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Summary. This paper presents a dimension-free Harnack type inequality for
heat semigroups on manifolds, from which a dimension-free lower bound is
obtained for the logarithmic Sobolev constant on compact manifolds and a
new criterion is proved for the logarithmic Sobolev inequalities (abbrev. LSI)
on noncompact manifolds. As a result, it is shown that LSI may hold even
though the curvature of the operator is negative everywhere.
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1. Introduction

Let M be a connected complete Riemannian manifold with boundary either
empty or convex. Consider the operator L � D�rV for some V 2 C2�M�
with Z :� RM eV dx <1; where dx is the Riemannian volume element. De®ne

k�x� � inf RicÿHessV� ��X ;X � : X 2 TxM ; jX j � 1f g; x 2 M :

Throughout this paper, we assume that both of Ricc curvature and k are
bounded from below.

Next, let l�dx� � Zÿ1eV dx; we say the LSI holds for the L-di�usion
process, if there exists a > 0 such thatZ

M
f 2 log f 2 dl � 2

a

Z
M
jrf j2 dl

holds for all f 2 C1
b�M� with l� f 2� :� RM f 2dl � 1: The largest possible

constant a is called the LS constant, denoted by a�V � or a�L�.
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The ®rst problem we are interested in is when does the LSI hold. It is well
known from Bakry-Emery criterion [2] that a�V � > 0 whenever infM k > 0. If
the sectional curvature of M is nonpositive and cut� p� � ; for some p 2 M ,
this condition was relaxed as [5]: limq�p;x�!1k�x� > 0: On the other hand, it is
proved in [13] that (see also [5] and [10] for M � Rd )

a�V � � 1

2
lim

q�p;x�!1
jrV �x�j2
ÿV �x� �x� ; �1:1�

where q is the Riemannian distance. Hence, to ensure a�V � > 0, it is rea-
sonable to assume that ÿV �x� grows at least in the order of q�p; x�2: Also, it
is proved in [6] and [15] that the spectral gap exists if there exists a sequence
of regular convex domains Dn " M and

ÿHessV is uniformly positive definite out of a compact set : �1:2�
So, the spectral gap may exist even though k is negative everywhere, see
Example 1.3 below.

Let Pt and k1 be, respectively, the semigroup and spectral gap of L with
Neumann boundary if @M 6� ;. The following result due to Korzeniowski
and Stroock is a key of the study in this paper, which is a combination of
Theorem 3 and Theorem 5 in [10].

Theorem 1.0 (Korzeniowski and Stroock). Suppose that k1 > 0. If there exist
t;N > 0 such that kPtk2!4 � N ; then

a�V � � 1

2
t � 1

k1
max log 4; log�2N�f g

� �ÿ1
:

Remark. 1) According to the proof of [10; Theorem 3], the condition
kPtk2!4 � N can be replaced by kPtf k4 � Nkf k2 for all f 2 Cb�M� with
l� f � � 0:

2) It has been proved by Aida [1] that k1 > 0 is a consequence of
kPtk2!q <1 for some q > 2: Hence the assumption in the above result can
be removed.

By Theorem 1.0 together with an inequality of heat semigroup (cf.
Lemma 2.1 below), we obtain the following result.

Theorem 1.1. We have a�V � > 0 provided

lim
q�p;x�!1

V �x�
q� p; x�2 < 2 inf

M
k : �1:3�

Moreover, as did in [5], Theorem 1.1 can be improved as follows.

Theorem 1.2. If cut �p� � ; and the sectional curvature of M is nonpositive,
then a�V � > 0 provided

lim
q�p;x�!1

V �x�
q� p; x�2 < 2 lim

q�p;x�!1
k�x� : �1:4�
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The following example shows that a�V � may be positive even though k is
negative everywhere.

