 9.2 to compare hr�t�iÿ;b;hK with ÿm�.
2d. Let the coupling constants J�e� be given by (9.17) with b > bc and
0 < h � 1. In that case we use

Lemma 9.4 Let the coupling constants J�e� be given by �9:17� with b > bc. Let
t 2 K such that K contains the square box

fu : jt�i� ÿ u�i�j � 2s; i � 1; 2g; s > 0 : �9:60�
There exists a positive constant a�b� (see Lemma 9.2) such that

r�t�h i�;bÿ 2P�K f9 c not s-smallg� � � hr�t�i�;b;hK

� hr�t�i�;b � 2P�K f9 c not s-smallg� � � O�s� expfÿsa�b�g : �9:61�

Proof. Let E be the event: all external contours c in x, which have at least one
edge on the boundary of K�, are s-small. We have

hr�t�i�;b;hK ÿ hr�t�jEi�;b;hK � P�;b;hK E� �
��� ��� � P�;b;hK �f9 c not s-smallg� : �9:62�

Since t is at a distance at least 2s from the boundary, then FKG-inequalities
imply

hr�t�jEi�;b;hK � hr�t�i�;bK � hr�t�i�;b : �9:63�
The lower bound follows from (9.62) and (9.63). The upper bound follows by
using Lemma 9.2 to show that hr�t�jEi�;bK � hr�t�i�;b � O�s� exp�ÿsa�b��.

(

There is of course a similar result with )boundary condition instead of
� boundary condition. In case K is simply connected we can use Lemmas 8.1
and 5.6 to estimate

P�;b;hK �f9 c not s-smallg� : �9:64�

476 C.-E. P®ster and Y. Velenik



To get an upper bound on var�;b;hK we use GKS inequalities,

hr�t�r�t0�i�;b;hK � hr�t�r�t0�i�;b;1K ; �9:65�
and estimate by Lemmas 9.4 and 9.2 the quantity

hr�t�i�;b;hK hr�t0�i�;b;hK ÿ hr�t�i�;b;1K hr�t0�i�;b;1K : �9:66�
3. Using the above method, it is possible to improve the results on the phase
of small contours given in [I2] and [SS1]. In these papers, the probability
which was considered was P�;sK � 1jKj

P
t2K r�t� ÿ m� < ÿ��. In such a case, we

can apply the preceding method with l � C���s, with C su�ciently large. We
then use the fact that there exist l��� > 0 and �0��� > 0 such that at least lN
boxes have a magnetization at most m� ÿ �0. Using the fact that�

1
jKj
P

t2K r�t� ÿ m� < ÿ�	 is decreasing we can ®rst remove the constraint on
the size of contours and then use monotonicity in the size of the box in order
to reduce the discussion to the case K2. The event so obtained can be esti-
mated using the results of [S]. Choosing s � Lb, we get

P�;sK

1

jKj
X
t2K

r�t� ÿ m� < ÿ�
" #

� �exp�ÿO�Lb��O�L2ÿ2b� � exp�ÿO�L2ÿb��

�9:67�
This exponent can be shown to be optimal using the method of proof of
Lemma 12.3.

10 Large deviations: lower bound

We derive a lower bound for large deviations of the magnetization of an
Ising model in a ®nite box. It is given by the in®mum of the isoperimetric
problem discussed in the introduction, hence it depends on the choice of the
boundary condition and the shape of the box. In the next section we show
that the lower bound is optimal. We do not assume here that this isoperi-
metric problem has a solution. We derive a lower bound for all curves C
which are boundaries of convex bodies with given volume. Inside C one has
the )phase and outside the �phase. We have a uniform control of the re-
mainder terms.

Let r1; r2 2 N; we de®ne the box KL � KL�r1; r2�
KL :� t 2 Z2 : ÿr1L � t�1� < r1L ; 0 � t�2� < 2r2L

� 	
: �10:1�

We choose the coupling constants as in (9.17),

J�e� :� b � 0 if e � ht; t0i; t�2� � 0 and t0�2� � 0;
hb � 0 if e � ht; t0i; t�2� � ÿ1 or t0�2� � ÿ1 :

�
�10:2�

With these coupling constants the Gibbs measure lh
L, h � 0, is equal to the

Gibbs measure in KL with K�L -boundary condition, lh
L � l�L � l�KL

. The case
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h < 0 is equivalent to a K�L -boundary condition, with the same nonnegative
coupling constants. By de®nition a con®guration x satis®es the K�L -boundary
condition if

x�t� :� 1 if t 62 KL; t�2� � 0;
ÿ1 if t 62 KL; t�2� < 0 .

�
�10:3�

The Gibbs measure l�L is de®ned by

l�L �x� :� N��KL�ÿ1 exp�ÿHKL�x�� if x�t� satisfies the K�L -bd. cond.,
0 otherwise.

�
�10:4�

It is technically convenient to consider separately the cases h � 0 and h < 0.
Below, when h � 0, we write probabilities with respect to lh

L by P�L ��� and
when h < 0 by P�L ���. The functional W is denoted by W�, resp. Wÿ, when
h � 0, resp. h < 0.

Let b > bc and m� � m��b� > 0 be the spontaneous magnetization. We
choose m and c such that ÿm� < m < m� and 0 < c < 1=2. We de®ne the
event

A�m; c� :� x :
X
t2KL

x�t� ÿ mjKLj
�����

����� � jKLj � Lÿc

( )
: �10:5�

The main results of this section, Theorems 10.1 and 10.2, are lower bounds
on

P�L �A�m; c�� and P�L �A�m; c�� ; �10:6�
valid for L large enough.

10.1 Positive boundary magnetic ®eld

Theorem 10.1 Assume that

1. The coupling constants are de®ned by (10.2) with b > bc and h > 0.
ÿm� < m < m� and c :� 1=2ÿ d; d > 0.

2. W� is de®ned by (1.9) with

ŝ�x� :� s�x; b�� ; �10:7�
the decay-rate of the two-point function (see Proposition 4.1), and

ŝbd :� sbd��1; 0�; b�; h�� ; �10:8�
the decay-rate of the boundary two-point function (see De®nition 4.2). The
parameter h� is de®ned by the relation

expfÿ2bhg � tanh b�h� : �10:9�
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Then there exists L0�b; h;m; c;Q� such that, for any simple closed recti®able
curve C, which is the boundary of a convex body of volume 4r1r2 m�ÿm

2m� in the
rectangle Q, and for all L � L0,5

P�L �A�m; c�� � exp ÿL �W��C� ÿ bO�L1=2 ln L�
n o

: �10:10�

Proof. The basic strategy of the proof is taken from Section 7 in [Pf2]. Given
the boundary C of a convex body V , we de®ne a polygonal approximation of
it. Then, by summing over all large contours passing through the vertices of
the polygonal approximation we can estimate the probability of the event
A�m; c� in terms of the functional W� using Propositions 6.1 and 6.2. We
divide the proof into ®ve steps.

Step 1. De®nition of a polygonal approximation of C.

Consider a convex body V , whose boundary @V � C, with given ®xed vo-
lume. Let L 2 N and set

dL :� Lÿ1=2 ln L : �10:11�
Let

QL :� x 2 Q : min
y 62Q
jy ÿ xj � dL

� �
; �10:12�

and set VL :� V \ QL.
We de®ne a polygonal approximation PL of @VL. We ®rst de®ne a

polygonal approximation P0
L. Let DL be the square

DL :� x 2 R2 : jx�1�j � jx�2�j � dL���
2
p

� �
; �10:13�

and denote its four sides of length dL by J1, J2, J3 and J4 (counterclockwise).
Since VL � QL is convex and vol VL � vol V ÿ O�dL�, there exists L0, in-
dependent of V , such that int VL contains a translate of DL.

1. We choose four disjoint segments isometric to Jk, k � 1; . . . ; 4, with ex-
tremities on @VL. If this is not possible, then we choose one corner iso-
metric to Jk [ Jk�1 with extremities on @VL, but not necessarily its apex,
and two disjoint segments isometric to Jm, Jn, m; n 6� k; k � 1, as above. If
this is not possible, then we choose two corners isometric to Jk [ Jk�1 and
Jn [ Jn�1 with extremities on @VL, but not necessarily their apexes. After
this choice is made we construct a polygonal approximation of @VLn@QL

with a maximal number of segments of length dL (there are at most 8
segments of length smaller than dL). The resulting polygonal curve is P

0
L.

Since s��� is convex, Jensen's inequality implies
W��@VL� �W��P0

L� : �10:14�

5 In (10.10) we can choose O�L1=2 ln L� � 75L1=2 ln L.
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For each side of P0
Ln@QL of length dL we construct a box (6.5) or (6.6).

