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Summary. We study the 2D Ising model in a rectangular box A, of linear size
O(L). We determine the exact asymptotic behaviour of the large deviations of
the magnetization ), o(¢) when L — oo for values of the parameters of
the model corresponding to the phase coexistence region, where the order
parameter m* is strictly positive. We study in particular boundary effects due
to an arbitrary real-valued boundary magnetic field. Using the self-duality of
the model a large part of the analysis consists in deriving properties of the
covariance function (¢(0)a(¢)), as |t| — oo, at dual values of the parameters
of the model. To do this analysis we establish new results about the high-
temperature representation of the model. These results are valid for
dimensions D > 2 and up to the critical temperature. They give a complete
non-perturbative exposition of the high-temperature representation.

We then study the Gibbs measure conditioned by {|> ., o(?)
—m|Ar]] <|AL|L™¢}, with 0 < ¢ < 1/4 and —m* < m < m*. We construct the
continuum limit of the model and describe the limit by the solutions of a
variational problem of isoperimetric type.

AMS Subject Classification: (1991) 60F10, 60G60, 60K 35, 82B20, 82B24

1 Introduction
We analyze the large deviations of the magnetization of the two-dimen-

sional Ising model in the phase coexistence region, paying attention to
boundary conditions. Our new results lead to a new approach of the
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wetting phenomenon, an important surface phenomenon, which can be
described in the Ising model [FP1], [FP2]. The theoretical physical aspects
of the problem (wetting phenomenon) are discussed in a separate pub-
lication [PV2].

1.1 Historical remarks

When there is a unique Gibbs measure the rate function describing the
large deviations of the magnetization is given by the specific free energy
of the model. It is therefore sufficient to control the bulk thermo-
dynamical properties of the model in order to compute large deviations
bounds. The situation is different when two Gibbs states coexist (phase
coexistence region) because the large deviations of the magnetization are
now driven by boundary effects. Consequently we must control the surface
tension and surface free energies in order to get sharp large deviations
bounds.

In their famous papers [MS1] and [MS2] Minlos and Sinai started the
analysis of the large deviations of the magnetization for the D-dimensional
Ising model, D > 2, in the phase coexistence region. They showed that the
phenomenon of phase segregation is at the origin of the large deviations
behaviour of the magnetization. In the eighties the problem was considered
again for D = 2. First Schonmann [S] (see also [CCS]) established lower and
upper bounds for the large deviations with a completely different approach,
which is non-perturbative as opposed to the work of Minlos and Sinai. Also,
with different techniques, we have the works of Follmer and Ort [FO] and
[O]. A breakthrough was then made by Dobrushin, Kotecky and Shlosman
in the late eighties [DKS]. They were able to get exact large deviations
bounds for the magnetization and to get a detailed description of the typical
configurations associated with large deviations in terms of the Wulff shape.
Their results are valid at low temperature and for periodic boundary con-
dition. After the announcement of these results Pfister [Pf2] obtained similar
results valid at low temperature for 4+ boundary condition. His method
works as well for periodic boundary condition. Notice that the results de-
pend on the choice of the boundary condition; see [Sh] for a study of some
effects due to boundary conditions. More importantly, new tools are devel-
oped and several crucial estimates are done non-perturbatively. In particular
sharp upper bounds for the probability of long contours are derived using
moment inequalities (GKS-inequalities) and the self-duality of the model.
These new techniques allow to considerably shorten some parts of analysis of
[DKS]. Similar ideas appear independently in [ACC], where similar questions
are studied in the percolation model. Substantial improvements have been
obtained by loffe [I1], [12], who derived exact lower and upper bounds for the
large deviations of the magnetization for all temperatures below the critical
one. Deuschel and Pisztora [DPi] and [Pi] studied large deviations for per-
colation, Ising and Potts models, D > 3.
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1.2 Isoperimetric inequality and large deviations

Consider an Ising model in the finite box
Ap = {t= (1 ) €Z*: —rL<t(1) <rL; 0<t(2)<2nL} , (L1)

where 71,7, € N are two fixed numbers. Let a(t) = +1, ¢t € Ay, and define

Hy, == > o()o(t) = > ho(t)— > o(t) . (1.2)

(t,t'): teAr: teAp t(2)=2rL

tf'eh; 1(2)=0 or t(1)=%rL
Here (t,7) denotes a pair of nearest neighbours points of the lattice Z>. The
last two sums prescribed the boundary condition; 4 is a real parameter, the
boundary magnetic field. The Gibbs probability measure associated with the
energy function Hy, and inverse temperature f is

1 = E(AL) " exp(=BHy,) ; (1.3)
E(Ar) is the normalization constant,
E(AL) ==Y exp(—BHa,) - (1.4)
o(t)==1:
teA,

Probability with respect to that measure is also denoted by P/[-].
We study the asymptotic behaviour of P![A4(m;c)] when A(m;c) is the

event
A(m;c) := {

The solution to this problem is given in terms of a variational problem, which
is the following isoperimetric problem with constraints defined in the rec-
tangle

Y olt) = mlAy

teAL

< |A,l L} . (1.5)

0:={x=x(1),x(2): —r1 <x(1) <r; 0<x(2) <2m} . (1.6)
The horizontal bottom part of the boundary of Q plays a special role; we set
wo:={xe€Q:x(2)=0} . (1.7)

Suppose that 7: R> — R is a positive convex function, which is positively
homogeneous of degree one and such that 7(x) = 7(—x); the function % de-
pends on the parameter f, 7%(x)=7%(x;f). Suppose also that
Tha = Tpa(f, ) € R satisfies the condition

[thal < 2((1,0)) - (1.8)
On the space of rectifiable curves in Q we introduce the functional
W (%) ;:/ (a(t), o(t)) dt + [%bd —7:-((1,0))} |6 Nwol| | (1.9)
0

where (u(t),v(t)), t € [0,r], is a parametrization of the curve %; | N wy| is the
Lebesgue measure of the subset € N wy.
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We define in the standard way the interior and exterior of €; vol € is the
area of the interior of %.

Isoperimetric problem: Find the minimum of functional W among all closed
curves € C Q, with vol € fixed.

This isoperimetric problem is similar, but not equivalent to the problem
treated by Wulff [Wu] in his theory of crystal. The solution in our case
depends on the choice of 7,y and on the shape of the box Q, see [KP]. The
problem considered by Wulff was solved by [D]; a detailed study is done in
[DKS]; see also [DP] for a recent completely different proof. Ideas from [DP]
are used in the last section.

It is convenient to introduce m* = m*(f3), the order parameter of the Ising
model (spontaneous magnetization). Suppose that m*(ff) > 0i.e. f > f3,, the
critical inverse temperature, and write the volume of €,

*

Vol % = 4riry —mt < m<mt (1.10)

2m*
(The parameter m has the interpretation of a mean magnetization: inside %
we have the phase with magnetization —m* and outside with magnetization
m*.) We set

W (m) = inf{W(fg) L @ C 0, vl = 4rr mzr;m} . (1.11)

An important property is that the infimum can be computed with ¢ the
boundary of a convex body (use Jensen’s inequality and the convexity of 7).

Theorem 1.1 Let heR, B>p, —m"<m<m*, c=1/4—0 with
0 < < 1/4. There exists a function 7 : R? — R, which is positive, convex,
positively homogeneous of degree one, such that T(x; f) = 1(—x; ) and a real
number Tpg = Tpa(f, h) € R verifying (1.8), with the following property. If W is
defined by (1.9) and 0 < n < 0, then for L large enough

HmPL”[A(m;c)] + W (m) | <OL") . (1.12)
We prove even stronger results, similar to those of [Pf2] (see Theorems 11.1
and 11.2). This allows us to take the continuum limit in which we scale every
lengths by 1/L, so that all results are formulated in the fixed box Q. Let Z(m)
be the set of macroscopic droplets at equilibrium in Q,

0|, W(O7) = W (m) } . (L13)

m* —

2m*

@(m)::{“VCQ: 17| =

For each 7~ € Z(m) we have a magnetization profile,

. m ifxe O\7,
py(x) = {—m* ifxey . (1.14)

Let f be a real-valued function on Q; we set
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di( f,9(m) = inf [ de|f() - p, ()] - (1.15)
V" €7 (m) 0
For each o we define a magnetization profile p; (x; w) on Q. We subdivide the
box A, by the cells of a grid of lattice spacing 2[L¢]. In each cell C of the grid
mc(w) is the empirical magnetization,

me (o) ;:Lza(z)(w) : (1.16)

Then we set, for each x € Q,
pr(x;w) :=me(w) if Lx e C (1.17)
where Lx is the point x € Q scaled by L.

Theorem 1.2 Let > f,, he R, —m* <m <m* and c =1/4— 3> 0. Then
there exist a positive function g(L) such that lim;_,&(L) =0 and two real
numbers k > 0 (see (12.42)) and 1 > a > 0 such that for L large enough

PI{di(py(+30), 2(m)) S E(L)} | A(mic)] = 1 —exp{—O(L")} . (1.18)

1.3 Outline of the paper

The proof of Theorems 1.1 and 1.2 are long. The basic strategy is taken from
[Pf2]. To understand the large deviations in presence of two Gibbs measures
we must study the phase boundaries, which in dimension two are random
lines. A large part of the paper is devoted to that question. We use a special
feature of the model, self-duality, to identify problems concerning the phase
boundaries (at low temperatures) with problems concerning the two-point
function (at high temperatures), which is defined as the covariance of the
Gibbs random field with free boundary condition. We can therefore identify
the functions 7, respectively 7pq, with the decay-rates of the two-point
function, respectively the boundary two-point function. The first part of the
paper gives a complete non-perturbative exposition of the high-temperature
representation of the model, which is then used to study the two-point
function through its high-temperature representation, which is close to its
representation via the random-cluster model. This part of the paper is not
restricted to D = 2; it has its own interest and is written in an independent
way. In the second part we prove our main theorems.

We would like to stress here that we do not use stability properties of the
solution of the variational problem, even not the existence of such a solution.
The only property, which is important, is that W*(m) can be computed using
convex bodies. We also do not use the sharp triangle inequality property of 7
[11].

Acknowledgements. We thank B. Dacorogna for discussion about the var-
iational problem, A. Patrick for discussion and private communication of his
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results and the referee for his constructive criticisms, which allow us to im-
prove substantially the revised version of the paper. After finishing this work
we received papers [CGMS] and [SS2], where related questions are con-
sidered in the case of free, respectively 4, boundary condition.

2 Ising model, contours, duality and inequalities

We give a list of the main definitions. The notion of contour of subsection 2.2
is essential for the whole paper. Additional definitions are given in parts |
and II, when they are more specifically related to these parts. Throughout the
paper O(x) denotes a non-negative function of x € R™, such that there exists
a constant C with O(x) < Cx. The function O(x) may be different at different
places.

2.1 Ising model

We use the following notation and terminology.

The lattice is Z* := {r = (¢(1 )7t(2)) t(i) e Z,i=1,2}. Tts elements are
called sites. We set IL := {t € Z* ) >0} and %= {reZ*: =0}.
An edge, e = (t,1'), is an unordered palr of elements ¢,/ € Z* such that
[t(1) = £ (1)] + [#(2) — ¢(2)| = 1. We sometimes identify the edge e = (z,)
with the unit length segment in IR? with end-points ¢, 7. The set of all edges is
&. An edge e is adjacent to ¢ € Z° if e = (¢,1). Let B C &; the index of a site ¢
in B is the number of edges of B, which are adjacent to ¢t. A configuration o is
an element of the product space Q := {—1,1}% . The value of w at r € Z> is
o(1); o(t) is the random variable o(f)(w) := w(t). Let A C Z*; F  is the o-
algebra generated by a(f), t € A. We set # := F ;2. A function f is A-local if
it is Z p-measurable and A finite.

Let A C Z? be a finite subset; a configuration  satisfies the A" -boundary
condition if w(r) =1, t ¢ A. For each edge e we introduce a non-negative
number J(e), called coupling constant. The energy in A for the configuration
w18

Hp(0) == Y J(@)o(t)(w)a(f)(w) — 1] . (2.1)
=¥
The Gibbs measure in A with + boundary condition is by definition the
measure on (Q, %) given by the formula

vy JEY(A) exp(—Hp(w))  if o satisfies the AT-bd. cond.,
(@) = ;
0 otherwise. (2.2)
E*(A) is the normalization constant so that uj is a probablllty measure.

Expectation value with respect to  is denoted by Py [-], ()1 or (- >+‘] Ina
similar way we define the Gibbs measure in A with — boundary condition. The
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free boundary Gibbs measure in A is by definition the probability measure on
{=1,1}" defined by

=20 ] expUe)o()o(?)) - (2.3)

e=(t,l')CA

E(A) is the normalization constant, called partition function,

EN) = > [ expUlea)s(t)) . (2.4)

a(t),teA e=(t,l')CA

Expectation value with respect to u, is denoted by Py[-], (-), or (- )1.
Let A} :={teZ’: —L <ti) <L, i_ 1,2}. There exists a limiting
measure g on (Q,.7), um = limg_ pf A Expectation value with respect to

p' is denoted by P[], <->+ or ()"’ The same construction is possible
with A™-boundary condition instead of A+ boundary condition. The limiting
measure is p~. Similarly, there exists a limiting measure g on (Q, %),

W= llmLﬁOO tta; - Expectation value with respect to p is denoted by P[-], (-)
or (-). Let J(e ) p for every edge e. Then all measures defined above are
translation-invariant. There exists . := 1/2log(1 + v/2), called critical cou-
pling, which is characterized by the following properties (see subsection 2.3):
the measures (-)™* and (-)™* are equal if and only if § < B.; the sponta-
neous magnetization m* = m*(f) = (o(r)) ™ is strictly positive if and only if
B > B.. The two-point function (o(#,)a(t,)) is:

(o(n)o(12)) = lim (o(11)a(t2)), - (2.5)

It is translation-invariant, (a(t;)a(t2)) = (a(t) + t)a(ty + 1)), t € Z*. Tt is also
invariant under axial symmetries with horizontal, vertical and diagonal axis.
It is a non-trivial fact that

(a(t1)o(r2)) = (a(n)a(2))" = (a(t1)a(n2))” - (2.6)
2.2 Contours

A path is an ordered sequence of sites and edges, #,eo,?,e€1,...,t,, where
t;eZ? for all i =0,...,n, and e; = (tj,ti1) €&, j=0,...,n—1. By defi-
nition all edges of a path are different, but not necessarily all sites of the path.
The initial point of the path is #) and the final point is #,. The initial edge of
the path is ey and the final edge is e,—;. A path is closed if its final point
coincides with its initial point; otherwise it is open. We say that a path isin a
subset A C Z* if t; € A, Vi=0,...,n; we say that it is in a subset B C & if
e;€B,Vi=0,...,n—1. A subset A C Z* is connected if for any pair of
elements ¢,7 € A there is a path in 4 with initial point ¢y = ¢ and final point
t, =t'. A subset B C & is connected if for any pair of elements e, ¢’ € B there
is a path in B with initial edge ey = e and final edge e,_; = ¢'. Let t € Z>; the
plaquette p(t) of center ¢ is the subset of R?,

1) = {s=(s(1),s(2)) e R*: |s(i) —t(i)| < 1/2,i=1,2} . (2.7)
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A subset 4 C Z? is simply connected if the subset of IR?, U, p(t) is simply
connected in R?. The boundary of B C & is the subset of Z>

6B:={t€ Z’: index of ¢ in B is odd} . (2.8)

Let B C & be a finite non-empty subset. We decompose uniquely (up to
orientation) B into a finite number of paths, such that they are pairwise
disjoint, when considered as subsets of &. (On the other hand sites may
belong to two different paths.)

1. If 6B = 0, then choose an edge e = (¢,#) in B and set # := ¢, ey := e and
t; = t'. The path is uniquely continued using rule 4 specified in the picture
below and by requiring that it is maximal and that its final point is #. We
have thus defined a closed path. Repeat this construction until all edges of
B belong to some (closed) path.

2.If 6B # 0, then choose first ¢ € 6B, and set ¢y := ¢. Then choose ¢y among the
adjacent edges to #y according to rules 4’ specified in the picture below.
Initial points are marked by dots in the picture specifying the rules 4’. The
path is uniquely continued using rules 4 and 4" and by requiring that it is
maximal and its final point ¢, € 6B. We have thus defined an open path,
since fy # t,. Repeat this construction starting with a new point of B until
all points of 6B are initial or final points of open paths; if there are still edges
of B which do not belong to some paths, then do the construction 1. above.

The unoriented paths, which are defined by the above procedure, are called
contours; a contour is closed or open, if the corresponding unoriented path is
closed or open. The set of all contours of a configuration is denoted by
y={y1,.-.,7,}- The diameter of a contour y is

d(y) == max{|t(1) — £ (1)| + [12) = £ (2)| : ,¢ €} . (2.9)

The length of a contour, |/, is the number of edges of 4. The length [y| of a
family of contours y is the sum of the lengths of the contours of the family.