Example 1.3. Take M � Hd (the d-dimensional hyperbolic space), V �x� �
ÿeq�p; x�2 for some p 2 M and e > 0. Then k�x� � 2e� 1ÿ d;HessV � ÿ2e:
We have k1 > 0 since (1.2) holds. By Theorem 1.1, a�V � > 0 if e > 2�dÿ1�

5 : But
supM k < 0 for e 2 �2�dÿ1�5 ; dÿ1

2 �:
If M is compact, then a�V � > 0 (see [14] and references therein for de-

tailed estimates). It is well known that k1 � a�V �: Now another problem
arises: could we ®nd a simple increasing positive function K such that
a�V � � K�k1�? Such functions have been presented in [8] and [11] which
provide sharp estimates for nonnegative curvature case. But the functions are
no longer positive if the lower bound of Ricci curvature is a little negative.
Basing on [10; Theorem 5], we obtain the following result.

Theorem 1.4. Suppose that M is compact. Let D be the diameter of M . If
k � ÿK for some K 2 R, then

a�V � � 1

2
sup
t>0

t � 1

k1
max log 4; log 2ÿ 1

2
k1t � K2tD2

8�1ÿ eÿKt�2
( )" #ÿ1

� k1
2
min

1

k1 � log 4
;

4�1ÿ eÿK�2
4�1ÿ eÿK�2 log 2� K2D2

( )
:

Here and in what follows, when K � 0, the fraction means its limit as K ! 0.

Noting that k1 can be estimated from below dimension-freely (see e.g. [6]),
by Theorem 1.4 one obtains dimension-free lower bounds for a�V �. This
disproves a view of Chung-Yau [7] which says that for the unit ball in Rd ,
a�0� goes to zero as d !1:

Finally, we consider di�usion processes on Rd . Let

L �
Xd

i;j�1
aij�x� @2

@xi@xj
�
Xd

i�1
bi�x� @

@xi
;

where a�x� � �aij�x�� is positive de®nite, aij 2 C2�Rd� and

bi�x� �
Xd

j�1
aij�x� @

@xj
V �x� �

Xd

j�1

@

@xj
aij�x�

for some V 2 C2�Rd� with Z :� R eV dx <1: Then the L-di�usion process is
reversible with respect to dl � Zÿ1eV dx (see [5]). Denote by a�L� the LS
constant for the present L, then the LSI becomesZ

Rd
f 2 log f 2 dl � 2

a�L�
Z
Rd
harf ;rf i dl �1:5�

for all f 2 C1
b�Rd� with l� f 2� � 1: See [5]. From Theorem 1.2 and (1.5), we

obtain the following result.
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Corollary 1.5. Suppose that a � kI for some k > 0. Let L0 � D�rV , and let
k�x� be the minimal eigenvalue of �ÿ @2

@xi@xj
V �x��: If

lim
jxj!1

V �x�
jxj2 < 2 lim

jxj!1
k�x� ;

then a�L� > 0.

Proof. By (1.5) we have a�L� � ka�L0�, then the corollary follows from
Theorem 1.2. (

2. Proofs

To prove Theorem 1.1 and Theorem 1.2, we need the following lemma which
gives a dimension-free Harnack type inequality for heat semigroups.

Lemma 2.1. Let f 2 Cb�M�. For any a > 1; t � 0 and positive g 2 C�0; t�; we
have

jPtf �x�ja � Ptjf ja�y� exp
aq�x; y�2 R t

0 g�s�2 ds

4�aÿ 1��R t
0 g�s�eÿKs ds�2

" #
; x; y 2 M :

Proof. We may assume that f > 0 since jPtf j � Ptjf j: Next, since Ptf is
positive and smooth for t > 0, we have jPtf ja 2 C2�M�: Given x 6� y and
t > 0, let xs : �0; t� ! M be the geodesic from x to y with length q�x; y�: Let
vs � dxs=ds; we have jvsj � q�x; y�=t: Set

h�s� � tR t
0 g�s�eÿKs ds

Z s

0

g�u�eÿKu du; s 2 �0; t� :