Because we started our construction by ®xing four segments isometric to Jk,
k � 1; . . . ; 4, all these boxes are pairwise disjoint

2. Let �t; s� :� fx 2 P0
L : x�2� � dLg. If jt ÿ sj > 0, then we replace �t; s� by the

broken line from t � �t�1�; dL� to �t�1�; 0�, then �t�1�; 0� to �s�1�; 0� and
®nally from �s�1�; 0� to s � �s�1�; dL�. Then we subdivide the segment
�t�1�; 0� to �s�1�; 0� into segments of length dL=2 (except possibly the last
one). We do a similar construction with the three other parts of P0

L \ @QL.

The polygonal approximation PL of @VL is given by the modi®cation of P0
L

by 2.; the vertices of PL are denoted by tk. For each segment of length dL of
PL \ @Q, we construct a box like the box (6.25) of Proposition 6.2. We have
(s�x; b� � 2b)

W��C� �W��PL� ÿ 16bdL : �10:15�
Step 2. Scaling and de®nition of a set of closed contours GL.

Let LPL be the polygon obtained by scaling PL by a factor L and shifting
it by �0;ÿ1=2�.6

We de®ne a set of closed contours GL � fCg.
1. Each C 2 GL is closed and passes through all vertices of LPL (counter-
clockwise). We denote by �Ltk; Ltk�1� the side of LPL between two con-
secutive vertices, Ltk and Ltk�1.

2. If there is a box Bk associated with �Ltk; Ltk�1�, then ck, the part of C
between Ltk and Ltk�1, is contained in Bk. Otherwise ck � gk, a ®xed
contour of minimal length from Ltk to Ltk�1.

The total length of the ®xed part of C is smaller than 28LdL.
After that construction all necessary estimates have been already exposed

in Sections 5, 6, 7 and 9.

Step 3. Estimation of P�L �A�m; c�jfC; c 6� C sÿ smallg�.
Let C 2 GL. We estimate

P�L �A�m; c� j fC; c 6� C s-smallg�

� 1ÿ P�L
X
t2KL

x�t� ÿ mjKLj
�����

����� > jKLj � Lÿc

( )�����
(

C; c 6� C s-small

)" #
:�10:16�

We use Proposition 9.1. We must estimateX
t2KL

r�t� j fC; c 6� C s-smallg
* +

: �10:17�

This estimate is not di�cult using Lemma 9.3. The main point is to notice
that the total volume of the boxes Bk is smaller than O�L3=2 ln L�, uniformly
in V (the length of C � @V is bounded by the length of @Q, and thus the

6 We suppose that we have possibly slightly modi®ed LPL so that all its vertices are in K�L.
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number of sides of PL is uniformly bounded by O�L1=2= ln L�). The di�erence
of the volumes of LV and LPL is also bounded by O�L3=2 ln L�, uniformly in
V . Therefore, we get, uniformly in V ,

X
t2KL

r�t� j fC; c 6� C s-smallg
* +�

KL

ÿmjKLj
������

������ � O�L3=2 ln L� : �10:18�

Since 0 < c < 1=2, O�L3=2 ln L� is small compared to jKLj � Lÿc � O�L3=2�d�. 7
We apply the second part of Proposition 9.1 with s :� �Ld=2�, l :� �L1=2� and
we introduce a grid in KL with an elementary cell congruent to K2 of volume
O�L�. We verify the hypothesis of Proposition 9.1 using Lemma 9.3. The
three terms (9.34), (9.35) and 4�s� 1��2l� s� 1�=jK2j are of the same order
O�Lÿ1=2�d=2� � O�Lÿc�, and N is O�L�. We get

P�L �A�m; c� j fC; c 6� C s-smallg� � 1ÿ O�expfÿO�L2d�g� : �10:19�
Step 4. Estimation of P�L �fC; c 6� C s-smallg�.
De®ne

KL�extC� :� KLnintC; KL�intC� :� KLnextC : �10:20�
We have

P�L �fC; c 6� C s-smallg� � w��C� Z
�;s�KL�extC��Z�;s�KL�intC��

Z��K� ; �10:21�

where Z�;s�K0� is de®ned as Z��K0� in (8.7), but by summing only over s-small
contours. Z��K� � Z�K�L� by Lemma 8.1; although KL�extC� is not
simply connected, any KL�extC��-compatible family of s-small closed
contours is KL�extC��-compatible, and consequently we also have
Z�;s�KL�extC�� � Zs�KL�extC���. Dividing and multiplying by Z�K�LjC�, we
can express P�L �fC; c 6� C s-smallg� as

qK�L�C; b�; h�� � hfc s-smallgiKL�extC�� � hfc s-smallgiKL�intC�� : �10:22�
Lemma 5.6 implies (if diameter d�c� � s, then c is s-small)

fc s-smallgh iKL�extC��� 1ÿ O L2�d exp ÿaLd=2
n o� �

: �10:23�
A similar estimate holds for hfc s-smallgKL�intC�� . Summarizing these esti-
mates, we get

P�L �A�m; c�� � 1ÿ O L2�d expfÿaLd=2g
� �� � X

C2GL

qK�L�C; b�; h�� : �10:24�

Step 5. Estimation of P�L �A�m; c�� in terms of the functional W�.

It remains to control the sum over C 2 GL. Lemmas 5.4 and 5.3 give

7 This is the reason for allowing ¯uctuations of the magnetization of order jKLj � Lÿc
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X
C2GL

qK�L�C� �
X

C�fcig2GL

Y
i

qK�L�ci�

�
X

C�fcig2GL

Y
i

qL�ci� : �10:25�

We use the last part of Lemma 5.3 to replace qL�ck� by q�ck� whenever
dck � fLtk; Ltk�1g, with tk; tk�1 62 R0. By de®nition of GL, the sums over all ci,
which are not ®xed, are independent, so that we can estimate them using
Propositions 6.1 and 6.2 with a :� c1 ln L, c1 large enough. Using (7.2), (7.3)
and Proposition 7.1 we can ®nd constants c2 and c3 such thatX

ck :dck�fLtk ;Ltk�1g
ck insideBk

q�ck� � 1ÿ O�Lÿc2�� � expfÿW���Ltk; Ltk�1��g
jLtk�1 ÿ Ltkjc3 : �10:26�

We have O�L1=2= ln L� boxes Bk, the total length of the ®xed part of C is
smaller than 28L1=2 ln L; if we replace q�ck�, by expfÿW���Ltk; Ltk�1��g, then
we make an error at most expf2bjckjg. Taking into account (10.15), this
proves the theorem. (

10.2 Nonpositive boundary magnetic ®eld

Theorem 10.2 Assume that

1. The coupling constants are de®ned by (10.2) with b > bc and h � 0.
ÿm� < m < m� and c :� 1=2ÿ d, d > 0.

2. Wÿ is de®ned by (1.9) with

ŝ�x� :� s�x; b�� ; �10:27�
the decay-rate of the two-point function (see Proposition 4.1.5.), and

ŝbd :� ÿsbd��1; 0�; b�; h�� ; �10:28�
sbd being the decay-rate of the boundary two-point function.
The parameter h� is de®ned by the relation

expfÿ2bjhjg � tanh b�h� : �10:29�
Then there exists L0�b; h;m; c;Q� such that, for any simple closed recti®able
curve C, which is the boundary of a convex body of volume 4r1r2 m�ÿm

2m� in the
rectangle Q, and for all L � L0,8

P�L �A�m; c�� � exp ÿL �Wÿ�C� ÿ bO�L1=2 ln L�
n o

: �10:30�

8 In (10.30) we can choose O�L1=2 ln L� � 75L1=2 ln L.
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The proof of Theorem 10.2 is similar to that of Theorem 10.1. In the case
h � 0, there are two simple modi®cations to make. First, we use the remark
following the proof of Lemma 5.6. Second, we do not introduce boxes for the
sides of PL, which are along the lower horizontal boundary of K�L.