T =
e B

the dots denote initial points of open paths

Let {y,,...,7,} be a family of contours. Let &(y,...,7,) be the set of all
edges of these contours. We say that {y;,...,y,} is compatible if either
EWyy-eyy,) =0,0r{y,...,7,} corresponds to the decomposition of the set
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&(y15-..,7,) Into contours. If we want to add the condition that for a
compatible family {y,,...,y,} all edges of &(y,,...,7,) are pairs of points of
A C Z?, then we say that the family is A-compatible. A contour is an un-
oriented path; it is however useful to choose sometimes an orientation and to
consider a contour as a unit-speed parametrized curve in IR,

[0,]4] 3 s+ A(s) € R? | (2.10)

with initial point A(0) = # and final point #,. The contour is closed iff #; = 15;
it is open if 04 = {#;,6:}.

2.3 Duality

An important concept is the duality transformation [W]. It relates the
properties of the Ising model for the couplings J(e) = < f8, to the prop-
erties of the dual model for the couplings J*(e*) = * > f.. When the di-
mension is two the model is self-dual. The proper framework to study the
duality transformation is the theory of cell-complexes. However we need
only elementary facts, so that we define the duality transformation as fol-
lows. It consists of a geometric and an analytic part.

1. Geometric part. The dual lattice (Z>)* is
(Z*) = {t=(t(1),2(2)) : t() +1/2 € Z,i=1,2} . (2.11)

To each edge e of Z> we associate a dual edge e* of (Z°)": it is the edge
which crosses e in the middle, when both edges, e and e*, are considered as
unit length segments in IR,

2. Analytic part. The *-transformation is the transformation x — x* defined on
{x: 0 < x < oo} into itself, given by the identity

exp{—2x} = tanhx™ . (2.12)

The x-transformation is such that (x*)* = x; it has a unique fixed-point
x. = 1/21og(1 +V/2).

The critical coupling f,. of the 2-dimensional Ising model has been identified
to x. in [KW], using the duality transformation. Let J(e) be a non-negative
coupling constant. The dual coupling constant for the dual edge e*, J*(e*), is
defined by the x-transformation, exp{—2 J(e)} = tanhJ*(e*).

2.4 Correlation inequalities

The main tools for analyzing the Ising model are correlations inequalities,
also called moment inequalities. The Gibbs measures on A with A'-
boundary condition, A”-boundary condition or free boundary condition are
special cases of the probability measure
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exp{ S, pen (1) (1)o(!) + Sep k(0)o(0)}
VA = — . (2.13)
normalization

Let 4 C A and set

oq:=]]o) . (2.14)
ted
A function f is increasing if
o) <o'(t) Vi = f(o)<f(o) . (2.15)

Proposition 2.1 Let A be finite and J(t,¢') > 0 for all 1,1 € A.

L. If k(¢) > O for all t, then GKS-inequalities hold [Gr]

(04),, >0, (2.16)
d{c
d; (;Lg > (2.17)

2. If k(t) € R and f and g are two increasing functions, then FKG-inequality
hold [FKG]

([ 9, = (), (9, - (2.18)
3. If k(t) > 0 for all t, then GHS-inequalities hold [GHS]
d* (a(1)),,
dk(t)dk(t") — (2.19)

Lett,,t, € Z*; a subset B C Z° separates f| from ¢, if and only if t; € B, t, € B
and any path from ¢, to #, contains an element of B.

Proposition 2.2 Let J(e) be non-negative for all edges e and t,t, € /i

1. If B C 7 is a finite subset which separates t| from ta, then

(a(n)a(n)) <Y (a(t)a(0)(a(r)a(t2)) - (2.20)
2. Let J(e) =B, p >0, for all edges ¢ and t = (t(1),(2)) € Z*, such that
0 <t(1) < #?2). Then

(0(0)a(£)) < (a(0)a(t)) , (2.21)
if either ¢(1)=t(1)+1 and ¢(2)=1t2), or ¢(1)=1t1) and
f2)=t2)+ 1, 0r /(1) =¢t(1) — 1 and ¢ (2) = t(2) + 1.

3. The two-point function (¢(0)a(t)) is invariant under symmetries with hor-
izontal, vertical and diagonal axis.

Proposition 2.2.1. is proven in [Sim] and 2. in [MM]. (To prove the strict
inequality follow the proof of [MM] and apply the inequalities of section 3.5
in [FP1].)
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Part I: Ising model at high temperature

We present here results concerning the Ising model on Z* for < f, (i.e.
above the critical temperature). They are essential tools for the study of the
large deviations estimates at low temperature and are of interest in-
dependently of the large deviations analysis. Our method is non-perturbative
and the validity of these results is for all § < f8.. Some results are not re-
stricted to D = 2.

3 High-temperature representation

We recall the high-temperature representation of the model. The goal is to
derive formula (3.13) which gives a representation of the two-point function
in terms of random lines. The correct point of view here is to consider the
free boundary Gibbs measure on a graph. All graphs considered in this paper
are subgraphs of the graph (Z%,&). We use the following conventions. If a
subgraph of (Z2,&) is specified by its set of vertices A C Z2, then by defi-
nition the set &(A) of its edges is the set of all edges e = (¢,¢) with ¢,¢ € A. If
it is specified by a set B of edges, then by definition the set of vertices is the set
of all sites ¢ of Z*> which are boundary points of edges of B.
The partition function E(A) can be written as

Z H coshJ(e)(l +a(t)o({)tanhJ(e)) . (3.1)

a(t),teA e=(tt')e&(A

We expand the product in (3.1). Each term of the expansion is labelled by a
set of edges (,¢'): we specify the edges corresponding to factors tanhJ(e).
Then we sum over a(¢), t € A; after summation only terms labelled by sets of
edges with empty boundary (see (2.8)) give a non-zero contribution. Any
term of the expansion of (3.1), which gives a non-zero contribution, can be
uniquely labelled by a A-compatible family y of closed contours. Let e be an
edge, y a contour and )" a compatible family of contours; we set

w(e) := tanhJ(e), w(y):= [[wle), w(y'):=][[w(» - (3.2)

e€y ey

If y* = 0, then w(y") := 1; w(y) is the weight of y. The partition function is

E(A) =2/ H coshJ(e) Z w(y) . (3.3)
ecé(A) y: =0
A-comp.

It is natural to introduce the normalized partition function

Z(A) = > wly) - (3.4)
Afomg

More generally, given any A-compatible family y" we set
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ZAALR) = Y w() . (3.5)
7:9y=0
7y’ A—comp.
In particular
Z(A) = Z(A|D) , (3.6)
and
E(A) =Z(A)2M T] coshJ(e) . (3.7)
ecé(A)

Remark: For normalized partition functions we may have

Z(A) = Z(A2) (3.8)

with A; # A,. Indeed, the condition for equality is that the graphs
(A1,6(A1)) and (A2, &(Az)) have the same set of closed contours.

On the set of all families of A-compatible closed contours we define a
probability measure

Paly] :=% : (3.9)

Let y" be a A-compatible family of contours, not necessarily closed. We set

Z(A
ar(y) = { w(y') (( |y)) if " A-compatible,
- 0 otherwise. (3.10)
If y" is a A-compatible family of closed contours, then

aa(y") =Pal{y: v €31 . (3.11)

Let us consider the numerator of the two-point function (a(t1)a(t2)) 4,

Z 11 coshJ(e)(l+a(t)a(t’)tath(e))a(tl)a(tg). (3.12)

), teA e=(tt')eb(A

We expand the product as above. The presence of the variables o(#;) and
o(t;) implies that the only terms in the expansion of the numerator of
(a(t1)o(t2)),, which give non-zero contributions, are those labelled by
compatible families of contours containing one open contour A such that
oA ={t,t}. The two-point function has the simple expression

(om)o(ha =Z(A)" > ZAwR) = > a2 . (3.13)

A: A-comp. 2: A-comp.
(5).:{t|,l‘2} (;)»:{t] ,tz}

Definition 3.1 Let e be an edge and B(e) the set formed by e and all edges
adjacent to e. The edge-boundary of e is the contour A(e) > e of the decom-
position of B(e) into contours. Let A C &; the edge-boundary A(4) of A is
A(A4) := UpeqAle).
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|
||

Two edges e, ¢’ and a contour y with their edge-boundaries A(e), A(e'), A(y)

The notions of compatibility and edge-boundary are related.

Lemma 3.1 Let y' be a family of compatible contours (closed or open). Then a
non-empty compatible family of n closed contours y = {y,,...,7,} is compa-
tible with ', that is y Uy is compatible, if and only if no edge of y; is an edge of
AY),Vi=1,...,n.

Proof. Suppose that y Uy’ is compatible and e; € &(y;). Then e; & £(}’) since
compatibility implies &(3') N&(y) = 0. We show that e; & A(}'). Suppose
that e; € A(y') and &(y,) N &(y') = 0. Then one end-point ¢ of ¢; is of index at
least three in A(y') U &(y,): t has index 2 in y, since y; is closed, and at least
one in &(y’). This implies that the decomposition of y' U &(y;) into contours is

not (7;,7’), hence y; and y" are not compatible.

Suppose that e, e; is a pair of edges adjacent to a site ¢ of )’ such that
{er,e2} NA(Y) = (). Then the decomposition of &(y") U {ei1,er} into contours
is (', {e1,e2}). Therefore, if £(y;) NA(y') = 0, then y; is compatible with y'.

O

Let B C & be a finite set of edges. Let ¥(B) be the graph defined by B. On
%(B) we consider the Ising model defined by formula (2.4), taking the pro-
duct over the edges of the graph. Its normalized partition function is
Z(%(B)).

Lemma 3.2 Let A, B C &(A) and ', a family of A-compatible contours, be
given. If the graph %(B) has the same set of closed contours as the graph
G(E(A\A(Y')), then

Z(%(B)) :Z(A 2’) . (3.14)
Proof. By hypothesis (see (3.8))

Z(%(B)) = z({q (é”(A)\A(Z’))) . (3.15)

The conclusion follows now from Lemma 3.1. O
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4 Exponential decay-rate
4.1 Two-point function

In this subsection we suppose that J(e) = > 0 for all edges e of Z>.

Definition 4.1 Let t|,t, € Z> and n € N. The decay-rate of the two-point
function is defined on Z* by

Wty —1; f) = nlijgo—%ln (a(nty)a(nt))P . (4.1)

Proposition 4.1 Let J(e) = > 0 for all edges e of Z*. The decay-rate has the
following properties.

1. The decay-rate is non-negative and is a decreasing function of .

2. If t1,t, € 72, then (o(1))o(1)) < exp{—1(ty — t1; p)}.

3.If > B, then 1(t; B) = 0 for all t.

4. 1If B < P., then t(t; ) > 0 for all t # 0.

5. Let | - | be the Euclidean norm; the function t(t; )/|t|, t # 0, can be ex-
tended by continuity to any x € R*> with |x| = 1; it is defined on R* by
1(x; B) == |x| - t(x/|x|; B). It is invariant under the axial symmetries with
horizontal, vertical and diagonal axis. There exists a constant K such that
Jor any x and y, |x| =1 and |y| =1,

(s B) = (3 Bl < Klx =] (4.2)

Proof. Points 3. and 4. are consequences of the duality transformation and
of [LP] (see also remark below). The continuity statement (4.2) is proved in
[Pf2] section 6 (Lemmas 6.4 and 6.5). For the sake of completeness we prove
the existence of the limit (4.1) and point 2. of the proposition. By GKS-
inequalities and translation invariance we have with ¢t=1% —¢ and
n=ny+n,

(0(0)a(nr)) = (a(0)a(m))(a(mi)a(nt)) > (a(0)a(m))(a(0)a(nmt)) . (4.3)

Hence the standard subadditivity argument gives

nlLHOlO — %ln<a(0)a(nt)) = iI’}f— %ln<a(0)a(nt)> . (4.4)
O

Remark: The decay-rate is known explicitly, see [MW] chapters XI and XII.
In particular x = (1,0) is a minimum of t(x; #) on the unit sphere.
4.2 Boundary two-point function

In this subsection we consider the model on the semi-infinite lattice IL. We
choose the coupling constants
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J(e) = p>0 ife= (1) with t¢%Zyor¢ ¢Z,
TAAB>0 ife= (1) with teZpand/ €5 . (4.5)

The boundary two-point function is defined for #;,#, € £ by

{o(t)o(n2))y:= lim (a(t1)a(n2))n; . - (4.6)
It is invariant under translations ¢ € X,
(a(ti +1)o(tr + 1))y, = (a(t1)a(t2))y - (4.7)

Definition 4.2 Let t,tp € £y and n € N. The boundary decay-rate of the
boundary two-point function is defined on Xy by

1
Tha(ty — 13 f, 1) 1= lim ——In (a(nt))a(nty))b" . (4.8)
n—0o0
Proposition 4.2 Let >0 and h > 0. The boundary decay-rate has the fol-
lowing properties.
. The boundary decay-rate is non-negative and decreasing in  and h.
If t1, 12 € Zo, then (o(ty)a(t2))8" < exp{—toa(tz — 11; B, 1)}
. For any t € Zo, toa(t; B, h) < t(t; ).
B> B, then toq(t; B,h) = 0 for all t € Zy.
B < B, then o (t; B, h) > 0 for all t # 0. Moreover there exists a positive
he(B) > 1 so that for t € £y, t # 0,

T(t; ﬁ) = de(t; :B7h) lf h S hc(ﬁ)v
T(t; ﬁ) > de(t; ﬁv h) if h > hc(ﬁ) . (49)

[ O S R

Remark. The proof of the first part of Proposition 4.2 is the same as that of
Proposition 4.1. Points 3. to 5. are proven using the duality transformation
and results of [FP2]. In particular, in [FP2] the following inequalities are
proven for f < f3,,

— exp{-2(8 — B)}
“op{26+F)) T (410)

Abraham computed /() explicitly [Ab]; the boundary two-point function
can also be computed explicitly [P]. Let § be defined by

exp{—zﬁ} = tanh § (4.11)
and A, (f5) by the equation
exp{z/}}{cosh 25 — cosh 2, (ﬁ)} — sinh2j . (4.12)
Then /(f) is defined by
exp{—zﬁhw(/})} — tanh ph.(f) . (4.13)

12 exp{2(1 — he(f))} 2 §
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5 Basic estimates

We prove basic estimates for the high-temperature representation. These
estimates are non-perturbative, valid for all < B.! and not restricted to
dimension two. The main ideas are from [Pf2] section 6. The basic quantity in
the high-temperature representation is ga(y), see (3.10); it is a function of the
coupling constants J. The dependence of ga(y) on J is studied in Lemmas 5.2
and 5.3. Lemmas 5.4 and 5.5 are essential.

All results are established for a finite graph A, which is always a subgraph
of Z° or IL. Implicitly all contours are defined on the graph A. We do not
always write explicitly the parameters § and % to simplify the notations.
However, in cases we want to emphasize the coupling constants J in the
partition functions we write for example Z(A;J) instead of Z(A).

Lemma 5.1 Let f < f..

1. If J(e) = B for all edges e, then for any t,t, € A,
Y aa(d) < (olt)a(n)) < exp{—t(ts — 11 p)} - (5.1)
(U.:ftzl,lz}

2.If ACLL, h >0 and J(e) is defined by (4.5), then for any t|,t, € o N A,
> aa(2) < (a()a(n))p < exp{—Toa(ta — 1i; B, 1)} - (52)

6}.:@1,[2}
3.IfACL, h >0 and J(e) is defined by (4.5), then for any t1,t, € A,
> qa(d) <exp{-t(a—1;8)} - (5.3)
i:(ﬁ(i)ﬁg(Z())iw
5/11{11.}2}

Proof. 1. follows from formula (3.13), GKS inequalities and Proposition 4.1.
2. is proved in the same manner.
3. The case & < 1 is easy. Indeed,

SN < YD ga) = (e(n)e@)R" (5.4)
2:6(2)NE(Zo)=0 A
5i={t1.tz} 6’“:{t1$t2}

(a(tl)a(tz))g’h is increasing in %4 and in A. Therefore <a(t1)a(t2)>i’h
a(t1)a(t2))’. The result follows from 1.