Let h < 0. There is one important di�erence, which we discuss now. If x
satis®es a K�L -boundary condition then there is always an open contour with
a ®xed left-hand end-point t�1 and a ®xed right-hand end-point t�2. We denote
this particular contour by C�.

De®nition 10.1 A family of compatible contours c in K�L is K�L -compatible if and
only if there exists a con®guration x satisfying the K�L -boundary condition,
such that c is the family of contours of x.

The normalization constant N�KL�� appearing in the de®nition of l�L can
be written as

N�KL�� �
X

x

Y
e�ht;t0i:

e\KL 6�;

expfJ�e��r�t��x�r�t0��x� ÿ 1�g

�
X

c:

K�L -comp:

Y
c2c

Y
e�2c

expfÿ2J�e�g

�
X

c:

K�L -comp:

Y
c2c

w��c� : �10:31�

We set

Z��KLjc0; J� :�
X

c: c[c0
K�L -comp

w��c� : �10:32�

Since KL is simply connected we have the important identity

Z��KL; J�
Z��KL; J� �

X
C�

w��C�� Z
��KLjC�; J�
Z��KL; J� � hr�t

�
1�r�t�2�iJ

�
K�L

: �10:33�

This quantity can be controlled by Propositions 4.2 and 7.1.

Proof of Theorem 10.2.We ®rst construct the polygonal approximationPL as
in the proof of Theorem 10.1. Let I :� PL \ fx 2 Q : x�2� � 0g. If I � ;, then
we subdivide the fx 2 Q : x�2� � 0g into segments of length dL=2 and in-
troduce boxes like in Proposition 6.2. The open contour C� is constrained to
pass though the extremities of these segments and to stay inside these boxes.
We can repeat the proof of Theorem 10.1 since the construction of Theorem
10.1 does not interfere with the open contour in that case.

Suppose now that I � �a; b�. We de®ne a new polygonal line P0L. P
0
L goes

from the bottom left corner of Q up to a along fx 2 Q : x�2� � 0g, then it
follows PL n I up to b, and ®nally goes along fx 2 Q : x�2� � 0g up to the
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bottom right corner of Q. The proof is essentially the same as that of The-
orem 10.1, P0L replacing the polygonal line PL.

Dividing and multiplying by Z��KL; J� and using identity (10.33) we can
conclude. Since hr�t�1�r�t�2�iJ

�
K�L

of (10.33) appears in the denominator the re-
levant functional is now Wÿ. (

11 Large deviations: upper bound

By Theorems 10.1 and 10.2, for L large enough,

P�L �A�m; c�� � exp ÿL �W��m� ÿ bO�L1=2 ln L�
n o

; �11:1�
where

W��m� :� inf
n
W�C� : C � Q; volC � 4r1r2

m� ÿ m
2m�

o
�11:2�

and

W � W� � boundary condition,
Wÿ � boundary condition.

�
�11:3�

We show that the leading term of the lower bound is optimal. To do this we
analyze the measures in terms of large contours. The basic idea is to make a
coarse-grained description of the large contours. We consider separately the
cases of positive and negative boundary ®elds. The basic estimates come
from Lemmas 5.4, 5.5 and Proposition 9.1. As pointed out in the ®rst
comment following the proof of that proposition, (9.37) is not a sharp
bound. For that reason we prove optimality only for

A�m; c� � x :
X
t2KL

x�t� ÿ mjKLj
�����

����� � jKLj � Lÿc

( )
; �11:4�

with c � 1=4ÿ d, d > 0 instead of c � 1=2ÿ d, d > 0.

11.1. Positive boundary magnetic ®eld

For h � 0 and C � Q we have ŝbd � 0.9 Hence

W��C� �
Z r

0

ŝ� _u��t�; _v��t�� dt ; �11:5�

where �u��t�; v��t�� is a parametrization of the curve C� :� CnwQ.
Let r1; r2 2 N and KL � KL�r1; r2� be the box

KL � ft 2 Z2 : ÿr1L � t�1� < r1L; 0 � t�2� < 2r2Lg : �11:6�

9 See preamble of part II.
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The constant c is ®xed, c � 1=4ÿ d, d > 0. The cut-o� for small contours is
(d > d0 > 0)

s :� �Ld0 � : �11:7�
In each con®guration x with K�L -boundary condition we denote the large
contours by C1;C2; . . .. They are all closed. We choose a total order on �Z2��:

t < t0 () t�2� < t0�2� or t�2� � t0�2� and t�1� < t0�1�: �11:8�
The unit-speed parametrization of Ci, s 7!Ci�s�, is chosen so that it is
counterclockwise and Ci�0� is the ®rst point of Ci. The coarse-grained de-
scription of Ci consists of de®ning a sequence of points of �Z2��,
Si � �ti0; ti1; . . . ; tini�. The procedure is similar to the one used in the proof of
Lemma 5.6, but here we must treat the points of Ci on the line
ft 2 �Z2�� : t�2� � ÿ1=2g with special care. If Ci does not touch the line
ft 2 �Z2�� : t�2� � ÿ1=2g, then we do a coarse-graining like in [Pf2], points
1. to 5. below. Otherwise we mark the last points of Ci \ ft�2� � ÿ1=2g
before Ci leaves the tube

t 2 �Z2�� : ÿ1=2 � t�2� � �Ld0 �
n o

; �11:9�

and we mark the ®rst points of Ci \ ft�2� � ÿ1=2g, after Ci enters the tube
(11.9).

1. We set ti0 :� Ci�0�.
2. If ti0�2� � ÿ1=2, then go to 6. Otherwise go to 3.
3. Let s1 be the ®rst integer time such that Ci is outside the square B�ti0; �Ld0 ��.
We set ti1 :� Ci�s1�.

4. Let s2 be the ®rst integer time greater than s1 such that Ci is outside the
square B�ti1; �Ld0 ��. We set ti2 :� Ci�s2�.

5. The procedure is iterated until it stops.
6. If ti0�2� � ÿ1=2, then there exists s 2 N such that Ci�s��2� � ÿ1=2. We set

ti1 :� Ci�s1� such that s1 is the largest integer time with the property

Ci�s1��2� � ÿ1=2 and Ci�s��2� � �Ld0 � 8 s 2 �0; s1� : �11:10�
7. If for all s > s1 Ci�s��2� 6� ÿ1=2, then apply the procedure 3. to 5. to the

part of Ci de®ned by fCi�s� : s � s1g. Otherwise go to 8.
8. Let s2 be the ®rst integer time greater than s1, such that Ci�s2��2� > �Ld0 �.
We set ti2 :� Ci�s2�. Let s� be the ®rst integer time greater than s2 such that
Ci�s���2� � ÿ1=2. Apply the procedure 3. to 5. to the part of Ci de®ned by
fCi�s� : s2 � s � s�g. Then apply the procedure starting at 2. to the part of
Ci de®ned by fCi�s� : s � s�g.

Let S :� �t1; . . . ; tn� be an ordered sequence of points and P�S� be the cor-
responding closed polygonal line with vertices �t1; . . . ; tn�. To each Ci we
associate a closed polygonal line P�Ci�:

P�Ci� :� P�Si� ; �11:11�
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where Si � �ti0; ti1; . . . ; tini� is the ordered sequence of points de®ned by the
above procedure. We set

B�Si� :�
n

t 2 KL : t�2� � �Ld0 �
o [

tij2Si

�
B�tij; �Ld0 �� \ KL

�
: �11:12�

By de®nition, if C is a large contour with P�C� � P�Si�, then C is inside
B�Si�. W� is de®ned as in Theorem 10.1 and we set

W��S1; . . . ; Sk� :�
Xk

j�1
W��P�Sj�� : �11:13�

We estimate P�L �fS1; . . . ; Skg�. We use the following remarks below. When-
ever C�sj��2� � tj�2� 6� ÿ1=2 or C�sj�1��2� � tj�1�2� 6� ÿ1=2,

fC�s� : sj < s < sj�1g \ ft 2 �Z2�� : t�2� � ÿ1=2g � ; ; �11:14�
so that Lemma 5.5 applies. On the other hand, if tj�2� � ÿ1=2 and
tj�1�2� � ÿ1=2, then the second part of Lemma 5.1 applies. Therefore (use
Lemma 8.1, Z�;s�KjC� � Z��KjC� � Z�K�jC� and Z��K� � Z�K��),