IN

"1t is natural in this context to define f8, as the smallest f such that z(¢; ) is equal to zero (see
Def. 4.1). Due to results of Aizenman, Barsky and Fernandez [ABF] this 5, coincides with the
previous definition in terms of the spontaneous magnetization. For D = 2 this follows from [LP],
see Proposition 4.1.
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Let #>1. The condition &(1) N&(Xy) =0 implies that w(l) is in-
dependent of 4; assume that

Z(Nh) _ Z(AJ2; 1)

< if h>1 5.5
ZOAh) =z e (5:3)
which is proven in the next lemma. Then
Yok < YT a1 (5.6)
LE(A)NE (e)=0 JE()NE (o) =0
5}.:{11.}2} di= {tl Iz}
and we conclude using the preceding case. O
Lemma 5.2 Let ' be a A-compatible family of contours. Then
Z(A\y’;J)
N =/ (5.7)
Z(A3J)
is decreasing in J(e) for any e.
Proof. Let
B = (f(A)\A(X’) , (5.8)

and ¥ (B) the graph defined by this set of edges. Let A(B) be the set of vertices
of 4(B). By Lemma 3.2 we have

Z(A|z’;J> = 2(%(B)) . (5.9)
Therefore
an(A|Z/;J> =In =(A(B)) + In shJ(e) + (JA| — |A(B)|) In2
zZihg) ~ N Ew) T AL '

(5.10)

If e = (t,¢) € B, then

Pl Z<A|ZI;J> ) .

T Sy = e0o)ne (oo, <0 (5.11)

by GKS-inequalities, since A(B) C A. If e = (t,¢) € &(A)\B, then

9 (A|z, ) /
270 In ZAT) = —(a(t)o(f))\+tanhJ(e) <0 , (5.12)

since by GKS-inequalities
(0(0)5(!)) 5 > (0(1)o(¢)) )= tanhJ(e) | (5.13)
[
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Lemma 5.3 Let J(e) > 0. Let y' be a A-compatible family of contours.

1. qa(y';J) is decreasing in J(e) for all edges e € &(A)\E(Y'). In particular
ga(y';J) is decreasing in A.
2. Let A := {t € Z*: |t(i)| < L}. Then the following limits exist,

i) = man(?). () fmasns) 519

Moreover, q(yf) < aa(y') and if A C 1L, then qu () < ga(¥).

3. Let J be given by (4.5) and A C IL. If 0 < h < 1, then an(y'; B, h) > q(y's B).
If 1< h, then ga(y'; B, 1) > qu(y'; B, h). B

4. Let J be given by (4.5) and A C IL. Assume that no edge of A(y') is adjacent
to a site of Xy. Then N

qa (z’;J) > q(z’;ﬁ)
.exp{_ﬁz DG )+e—f(t’—t”;ﬂ))} |
=(

tz')eA( )[ (2)‘:1

Proof. Lemma 5.2 implies that g (y';.J) is decreasing in J and therefore also
in A. This proves 1., 2. and 3..

We prove 4.. We have g5, ()';J) > q(y'; B); hence

qL (z’;J) qL (z’;J)

qn (z’;J) >qL (2’;.]) =qn\3, (z’;J)

>q(7: B
qr\z, (z'; J) ( ) qr\x, (X/; J)
(5.16)
We estimate the last quotient. Let
J(e) if edA(y),
Ji(e) == (_) (5.17)

sJ(e) if eeA(z’).

Then Z(A;Jo) = Z(Aly';J), since only family of closed contours 7, such that
7 N AA(Y') = 0, give a nonzero contribution to Z(A;Jy). On the other hand we
have Z(A;J;) = Z(A;J). Therefore

2(As7)  m(A)
In - ==Y 4 n coshJ(e
Z(N;J) E(A;Jh) eelA_[) )

1
d
ds —InE(A;J;) +In J] coshJ(e) (5.18)
ds eeA(y")

1
== Y Je) /0 ds (o(1)o(¢)yx+1n ] coshJ(e) .
e=(t,I)eA(y’)

ecA(y')

Il
|
s—



Large deviations and continuum limit 453

Therefore

Cn@d)) = exp{— Z ,)5/01 ds (<0(t)a(t,)>ﬁ_<O'(t)°'(t/)>ﬁ\20)} ’

qr\z, (2’; J =(t¢)EA(y
(5.19)
GKS-inequalities give

(oo (()x—{o(Oa(! Vs, < (0O )5, — (0O Dy, - (5:20)

The (IL\Xo)"-boundary condition in (5.20) is obtained by introducing an
external field on Xy, and then letting this field go to oo. Notice that
—a(t)o(?) 4+ a(t) + o(¢) is an increasing function, so that by FKG-inequal-
ities

(a(t)o())y75,— (oo )1 s,

< (o(0)i1%,— (0O s, HoiTs, ~ oy, - (521)
Define new coupling constants J” (e),

J(e) = {Js(e) if e not adjacent to X,

aJy(e) otherwise. (5.22)

(0())17%, = (0(0)y7y, with a=1 and (o(t)f\5, = (o(1)17, with a=0.

Hence

(oo ()is, — (e (O )is,

I8

l " "
<3 8 da(lo oo WD) - (523)

2)=1
where
7‘]// "JH , " 7‘]I/

(0(t); o))y, = (0(t) (" Diis, ~ (o)), - (0 Dily, - (5:24)
GHS-inequalities imply that (a(¢) ; a(t”)}{’\go is decreasing in a; putting a = 0
we get

(0(t); o(!Nii%,< (0(0): 0" )ys,= (00 0D, - (5.25)

because the last expectation value is with respect to the Gibbs measure on
L\, with free boundary condition and consequently by symmetry

(0())f\5,=0 - (5.26)
GKS-inequalities imply now
(o) (" )ix, < (oo (t)' < exp{—(t — 1" )} . (5.27)

Summarizing, we have
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0 < {o(Da()iis,~ (oo, (5.28)
<B Y (exp{—t(t—1"; B)} +exp{—t(/ = "; §)}) -
t”(tz//)::l
We conclude using (5.19) and (5.28). O

Lemma 5.4 Let J(e) >0 and t,t1,t, € A. Let Ay be an open contour with
ol = {t1,t} and 2, be an open contour with 61, = {t,t}, so that A = 2, U Ay is
an open contour with 6J. = {t|,t,}. Then

()< > aal) Y aalh)
i:(ﬂ.:{tl,tz} 2]:(511:{1‘1.}} 1215/12:{Zﬁt2}

tei, A-comp A-comp A-comp
= (o(t)a(1))x(o(t)a(t2)) p; (5.29)
> ga(UA) <2qa(2) > gqalh) ; (5.30)
;»15(3).1:{11,!} 1125/11:{[[.1‘}
A-comp A-comp
ga(4) = qa(A1)qa(/2) - (5.31)

Proof. We prove (5.29).

Let 4 be an open contour with 4 = {#,%}, considered as a unit-speed
parametrized curve. Let s* be the largest s € [0,]4]] so that A(s*) =7 We
decompose 4 into {4, 4, } by cutting 1 at ¢ and we set

A ={A(s): s€[0,5"]} and 7, ={A(s): s€[s"|A]} - (5.32)
Notice that by definition A,(s) # ¢ for any s > s*, that is, A, has exactly one
adjacent edge to z. (The way we cut A depends on the choice of the or-
ientation of A.) Define the graph %7 (J,) by its set of bonds,

{e* L UE(ANA(R) ; (5.33)

e” is the edge of A(4y), which is adjacent to ¢, but does not belong to 4, 2. We
claim that

Z(NA U k) = Z(97 (D) 41) (5.34)
First, by definition
AU L) =A(L) UA(L) . (5.35)
Let y, 6y = ), be A-compatible with 1; U 2. By Lemma 3.1
E()NALLIUL) =0 . (5.36)

Therefore by (5.35)

2 We want that 4; be a contour of the graph %% (4,), so that e# must be an edge of ¥%(2,).
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6(y) C 6(9%(h)) (5.37)
and

EW)NAG) =0 . (5.38)
This implies that y is A¥-compatible with 4,. Conversely, if y, oy =0, is
%7 (),)-compatible with 1;, then -

EQ)NAG) =0 . (5.39)
Suppose that ej,e; are two edges of &(y), which are adjacent to ¢. This is

possible only if the edge e* of 1,, which is adjacent to 7, belongs to A(/;). But
this means that y is A-compatible with 4; U /. Using this result we get

Z(A|2) Z(A|2)

w0/ Tl Z(A) w(4) :{;.,,;.2}:;. ZA) w(A)w(2y)
= w(J Z(Al A U/IZ)W Z(%*(2))
= {)]I;}:;‘ (/hl) Z(@#(iz)) ( *2) Z(A) (5_40)

If we sum in (5.40) over all 4;, given A,, and use (5.34), then we obtain the
two-point function of the Ising model on the graph g#(iz):

# "
ZW@W=<a<r1>o<r>>g#(;.z>s = Y alh) .

A /11:(511:{1‘1,&
(5.41)
We can interpret in a similar way the remaining sum,
Z(9* (%))
l) ———% . 5.42
We have
Z(g#(lz)) = w(y)

e

K
=
=
+

> ow) . (5.43)
7:0y=0, " ey y:0y=0,e* ey
G (J2)-comp %% (J2)-comp
By construction, all open contours 4, have only one edge adjacent to ¢. In the
first sum all closed contours of y are compatible with A,, while in the second
sum there is one closed contour containing ¢#; we glue this contour together
with A, to form a new open contour of index 3 at ¢. Therefore

Z(9% (k) AU  lo(f\a
;Wuz)iz( A —M;m D7) —M;Jz}qm)—< ()o(12)) s -
A-comp A-comp

(5.44)
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We prove (5.30). The first part of the proof is the same up to (5.40) and
(5.41), so that we get

) Z(9% () .
ga(A U Ap) < w(lz)% ga(d1) - (5.45)
).1:5/11:{[1,1} ( ) 11:5/1]:{[[,[}
A-comp A-comp
Let %(/,) be defined by its set of bonds, which is §(A)\A(42). Then we write
Z(9* (%)) Z(9(32)) Z(9* (%2))

MBS Ty 2@m) (346)

Using (3.7) we can bound the last quotient by 2. We conclude using Lemma
3.2,

wiia) 20

We prove (5.31). Since Z(97 (1)) > Z(%9(%2)),

ga(2) = wlin)w(i) %

(i) 25— a i) (5.47)

B Z(A|A U 1) Z2(%9(%))
= W(}vl) Z(gbz); . W(XZ) Z(A)z
Z(A|A1 U 2s) Z(%(4))

zwih) Z(%% (32)) R

g#().z)()ﬂ) “qa(/2)

A(41) - qa(2) (5.48)
by Lemma 5.2. O
Lemma 5.5 Let f < f,.

1. If J(e) = B for all edges e, then for any ty, ..., t, € A, with t,.1 = to,

> and) SeXp{—zn:r(tm —t,-)} : (5.49)

2:00=0_ i=0
10, ln €A

2. If h > 0 and J(e) is defined by (4.5), then for t,t;,t, € A C L,
Y () <exp{—t(t—n) =t —1)} . (5.50)

ldi={t1 } 1€
E(A)NE(Z)=0

3. If h > 0 and J(e) is defined by (4.5), and each 2;, i =1,... k, is a closed

contour, with ti, . ..ty € 2, then (ti, 41y = tio)
k k n;
Z qA(/ll,...Jvk) <Hexp{_zf(ti(j+l)_tij)} . (5.51)
i=1 2t sting € i=1 j=0
E()NE(Z0)=0
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Proof. 1. follows from Lemma 5.4, GKS inequalities and Proposition 4.1.
The proof of 2. is a consequence of Lemmas 5.1 and the equivalent of
Lemma 5.4. The only modification in the proof of that lemma comes from
the constraint & (1) N &(Zy) = 0. Before interpreting (5.42) we first take 4/ = 0
in (5.42). The reason for doing this is to prevent that the contour, which we
get by gluing an open contour and a closed contour, gives a contribution to
the sum when it intersects &(X). O

Lemma 5.6 Let f < f., h > 0 and J(e) be defined by (4.5); let A C IL. The
diameter of y is d(y). There exist a positive constant o. = o(J) and a constant
C(a) such that for 1 > C(x)

PA[37,d(y) > 1] < |Al-O(%) exp{—a-1} . (5.52)
C(x) = O(tInd) for small «.

Proof. We give to all closed contours an origin by choosing a total order on
the lattice:

t<t<=1t2)<{(2) or #2)=7(2) and (1) <7(1) . (5.53)

The origin is also the initial point of the contour, viewed as a parametrized
curve, which is counterclockwise oriented. To each y with diameter d(y) >/
we associate a sequence of points on the lattice as follows:

1. ¢, is the origin of y. If #(2) =0, then s is the last time such that
p(s0)(2) = 0; we set f := y(so). (fo is the largest point of y such that
t(2) = 0.) Otherwise #) := .

2. Let 57 be the first time such that y leaves the square of center ¢, and side
1/2; we set t; := y(s1)-

3. Let s, be the first time greater than s; such that y leaves the square of
center #; and side 1/2; we set £, := y(s2).

4. The procedure is iterated until it stops.

Thus for all closed y we have a well-defined ordered sequence of points
(), 20,11, - - -, tn)-

For x = (x(1),x(2)) € R? let |x|, := |[x(1)| + [x(2)|. Since < B, t(x) > 0;
we define o as the largest positive constant such that t(x) > 2alx|,, Vx € R
Clearly

PA[3y d(y) = 11<) > qa(y) (5.54)

1eA d(y)>1
f(n)=t
since PA[3y] = ga(y) . Suppose that the points &), fo, #, . . ., ¢, are fixed. Then

Z qa(y) < exp{—fbd(t6 — 1) — zn:r(t,»H - t,«)}

y:oy=0,d(y)>1 i=0
J

< exp{—tva(ty — to) } exp{—(a/2)nl} , (5.55)
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with t,41 = ;. Therefore
D ) <> exp{—talty —t0)}
Pty (v)=t.d(y)>1 fo

Y (211 +2))" exp{—(2/2)nl} . (5.56)

n>2
We can choose C(«) so that for / > C(«),

> () <Oo(P)expf{—a-1} . (5.57)

vty ()=t,d(y)>1

Remark: In the second part of the paper, we will have to consider the case
h = oo, which corresponds to t,q = 0. In this case the statement of the lemma
is modified as follows

PA[3 7. d(y) > 1] < |AP - O(P) exp{—a - I} . (5.58)

6 Random-line representation of the two-point function
6.1 Two-point function

Let < f. and suppose that J(e) = 8 for all edges e. We study here the
covariance of the Ising model at the thermodynamic limit, through its ran-
dom-line representation. The main goal is to obtain a subset of the random-
lines, which gives the main contribution to the covariance?

Let & be the set

& = {J: i=0or Zis an open contour, 61 = {0,t},0#£t€ Z*} . (6.1)

Let ¢(1) be the quantity of formula (5.14) when A is an open contour; set
g(4) =1 when 1 = (). We have

1= q(4)
re?
=1+ >, > 4
04t€7? 2:07={0,1}
= 3 (o)) - 62)
1ez?

The quantity y is the susceptibility of the model. It is finite since f < f5.., see
e.g. Lemma 5.1. On % we define a measure IM with finite mass y, by setting

3In this paper we do this by using monotonicity properties of the covariance. It is possible to
improve these results [PV1], if we make use of the sharp triangle inequality of the decay-rate t,
see [I1].
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M(2) :=q(4) . (6.3)

Let {0 — ¢} denote the event {1 € ¥ : 64 ={0,t}}. Then the two-point
function is equal to

(0(0)a(2)) = M[{0 — 1} ] . (6.4)

The next proposition gives one of the main estimates of the paper. Let ¢ € Z?;
if [#(2)] < ¢(1), then set

B, = {sez2; 0<s1) <:(1); 2= _ () SM} . (6.5)
if |¢(1)] < #(2), then set

B,:{S€Zzst(l)gt(2)§5(l)§t(2)+t(l);OSS(z)St(z)} . (6.6)

The boundary of B, is defined as
8Bt:{t,€B,:E|S€B,,|S—I/|1} . (6.7)

Proposition 6.1 Let f < B, J(e) = B for all edges e, t = (t(1),¢(2)) € Z*, with
0<#2)<t(l) and a € N with 2a < t(1). Let B, be the square box (6.5) and
OB, be its boundary (6.7). Then

> a(2) = (a(0)a(0) [1 — O(|e(1)| exp{—O(a)}) | exp{—O(a)} . (6.8)
1:63={0,¢}
/ inside B,
A inside B, means that A C B, and that no edge of 1, except the first and the last
one, is adjacent to a site of OB,.

Proof. The proof is divided into two parts. The first part is inspired by a
similar result of [I1]; the second part follows a similar result proved in [Pf2].
First part. We choose two points u, € Z* and v, € Z*> such that

1. u, is the point on the vertical line {¢ : #(1) = a} with u,(2) minimal and
Ua(2) = a- (¢(2)/1(1)).

2. v, is the point on the vertical line {# : 7(1) = #(1) — a} with v,(2) maximal
and v,(2) < #(2) —a- (1(2)/1(1)).