P�L �fS1; . . . ; Skg� �
X

C:P�Ci��P�Si�
i�1;...;k

w��C� Z
�;s�KjC�
Z��K�

�
X

C:P�Ci��P�Si�
i�1;...;k

qK� �C�

� exp ÿW��S1; . . . ; Sk�f g : �11:15�
Let xCi be the unique con®guration satisfying the K�L -boundary condition
having Ci as single contour. The interior of P�Si� is

Fig. 1. Coarse-graining of a large contour C touching the bottom wall; the dots represent the

sequence of points Si � fti0; . . . ; tinig
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IntP�Si� :� ft 2 KL : xCi�t� � ÿ1gnB�Si� ; �11:16�
where Ci is any contour such that P�Ci� � P�Si�. The volume of P�Si� is

VolP�Si� :� jIntP�Si�j : �11:17�
The closure of IntP�Si� is

IntP�Si� :� IntP�Si� [ B�Si� : �11:18�
In a similar way let xC be the unique con®guration satisfying the K�L -
boundary condition having C :� �C1;C2; . . . ;Ck� as set of contours. The in-
terior of S :� �S1; . . . ; Sk� is

Int S :� ft 2 KL : xC�t� � ÿ1gn
[

i

B�Si� ; �11:19�

where C :� �C1; . . . ;Ck� is any set of contours such that P�Ci� � P�Si�,
i � 1; . . . ; k. The phase volume of S is

a�S�jKLj :� jInt Sj : �11:20�

Lemma 11.1 We assume that the coupling constants are de®ned by (10.2),
b > bc, and that W� is de®ned as in Theorem 10.1. Then for any g < d0 and
T > 0

P�L
X
j�1

W��P�Sj�� � T

( )" #
� exp ÿT �1ÿ O�Lgÿd0 ��

n o
: �11:21�

The proof of Lemma 11.1 is a special case of that of Lemma 11.4.

Lemma 11.2 We assume that the coupling constants are de®ned by (10.2),
b > bc. Let c � 1=4ÿ d, d > 0 and ÿm� < m < m�. For any g > 0

P�L

����a�S� ÿ m� ÿ m
2m�

���� � 1� g
2m�Lc

� �
jA�m; c�

� �
� expfÿO�L�g ; �11:22�

provided L is large enough.

Proof. We set

E�m; c� :�
����a�S� ÿ m� ÿ m

2m�

���� � 1� g
2m�Lc

� �
: �11:23�

We partition E�m; c� into sets indexed by the set of their large contours. Let

�C� :� fx : C is the family of large contours of xg : �11:24�
We write

P�L �E�m; c�jA�m; c�� �
X
C:

�C��E�m;c�

P�L �A�m; c�j�C�� � P�L ��C��
P�L �A�m; c�� : �11:25�
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Since (11.1) and Lemma 11.1 hold we can ®nd a constant K such that

P�L E�m; c� \
X

i

W��P�Si�� � KL

( )
jA�m; c�

" #

� P�L
X

i

W��P�Si�� � KL

( )
jA�m; c�

" #
� expfÿO�L�g :

�11:26�

It is su�cient to control in (11.25) the terms with C such thatX
i

W��P�Si�� � KL : �11:27�

From now on we suppose that this condition is satis®ed in the rest of the
proof. Therefore the total length of the polygonal lines is at most O�L�.
Suppose that C � fC1; . . . ;Ckg and thatP�Cj� � P�Sj�, j � 1; . . . ; k. Each Cj

is inside some set B�Sj�. Since the total length of the polygonal lines is O�L�,[
i

B�Si�
�����

����� � O�L1�d0 � : �11:28�

We introduce a�C� and K�C� (see Section 8):

a�C�jKLj :� jft 2 KL : xC�t� � ÿ1gj ; �11:29�
K�C� :� KLn intC \ extC

ÿ �
: �11:30�

If we compare a�C� of (11.20) with a�S�, then

ja�S� ÿ a�C�jjKLj �
[

i

B�Si�
�����

����� � O�L1�d0 � : �11:31�

If ? is the boundary condition given by any x 2 �C�, then
P�L �A�m; c�j�C�� � P ?;sK�C��A�m; c�� : �11:32�

From Lemma 9.3 and (11.31), we haveX
t2KL

r�t�
* +?;s

K�C�
� m�jKLj�1ÿ 2a�C�� � O�L1�d0 � �11:33�

� m�jKLj�1ÿ 2a�S�� � O�L1�d0 � : �11:34�
Since

X
t2KL

r�t��x� ÿ mjKLj �
X
t2KL

r�t��x� ÿ
X
t2KL

r�t�
* +?;s

K�C�

0@ 1A
�

X
t2KL

r�t�
* +?;s

K�C�
ÿmjKLj

0@ 1A ;

�11:35�
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we have for every x 2 A�m; c� and L large enough,

X
t2KL

r�t��x� ÿ
X
t2KL

r�t�
* +?;s

K�C�

������
������ �

X
t2KL

r�t�
* +?;s

K�C�
ÿmjKLj

������
������

ÿ
X
t2KL

r�t��x� ÿ mjKLj
�����

�����
� 1� g

Lc jKLj ÿ O�L1�d0 � ÿ jKLj
Lc

� g
2

jKLj
Lc : �11:36�

Consequently

P�L �A�m; c�j�C�� � P ?;sK�C�
X
t2KL

r�t��x� ÿ
X
t2KL

r�t�
* +?;s

K�C�

������
������ � g

2
jKLjLÿc

24 35 :

�11:37�
We estimate (11.37) by Proposition 9.1. We introduce a grid composed of
squares whose sides have length �L1=4�.10 Notice that the cells of the grid are
much larger than the boxes used for de®ning the coarse-grained procedure.
There are O�L3=2� squares of the grid in KL. There are at most O�L1ÿd0 �
squares of the grid, which have a non-empty intersection with [jB�Sj�. The
squares of the grid not intersecting [jB�Sj� play the role of the boxes Bi in
Proposition 9.1. The term 4�s� 1��2l� s� 1�=jK2j is O�Lÿ1=4�d0 � � O�Lÿc�
for L large enough. The same is true for (9.34) and (9.35) as a consequence of
Lemma 9.3 and of the upper bound O�L� on the total length of the polygonal
lines. Proposition 9.1 implies that

P�L �A�m; c�j�C�� � expfÿO�L1�2d�g ; �11:38�
provided L is large enough. (

Theorem 11.1 Assume that

1. The coupling constants are de®ned by (10.2) with b > bc and h � 0.
ÿm� < m < m� and c :� 1=4ÿ d, d > 0.

2. W� is de®ned as in Theorem 10.1.
3. W���m� is de®ned by

W���m� :� inf W��C� : C � Q; vol C � 4r1r2
m� ÿ m
2m�

� �
: �11:39�

Let 0 < d0, such that d0 � d=2 < 1=8 and 0 < g < d0. We set

10 Because of comment 1. on Proposition 9.1, this choice is essentially optimal, as can be checked
using remark 3 preceding the proof of Proposition 9.1, and comment 2 on Proposition 9.1. It is at
that point that we need c � 1=4ÿ d.
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A�m; c� :� x :
X
t2KL

x�t� ÿ mjKLj
�����

����� � jKLj � Lÿc

( )
; �11:40�

E1�m; c� :�
����a�S� ÿ m� ÿ m

2m�

���� < 1� g
2m�Lc

� �
; �11:41�

E2�m; c� :�
X

i

W��Si� � L �W���m�
h
1� O�Lgÿd0 �

i( )
: �11:42�

Then, for L large enough,

P�L �E1�m; c� \ E2�m; c�jA�m; c�� � 1ÿ exp
n
ÿO�L1�gÿd0 �

o
�11:43�

and11

1

L
ln P�L �A�m; c�� �W���m�

���� ���� � O�Lgÿd0 � : �11:44�

Proof. The ®rst a�rmation follows from Theorem 10.1, Lemma 11.1 and
Lemma 11.2. We prove the second a�rmation. For L large enough Theorem
10.1 implies that

ÿ1=L ln P�L �A�m; c�� �W���m� � O�Lÿ1=4�e=2� ; �11:45�
with 0 < e < d. Let eE1�m; c� be the complementary event of E1�m; c�. We
have