Then we choose two open contours 4; and 4, inside B, with 4; = {0,u,} and
077 = {v,, t}, such that /; and 4, have minimal lengths.

Let /' be an open contour with 64" = {u,,v,} which is inside B,. We
assume that u, is the initial point. Let s; € [0, |'|] be the integer time defined
by the condition that ¢ := /'(s;) € /; so that #(1) is minimal; similarly let
52 € [0,]4']] be the integer time defined by the condition that #, := 2/ (s) € 1y
so that #,(1) is maximal. This gives a partition of 2’ into three open contours;
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we sum over the first and last ones using (5.30) of Lemma 5.4. We get the
upper bound

dooa) <Y Y 4aow)a(n)(o(b)a(vl)) . (69)
2282 ={ug,vq} titr L:0A={t,tr}
! inside B, / inside B,

Let 4 be an open contour of the sum (6.9); we extend /, using the contours 4,
and /J,, to an open contour 4, so that 1 is inside B; and 6/ = {0,¢}: 1 is the
union of 4}, 4 and 25, with 4| the part of 4; from 0 to #; and 2, the part of 4,
from #, to ¢t. By Lemma 5.4 we have

q(2) = q(2)q(A)q(%) - (6.10)

Using Lemma 5.3 (replace J(e) by J'(e) = oo for all e ¢ A(i})), we can show
that

gl ) > expl-0(A)), =12 . (6.11)
Thus
44(%) < q(2) exp{O(a)} , (6.12)
since |};| = O(a). Therefore, after summation over #; and # in (6.9),
> g sew(o@ Y () - (6.13)
02 ={uava} T:67={0,1}
2 inside B, E inside B,

Second part. We prove a lower bound for

Yooa= Y. abH- Y. a)

2:07={uq,0,} 2:07={uq,04} 2:07={uq,0,}
/. inside B, ANOB,#)
= (o(ua)o(va)) — Y q(d) . (6.14)
A:0A={uq,v.}
JNOB,#0

Suppose that 64 = {u,,v,} and 2N IB, # . We consider 4 as a unit-speed
parametrized curve from u, to v,. Let s be the first time A touches 0B;; we set
r:= A(s). We have

Yooa <D > 9 <D (o(u)a(r)(e(r)a(va)) - (6.15)
A:02={uq,04} r€0B; 2:0A={uq,v,} redB,
ANOBAD ar
Suppose that » € 9B, belongs to the vertical left part, or to the horizontal
bottom part of 0B,. For simplicity assume that (¢(2) — #(1))/2 € Z. Let @, be
the point obtained by a reflection of u, with axis {#(1) =0}, or {/(2) =

M} Then by symmetry, GKS inequalities and translation invariance

(0(ua)a(r))(a(r)a(va)) = (a(ta)a(r)){a(r)a(va)) < (o(ua)a(va)) - (6.16)
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The set S,
S={s: |s'(1) —u, ()| + |s'(2) —u,(2)| = a} , (6.17)

separates 7, and v,. One checks that we can apply Proposition 2.2, so that for
any s’ € S,

(0(s")o(va)) < ((ua)o(va)) - (6.18)

Therefore

— exp{~0(a)}{o (1) (va)) - (6.19)

A similar argument holds for the remainding part of 0B;, exchanging the role
of u, and v,. Hence

4(7) > {o(ua)a(va)[1 = O(1(1) | exp{~O(a)})]
iy

v

(0(0)a())[1 = O(j«(1)[exp{-O(a)})] . (6.20)
U

6.2 Boundary two-point function

There is a similar random-line representation for the boundary two-point
function. The coupling constants are given by (4.5). Let

S :={LCILL: .=0orAis an open contour, 6. = {0,¢},0#¢ €L} .

(6.21)
We define a measure on £ by setting
My (A) :==qu(4) . (6.22)
The total mass of My is
wi= Y, qu2) =Y (a(0)e()y (6.23)
IELL tell
and by GKS-inequalities y; < y. We have, for x € X,
(6(0)o (1)), = Mr[{0 — 2}] . (6.24)

Proposition 6.2 Let f < f., h > 0 and J(e) be defined by (4.5). Let t € Xy with
0 < t(1) and a € N with 2a < t(1). Let B; be the square box

Bo={selL:0<s(1)<t(1);0<s(2) <e(1)} (6.25)
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and OB, be its boundary

OB, :={{ €B, :{(1)=0,7(1)=1(1),7(2) =¢1)} . (6.26)
Then
Y au(d) = (a(0)a(n)y,
Finide

x [1 — O(Jt(1)[*? exp{—2atpa((1, 0))})} exp{-0(a)} .  (6.27)
A inside B, means that . C B, and no edge of A, except the first and the last one,
is adjacent to a site ' € OB;.

Proof. We define u, := (a,0) and v, := (¢#(1) — a,0). The first part of the
proof is identical with the one of Proposition 6.1. Thus we have

> () zexp{-0@} > qu(d) . (6.28)
2:07={0,¢} 2:02={ug,v,}
2 inside B, / inside B,

Consider 4 such that o4 = {u,,v,} with initial point u,. Assume that A
touches the boundary of the box B, at f,. Let A(s.) :=t,. There are two
cases.

1. £.,(2) = #(1). Then there is a last time s; such that s; < s, with A(s;) € Z
and a first time s, > s, such that A(sy) € . Let * := 7((1,0)). Using sym-
metry and monotonicity properties of the decay-rate and Lemma 5.1 we get

qu(2) < O(exp{—2¢(1)7*}) . (6.29)
2:02={uq,0q4}
€L

We write the right-hand side of (6.29) as

Ofexp{—2(1)'}) = O(ffgf,;féf;))i}) (o) - (630)

The lower bound on the boundary two-point function of Section 7.2, Pro-
position 4.2 and #(1)t* = 1(¢), with ¢ = (¢(1),0), imply that

O(fé‘é‘i;f{ﬂff) < ol exp{—<(0)}) - (631)
Summing over #*, we get
> Y @< oo oD exp{—x(0)}) . (6.32)
et (2)=t(1) A:(Mt:*{g;f“vu}

2. (1) =0 or ¢,(1) = #(1). From Lemma 5.4 and GKS inequalities we ob-
tain
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2:00={g,04}
t.€d,t.(1)=0
= (0(~ua) (1)) (o(0a) o (1))
< (o(~ua)o(va))y
(0(~tta) o (va) )y
= <J(ua)6(va)>]L (6(“0)0(Ua)>lL
< (o(ua)o () O (1D exp{-2mma(wa)}) - (633)

We conclude as in the proof of Proposition 6.1 (tpq(#s) = a - Ta((1,0))),

> a2 {olu)o(wa)e [1 = 0D exp{=2ma(ua)})]
2:02={ug,v,}
A inside B,

v

(0(0)7())y [1 = O exp{-2ma(wa)})| - (6.34)

7 Correction to the exponential decay

We need lower bounds for the two-point function and the boundary two-
point function in section 10, in order to get precise estimates for the re-
mainder terms.

7.1 Lower bound for the two-point function
We need a bound of the following kind,

(0(0)o() > C %(”} 7 (1)
for some positive k. Such a bound can be derived ([PL], [DKS]) with &k = 1/2
for small f§ by perturbative methods; see also [G], [BLP2], and in particular
[BF], where the connection with the Central Limit Theorem for the random
lines 4 is made explicit. In case of the Bernoulli percolation Alexander proves
such bounds for the corresponding quantity in a non-perturbative way [A1]
with £ <420 if D =2 and k& < 2328 if D = 3; see also [A2]. In this paper we
use the bounds obtained from the work of McCoy and Wu [MW] chapters
XTI and XII.

Lemma 7.1 Let J(e) = f, p < fB,, for all edges e of Z°. Then there exists a
constant C such that for all t # 0,

{a(0)a( T—exp{ (0} - (7.2)
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7.2 Lower bound for the boundary two-point function

Proposition 7.1 Let J(e) be given by (4.5), f < f. and t € %.

1. Let h = 1. Then there exists a constant C such that for t € X,

OO > e {-ru(0) (13)
2. Forall h>0
(6(0)a(1))§" > (tanh B)° - (a(0)(1))f" - (7.4)

3. Let h > h.(P) (see Proposition 4.2). Then there exists a constant C = C(h, f5)
such that

(0(0)a()1" = Cexp{—malt; B, 1)} - (7.5)

Remark: Since h.(f) > 1, we can write (7.3) as

(O > rep(=<(0) 76)

Proof. 1. follows from [MW] chapter VII; see also [P].

By GKS inequalities the boundary two-point function decreases if we set
h = 0andJ(e) = 0 for all edges e adjacent to a site ' € X, except the vertical
edges adjacent to ¥ =0 and ¢ = ¢. It is now not difficult to sum over the
variables ¢(0) and o(¢) explicitly and to get (7.4). This proves 2.

We prove 3., assuming Lemma 7.2. Given xj,x; € Xy, we define the in-
terval [x;,x;] as the set

xi,x] :={teL: x (1) <t1) <x(l),#2) =0} . (7.7)
Leta e N, #(1) > a and ¢t = (¢(1),0). We set ¢ := kt for k=1,2,...,n, and
I:=1[th —(a,0),t] . (7.8)
We have
(0(0)a(tn))p = Mr[{0 — 1,}] (7.9)
= IML[E] [{0 — £} [ML[{0 = t,} ]+ ML[E; N {0 — t,}]

where E; is the event {ANJ7 # 0} and EY the complementary event. We
choose a so that

M[E {0 —1}] <1/2, (7.10)

which is possible according to Lemma 7.2 if (1) is large enough. Thus we
have
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(6(0)a(ty))y <2My[E; N{0 — t,}]

< 22 Z qu(4)
el A:éillze{;),tn}

< 2a(a(0)a(t1 = (a,0)))p(a(t)a @)y - (7.11)

We have used Lemma 5.1 and the monotonicity property of the boundary
two-point function, which is proven in the same way as the corresponding
property for the two-point function on Z>. By GKS inequalities and trans-
lation-invariance

(o(0)a(t — (@,0)y _ (0(0)a(h — (a,0)))y
(@O)a(t))y  — (a(0)a(tr — (@,0)))y (a(tr — (a,0))a(n))y,
1
= (o(a((@ 0y (7-12)
If we set
c <a<0>a<2<5,0>>>m | 0.13)
then
(6(0)a(t))y. < € (o (0)a () y (o (t1) b))y - (7.14)
We can iterate this result,
(0(0)a(t))y < " (o)t )" - (7.15)

Therefore, if #(1) is large enough, then
1
—1pa(t; B, 1) = lim‘;ln<a(0)a(t,,)>ﬂ_ < —InC, +1In{c(0)a(t))y . (7.16)

O

Lemma 7.2 Let f < f,, h > h.(B), x1,x2,t € Zo, such that 0 < x;(1) < x(1)
< t(1), and I := [x1,x;] (see (7.7)). Then there exist ¢ positive, n, and Cy such
that for all xy,x, with |x, — x1| > n,

My [{ANI=0}|{0—¢t}] < Crexp{—¢lxo —x1|} . (7.17)
Proof. We have

My [{0 — 7}] = (a(0)a(0))y. - (7.18)

Let A be a random line such that 64 = {0,¢} and A N7 = . Let s; be the last
time when A touches X, at the left hand side of 7, and let s, be the first time
that A touches X at the right hand side of 7. We set u := A(sy) and v := A(s3).
We necessarily have u(1) < x;(1) <x2(1) < v(1). From Lemmas 5.4 and 5.1
we get
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Mp[{2NT =0} n{0—}] < ZGXP{—T(U —u)}a(0)a(u))y (o (v)a(0))y -

(7.19)
By GKS inequalities
(6(0)a(t)) = (c(0)a(u))y (o (u)a(v))y (o(v)a(t))y (7.20)
so that
My ({201 =0} {0 -] < ORI g5
= 2 (o)),
We know that
lim —lln<a(0)a(nt1)>l: Tod (7.22)
n—00 n
where
’C;d = 'Ebd(tl), 1 = (1,0) . (7.23)
Let 0 < 26 < 7 — 134; T = 7(f;). We can find n, so that for all n > n,,
1
lim — Zln(o(O)a(ntl))]Lg Tog + €, (7.24)
so that
(a(0)a(nty))y > exp{—n(thq +¢)} . (7.25)
From this inequality and t(u — v) = |u — v| - ©*
Mp[{ANT=0}[{0—1}] < exp{—efu—1v|} . (7.26)
Using u < x; < xp < v the lemma follows. OJ

Remark: Using Proposition 7.1 we can improve Lemma 7.2. There exists a
constant C such that for any interval 7 = [x;,x,] we have

My [{ANI=0}|{0— 1}] < Cexp{—(7" —11y) - o —x1]} . (7.27)

Part I1: Ising model at low temperature

We study the large deviations of the magnetization of the Ising model for
p > P, (ie. below the critical temperature). We analyze in particular
boundary effects. Some estimates of part I are essential. The results are valid
only for the two-dimensional case.

We have written part I with coupling constants f and # in order to
simplify the notations, and because this part has its own interest. However,
the proper notations would be f* and 4*, since these coupling constants are
the dual coupling constants of f# and 4. In particular 2 = 0 in part II cor-
responds to 2* = oo in part I.
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8 Low-temperature representation

There is a representation of the Gibbs measure in A with + boundary con-
dition in terms of contours, which is similar to the one of (2.4). To each
configuration , which satisfies the A*-boundary condition, we associate a
family y = y(w) of compatible contours on the dual lattice (Z)*: let &*(w) be
the subset of edges

& (w) = {e" : [o(t)(@)o(d)(w) — 1] = =2, (t,/)=¢} . (8.1

We decompose the set §*(w) into compatible contours y. Two important
remarks: All contours y of y(w) are closed, i.e. 5y = (); We do not obtain all
families of compatible contours as it is the case for the high-temperature
representation. This motivates the

Definition 8.1 A family of compatible contours y in A* is A -compatible if and
only if there exists a configuration o satisfying the AT-boundary condition,
such that vy is the family of contours of w.

Let A C Z>. The set A* C (Z*)* is by definition the set
At = {t* € (Z*)": ¢ is a corner of a plaquette p(7), € A} . (8.2)

Any family of contours of a configuration w satisfying the AT-boundary
condition is in A*. Given a closed contour y on the dual lattice (Z*)" there
exists a unique configuration w, having y as single contour and such that
o(t) =1 for all ¢, except for a finite number. The interior of y is

inty = {t€ Z*: w,(t)=-1} . (8.3)
The exterior of y is exty := Z*\inty. The volume of 7y is
voly := |inty| . (8.4)

A contour y of a configuration  is external if there is no other contour y" of
the configuration such that inty C inty’. Let y be a contour of a configura-
tion o satisfying the A™-boundary condition. The closure of the interior of y
in A, inty, is the union of inty and the set of all # € A\inty, such that
o'(t) = 1 for any configuration o’ with the properties: 1) ' satisfies the A™-
boundary condition; 2) 7 is an external contour in «'. * The closure of the
exterior of y in A, exty, is the union of exty and the set of all 7 € A\ext y, such
that o'(¢#) = —1 for any configuration «’ with the properties: 1) o’ satisfies
the A"-boundary condition; 2) y is an external contour in '
Let J*(e*) be the dual coupling to J(e). The *-weight of a contour is

wi(y) = H tanhJ*(e") = Hexp{—Z J(e)} . (8.5)

erey erey

4inty depends on the rule 4; if A is large enough it is independent of A.
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The normalization constant Z(A)"* appearing in the definition of 14 can be
written as

[1]

A=) T expt(e)o@)(@)o(l)(w) -1}

o e=(1,):
eNAFD

= Y II [Texpt—27(e)
p:0y=0 V€Y e'€y

AT -comp.

-3 I we (5.6)
p:0p=0 V€Y
AT -comp.

Let A C Z° and 7" be a family of A"-compatible closed contours. We set

zt (A|2';J) = 3w . (8.7)
o wreoms
If ' = (), then
ZHA0:T) = ZF(AJ) . (8.8)

Lemma 8.1 Let A be a finite subset of Z°; J(e) be non-negative coupling
constants. Then

ENNT=2ZT(NJ) . (8.9)

Let 7' be a family of A*-compatible closed contours. Then the probability

P{[y'], computed with respect to the measure iy, is given by
T / zZt <A y';J)
peli] = () SANE) 510
AMZTEYANL) T2 A (8:10)

If A is simply connected, then any family of A*-compatible contours is A*-
compatible; furthermore

ZT(A;J) = Z(A*T) (8.11)
and

B[] =w () % —ax (7). (8.12)

Proof. (8.11) follows by comparing the high-temperature and low-tempera-
ture representations. If A is simply connected then we construct explicitly the
configuration o starting from the boundary for any family of A"-compatible
contours. O
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9 Phase of small contours

A basic idea in [DKS] is the introduction of an intermediate length-scale in
the analysis of the large deviations of the magnetization. One distinguishes
between small and large contours. We study here the large deviations for the
magnetization under the condition that all contours of a configuration w are
small. Our main result is Proposition 9.1. It is inspired by the appendix of
Schonmann and Shlosman in [SS1]; see also Ioffe [I2] and Pisztora [Pi] for
related and former results of this kind.