P�L �A�m; c�� � P�L �A�m; c� \ E1� � P�L �A�m; c� \ eE1� �11:46�
� P�L �A�m; c� \ E1� � P�L �eE1jA�m; c�� � P�L �A�m; c�� :

Therefore, setting A � A�m; c�,
�1ÿ P�L �eE1jA�� � P�L �A� � P�L �E1� : �11:47�

The inequalityX
i

VolP�Si� � a�S�jKLj �
�m� ÿ m

2m�
ÿ 1� g
2m�Lc

�
jKLj �11:48�

implies that X
i

W��P�Si�� �W�� m� 1� g
Lc

� �
L : �11:49�

Let V1 � Q be a convex body realizing the minimum W���m� �1� g�=Lc�
and V2 � Q be a disk of volume �1� g�=2m�Lc. We can choose these convex
bodies so that their union is a set of volume jQj�m� ÿ m�=2m�. Thus

11The weaker statement limL!1 1=L ln P�L �A�m; c�� � ÿW���m� can be proven without using the
lower bounds on the two-point function obtained by McCoy and Wu.
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W�� m� 1� g
Lc

� �
�W��@V2� �W���m� : �11:50�

Therefore

�1ÿ P�L �eE1jA�� � P�L �A� � P�L
X

i

W��P�Si�� �W�� m� 1� g
Lc

� �
L

( )" #

� P�L
hnX

i

W��P�Si�� �W���m�LÿW��@V2�L
oi

:

�11:51�
Lemma 11.1 implies that for L large enough

ÿ1=L ln P�L �A�m; c�� �W���m� ÿ O�Lgÿd0 � : �11:52�
(

11.2 Negative boundary magnetic ®eld

The remarks of Subsection 10.2 apply. By de®nition the open contour C� is a
large contour. We associate to C� a sequence of points S� :� �t�0; . . . ; t�N �
using the same procedure as for the other contours. P�S�� is the open
polygonal line with vertices S�. We thus obtain a family
�P�S1�; . . . ;P�Sq�;P�S��;P�S01�; . . . ;P�S0p�� of polygonal lines. We have
distinguished between the polygonal lines with no edge belonging to the line
ft 2 R2 : t�2� � ÿ1=2g, which are denoted by �P�S1�; . . . ;P�Sq��, and the
other ones denoted by �P�S01�; . . . ;P�S0p��. We will now associate to the set of
polygonal lines �P�S��;P�S01�; . . . ;P�S0p�� a new set of closed polygonal lines
�P�Sq�1�; . . . ;P�Sk��. This is done in the following way:

1. Consider the family of polygonal lines �P�S��;P�S01�; . . . ;P�S0p��; let E� be
the set of edges formed by all edges of �P�S��;P�S01�; . . . ;P�S0p��, which
belong to the line ft 2 R2 : t�2� � ÿ1=2g \ K�. Remove E� from the set of
all edges of �P�S��;P�S01�; . . . ;P�S0p��.

2. Close the polygonal lines obtained in 1. by adding the set

�ft 2 R2 : t�2� � ÿ1=2g \ K�� n E� : �11:53�
This de®nes a set of closed polygonal lines denoted P�Sq�1�; . . . ;P�Sk�.

Remark: We do not modify the large contours. The relation between the
family �S1; . . . ; Sk� and the large contours of the con®guration is that these
contours must be compatible with the original family �S1; . . . ; Sq; S�; S01;
. . . ; S0p�.

Notice that the above construction is such that we have the identity

Wÿ S1; . . . ; Sk� � �W� S1; . . . ; Sq; S�; S01; . . . ; S0p
� �

ÿ sbd 2r1L� 1� � �11:54�
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where

Wÿ S1; . . . ; Sk� � :�
Xk

i�1
Wÿ P Si� �� � : �11:55�

Lemma 11.3 In the setting described above, there exists a constant K2 such that

P�L S1; . . . ; Skf g� � � K2L3=2 exp ÿWÿ S1; . . . ; Sk� �f g : �11:56�

Proof. We write P�L �fS1; . . . ; Skg� as a quotient

P�L S1; . . . ; Skf g� � �:
Z��KLjS1; . . . ; Sk�

Z��KL� : �11:57�

Dividing and multiplying by Z��KL� we must consider the quotients
Z��KLjS1; . . . ; Sk�

Z��KL� ;
Z��KL�
Z��KL� : �11:58�

The ®rst quotient is estimated using Lemmas 5.4, 5.5 and the above remark,

Z��KLjS1; . . . ; Sk�
Z��KL� � exp ÿW� S1; . . . ; Sq; S�; S01; . . . ; S0p

� �n o
�11:59�

The second quotient is estimated as in subsection 10.2, using Proposition 7.1,

Z��KL�
Z��KL� � hr�t

�
1�r�t�2�iK�L � C�2r1L�ÿ3=2 exp ÿsbd t�2 ÿ t�1

ÿ �� 	
: �11:60�

These inequalities give, using (11.54),

P�L S1; . . . ; Skf g� � � Cÿ1�2r1�3=2L3=2 exp ÿWÿ S1; . . . ; Sk� �f g : �11:61�
(

Lemma 11.4 We assume that the coupling constants are de®ned by (10.2),
b > bc, and that Wÿ is de®ned as in Theorem 10.2. Then for any g < d0 < d
and T > 0

Fig. 2. a Coarse-graining of a large contour C touching the lower wall and of the open contour

C�; the dots represent the sequence of points obtained by the coarse-graining procedure

described. b The three resulting closed polygonal lines
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P�L
X
j�1

Wÿ P Sj
ÿ �ÿ � � T

( )" #
� exp ÿT 1ÿ O Lgÿd0

� �h i
� O L1�gÿd0

� �n o
:

�11:62�

Proof.We start by an entropy estimate. LetN�x; k� be the number of integer
solutions of 1 � a1 � . . . � ak � x,

Pk
i�1 ai � x, k ®xed, and N�x� the

number of integer solutions of 1 � a1 � . . . � ak � x and
Pk

i�1 ai � x, k ar-
bitrary. For large x

N�x� � 1

4
���
3
p

x
exp 2p

�������
x=6

p� �
: �11:63�

Let us consider k polygonal lines P�S1�; . . . ;P�Sk�, where
Si � �ti0; ti1; . . . ; tini�. LO�N� is a rough estimate of the number of families of k
polygonal lines with n1 � � � � � nk � N . Therefore the number of families of
polygonal lines with n1 � � � � � nk � N , k arbitrary, is bounded byX

k

N N ; k� �LO�N� � exp NO ln L� �f g : �11:64�
Suppose that

Wÿ S1; . . . ; Sk� � � T 0 � T 0� ÿ T 0ÿ ; �11:65�
where T 0�, resp. T 0ÿ, is the positive, resp. negative, part of the functional Wÿ.
The total number N of vertices of the polygonal lines P�Si�, i � 1; . . . ; k, can
be bounded by T 0�,

N � T 0�KLÿd0 ; �11:66�
for K large enough. Since jT 0ÿj is at most O�L�, taking into account (11.66),

P�L �fS1; . . . ; Skg� � exp ÿWÿ S1; . . . ; Sk� �f gK2L3=2

� exp ÿT 0� � T 0ÿ � NLg
� 	

K2L3=2 exp ÿNLgf g
� exp ÿT 0� 1ÿ O Lÿd0�g

� �� �
� T 0ÿ

n o
K2L3=2 exp ÿNLgf g

� exp ÿWÿ S1; . . . ; Sk� � 1ÿ O Lÿd0�g
� �� �

� O L1ÿd0�g
� �n o

� K2L3=2 exp ÿNLgf g : �11:67�
Therefore,

P�L
X
j�1

Wÿ P Sj
ÿ �ÿ � � T

( )" #
�
X
k�1

X
S1;...;Sk

P�L Wÿ S1; . . . ; Sk� � � Tf g� �

� exp ÿT 1ÿ O Lgÿd0
� �h i

� O L1ÿd0�g
� �n o

�
X
N�1

K2L3=2 exp NO�ln L� ÿ NLgf g

� exp ÿT 1ÿ O Lgÿd0
� �h i

� O L1ÿd0�g
� �n o

: �11:68�
(
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De®ning a�S1; . . . Sk� :� a�S1; . . . ; Sq; S�; S01; . . . ; S0p�, the next lemma is proven
in the same way as Lemma 11.2.

Lemma 11.5 We assume that the coupling constants are de®ned by (10.2),
b > bc. Let c � 1=4ÿ d, d > 0 and ÿm� < m < m�. For any g > 0

P�L

����a�S� ÿ m� ÿ m
2m�

���� � 1� g
2m�Lc

� �
jA�m; c�

� �
� exp ÿO�L�f g ; �11:69�

provided L is large enough.

Theorem 11.2 Assume that

1. The coupling constants are de®ned by (10.2) with b > bc and h < 0.
-m� < m < m� and c :� 1=4ÿ d, d > 0.

2. Wÿ is as in Theorem 10.2.
3. W�ÿ�m� is de®ned by

W�ÿ�m� :� inf Wÿ�C� : C � Q; vol C � 4r1r2
m� ÿ m
2m�

� �
: �11:70�

Let 0 < d0, such that d0 � d=2 < 1=8 and 0 < g < d0. We set

A�m; c� : � x :
X
t2KL

x�t� ÿ mjKLj
�����

����� � jKLj � Lÿc

( )
; �11:71�

E1�m; c� : �
����a�S� ÿ m� ÿ m

2m�

���� < 1� g
2m�Lc

� �
; �11:72�

E2�m; c� : �
X

i

Wÿ�Si� � L �W�ÿ�m�
h
1� O�Lgÿd0 �

i( )
: �11:73�

Then, for L large enough,

P�L E1�m; c� \ E2�m; c� jA�m; c�� � � 1ÿ exp
n
ÿO�L1�gÿd0 �

o
�11:74�

and12

1

L
ln P�L A�m; c�� � �W�ÿ�m�

���� ���� � O Lgÿd0
� �

: �11:75�

12 Macroscopic droplet

In this last section we consider the limit of the lattice spacing going to zero.
We suppose that b > bc, h 2 R, ÿm� < m < m� and c � 1=4ÿ d > 0 are
®xed. We de®ne the canonical Gibbs measure h�jmiL�b; h� by

12The weaker statement limL!1 1=L ln P�L �A�m; c�� � ÿW�ÿ�m� can be proven without using the
lower bounds on the two-point function obtained by McCoy and Wu.
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h�jmiL�b; h� :� h�jA�m; c��L �b; h� if h � 0,

h�jA�m; c�i�L �b; jhj� if h < 0 .

�
�12:1�

Probability with respect to that measure is denoted by Prob���. In this section
we treat both cases h � 0 and h < 0 simultaneously. We set

h�iL�b; h� :� h�i�L �b; h� if h � 0,

h�i�L �b; jhj� if h < 0 .

�
�12:2�

As in the preceding section a contour is small if and only if it can be put inside
a translate of the box B�0; �Ld0 ��, 0 < d0 < d. The speci®c choice of d0 is made
later on; d0 is small. We do the analysis in the box KL�r1; r2� and at the end we
scale everything by 1=L and take the limit of the lattice spacing going to zero.

Let C � Z2; the empirical magnetization in C is

mC�x� :� 1

jCj
X
t2C

r�t��x� : �12:3�

Let 0 < a < 1; we introduce a grid L�a� in KL made of cells which are
translates of the square box B�0; �La��. The speci®c choice of a is made later
on; a is close to 1. In most of the cells the empirical magnetization is close to
m� or ÿm� with high probability (see Theorem 12.1).

The polygonal lines which we will consider in this section are constructed
as in Section 11; in particular they are de®ned using the same intermediate
scale Ld0 .

Let l > 0 so that a� l < 1; we say that a polygonal line is small if
IntP�Si� can be put inside a translate of the box B�0; �La�l��; otherwise the
polygonal line is large. We partition the cells ofL�a� into four sets. A cell C
is polluted if

C \
[

P�S�small
IntP�S�

0@ 1A������
������ � L2aÿg00 ; �12:4�

with g00 a small positive number to be chosen later on. A cell of L�a� is an
interface-cell if it is not polluted and it has a non-empty intersection with
B�Si� for some large polygonal line P�Si�, where in this section

B�Si� :�
[

tij2Si

B�tij; �Ld0 �� \ KL

� �
: �12:5�

A cell of L�a� is called a phase-cell if it is neither polluted nor an interface-
cell and it is entirely contained inside KL. The remaining cells are called
boundary cells.

Lemma 12.1 Let x 2 E1�m; c� \ E2�m; c� and suppose d0 < a, a� l < 1ÿ g00.
Then, uniformly in x,
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#fC cell of L�a� : C is pollutedg � O L1ÿa�l�g00
� �

#fC cell of L�a� : C is an interface-cellg � O L1ÿa
ÿ �

#fC cell of L�a� : C is a boundary-cellg � O L1ÿa
ÿ �

Proof.We estimate the total volume of the region containing small polygonal
lines. We partition the small polygonal lines into families. The ®rst family
contains all small polygonal lines P�S� with IntP�S� � ;. We then partition
the remaining polygonal lines into families so that for each family

La�l� �2�
[
P�S�

IntP�S�
������

������ � 10 La�l� �2 �12:6�

(except possibly for the last family which may not satisfy the lower bound).
The total length of the members of a family satisfying the latter inequalities is
at least K3La�l (isoperimetric inequality). Since the total length of the
polygonal lines is at most K 0L, we have at most O�L1ÿaÿl� families. Conse-
quently, the total volume of these small polygonal lines is bounded by
O�L1�a�l�. The volume of B�S� is bounded by O�L1�d0 �. Hence the total
volume of the closure of the interior of these small polygonal lines is at most
O�L1�a�l�.

The number of polluted cells is therefore at most O�L1�a�l�=
L2aÿg00 � O�L1ÿa�l�g00 �. To count the number of interface-cells we estimate the
number of points we need in order to make a coarse-grained description of
large polygonal lines using a reference box B�0; �La�� according to the method
of the previous sections. Since the total length of the polygonal lines is at
most K 0L and d0 < a, the total number of interface-cells is at most 4K 0L1ÿa.

The number of boundary cells is bounded by O�L1ÿa�. (

Let e�L� be a positive decreasing function such that limL!1 e�L� � 0 (see
Lemma 12.2). Notice that a phase-cell cannot be surrounded by a small
polygonal line; otherwise it would be polluted. We de®ne the event E3: in any
phase-cell C the empirical magnetization satis®es

mC�x� ÿ m�j j � e�L� ; �12:7�
if the phase-cell is outside all external large contours or inside an even
number of large contours, otherwise

mC�x� � m�j j � e�L� : �12:8�

Theorem 12.1 Let b > bc, h 2 R, ÿm� < m < m� and c � 1=4ÿ d > 0. Let
h�jmiL�b; h� be the canonical Gibbs state. Let E1 and E2 be the events de®ned in
Theorems 11.1 or 11.2. Let g0 > 0 be such that 2aÿ d0 ÿ 3g0 > 1. Then there
exists a positive constant j (see (12.42)) such that for L large enough

Prob E3 jE1 \ E2� � � 1ÿ exp ÿO�Lj�f g �12:9�
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and

Prob E3 \ E1 \ E2� � � 1ÿ exp ÿO�Lj�f g : �12:10�

Proof. Let A � A�m; c�, Ec
3 complementary event to E3, and E1;2 :� E2 \ E1.

By de®nition

Prob Ec
3jE1;2

� � � hEc
3 \ E1;2 jmiL
hE1;2 jmiL

� hE
c
3 \ E1;2 \ AiL
hE1;2 \ AiL

� hA jEc
3 \ E1;2iL

hEc
3 jE1;2iL
hA jE1;2iL

� hE
c
3 jE1;2iL
hA jE1;2iL

: �12:11�

The numerator and denominator are estimated in the following lemmas.

Lemma 12.2 Let

lim
L!1

max�Lÿg0 ;Lÿg00 �
e�L� � 0 : �12:12�

1. If the phase-cell C is outside all external large contours or inside an even
number of large contours, then for L large enough

h mC�x� ÿ m�j j � e�L�f g jE1;2�iL � exp ÿO�L2aÿ2d0ÿ2g0 �e�L�2
n o

: �12:13�
2. If the phase-cell C is inside an odd number of large contours, then for L large
enough

mC�x� � m�j j � e�L�f g jE1;2�

 �

L� exp ÿO�L2aÿ2d0ÿ2g0 �e�L�2
n o

: �12:14�

Proof. We prove 1. Let C be a family of large contours; E�C� is the set of
con®gurations with C as family of large contours. C has a coarse-grained
description S. E�S� is the set of con®gurations such that the large contours
have the coarse-grained description S.