9.1 Definition of the phase of small contours

Let [ be some positive integer; we set

B(0;1) := {t = (((1),02)) € (Z2)": —1<1(i) <1, i= 1,2} . 0)
Definition 9.1 Let s € IN. A contour vy is s-small, or small, if there is a translate
of B(0;s/2) which contains y.

Let A be a finite subset of Z>. The phase of small contours is described by
the conditioned measure

P.°[-]:= Py [- |{all contours s-small}] . (9.2)

The expectation value is denoted by (-)1*, or Py*[-]. It is convenient to use

and each contour of w is s-small, (9.3)

1 if w satisfies the AT-boundary condition
Ii(w) ==
0  otherwise

The function w — I} (w) is increasing. Furthermore, if A is the union of two
disjoint connected components A; and A;, then

I\ (@) = I} (o) - 1T}, (@) . (9-4)
The main property of the phase of small contours is the decoupling property

expressed in the next lemma.

Lemma 9.1 Let J(e) > 0 for all edges e. Let I,s € N, and set Ay := B(0;1),
Ay :=B(0; 1+ s+ 1). Suppose that A D A,.

1. Let f be Ay-local and g A\Ay-local. Then

[P =R ok < max [OR =00 (ahh> - 99

2. If furthermore f is increasing and g positive, then
(fan'= o - (9.6)

If furthermore f is decreasing and g positive, then

(LN Nr(an” - ©.7)



470 C.-E. Pfister and Y. Velenik

Remark: In the proof of Lemma 9.1 we only use (9.4), the Markov property
and FKG-inequalities. Lemma 9.1 is therefore also true if we replace the
measure u by another measure, which has the Markov property, as long as
FKG-inequalities remain valid; for example we may consider the Ising model
with arbitrary external field.

Proof. By definition

(fon'= oty (9.8)

T
U

Suppose that y is an external contour in a configuration w and that

I (w) = 1. Then

Ay ¢ inty . (9.9)
Moreover, if
inty N (A\Az) # 0 ; (9.10)
then
intyNA; =0 . (9.11)
Let y,(w),...,7,(w) be all external contours of w such that
inty;(@) N(A\A2) #0, i=1,...,n; (9.12)
we define the random set
A@) = (A\Ay) | inty ) . (9.13)

We have by Markov property and (9.4)
O = S aHAC) = ADR°-PUHAC) = AT

AN'CA
=Y NN GHAC) = D PUTHAC) = A" (914)
AN'CA

If Py {A(-) = A"}] #0, then A; C A\A” C A,. Hence, the result follows
from

SO =N (9"
= 3 (NS ) HAC) = DX PUTHAC) =AY (9.15)

A//CA
Suppose that f is increasing and g positive. FKG-inequalities and
Ay € A\A" C A, imply that
)
. A\A”> AVAY
riwr = [ 2 Nz R, - (9.16)

s +
T > AN
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Hence (9.6) follows from (9.14) and (9.16). O

We derive some consequences of Lemma 9.1 for the model with the coupling
constants

- p>0 if e
J(e)'_{hﬁzo if e

(t,7), t(2) > 0 and #(2)

0,
(t,7), t(2) < —lorf(2) < —

>
<-1 . (917

We recall a result of [BLP2].

Lemma 9.2 For any f > f. there exists a(f) > 0 and K such that

<k Y epf-a®li-ry ., ©.18)

ted teVIAV;

| (04)1,—(04)y,

where A C V1 N V3 and AV, = (Vi\Va) U (1\ ).

Lemma 9.3 Let J(e) be the coupling constants given by (9.17) with f > f.. Let
s€N and t € IL with t(2) > 2s+ 1. Let A CIL, such that A contains the
square box

{fuel: |t(i) —u(@)| <2s+1,i=1,2} . (9.19)

Then there exists a positive constant k = k(f) (see (9.31)) such that

(e P < (o)) < (a()) P +O(s*) exp{—x -5} . (9.20)

Suppose furthermore that t' € A and

min {|/'(i) — ()] : i=1,2} >2s+1 . (9.21)

[ (a(0) o(!) A" —{a(0)1" - (a())1" | < O(s*) exp{—r-s} - (a()R” . (9.22)

Proof. Let A be a translate of the box B(0;s/2) with # in its “center”. Let A,
be the translate (same translation) of the box A, of Lemma 9.1 with / = s/2.
The first inequality follows from (9.6), with g = 1, and from FKG-inequal-
ities,

()= (a()r]> (o)™ . (9.23)
By (9.14) we have
()= D (a)yiy PHAC) = A" (9.24)
AN'CA

Only the terms with A; € A\A” C A, give a non-zero contribution. There-
fore by FKG-inequalities
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+J

e 5 ()
A - +.J

AN'CA <1A\A// >A\A”

A\
(), ()

PUHAC) =AY

< T PU{A() = A" (9.25)
A'CA <I’S‘1>A1 < A>A\A”
By FKG-inequalities and GKS-inequalities
+.J +J
<a(t)1;]>m > <"(’)>XIJ'<’RI>AI >0 . (9.26)
Since (75 ),” <1 and <I/‘\>X\JA” > (I3 )8, we get
) 1 38
(o3 < (oA (9.27)

ATS P
<A2>A2

In A; all contours are s-small, so that we have

O —r e (9.28)
CON

If the diameter d(y) of y is smaller than s, then y is s-small. Lemma 5.6 and
Lemma 8.1 give

% <1+ 0(s*) exp{—s(f")} , (9.29)
(),

with o(f") of Lemma 5.6. Lemma 9.2 gives

[ (o) (o)™ | < Os) exp{—sa(p)} - (9.30)

Define x(f) so that
max [exp{—sa(")} , exp{—sa(p)}] < exp{—r(p) - s} . (9.31)
The second affirmation is a consequence of (9.5) and (9.20). O

9.2 Large deviations in the phase of small contours

Proposition 9.1 Let J(e) > 0 for all edges e.
1. Let

varg =70 3 ((a()aO)i ()3 @O)F) - 03

tI'eA

For any x > 0,
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Pt [ { (60 = o)) 2 1A }

teA

<exp(—|/\| x ) . (933)

2vary
2. Letl,s € N, Ay = B(0;1), Ay = B(0;1 + s + 1). Suppose that N' C Z* is the
union of n' disjoint translates B; of the box A, and that A" is the union of n"

disjoint  translates %; of the box A, such that N NA"=0. Let
A:=NUA',N:=n+n" and P} := PXS ®P

A// .
Let
AP bs_ 9.34
A AICA;CA» Al'g\:/ A ‘A |tEZA| ) ( )
. . , 9.35
A Ach;cAz |/\”| tGZA” A |A |t€§/\:1 ( )
As+D@RI+s+1) A +a"AY
42 9.36
y A v (9.36)
If y >0, then
2
PSH S (o)~ (o)) | 2 xlAl} < CXP(N%> - 637
teA
Remarks: 1. A variant of 1. is: for any x > 0,
P { > _(a(0) = (a(0)x) = xlA] }
teA
< (1-P{[{37 not small}])_lexp( Al - ) (:38)
< A 2var)) '

2. We have a similar proposition if we consider A™-boundary condition. In
particular 1. becomes in this case: for any x > 0,

Py HZ(GU) = (a(6)x) < —xIA] }

teA

<exp(—|A| x ) (9.39)

2var),

Notice that by symmetry

vary = vary . (9.40)
3. In applications, we usually have A = A'UA" UJA, with SA # 0. The
conclusion of Proposition 9.1 still applies, provided y is defined by

s+ 1)2I+s+1) nAS+n"AGT |5A]

= 2 Letiel}
ey A N Al

(9.41)
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Proof. Let

fala) == |[1\|ln<exp[ Za(t)D . (9.42)

teA A
We have (see e.g. Lemma 5.1 in [Pf2])

2
P ot) = (o(0)3) = ¥IAl ¢ | < exp| —IAl———F7——] .
A {Z; N 25up,q g2 fa(a)
(9.43)
GHS-inequalities give
dZ
— < . .
iggdaZfA( a) < vary (9.44)

We prove 2. The proof is similar to the proof of Lemma 9.1. We define for
each box %; a random variable Y;. Each box %; is a translate of A,; denote by
4 the translate of A; by the same translation and set

Y= |A1 | > ot (9.45)

€A,
Then
> x|A }

gl

> (o) = (a(1)})

teA

N
1 4(s+1)(21+s+1)>
<P Y — — N(x -2 .
A[{ /:Zl ! |A2|teA Az
(9.46)
We define a random set A(w). Let y;(w), ..., 7,(®) be all external contours of

o such that inty, has a non-empty intersection with at least two different
boxes %; we set

Aw) = | inty, . (9.47)
By construction, ’
A)NB, =0, (9.48)

for all w such that all contours are s-small. If x=x—8(s+ 1)(2/+=

+1)/|Az|, then
1

R[S0y eon)
SHOLIRD STRRE SN

>Nﬁ}|{A<->=A’}
NcCA =1

x PA{A() = AT} . (9.49)
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Let A" be such that P{[{A(-)=A"}]#0, so that the variables Y,
i=1,...,N, are independent with respect to the probability measure
Pi[-|{A(-) = A"}]. Using (9.36) we get

{ o1 e

{

Since the random variables ¥; are bounded by one, their variances are also
bounded by one, so that we conclude by using the elementary inequality: for
any x > 0,

(9.50)

ZN)?}I{A(-)=A'}

(% = (G HAC) = AD)})

J=1

>Ny}|{/\(~):/\'}

S (% -E[%])

i=1

Prob l

znx] §exp<—N%2> . (9.51)

O

Comments: 1. In the proof of (9.37) we used a trivial bound on the variances
of the variables Y;. Since there is a constraint on the size of the contours we
expect that the variance goes to zero when |A;| — oo; in such a case (9.37)
can be improved.

2. To apply this proposition we need to control the quantities (a(z))%, vary,
(a(t))x* and (9.34), (9.35). We make some remarks concerning that point.
2a. Using Lemma 9.3, we obtain the following bounds,

AT < 0<s|f/<\,;|) + 0<s||8/<\11||) , (9.52)
"
A< 0<s|ﬁ<\,,||) + 0<s|f/<\11||> . (9.53)
2b. If J(e) = p for all edges e and f > f5. then FKG-inequalities give
(a())x>m" and (o(t)) < —m* | (9.54)
and we can use Lemma 9.2 to estimate
(o)) —m*| or |(a(t))r+m"| . (9.55)

Moreover, GHS-inequalities give
i 2 {(elot0) i~ (e nA ) )

t'eA

- _ yart —
var, = var, =

oS a0y (o) (o) )

B |A| ti'eA

<3 {{e@o) " -m' B’} . (9.56)

te??
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The quantity
1:= > { (0O —m ()" } (9.57)
te??

is called susceptibility. It coincides with the one defined by (6.2) when f < ..
Indeed, in that latter case m* = 0 and (a(£)a(0)) ™" = (a(¢)a(0))F. It is finite
for f > p, in the 2D Ising model.

2c. Let the coupling constants J(e) be given by (9.17) with § > . and & > 1.
Let A C IL; GHS-inequalities imply

vary P = vart P < varfP <y | (9.58)

Moreover, for all # € I, #(2) > 1 we have by FKG-inequalities (see proof of
(5.20))

s —Boh -8,

()8 < (o)< (e (9.59)

so that we can use Lemma 9.2 to compare <a(t)>/§’ﬁ‘h with —m*.

2d. Let the coupling constants J(e) be given by (9.17) with > ., and
0 < h < 1. In that case we use

Lemma 9.4 Let the coupling constants J(e) be given by (9.17) with § > f.. Let
t € A such that A contains the square box

{u:|tG@) —u(i)| <2s,i=1,2}, s>0. (9.60)
There exists a positive constant a(f) (see Lemma 9.2) such that
(a(0)) " = 2P{ {3y not s-small}] < (a(1)) L
<{a(t))"F + 2PF [{3y not s-small}] + O(s) exp{—sa(f)} .  (9.61)

Proof. Let & be the event: all external contours y in o, which have at least one
edge on the boundary of A*, are s-small. We have

(a(0)) P = (a(0)| &) P! PP &) < PEPM {3y nots-small)] . (9.62)

Since ¢ is at a distance at least 2s from the boundary, then FKG-inequalities
imply

(eIEN" > (AT = (e ()" (9.63)

The lower bound follows from (9.62) and (9.63). The up/?er bound follows by
using Lemma 9.2 to show that (a(¢ )|(f”>+ﬁ </ s)exp(—sa(f)).
O

There is of course a similar result with —boundary condition instead of
+ boundary condition. In case A is simply connected we can use Lemmas 8.1
and 5.6 to estimate

PIP{3 9 not s-small}] . (9.64)
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p.h

To get an upper bound on varj{’ we use GKS inequalities,

(oo™ < (e(a(NH (9.65)
and estimate by Lemmas 9.4 and 9.2 the quantity

(@M (NP = ()P e (NP (9.66)

3. Using the above method, it is possible to improve the results on the phase
of small contours given in [I2] and [SS1]. In these papers, the probability
which was considered was Py v[ Zte A 0(t) —m* < —¢. In such a case, we
can apply the preceding method w1th I = C(e)s, with C sufficiently large. We
then use the fact that there exist u(e) > 0 and €' (e) > 0 such that at least uN
boxes have a magnetization at most m* —¢. Using the fact that
{x Yeno(t) —m" < —e} is decreasing we can first remove the constraint on
the size of contours and then use monotonicity in the size of the box in order
to reduce the discussion to the case A,. The event so obtained can be esti-
mated using the results of [S]. Choosing s = L, we get

s " 22 3
P | h o) - < | < (exn(-0U) ™ ) = exp(-01>)
teA

(9.67)

This exponent can be shown to be optimal using the method of proof of
Lemma 12.3.

10 Large deviations: lower bound

We derive a lower bound for large deviations of the magnetization of an
Ising model in a finite box. It is given by the infimum of the isoperimetric
problem discussed in the introduction, hence it depends on the choice of the
boundary condition and the shape of the box. In the next section we show
that the lower bound is optimal. We do not assume here that this isoperi-
metric problem has a solution. We derive a lower bound for all curves
which are boundaries of convex bodies with given volume. Inside € one has
the —phase and outside the +phase. We have a uniform control of the re-
mainder terms.
Let 71,7 € N; we define the box A, = AL(”I , }"2)

Ap={teZ: —nL<t(l)<rL;0<2)<2nl} . (10.1)
We choose the coupling constants as in (9.17),

Jier. [BZ0 il e=(0),1(2) = 0and /(2) 20,
<e)_{h[320 if e=(,/),12)<—lor¢(2)<—1 . (10.2)

With these coupling constants the Gibbs measure u?, h > 0, is equal to the
Gibbs measure in A; with A/ -boundary condition, i =y} = u A,- The case



478 C.-E. Pfister and Y. Velenik

h < 0 is equivalent to a Af-boundary condition, with the same nonnegative
coupling constants. By definition a configuration w satisfies the ALi-boundary
condition if

] if t¢ AL, t(2) >0,
olt) = { it g A2 <0 . (10.3)

The Gibbs measure g is defined by

1 (@) = { E5(AL) " exp(—Hy, (0) if w(t)'satisﬁes the A7-bd. cond.,
0 otherwise.
(10.4)

It is technically convenient to consider separately the cases 2 > 0 and 2 < 0.
Below, when / > 0, we write probabilities with respect to u# by P[] and
when 4 < 0 by PF[]. The functional W is denoted by W, resp. W_, when
h >0, resp. h <O0.

Let > S, and m* = m*(ff) > 0 be the spontaneous magnetization. We
choose m and ¢ such that —m* <m < m* and 0 < ¢ < 1/2. We define the
event

S o(t) — mlA|

teA,

A(m;c) = {a):

< A ~L"} . (10.5)

The main results of this section, Theorems 10.1 and 10.2, are lower bounds
on

P [A(m;c)] and Pif[A(m;c)] , (10.6)

valid for L large enough.

10.1 Positive boundary magnetic field

Theorem 10.1 Assume that

1. The coupling constants are defined by (10.2) with > . and h > 0.
—m*<m<m*and c:=1/2-9,6>0.
2. W is defined by (1.9) with

) = (i ) (10.7)
the decay-rate of the two-point function (see Proposition 4.1), and
Tha := od((1,0); B, A7) (10.8)

the decay-rate of the boundary two-point function (see Definition 4.2). The
parameter h* is defined by the relation

exp{—2ph} = tanh f*h" . (10.9)
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Then there exists Lo(f, h,m, c, Q) such that, for any simple closed rectifiable

curve €, which is the boundary of a convex body of volume 4r r, "5 in the
rectangle O, and for all L > Ly,>

P [A(m;c)] > exp{—L W (%) — PO(L'> 1nL)} . (10.10)

Proof. The basic strategy of the proof is taken from Section 7 in [Pf2]. Given
the boundary % of a convex body V', we define a polygonal approximation of
it. Then, by summing over all large contours passing through the vertices of
the polygonal approximation we can estimate the probability of the event
A(m;c) in terms of the functional W using Propositions 6.1 and 6.2. We
divide the proof into five steps.

Step 1. Definition of a polygonal approximation of %.

Consider a convex body ¥, whose boundary 9V = €, with given fixed vo-
lume. Let L € IN and set

o, :=L""2InL . (10.11)
Let

Q= {xEQ:min|y—x|25L} , (10.12)
yeQ

and set V7 :=V N Qy.
We define a polygonal approximation #; of 0V;. We first define a
polygonal approximation 9. Let A; be the square
or
Ap:=<xeR>: |x(1)|+|x(2 ——}, 10.13
o= ()] + (2] =25 (10.13)
and denote its four sides of length o, by J;, J», J3 and Js (counterclockwise).
Since ¥, C Qg is convex and vol V;, > vol V' — O(d;), there exists Ly, in-
dependent of ¥, such that int 7, contains a translate of A;.

1. We choose four disjoint segments isometric to Ji, k = 1,...,4, with ex-
tremities on 9V;. If this is not possible, then we choose one corner iso-
metric to Jy UJyy 1 with extremities on 9V, but not necessarily its apex,
and two disjoint segments isometric to J,,, J,, m,n # k,k + 1, as above. If
this is not possible, then we choose two corners isometric to J; U J;, and
J, UJ,1 with extremities on 0¥, but not necessarily their apexes. After
this choice is made we construct a polygonal approximation of 9V;\0Q,
with a maximal number of segments of length J, (there are at most 8
segments of length smaller than ;). The resulting polygonal curve is 92.

Since 1(-) is convex, Jensen’s inequality implies

W, (0V) > W (#)) . (10.14)

5 In (10.10) we can choose O(L'/?InL) < 75L'/2InL.
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For each side of ?g\BQL of length 6, we construct a box (6.5) or (6.6).
Because we started our construction by fixing four segments isometric to Ji,
k=1,...,4, all these boxes are pairwise disjoint

2. Let [t,s] := {x € Y : x(2) = &, }. If |t — 5| > 0, then we replace [t,s] by the
broken line from ¢ = (¢(1),0z) to (¢£(1),0), then (¢#(1),0) to (s(1),0) and
finally from (s(1),0) to s=(s(1),0.). Then we subdivide the segment
(¢(1),0) to (s(1),0) into segments of length J,/2 (except possibly the last
one). We do a similar construction with the three other parts of 9’2 N oQ;.

The polygonal approximation £, of dV is given by the modification of @2
by 2.; the vertices of 2, are denoted by #. For each segment of length J, of
21 N 0Q, we construct a box like the box (6.25) of Proposition 6.2. We have
(t(x; B) < 2p)

W (€) > W (2L) — 1655, . (10.15)
Step 2. Scaling and definition of a set of closed contours ¥;.

Let LZ, be the polygon obtained by scaling £, by a factor L and shifting
it by (0,—1/2).
We define a set of closed contours 4, = {I'}.

1. Each T" € 4, is closed and passes through all vertices of L#; (counter-
clockwise). We denote by [Lty, Lty41] the side of L#; between two con-
secutive vertices, Lt; and Lty .

2. If there is a box By associated with [L#;,Ltry1], then y;, the part of T
between Lt and Lt., is contained in Bj. Otherwise y, =n;, a fixed
contour of minimal length from Lt to Ltyy.

The total length of the fixed part of I' is smaller than 28LJ;.
After that construction all necessary estimates have been already exposed
in Sections 5, 6, 7 and 9.

Step 3. Estimation of P\ [4(m;c)|{T;y # I's — small}].
Let I' € ;. We estimate
> |AL| . LC}

P [A(m;c) [{T;y # T s-small}]
=1-P
We use Proposition 9.1. We must estimate

{ > o(t) — m|A,]

teA,

{F;y # Fs-smallH (10.16)

<Z o(t) | {T;y # Fs-small}> . (10.17)

teAL

This estimate is not difficult using Lemma 9.3. The main point is to notice
that the total volume of the boxes By is smaller than O(L¥?In L), uniformly
in V (the length of ¥ = 0V is bounded by the length of JQ, and thus the

© We suppose that we have possibly slightly modified L#; so that all its vertices are in A;.
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number of sides of #; is uniformly bounded by O(L'/?/In L)). The difference
of the volumes of LV and LZ; is also bounded by O(L*?In L), uniformly in
V. Therefore, we get, uniformly in V,

<Z a(t) | {T;y # rs-smau}>+ —m|AL]| <O(L¥*InL) . (10.18)

teA, AL

Since 0 < ¢ < 1/2, O(L*?In L) is small compared to |Az| - L=¢ = O(L*/*+%).7
We apply the second part of Proposition 9.1 with s := [L%/?], [ := [L'/?] and
we introduce a grid in Ay with an elementary cell congruent to A, of volume
O(L). We verify the hypothesis of Proposition 9.1 using Lemma 9.3. The
three terms (9.34), (9.35) and 4(s + 1)(2/ + s+ 1)/|Az| are of the same order
O(L™'/>7?) <« O(L™°), and N is O(L). We get

P A(m;c) | {T;y # Ts-small}] > 1 — O(exp{—-0(Z*)}) . (10.19)
Step 4. Estimation of P, [{T’;y # T s-small}].
Define
Ar(extT) := A,\IntT, Ag(intT) := A \extT . (10.20)
We have

ZHS(Ap(extT))ZT (AL (intT))
ZH(A) ’

P {T;y # I s-small}] = w*(T) (10.21)
where Z7#(A") is defined as Z(A’) in (8.7), but by summing only over s-small
contours. ZT(A) =Z(A;) by Lemma 8.1; although Aj(extI’) is not
simply connected, any Aj(extI')*-compatible family of s-small closed
contours is Az(extT’)"-compatible, and consequently we also have
ZH5(Ap(extT)) = Z°(Ar(extT)"). Dividing and multiplying by Z(A;|TI'), we
can express P, [{T';y # I s-small}] as

qa; (Fa ﬁ*vh*) ' <{ys_smau}>AL(extl—)* ! <{V S'Srnan}>/\L(intl")x : (1022)
Lemma 5.6 implies (if diameter d(y) < s, then y is s-small)
{({ys-small}),, x> 1 — O(L”‘S exp{—ocL‘W}) . (10.23)

A similar estimate holds for ({ys-small}, ;). Summarizing these esti-
mates, we get

PiAGmc)) = (1= 0(1** P exp{-aL’?})) 3 qn (T 7,A7) . (10.24)
T'ey,

Step 5. Estimation of P;"[4(m;¢)] in terms of the functional W .

It remains to control the sum over I' € ;. Lemmas 5.4 and 5.3 give

7 This is the reason for allowing fluctuations of the magnetization of order |Az| - L~¢
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Zf]Az(r)Z Z HQAZ(%‘)

FG.@’L F:{y,}e?ﬂ i

> Y Tlat - (10.25)

r={yteg, i

We use the last part of Lemma 5.3 to replace gp(y,) by ¢(y,) whenever
0yr = {Lty, Lty11 }, with #, 11 & Zo. By definition of ¥, the sums over all y,,
which are not fixed, are independent, so that we can estimate them using
Propositions 6.1 and 6.2 with a := ¢; In L, ¢; large enough. Using (7.2), (7.3)
and Proposition 7.1 we can find constants ¢; and ¢; such that

exp{ =W, ([Ltx, Ltx11])}
|Ltis1 — Lte|® )

S gl = (-0 )

Vi:07={Lt,Lti1}
i inside By

(10.26)

We have O(L'/?/InL) boxes By, the total length of the fixed part of T is
smaller than 28L'/%In L; if we replace ¢(y;), by exp{—W, ([Lt,Lt;1])}, then
we make an error at most exp{2f|y;|}. Taking into account (10.15), this
proves the theorem. ]

10.2 Nonpositive boundary magnetic field

Theorem 10.2 Assume that

1. The coupling constants are defined by (10.2) with > ., and h <0.
—m" <m<m*andc:=1/2-9,>0.
2. W_ is defined by (1.9) with

T(x) :==1(x; ) (10.27)
the decay-rate of the two-point function (see Proposition 4.1.5.), and
Tod := —Tpa ((1,0); 5, A7) | (10.28)

Tvd being the decay-rate of the boundary two-point function.
The parameter h* is defined by the relation

exp{—2f|h|} = tanh f*h" . (10.29)
Then there exists Lo(f, h,m, c, Q) such that, for any simple closed rectifiable

m*

curve €, which is the boundary of a convex body of volume 4rr, "5 in the
rectangle Q, and for all L > Ly}

P A(m;€)) = exp{~L-W_(%) - po(L'* 1)} . (10.30)

8 In (10.30) we can choose O(L'/?InL) < 75L'/?InL.
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The proof of Theorem 10.2 is similar to that of Theorem 10.1. In the case
h = 0, there are two simple modifications to make. First, we use the remark
following the proof of Lemma 5.6. Second, we do not introduce boxes for the
sides of 2, which are along the lower horizontal boundary of Aj.

Let 4 < 0. There is one important difference, which we discuss now. If »
satisfies a Af-boundary condition then there is a/ways an open contour with
a fixed left-hand end-point #; and a fixed right-hand end-point #;. We denote
this particular contour by I'*.

Definition 10.1 A family of compatible contours yin Aj is Af-compatible if and
only if there exists a configuration w satisfying the Af-boundary condition,
such that y is the family of contours of .

The normalization constant E(/\L)i appearing in the definition of yf can
be written as

AT =) [ expl(@lo@)(@)o(f)(w) 11}

W e=(tt'):
enAp#0

> I ITexp{-27(e)}

y: yEYy erey

Lt
Aj -comp.

= > JIw»o - (10.31)
v
Ajf -comp.

We set
ZEALY ) = > wi () (10.32)

oy

Ajf -comp
Since A; is simply connected we have the important identity

+ : + %, .
m ZW*(F*)W (a()a(B))n; - (10.33)

This quantity can be controlled by Propositions 4.2 and 7.1.

Proof of Theorem 10.2. We first construct the polygonal approximation £, as
in the proof of Theorem 10.1. Let / := 2, N {x € Q : x(2) = 0}. If I = 0, then
we subdivide the {x € O :x(2) =0} into segments of length J;/2 and in-
troduce boxes like in Proposition 6.2. The open contour I'* is constrained to
pass though the extremities of these segments and to stay inside these boxes.
We can repeat the proof of Theorem 10.1 since the construction of Theorem
10.1 does not interfere with the open contour in that case.

Suppose now that / = [a, b]. We define a new polygonal line 2. 2 goes
from the bottom left corner of Q up to a along {x € O : x(2) =0}, then it
follows 2, \ I up to b, and finally goes along {x € O : x(2) = 0} up to the
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bottom right corner of Q. The proof is essentially the same as that of The-
orem 10.1, 2, replacing the polygonal line 2;.

Dividing and multiplying by Z*(Az;J) and using identity (10.33) we can
conclude. Since <a(t’f)o(t§)>f2 of (10.33) appears in the denominator the re-
levant functional is now W_. O

11 Large deviations: upper bound

By Theorems 10.1 and 10.2, for L large enough,
Pl [A(m;c)] > exp{_L W (m) — pO(L'? lnL)} : (11.1)

where

W (m) := inf{W(fg) 6 C 0, vl = 4r1r2’"2—_*’"} (11.2)
m

and

W — {WJr + boundary condition, (11.3)

W_ &+ boundary condition.

We show that the leading term of the lower bound is optimal. To do this we
analyze the measures in terms of large contours. The basic idea is to make a
coarse-grained description of the large contours. We consider separately the
cases of positive and negative boundary fields. The basic estimates come
from Lemmas 5.4, 5.5 and Proposition 9.1. As pointed out in the first
comment following the proof of that proposition, (9.37) is not a sharp
bound. For that reason we prove optimality only for

A(m;c) = {w :

S (1) — mlA,|

teAL

< |AL|~LC} L (14

with ¢ =1/4 -0, 6 > 0 instead of c =1/2 -0, 0 > 0.

11.1. Positive boundary magnetic field
For h > 0 and ¥ C O we have Tpq > 0. Hence
W.(@) 2 [t 0.5 () (11.5)
0

where (u"(¢),v" () is a parametrization of the curve 4. := €\ wp.
Let r1,7, € N and A, = A.(r1,7) be the box

AL:{tezzz—rngt(l) <rL; 0<1(2) <2nl} . (11.6)

® See preamble of part I1I.
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The constant ¢ is fixed, ¢ = 1/4 — J, § > 0. The cut-off for small contours is
(6> >0

5= 7] . (11.7)

In each configuration o with A} -boundary condition we denote the large
contours by I';, T'5, . . .. They are all closed. We choose a total order on (Z*)*:

t<t<=12)<{(2) or ¢2)=7¢(2) and (1) <7(1). (11.8)

The unit-speed parametrization of I';, s+— I';(s), is chosen so that it is
counterclockwise and I';(0) is the first point of I';. The coarse-grained de-
scription of I; consists of defining a sequence of points of (Zz)*,
S; = (ti0, 81, - - - tin,). The procedure is similar to the one used in the proof of
Lemma 5.6, but here we must treat the points of I; on the line
{te (Z*)*: t(2) = —1/2} with special care. If T'; does not touch the line
{t € (Z*)": t(2) = —1/2}, then we do a coarse-graining like in [Pf2], points
1. to 5. below. Otherwise we mark the last points of T; N {¢#(2) = —1/2}
before I'; leaves the tube

{16(22)*: —1/2<12) < [L‘S’]} : (11.9)

and we mark the first points of T'; N {#(2) = —1/2}, after T'; enters the tube
(11.9).

1. We set t;p := I';(0).

2. If 0(2) = —1/2, then go to 6. Otherwise go to 3.

3. Let s, be the first integer time such that I'; is outside the square B(t;; [L7]).
We set #;1 := I;(s1).

4. Let s, be the first integer time greater than s; such that I'; is outside the
square B(t;; [L7]). We set 1, := [;(s).

5. The procedure is iterated until it stops.

6. If £;(2) = —1/2, then there exists s € N such that I';(s)(2) = —1/2. We set
t;1 = T'i(s1) such that s; is the largest integer time with the property

Ti(s1)(2) = —1/2 and Ty(s)(2) < [L?] Vse[0,s] - (11.10)

7. If for all s > 51 T'i(s)(2) # —1/2, then apply the procedure 3. to 5. to the
part of T'; defined by {T;(s) : s > s }. Otherwise go to 8.

8. Let s, be the first integer time greater than s;, such that I;(s2)(2) > [L7].
We set 1 := I';(s2). Let s* be the first integer time greater than s, such that
I';(s*)(2) = —1/2. Apply the procedure 3. to 5. to the part of T'; defined by
{T(s) : s <s < s*}. Then apply the procedure starting at 2. to the part of
I'; defined by {T;(s) : s > s*}.

Let S:=(#,...,t,) be an ordered sequence of points and 2(S) be the cor-
responding closed polygonal line with vertices (¢1,...,%,). To each I'; we
associate a closed polygonal line 2(I;):

P(T) = 2(S) (11.11)
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B L]

Fig. 1. Coarse-graining of a large contour I' touching the bottom wall; the dots represent the
sequence of points S; = {ti0, ..., 4}

where S; = (%, ti1, - - -, tin,) 1s the ordered sequence of points defined by the
above procedure. We set

B(S) == {t eAL: 1(2) < [Lf*']} U (B(tij; %) mAL) . (11.12)

By definition, if I" is a large contour with 2(I') = 2(S;), then I is inside
B(S;). W4 is defined as in Theorem 10.1 and we set

k
Wi (S, 8) =Y W (2(S)) - (11.13)
j=1

We estimate P, [{Si,...,Sc}]. We use the following remarks below. When-

ever T(s)(2) = 1(2) # —1/2 o T(s;1)(2) = 01(2) # —1/2.
{T(s):s;<s<sjtn{te(Z?) :12)=-1/2}y =0 , (11.14)

so that Lemma 5.5 applies. On the other hand, if #;(2) =—1/2 and

ti+1(2) = —1/2, then the second part of Lemma 5.1 applies. Therefore (use
Lemma 8.1, Z™*(A|L) < ZT(A|L) < Z(A*|L) and Z*(A) = Z(A")),

Z"*(AL)

PSS IO

Y

IN
)
>
5

< exp{—-W.(Si,....5)} . (11.15)

Let wr, be the unique configuration satisfying the A} -boundary condition
having T; as single contour. The interior of 2(S;) is
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Int2(S;) :={t € AL : o, (t) = —=1}\B(S)) , (11.16)
where I'; is any contour such that 2(T';) = 2(S;). The volume of 2(S;) is
Vol 2(S)) := [Int 2(S))| . (11.17)
The closure of Int 2(S;) is
Int 2(S;) := Int 2(S;) UB(S;) . (11.18)

In a similar way let wr be the unique configuration satisfying the A -
boundary condition having " := (I'}, 5, ..., %) as set of contours. The in-
terior of S := (S},...,Sk) is

IntS = {t € A, or(t) = —11\ | JB(S) , (11.19)

where I := (I'j,..., %) is any set of contours such that 2(I';) = 2(S;),
i=1,...,k. The phase volume of S is

a(S)|AL| := |Int S| . (11.20)
Lemma 11.1 We assume that the coupling constants are defined by (10.2),

B > B.. and that W is defined as in Theorem 10.1. Then for any n < & and
T7>0

Pl

{ng,@(sj)) > TH < exp{—T[l - O(LH")}} : (11.21)

j>1
The proof of Lemma 11.1 is a special case of that of Lemma 11.4.