Let S such that E�S� � E1;2; It is su�cient to prove that

h mC�x� ÿ m�j j � e�L�f g jE�C�iL � exp ÿO�L2aÿ2d0ÿ2g0 �e�L�2
n o

; �12:15�
with O�L2aÿ2d0ÿ2g0 � uniform in C such that E�C� � E�S� � E1;2. Let

C� :� C \
[

P�S� small
IntP�S�

0@ 1A : �12:16�

For L large enough (use e�L� � Lÿg00)
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hfjmC�x� ÿ m�j � e�L�g jE�C�iL
� hfjmCnC� �x� ÿ m�j � 2e�L�=3gjE�C�iL : �12:17�

We have CnC� � K�C� (see (11.30)) and consequently

mCnC� �x� ÿ m�
�� �� � 2e�L�=3� 	 jE�C�
 �

L

� mCnC� �x� ÿ m�
�� �� � 2e�L�=3� 	
 �?;s

K�C� ; �12:18�
h�i?;sK�C� being the Gibbs measure in K�C� with ? boundary condition (see
Section 11.1), conditioned on the fact that there are only small contours.
Using Lemmas 9.2, 9.3 or 9.4 we get

mCnC� �x�

 �?;s

K�C�ÿm�
��� ��� � exp ÿO Ld0

� �n o
: �12:19�

We apply Proposition 9.1 with l � Ld0�g0 and use e�L� � Lÿg0 . The number of
cells ofL�d0 � g0�, which have a non-empty intersection with B�Si�, Si 2 S, is
bounded by O�L1ÿd0 �; indeed, there are at most K1L1ÿd0 vertices for the
polygonal lines P�S�; around each such vertex t the box B�t; �Ld0�g0 �� contains
one box of B�Si�, isometric to the box B�t; �Ld0 ��, which is used in the coarse-
grained procedure; each box B�t; �Ld0�g0 �� intersects at most four cells of the
grid L�d0 � g0�. The total volume of these boxes is at most O�L1�d0�2g0 �,
which is small compared to L2ae�L�. The same is true for the boxes of the grid
L�d0 � g0� intersecting the boundary of the cell C. Since 2aÿ 2d0 ÿ 2g0 >
1ÿ d0, the number of cells of L�d0 � g0�, which are inside the cell C and do
not intersect any B�Si�, is O�L2aÿ2d0ÿ2g0 �; we have for L large enough (Pro-
position 9.1)

mCnC� �x� ÿ m�
�� �� � 2e�L�=3� 	
 �?;s

K�C�

� mCnC� �x� ÿ mCnC� �x�

 �?;s

K�C�

��� ��� � e�L�=2
n oD E?;s

K�C�

� exp ÿO L2aÿ2d0ÿ2g0
� �

e�L�2
n o

: �12:20�
(

Lemma 12.3 For L large enough

A�m; c� jE1;2


 �
L� exp ÿO L2ÿcÿd0

� �n o
: �12:21�

Proof. Let C be given, E�C� � E1;2. It is su�cient to prove that

A�m; c� jE�C�h iL� exp ÿO L2ÿcÿd0
� �n o

; �12:22�
uniformly in C � E�S� � E1;2. All contours c 62 C in x 2 E�C� are s-small,
s � �Ld0 �. Since E�C� � E1;2 the phase volume a�S� satis®es

a�S� ÿ m� ÿ m
2m�

���� ���� < 1� g
2m�Lc ; �12:23�
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with g some ®xed positive number smaller than d0. We have jKLnK�C�j �
2K 0L1�d0 ; hence

X
t2KL

r�t� jE�C�
* +

L

ÿ
X

t2K�C�
r�t�

* +?;s

K�C�

������
������ � O L1�d0

� �
: �12:24�

We have X
t2KL

r�t� jE�C�
* +

L

� m?jKLj 1ÿ 2a S� �� � � O L1�d0
� �

: �12:25�

Therefore X
t2K�C�

r�t�
* +?;s

K�C�
ÿmjKLj

������
������ � 1� 2g

Lc KLj j ; �12:26�

for L large enough. If

X
t2K�C�

r�t�
* +?;s

K�C�
ÿmjKLj

������
������ � 1ÿ g

Lc jKLj ; �12:27�

then, using Proposition 9.1,

A�m; c� jE�C�h iL� 1ÿ P ?;s
K�C�

X
t2K�C�

r�t��x� ÿ
X

t2K�C�
r�t�

* +?;s

K�C�

������
������ > g

2Lc KLj j
8<:

9=;
24 35

>
1

2
; �12:28�

if L is large enough. We can therefore suppose that

X
t2K�C�

r�t�
* +?;s

K�C�
ÿm KLj j

������
������ > 1ÿ g

Lc KLj j : �12:29�

To be speci®c we consider the case �0 < � � 3g�X
t2K�C�

r�t�
* +?;s

K�C�
� m KLj j � 1ÿ g� e

Lc KLj j : �12:30�

In this case, the mean magnetization is too large in K�C�. Let K� be the
component of K�C� where the ? boundary condition corresponds to �
boundary condition. We construct a region D � K� of suitable volume and
we impose zero magnetization inside D in order to reduce the total magne-
tization. First let us compute the volume of D. It is speci®ed by the conditionX

t2K�C�nD
r�t�

* +?;s

K�C�
� m KLj j ; �12:31�
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that is, X
t2K�C�

r�t�
* +?;s

K�C�
ÿ

X
t2D

r�t�
* +?;s

K�C�
�12:32�

� m KLj j � 1ÿ g� e
Lc Kj j ÿ Dj jm�

� m KLj j ;
which implies that

Dj j � 1ÿ g� e
m�Lc Kj j : �12:33�

We now show that we can construct D as a union of cubes which are translate
of B�0; �Ld0 �� so that all contours inside these boxes are small. We introduce
the grid L�d0�. The number of cells of L�d0� which intersect some B�Si� is
bounded by O�L1ÿd0 �. The total number of cells ofL�d0� is O�L2ÿ2d0 � so that
it is always possible to ®nd O�L2ÿcÿ2d0 � cells not intersecting any B�Si�,
provided L is large enough. Let 0 < d00 < d0. Inside each selected cells Bj

there is in the center a translate B0j of the box B�0; �Ld0 ÿ Ld00 ��. We de®ne the
event ~A:

1. all contours which have a non-empty intersection with K�C�nD or with at
least two Bj are Ld00-small;

2. X
t2K�C�nD

r�t� ÿ m KLj j
������

������ � KLj j=2Lc ; �12:34�

3. for each box B0j we haveX
t2B0j

r�t�
������

������ � B0j
��� ���=Lcd0 : �12:35�

By de®nition ~A � A�m; c�. Therefore
A�m; c� jE�C�h iL� ~A


 �?;s
K�C� : �12:36�

Let ~A1;2 be the event de®ned by conditions 1. and 2. only. Then

~A

 �?;s

K�C�� ~A j ~A1;2


 �?;s
K�C�

~A1;2


 �?;s
K�C� : �12:37�

The term ~A j ~A1;2


 �?;s
K�C� is estimated using Theorems 10.1 and 10.2. Denote by

c�x� all external contours in x which have a non-empty intersection with
K�C�nD or with at least two Bj, and by ~A1;2�c0� the set of x 2 ~A1;2 such that
c�x� � c0. Then

~A j ~A1;2


 �?;s
K�C��

X
c0

~A j ~A1;2�c0�
D E?;s

K�C�

h ~A1;2�c0�i?;sK�C�
h ~A1;2i?;sK�C�

: �12:38�
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Under the condition eA1;2�c0� local events, which are FB0j -measurable for
di�erent j, become independent. Since the boxes B0j are isometric to
B�0; �Ld0 ÿ Ld00 �� there is no condition on the contours inside these boxes. In
each box we have a large deviation as in Theorems 10.1 and 10.2 with m � 0
and ~L � �Ld0 ÿ Ld00 � instead of L. Therefore, applying these theorems with C a
Wul� shape in the center of each B0j,

~A j ~A1;2


 �?;s
K�C� � exp ÿO Ld0

� �
� O L2ÿcÿ2d0
� �n o

�12:39�

� exp ÿO L2ÿcÿd0
� �n o

:

Proposition 9.1 and Lemma 5.6 imply that limL!1h ~A1;2i�;sK�C� � 1. Indeed, let

v�d0� be the event that all contours are Ld0 -small and v�d00� the event that all
contours are Ld00-small. Then

~A1;2


 �?;s
K�C� � h ~A1;2 v�d00�i?;sK�C�

� eA1;2 j v�d00�
D E?