Lemma 11.2 We assume that the coupling constants are defined by (10.2),
f>p. Letc=1/4—-9,0>0and —m* <m < m*. For any n >0

al

provided L is large enough.
Proof. We set

*

m —m‘>1+11

a(S) —

- 2m* | T 2m*L¢

bawo| sewt-owy . (122

m*—m 1479
e) = _ > .
E(m;c) { a(S) gy ‘ > 2m*LC} (11.23)
We partition E(m;¢) into sets indexed by the set of their large contours. Let
[[] ;= {w: T is the family of large contours of w} . (11.24)
We write
P
PE(m;c)ld(mic)) = Y PrAm;o)|[)] - 5t - 11.2
L [ (m7c)| (m,c)] — L [ (m7c)‘[—]] P;[A(HLC)] ( 5)

| CE:(m;c)
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Since (11.1) and Lemma 11.1 hold we can find a constant K such that

n {ZWQ’(&” > KL} |A<m;c>]

(11.26)
<P {ZW+ >KL} IA(m;C)] <exp{-0(L)} .
It is sufficient to control in (11.25) the terms with I” such that
Z W_(2(S;)) <KL . (11.27)

From now on we suppose that this condition is satisfied in the rest of the
proof. Therefore the total length of the polygonal lines is at most O(L).
Suppose that I = {I'y,..., It} and that 2(T';) = 2(S;), j=1,...,k. Each T,
is inside some set B(S;). Slnce the total length of the polygondl lmes is O(L )

UB
We introduce «(I') and A(L) (see Section 8):
w(D)| AL == {t € AL or(t) = =1} ; (11.29)
A(L) := A\ (int T Nextr) . (11.30)
If we compare «(I") of (11.20) with a(S), then

)| <oy . (11.28)

|2(S) — (D[] Ar] < UB )| <oy . (11.31)
If x is the boundary condition given by any w € [['], then
P [A(m; o)|[L) = Py [A(ms 0)] (11.32)

From Lemma 9.3 and (11.31), we have

<Za(t)> | = m*|AL|(1 = 22(D)) £ O(L'*") (11.33)

ehs A(D)
= m*|AL|(1 — 20(S)) = O(L') . (11.34)

Since

Y al0)(@) —m|A| = (Z a(1)(w) — <Za(t)> )

teA;

(11.35)
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we have for every o € 4(m;¢) and L large enough,
> o) (w) - <Z 0(t)> > <Z 6(t)> —m|Ay]
e AD) e AD)

> o(t)(w) — m| AL

teAL
1+11 1as |AL|
> TA, | — oy — 124
> 1A - o) -
n AL
> = . 11.36
> 1 (11.36)

Consequently

P TA(m o)|[C]] < Py Za<r><w>—<za<r>> >Tia e

teA, teA; A(D)
(11.37)

We estimate (11.37) by Proposition 9.1. We introduce a grid composed of
squares whose sides have length [L!/4].1° Notice that the cells of the grid are
much larger than the boxes used for defining the coarse-grained procedure.
There are O(L*?) squares of the grid in A;. There are at most O(L'~?)
squares of the grid, which have a non-empty intersection with U;B(S;). The
squares of the grid not intersecting U;B(S;) play the role of the boxes %; in
Proposition 9.1. The term 4(s + 1)(2] +s + 1)/|A;] is O(L™/49) < O(L™)
for L large enough. The same is true for (9.34) and (9.35) as a consequence of
Lemma 9.3 and of the upper bound O(L) on the total length of the polygonal
lines. Proposition 9.1 implies that

P A (m; o)|[C]] < exp{—O(L"+2)} (11.38)
provided L is large enough. O
Theorem 11.1 Assume that
1. The coupling constants are defined by (10.2) with > ., and h > 0.
—m*<m<m"andc:=1/4—-0,0>0.

2. W, is defined as in Theorem 10.1.
3. Wi, (m) is defined by

W (m) = inf{W+((€) 1€ C O, vol 4 = 4r1r2%} . (11.39)

Let 0 < &, such that §' + /2 < 1/8 and 0 < n < §'. We set

10 Because of comment 1. on Proposition 9.1, this choice is essentially optimal, as can be checked
using remark 3 preceding the proof of Proposition 9.1, and comment 2 on Proposition 9.1. It is at
that point that we need ¢ = 1/4 — 9.
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A(m;c) = {w: > o) — mlA,l §|AL|~L“} ; (11.40)
teAL
i 1
Ei(m;c) = { x(S) —mzm*m < 2m+L"} : (11.41)

E>(m;c) == {ZW+(Si) < L-W7 (m) [1 + O(L"f‘sl)] } . (11.42)

Then, for L large enough,
P} [Er(m; ¢) N Ex(m o) A(m; )] > 1 —exp{—0(! =)} (11.43)
and'!

‘%lnPL+ [A(m;c)] + Wi(m)‘ <oy . (11.44)

Proof. The first affirmation follows from Theorem 10.1, Lemma 11.1 and
Lemma 11.2. We prove the second affirmation. For L large enough Theorem
10.1 implies that

—1/LIn P/ [A(m;c)] < W* (m) + O(L™V/4+42) | (11.45)

with 0 < & < 0. Let E;(m;c) be the complementary event of E)(m;c). We
have

P [A(m; )] = P/ [A(m;c) NEy| + Py [A(m;¢) N E)] (11.46)
= P/[A(m;c) N E\] + P} [E\[A(m; ¢)] - P [A(m; 0)]

Therefore, setting 4 = A(m;¢),

(1= P/[E|4) - B 4] < PF[EN] (11.47)
The inequality
3 Vol #(s) 2 ()l 2 () ) (11.48)
implies that
> W (2(5)) > W <m+1L#>L : (11.49)

Let 71 C Q be a convex body realizing the minimum W (m + (1 +#)/L¢)
and V> C Q be a disk of volume (1 + #)/2m*L°. We can choose these convex
bodies so that their union is a set of volume |Q|(m* — m)/2m*. Thus

"The weaker statement lim;_.., 1 /L1n P;"[4(m;c)] = —W? (m) can be proven without using the
lower bounds on the two-point function obtained by McCoy and Wu.
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l+n x
w* < +L> + W, (01h) > W7 (m) . (11.50)
Therefore
(1 — PF[E |4]) - P [4] < P} ZW+ )2 W (ma ),
L Le
<P [{Z W (2(S) > W (m)L — W+(8V2)L}] .

(11.51)

Lemma 11.1 implies that for L large enough
—1/LIn P [A(m;c)] > W* (m) — O(L"7) . (11.52)
O

11.2 Negative boundary magnetic field

The remarks of Subsection 10.2 apply. By definition the open contour I'* is a
large contour. We associate to I'* a sequence of points S* := (t., ..., L)
using the same procedure as for the other contours. #(S*) is the open
polygonal line with vertices S*. We thus obtain a family
(P(S1)s---, P(8g), 2(S*), 2(S)); - .., 2(S,)) of polygonal lines. We have
distinguished between the polygonal lines with no edge belonging to the line
{t € R? : #(2) = —1/2}, which are denoted by (2(S),...,2(S,)), and the
other ones denoted by (2(S)), ..., 2(S,)). We will now associate to the set of
polygonal lines (2(S*), 2(S}), ..., 2(S,)) a new set of closed polygonal lines
(2(S4+1), - --,2(Sk)). This is done in the following way:

1. Consider the family of polygonal lines (2(S5*), 2(S}), ..., 2(S,)); let & be
the set of edges formed by all edges of (2(S"),2(S}),...,2(S,)), which
belong to the line {# € R? : #(2) = —1/2} N A*. Remove &* from the set of
all edges of (2(5%), 2(S8)),...,2(S,)).

2. Close the polygonal lines obtained in 1. by adding the set

({teR*:1(2) = —1/2} NA")\ &" . (11.53)
This defines a set of closed polygonal lines denoted 2(S;11), ..., 2(S).

Remark: We do not modify the large contours. The relation between the

family (S),...,S) and the large contours of the configuration is that these
contours must be compatible with the original family (Si,...,S,,S", 5],
S,

»p

Notice that the above construction is such that we have the identity

W,(sl,...,sk):w+(sl, .Sy, ,...S’)—rbd(2r1L+1) (11.54)
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t |BwIL)

Fig. 2. a Coarse-graining of a large contour I" touching the lower wall and of the open contour
I'*; the dots represent the sequence of points obtained by the coarse-graining procedure
described. b The three resulting closed polygonal lines

where

k

W_ (S, 8) =Y W_(2(S)) - (11.55)
i=1

Lemma 11.3 In the setting described above, there exists a constant K, such that
PE{S1, .. Sk} < KoL exp{-W_(S,...,S0)} (11.56)
Proof. We write P[{S),...,Sk}] as a quotient
ZE(ALSY, - Sk)
Z=(Ar)
Dividing and multiplying by Z*(A;) we must consider the quotients

ZE(ALIST, ..., S ZE(AL)
ZH(AL) TOZN(AL)

The first quotient is estimated using Lemmas 5.4, 5.5 and the above remark,
Zi(AL‘Sh N 7Sk)

PES), ..., Sk} = (11.57)

(11.58)

gexp{—w+(s,,...,Sq,s*,sg,...,s;)} (11.59)

Z+(AL)
The second quotient is estimated as in subsection 10.2, using Proposition 7.1,
Zi(AL) * * -3/2 * %
Z*(AL) = <o'(t1)0'(12)>/\z > C(2I”1L) / exp{—rbd(t2 — tl)} . (11.60)
These inequalities give, using (11.54),
PSSl < € 2m) PP exp{—-W_(S1,...,8)} . (11.61)
U

Lemma 11.4 We assume that the coupling constants are defined by (10.2),
B > B., and that W _ is defined as in Theorem 10.2. Then for any n < & < 6
and T >0
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o HZW (2(s))) > TH < exp{—T[l _ o(L"-ﬁ')} + 0(L‘+'7—5’)} .

Jjz1

(11.62)

Proof. We start by an entropy estimate. Let ./"(x, k) be the number of integer
solutions of 1 <o <... <o <x, ZL o; =x, k fixed, and A(x) the
number of integer solutions of 1 <oy < ... <oy <x and Zf.‘:] o = x, k ar-
bitrary. For large x

N (x) ~ “lﬁexp(Zn\/)%) . (11.63)

Let us consider k& polygonal lines 2(S),...,%(S;), where
Si= (tiostity - - s tin, ) LOW) is a rough estimate of the number of families of &
polygonal lines with ny + - - - + ny = N. Therefore the number of families of
polygonal lines with ny + - -- + ny = N, k arbitrary, is bounded by

> NN LYY = exp{NO(InL)} . (11.64)
k
Suppose that
W_(S),....8) =T"=T,-T", (11.65)

where T", resp. 7", is the positive, resp. negative, part of the functional W_.
The total number N of vertices of the polygonal lines 2(S;),i =1, ...k, can
be bounded by T,

N<T.KL™ | (11.66)
for K large enough. Since |7 | is at most O(L), taking into account (11.66),
PES), ..., Si}] < exp{—W_(Sy,...,S)} Ko LY/?
=exp{—T} + T’ + NL" }K,L** exp{—NL" }
<exp{-7.(1-0(L7)) + T }KaL¥ 2 exp{~NL"}

< exp{—W_ (S1,---,8k) (1 — 0([,*5/*’7)) + 0(L1*5'+71) }

KoL exp{-NL"} . (11.67)
Therefore,
P} {ZW(Q’(S/*)) > T} =3 PEUW_(S1,....8) = T}]
izl 1 eS8

<ew{-T[1-o(1)] +o( )

x Y KL exp{NO(InL) — NL" }

N>1

< exp{fT{l - O(LH/): n 0<L‘*5’+'7)} . (11.68)
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Defining a(Si, ... Sk) == a(Si,..., 8,58, ... ,Sjp), the next lemma is proven
in the same way as Lemma 11.2.

Lemma 11.5 We assume that the coupling constants are defined by (10.2),
B>P.. Letc=1/4—90,0>0and —m* < m < m*. For any n >0

i

provided L is large enough.

*

m —m‘>1+11

) —
«S) 2m* | T 2m*L¢

bawo| ewt-owy . (169

Theorem 11.2 Assume that

1. The coupling constants are defined by (10.2) with > . and h <O.
-m*<m<m*andc:=1/4—-06,0>0.

2. W_ is as in Theorem 10.2.

3. W*(m) is defined by

m*

W (m) = inf{W_(fé):‘éC 0, vol € = dryr _’"} . (11.70)

2m*

Let 0 < &', such that ' +35/2 < 1/8 and 0 < n < §'. We set

A(m;c) : = {w: Zw(t) —m|ALl] <|AL] -Lc} ; (11.71)
teA,
N _m'—m l+n
E\(m;c) : = { a(S) o ‘ < 2m*LC} ; (11.72)

E>(m;c) : = {ZW(S’) <L-W:(m) [1 + O(L"ié,)} } . (11.73)
Then, for L large enough,

PEE (ms€) N Ex(mse) | A(mi )] = 1 —exp{-0(L" ")} (11.74)
and"

‘%lnPLi[A(m;c)] —&-W*(m)‘ <o(1r). (11.75)

12 Macroscopic droplet

In this last section we consider the limit of the lattice spacing going to zero.
We suppose that f >, he R, —m* <m<m* and ¢ =1/4—>0 are
fixed. We define the canonical Gibbs measure (-|m), (f5, ) by

12The weaker statement lim; .« 1/L1n Pj[4(m;c)] = —W* (m) can be proven without using the
lower bounds on the two-point function obtained by McCoy and Wu.
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_ (Mo pn i azo
) ={ Sy e azo 02

Probability with respect to that measure is denoted by Prob[]. In this section
we treat both cases # > 0 and /# < 0 simultaneously. We set

(LB, h) = { OERD iR <0 . (12.2)

As in the preceding section a contour is small if and only if it can be put inside

a translate of the box B(0; [L?]), 0 < &' < &. The specific choice of ¢ is made

later on; ¢’ is small. We do the analysis in the box Az(r,7;) and at the end we

scale everything by 1/L and take the limit of the lattice spacing going to zero.
Let C C Z*; the empirical magnetization in C is

me(w) = LZa(t)(w) . (12.3)

Let 0 < a < 1; we introduce a grid #(a) in A; made of cells which are
translates of the square box B(0; [L?]). The specific choice of a is made later
on; a is close to 1. In most of the cells the empirical magnetization is close to
m* or —m™ with high probability (see Theorem 12.1).

The polygonal lines which we will consider in this section are constructed
as in Section 11; in particular they are defined using the same intermediate
scale L.

Let x>0 so that a+ u < 1; we say that a polygonal line is small if
Int 2(S;) can be put inside a translate of the box B(0; [L*"#]); otherwise the
polygonal line is large. We partition the cells of #(a) into four sets. A cell C
is polluted if

cn| J Wz || =", (12.4)
2(S)small

with 7" a small positive number to be chosen later on. A cell of #(a) is an
interface-cell if it is not polluted and it has a non-empty intersection with
B(S;) for some large polygonal line 2(S;), where in this section

B(S) = | (B(tij; %)) m\L) . (12.5)

4;€S;

A cell of #(a) is called a phase-cell if it is neither polluted nor an interface-
cell and it is entirely contained inside A;. The remaining cells are called
boundary cells.

Lemma 12.1 Let o € Ej(m;c) N Ex(m;c) and suppose &' < a, a+u<1—1n".
Then, uniformly in w,
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#{Ccellof L(a) : Cispolluted} < O(Ll_”’L“J’”N)
#{Ccellof ¥(a): Cisaninterface-cell} < O(L'™%)
#{Ccellof ¥(a): Cisaboundary-cell} < O(L'™“)

Proof. We estimate the total volume of the region containing small polygonal
lines. We partition the small polygonal lines into families. The first family
contains all small polygonal lines 2(S) with Int 2(S) = (). We then partition
the remaining polygonal lines into families so that for each family

P < || It (s)| < 10[2e+) (12.6)
20

(except possibly for the last family which may not satisfy the lower bound).
The total length of the members of a family satisfying the latter inequalities is
at least K3L9TH (isoperimetric inequality). Since the total length of the
polygonal lines is at most K’L, we have at most O(L'~*"#) families. Conse-
quently, the total volume of these small polygonal lines is bounded by
O(L'***#). The volume of B(S) is bounded by O(L'*%). Hence the total
volume of the closure of the interior of these small polygonal lines is at most
O(Ll+a+u)_

The number of polluted cells is therefore at most O(L!T¢tH)/
L2~ = O(L'=*+#+1") To count the number of interface-cells we estimate the
number of points we need in order to make a coarse-grained description of
large polygonal lines using a reference box B(0; [L?]) according to the method
of the previous sections. Since the total length of the polygonal lines is at
most K'L and & < a, the total number of interface-cells is at most 4K'L!~.

The number of boundary cells is bounded by O(L'~¢). O

Let ¢(L) be a positive decreasing function such that lim;_., ¢(L) = 0 (see
Lemma 12.2). Notice that a phase-cell cannot be surrounded by a small
polygonal line; otherwise it would be polluted. We define the event E3: in any
phase-cell C the empirical magnetization satisfies

[mc(w) —m*| < e(L) (12.7)
if the phase-cell is outside all external large contours or inside an even
number of large contours, otherwise

[mc(w) +m™| < e(L) . (12.8)
Theorem 12.1 Let > f., he R, —-m* <m <m* and ¢ =1/4—06 > 0. Let
(-|m), (B, h) be the canonical Gibbs state. Let E| and E, be the events defined in

Theorems 11.1 or 11.2. Let ' > 0 be such that 2a — & — 35’ > 1. Then there
exists a positive constant k (see (12.42)) such that for L large enough

Prob[E; |E; NEy] > 1 —exp{—O(L")} (12.9)
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and

ProblEs NE} NEy] > 1 —exp{—0(L")} . (12.10)

Proof. Let A = A(m;c), E§ complementary event to E3, and E;, := E> NE].
By definition

(ESNEin|m),
(Erp|m),

_ <E§ NE,NA),

n <E1,2 ﬂA)L

Prob [Eg |E1_2] =

(ES|E12),
=(A|E5NE> . -
< | 3 '>L<A|E172>L
<AES|Ei2)y
B <A ‘E1,2>L
The numerator and denominator are estimated in the following lemmas.

Lemma 12.2 Let

(12.11)

. L L
iy max(LT L)

lim T =0 . (12.12)

1. If the phase-cell C is outside all external large contours or inside an even
number of large contours, then for L large enough

lme() = m'| = e(L)}| E12)), < exp{ 0> 2 2e(r)’} . (12.13)

2. If the phase-cell C is inside an odd number of large contours, then for L large
enough

({Imc(@) +m'| > (L)} | E12)), < exp{ -0 22w} - (12.14)
Proof. We prove 1. Let T be a family of large contours; E(I) is the set of
configurations with I as family of large contours. I" has a coarse-grained

description S. E(S) is the set of configurations such that the large contours
have the coarse-grained description S.

Let S such that E(S) C E) ; It is sufficient to prove that
({me(0) —m'| > o(L)} | E(D), < exp{-0> ¥ yew?} . (12.15)
with O(L2¢~29=21") yniform in I such that E(I') C E(S) C E},. Let
c:=cn| |J mtze)) . (12.16)
2(S) small

For L large enough (use &(L) > L")
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{Imc(@) —m"| > e(L)} [ E(D)),
< {Imeve- (@) —m*| > 26(L)/3}E(D)), - (12.17)

We have C\C* C A(T) (see (11.30)) and consequently
<{|mc\c*(a)) - m*| > 28(L)/3} |E(£)>L
= ({|meve- (@) =m*| 2 26(L)/3}) {1 (12.18)

(}j\fr) being the Gibbs measure in A(L) with x boundary condition (see
Section 11.1), conditioned on the fact that there are only small contours.
Using Lemmas 9.2, 9.3 or 9.4 we get

< exp{—o(ﬁ)} . (12.19)

We apply Proposition 9.1 with / = L9+ and use &(L) > L. The number of
cells of £ (&' + '), which have a non-empty intersection with B(S;), S; € S, is
bounded by O(L'?); indeed, there are at most K;L'% vertices for the
polygonal lines 2(S); around each such vertex ¢ the box B(z; [L¥]) contains
one box of B(S;), isometric to the box B(t; [L*]), which is used in the coarse-
grained procedure; each box B(t; [L? +"]) intersects at most four cells of the
grid #(8' + ). The total volume of these boxes is at most O(L'T+27),
which is small compared to L>*¢(L). The same is true for the boxes of the grid
#(8' +1') intersecting the boundary of the cell C. Since 2a — 28" — 21’ >
1 — &', the number of cells of #(6' + '), which are inside the cell C and do
not intersect any B(S;), is O(L**~2~2""); we have for L large enough (Pro-
position 9.1)

({Ime\c-(@) = m*| = 26(L)/3}) 30,

‘ <mC\C* (w)>j{f£) —m’

< <{’MC\C*((U) - <mC\C*(w)>X€£) > S(L)/2}>A(D
< exp{—o(ﬁ“—%’—”)g(L)2} . (12.20)
]
Lemma 12.3 For L large enough
(A(m;c) | Ero), > exp{—o(ﬁ**")} . (12.21)
Proof. Let I be given, E(I') C Ej . It is sufficient to prove that
(A(m; ) | E(D)), > exp{ —0(12 )}, (12.22)

uniformly in I C £(S) C E1». All contours y ¢ I' in w € E(L) are s-small,
s = [L?]. Since E(L') C E;, the phase volume «(S) satisfies

l+y
2m*Le

m*—m
2m*

(S) -

(12.23)
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with n some fixed positive number smaller than d'. We have |[A)\A(D)| <
2K'L't9; hence

<Za(1)|E(F)> —< 3 a(t)> < 0(L1+5’) . (12.24)
L

teA teA(T) A(T)
We have
<Z a(t) |E(£)> =m*|AL](1 — 2a(S)) + O(L”‘y) . (12.25)
teAL L
Therefore
1+2
< > o-<r>> il <A (1226)
M) AT)
for L large enough. If
*,8 | —
< > a<z>> il <A (1227)
<A A(T)

then, using Proposition 9.1,

(A(m;e)| E(D)),> 1 - P H ) o<r><w>< S a<r>> | >2z"|AL|H

eAD)

1
- 12.2
>3 (12.28)

if L is large enough. We can therefore suppose that

<Z a(t)> —m|Ay >1L%'7|AL| . (12.29)

‘eAD) A(T)

To be specific we consider the case (0 < € < 35)

*,8 | — )
<Z a(t)> :m|AL|+++6|AL| ‘ (12.30)

DL am

In this case, the mean magnetization is too large in A(L). Let A" be the
component of A(L) where the x boundary condition corresponds to +
boundary condition. We construct a region A C A" of suitable volume and
we impose zero magnetization inside A in order to reduce the total magne-
tization. First let us compute the volume of A. It is specified by the condition

< > a(t)> =m|A| , (12.31)

teA(D\A A(D)
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that is,

< Z a(t)> . <Z a(t)> | (12.32)
' o)

eA(l) Al teA A(D)
+& .
= mlAd + R A Al
:m|AL| s
which implies that
l—n+e
Al=——IA| . 12.33
A =—LEE (1233)

We now show that we can construct A as a union of cubes which are translate
of B(0,[L?]) so that all contours inside these boxes are small. We introduce
the grid £(8). The number of cells of (') which intersect some B(S;) is
bounded by O(L'~%). The total number of cells of #(8') is O(L*>~>) so that
it is always possible to find O(L*<~2) cells not intersecting any B(S;),
provided L is large enough. Let 0 < §” < §'. Inside each selected cells 4,
there is in the center a translate %/ of the box B(0, (L% — L9"]). We define the
event A:

1. all contours which have a non-empty intersection with A(L')\A or with at
least two %, are L° -small;
2.

3 alt) = mlALl| < |ALl/2L° (12.34)
teA(D)\A

3. for each box %’; we have

> o) < ||/ (12.35)
ze%’,
By definition 4 C A(m; ). Therefore
(A(m;c) | E(L)), > <A> (12.36)

Let A}g be the event defined by conditions 1. and 2. only. Then
=\ xS -~ *,8 ~ *,8
<A>A<D: (4 |AI,Z>A(D<AI_2>A<D . (12.37)

The term (4 | 4, 2>*’E r) is estimated using Theorems 10.1 and 10.2. Denote by
y(w) all external contours in @ which have a non-empty intersection with

A(D)\A or with at least two %;, and by 4| 2(7) the set of w € A 5 such that
p(w) =y'. Then

s (A0

<A~ | /I]"2>XEDZ Z<A~ | AN],z(V_/)>A£W . (1238)
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Under the condition 2172(')),) local events, which are % ,-measurable for
different j, become independent. Since the boxes #' are isometric to
B(0,[L% — L%"]) there is no condition on the contours inside these boxes. In
each box we have a large deviation as in Theorems 10.1 and 10.2 with m = 0
and L = [L¥ — L] instead of L. Therefore, applying these theorems with % a

Wulff shape in the center of each %,
(1412) 3, = exp{—0(L7) - o122} (12.39)

> exp{-0(12 <)} .

Proposition 9.1 and Lemma 5.6 imply that lim; . (/f 1,2>f\’fr> = 1. Indeed, let
%(8) be the event that all contours are L?-small and 7(6”) the event that all
contours are L% -small. Then

(25

S

) 2 (228"

e @)
= <A1,2|/C<a )>A(Dm .

Lemma 5.6 implies that the numerator and denominator of the quotient tend
to 1 as L — oo; Proposition 9.1 implies that (45 |x(0"))y) tends to 1 as
L — oo. - O

(12.40)

We now conclude the proof of Theorem 12.1.
Recall that ¢(L) > L™ and ¢ = 1/4 — 6 > 0; from Lemmas 12.2 and 12.3

ProblEs|E; N E>] > 1 —exp{—O(L")} (12.41)

follows, if we can find a such that 1 > a > 0, & such that 0 < ¢ < § and
0 < ' so that the hypothesis of Theorem 12.1 is satisfied and

kK:=2a—0 -4y —2+c¢>0 . (12.42)
(12.42) is equivalent to
a>1—§+%/+217/ , (12.43)
which is true for suitable a, & and 7. The last affirmation
Prob[E; NE| NEy] > 1 —exp{—O(L")} (12.44)
is a consequence of (12.41) and Theorems 11.1 and 11.2. O

12.1 Continuum limit

We consider the model in the box A; and scale everything by 1/L, so that
after scaling the box is the rectangle Q. We define the set of macroscopic
droplets at equilibrium as
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D (m) := {"V cCO:|7V|= |Q|, W(8“/)W*(m)} . (12.45)

For each 7~ € Z(m) we have a magnetization profile,

() g m if x € O\ 7,
py(x): { -m* ifxey . (12.46)
Let f be a real-valued function on Q; we set

&£ 9m) = inf / & (x) — py ()] (12.47)

For each o we define a magnetization profile p; (x; w) on Q. We subdivide the
box Ay by the cells of the grid #(a). In each cell C we define the empirical
magnetization m¢(w). Then
p(x;0) :==me(w) if Lx € C (12.48)
where Lx is the point x € Q scaled by L.
Letw€E123 =FE NE,NE; andlet/( )_{9( )( ) i= 1,,k} be
the polygonal lines defined by the configuration w. Using these polygonal

lines scaled by 1/L we define a set V(S) C O with the following properties
(see Theorems 11.1 and 11.2)

1. The set V(S) D IntS and its volume is such that

1
-l <5 Lol ; (12.49)

2. The boundary 9V (S) of V(S) is such that 9V (S) C U;2(S;) and
WV (S)) < W*(m) +0(L"™°) . (12.50)

In the generic case the boundary of the set V(S) has several connected
components. We define an auxiliary connected set V(S) by translating some
of these components so that (S) has the same volume as ¥ (S), its boundary
is connected and therefore can be parametrized by a single Lipschitz map
t (u(t),v(t)), and W(9V(S)) = W(dV(S)). We compare the set ¥/ (S) with
the droplets in Z(m). Given two sets F C Q and G C Q their distance is

d(F,G) —mdx{supmf|s—t| supinf|s—t} . (12.51)
seF 1 1€G S€F

The following lemma, inspired by Corollary 3.2 in [DP], shows that one

component of V(S) is close to a droplet of 2(m) and that the total volume of

the other components is small.

Lemma 12.4 Let ¢ > 0. There exists a function 6(¢) with lim,_o 0(¢) = 0 such
that if V- C Q has the properties

L. the boundary of V is parametrized by a unit-speed Lipschitz parametrization

1= (u(t), v(2)),
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2. the volume of V is larger than |Q|(m* —m)/2m* — ¢,
3. W(OV) < W*(m) + ¢,
then
inf d(7",V)<d(e) . 12.52
Ll A0,V <60) (12.52)
Proof. Suppose that there exists &' > 0, ¥,, n € N, and ¢, | 0 such that
inf d(v,V,)>¢8 Vn. (12.53)
V€D (m)

Let ¢— (u,(¢),v,(¢)) be the unit-speed Lipschitz parametrization of the
boundary of V,. We choose the parametrization in such way that

1
=3 | G =ye) (12,59
oV,

By our hypothesis the length of the boundary 0V, is uniformly bounded, so
that we can parametrize all boundaries 0%, by maps defined on a single
interval 7 C R (we still denote the parametrizations by (u,(¢), v,(¢))). Since
the parametrizations are Lipschitz with a Lipschitz constant bounded by one,
the maps ¢+— (u,(t),v,(¢)) are equicontinuous. By Ascoli’s Theorem we can
extract a uniformly convergent subsequence so that (u*(¢),v*(¢)) =
limy (uy,, (¢), v, (7)) is the boundary of a set * with volume

V7| = lim V| > [Ql(m" — m) /2" . (12.55)
—00
By the uniform convergence of the sequence we have
ligiogf[%bd —3((1,0)]|0V,, Nwol = [tpa — 2((1,0))]]0V* Nwp| ,  (12.56)

since [Tpg — 7((1,0))] < 0. A classical theorem (see e.g. [Da] Chapter 3) gives

li]£n inf | %(d, (1), 0,,(2)) dt > /%(u*(r), 0" (t)) dt, (12.57)
—00 I I
since 7 is convex. Therefore

W(or?) < lim W(a¥,,) < W*(m) , (12.58)
thus V* € Z(m), which contradicts the existence of &' O

Corollary 12.1 Under the hypothesis of Lemma 12.4, if ¢ is small enough, then
one connected component of V is at distance at most 6(g) from a droplet of
9(m) and the total volume of the remaining components is at most O(5(¢)).

Theorem 12.2 Let f> ., he R, —-m* <m <m* and c=1/4—06 > 0. Let
(-|m), (B, h) be the canonical Gibbs state. Then there exists a positive function
g(L), lim;_ &(L) =0, and i > 0 (see (12.42)) such that for L large enough

Prob[{d (p, (< @), 2(m)) < BL)}] > 1 —exp{-O(L)} . (12.59)
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Proof. Let w € E153 and let 2(S) = {2(S;)(w) :i=1,...,k} be the poly-
gonal lines defined by the configuration w. We define V' (S) C O with prop-
erties (12.49) and (12.50) as above and set

o m o ifx e Q\V(S),
pu(x:S) = {—m* ifxer(s) . (12.60)
There exist two positive numbers p and #” (see Lemma 12.1),
pt+n"<l—a, (12.61)

such that, if w € E;,3 and 2(S)(w) = 2(S), then uniformly in w € E|73
[ dlontrio) - il 9] < 0@ ) g+ 0L L (12:6
0

The first term on the right hand side is the contribution coming from the
polluted cells, the second term from the phase-cells and the last one from the
interface-cells and boundary-cells. We define

di(L) = sup di(p,(S(0)), F(m)) . (12.63)

w€EE 23

Then Lemma 12.4 and Corollary 12.1 imply that lim; . d; (L) = 0. Theorem
12.2 follows by choosing

(L) := O(L* "y 4 &(L)|0] + O(L™ ) + dy (L) . (12.64)
O
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