K�C�

hv�d00�i?K�C�
hv�d0�i?K�C�

: �12:40�

Lemma 5.6 implies that the numerator and denominator of the quotient tend
to 1 as L!1; Proposition 9.1 implies that h ~A1;2 j v�d00�i�K�C� tends to 1 as
L!1. (

We now conclude the proof of Theorem 12.1.
Recall that e�L� � Lÿg0 and c � 1=4ÿ d > 0; from Lemmas 12.2 and 12.3

Prob E3jE1 \ E2� � � 1ÿ exp ÿO Lj� �f g �12:41�
follows, if we can ®nd a such that 1 > a > 0, d0 such that 0 < d0 < d and
0 < g0 so that the hypothesis of Theorem 12.1 is satis®ed and

j :� 2aÿ d0 ÿ 4g0 ÿ 2� c > 0 : �12:42�
(12.42) is equivalent to

a > 1ÿ c
2
� d0

2
� 2g0 ; �12:43�

which is true for suitable a, d0 and g0. The last a�rmation

Prob E3 \ E1 \ E2� � � 1ÿ exp ÿO Lj� �f g �12:44�
is a consequence of (12.41) and Theorems 11.1 and 11.2. (

12.1 Continuum limit

We consider the model in the box KL and scale everything by 1=L, so that
after scaling the box is the rectangle Q. We de®ne the set of macroscopic
droplets at equilibrium as
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D�m� :� V � Q : Vj j � m� ÿ m
2m�

Qj j; W�@V� �W��m�
� �

: �12:45�

For each V 2 D�m� we have a magnetization pro®le,

qV�x� :� m� if x 2 QnV;
ÿm� if x 2V :

�
�12:46�

Let f be a real-valued function on Q; we set

d1� f ;D�m�� :� inf
V2D�m�

Z
Q

dx f �x� ÿ qV�x�j j : �12:47�

For each x we de®ne a magnetization pro®le qL�x; x� on Q. We subdivide the
box KL by the cells of the grid L�a�. In each cell C we de®ne the empirical
magnetization mC�x�. Then

qL�x; x� :� mC�x� if Lx 2 C �12:48�
where Lx is the point x 2 Q scaled by L.

Let x 2 E1;2;3 :� E1 \ E2 \ E3 and let P�S� � fP�Si��x� : i � 1; . . . ; kg be
the polygonal lines de®ned by the con®guration x. Using these polygonal
lines scaled by 1=L we de®ne a set V �S� � Q with the following properties
(see Theorems 11.1 and 11.2)

1. The set V �S� � Int S and its volume is such that

jV �S�j ÿ m� ÿ m
2m�

jQj
���� ���� � 1� g

2m�Lc jQj ; �12:49�

2. The boundary @V �S� of V �S� is such that @V �S� � [iP�Si� and
W @V S� �� � �W��m� � O Lgÿd

ÿ �
: �12:50�

In the generic case the boundary of the set V �S� has several connected
components. We de®ne an auxiliary connected set V̂ �S� by translating some
of these components so that V̂ �S� has the same volume as V �S�, its boundary
is connected and therefore can be parametrized by a single Lipschitz map
t 7! �u�t�; v�t��, and W�@V �S�� �W�@V̂ �S��. We compare the set V̂ �S� with
the droplets in D�m�. Given two sets F � Q and G � Q their distance is

d�F ;G� :� max sup
s2F

inf
t2G

sÿ tj j; sup
t2G

inf
s2F

sÿ tj j
� �

: �12:51�

The following lemma, inspired by Corollary 3.2 in [DP], shows that one
component of V̂ �S� is close to a droplet of D�m� and that the total volume of
the other components is small.

Lemma 12.4 Let e > 0. There exists a function d�e� with lime!0 d�e� � 0 such
that if V � Q has the properties

1. the boundary of V is parametrized by a unit-speed Lipschitz parametrization
t 7! �u�t�; v�t��,
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2. the volume of V is larger than jQj�m� ÿ m�=2m� ÿ e,
3. W�@V � �W��m� � e,

then

inf
V2D�m�

d�V; V � � d�e� : �12:52�

Proof. Suppose that there exists d0 > 0, Vn, n 2 N, and en # 0 such that

inf
V2D�m�

d�V; Vn� � d0 8 n : �12:53�

Let t 7! �un�t�; vn�t�� be the unit-speed Lipschitz parametrization of the
boundary of Vn. We choose the parametrization in such way that

jVnj � 1

2

Z
@Vn

�v0nun ÿ u0nvn� : �12:54�

By our hypothesis the length of the boundary @Vn is uniformly bounded, so
that we can parametrize all boundaries @Vn by maps de®ned on a single
interval I � R (we still denote the parametrizations by �un�t�; vn�t���. Since
the parametrizations are Lipschitz with a Lipschitz constant bounded by one,
the maps t 7! �un�t�; vn�t�� are equicontinuous. By Ascoli's Theorem we can
extract a uniformly convergent subsequence so that �u��t�; v��t�� �
limk�unk �t�; vnk �t�� is the boundary of a set V � with volume

V �j j � lim
k!1

Vnkj j � Qj j�m� ÿ m�=2m� : �12:55�

By the uniform convergence of the sequence we have

lim inf
k!1

ŝbd ÿ ŝ��1; 0��� �j@Vnk \ wQj � ŝbd ÿ ŝ��1; 0��� � @V � \ wQ

�� �� ; �12:56�

since ŝbd ÿ ŝ��1; 0��� � � 0. A classical theorem (see e.g. [Da] Chapter 3) gives

lim inf
k!1

Z
I

ŝ� _unk �t�; _vnk �t�� dt �
Z

I
ŝ� _u��t�; _v��t�� dt; �12:57�

since ŝ is convex. Therefore

W�@V �� � lim
k!1

W�@Vnk � �W��m� ; �12:58�

thus V � 2 D�m�, which contradicts the existence of d0. (

Corollary 12.1 Under the hypothesis of Lemma 12.4, if e is small enough, then
one connected component of V is at distance at most d�e� from a droplet of
D�m� and the total volume of the remaining components is at most O�d�e��.

Theorem 12.2 Let b > bc, h 2 R, ÿm� < m < m� and c � 1=4ÿ d > 0. Let
h�jmiL�b; h� be the canonical Gibbs state. Then there exists a positive function
e�L�, limL!1 e�L� � 0, and j > 0 (see (12.42)) such that for L large enough

Prob�fd1�qL��; x�;D�m�� � e�L�g� � 1ÿ expfÿO�Lj�g : �12:59�
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Proof. Let x 2 E1;2;3 and let P�S� � fP�Si��x� : i � 1; . . . ; kg be the poly-
gonal lines de®ned by the con®guration x. We de®ne V �S� � Q with prop-
erties (12.49) and (12.50) as above and set

qL�x; S� :� m� if x 2 QnV �S�;
ÿm� if x 2 V �S� .

�
�12:60�

There exist two positive numbers l and g00 (see Lemma 12.1),

l� g00 < 1ÿ a ; �12:61�
such that, if x 2 E1;2;3 and P�S��x� � P�S�, then uniformly in x 2 E1;2;3Z

Q
dxjqL�x; x� ÿ qL�x; S�j � O�Laÿ1�l�g00 � � e�L�jQj � O�Laÿ1� : �12:62�

The ®rst term on the right hand side is the contribution coming from the
polluted cells, the second term from the phase-cells and the last one from the
interface-cells and boundary-cells. We de®ne

d1�L� :� sup
x2E1;2;3

d1�qL��; S�x��;D�m�� : �12:63�

Then Lemma 12.4 and Corollary 12.1 imply that limL!1 d1�L� � 0. Theorem
12.2 follows by choosing

e�L� :� O�Laÿ1�l�g00 � � e�L�jQj � O�Laÿ1� � d1�L� : �12:64�
(
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