Then h�0� � 0; h�t� � t: Let ys � xh�s�: De®ne

/�s� � log Ps�Ptÿsf �a� ys�; s 2 �0; t� :
Noting that (see [3] and [13])

jrPsF j � PsjrF jeKs; s � 0; F 2 C1
b�M� ;

we have

d/
ds
� 1

Ps�Ptÿsf �a a�aÿ 1�Ps�Ptÿsf �aÿ2jrPtÿsf j2 � h0�s�hrPs�Ptÿsf �a; vsi
n o

� a
Ps�Ptÿsf �a Ps �aÿ 1��Ptÿsf �aÿ2jrPtÿsf j2

n
ÿtÿ1qeKsh0�s��Ptÿsf �aÿ1jrPtÿsf j

o
� a

Ps�Ptÿsf �a Ps �Ptÿsf �a �aÿ 1�x2 ÿ tÿ1qh0�s�eKsx
ÿ �� 	

� ÿ aq2g�s�2

4�aÿ 1� R t
0 g�s�eÿKs ds

ÿ �2 ;
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where x � jrPtÿsf j
�

Ptÿsf : By integrating over s from 0 to t, we complete the
proof. (

We remark that when jrV j is bounded, the same type of estimate given in
Lemma 2.1 can be deduced from the extended Li-Yau's Harnack inequality
for heat semigroups, see [12]. But we are not in the case since according to
(1.1), jrV j is necessarily unbounded in order for a�V � > 0 when M is un-
bounded.

Proof of Theorem 1.1. a) Since a�V � � infM k; we need only to prove for the
case that inf k � 0: If (1.3) holds, then there exists K > ÿ inf k (hence K > 0)
and d;m > 0 such that

V �x� � mÿ 2�1� d�Kq� p; x�2 : �2:1�
Choose e 2 �0; 1� such that

r�r ÿ e0�
�r ÿ 2e0��r ÿ e0 ÿ 1� � 2� d; r 2 �2; 4�; e0 2 �0; e� : �2:2�

Next, choose 2 � r0 < r1 < � � � < rn � 4 such that max1�i�n�ri ÿ riÿ1� � e:
Let

G�t� � 1

1ÿ eÿ2Kt ; t > 0 :

By taking g�s� � eÿKs in Lemma 2.1, we obtainZ
M
jPtf jri dl �

Z
M
jPtf jri=2 jPtf jriÿ1� �ri=�2riÿ1� dl

�
Z

M�M
l�dx�l�dy�jPtf �x�jri=2 Ptjf jriÿ1�y�� �ri=�2riÿ1�exp

riKq�x; y�2
4�riÿ1 ÿ 1�G�t�
" #

�
Z

M�M
jPtf �x�jriÿ1Ptjf jriÿ1�y�l�dx�l�dy�

� �ri=�2riÿ1�
Ri�t��2riÿ1ÿri�=�2ri�

� kf kri
riÿ1Ri�t��2riÿ1ÿri�=�2ri� ;

where

Ri�t� �
Z

M�M
exp

ririÿ1Kq�x; y�2G�t�
2�2riÿ1 ÿ ri��riÿ1 ÿ 1�

" #
l�dx� l�dy� :

b) Since Ricci curvature is bounded from below, there exists c1 > 0 such that

volume x : q� p; x� � rf g � ec1r; r � 0 :

Hence Z
M
exp ÿrq� p; x�2
h i

dx <1; r > 0 : �2:3�

By (2.2) we have

ririÿ1
2riÿ1 ÿ ri� � riÿ1 ÿ 1� � � 2� d :
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Noting that q�x; y�2 � 2q�p; x�2 � 2q�p; y�2; by (2.1) we obtain

Ri�t� � Zÿ2
Z

M�M
exp

1

2
�2� d�KG�t�q�x; y�2 � V �x� � V �y�

� �
dx dy

� Zÿ2
Z

M�M
exp

h
2m� ��2� d�KG�t�

ÿ 2�1� d�K� q� p; x�2 � q� p; y�2
� �i

dx dy :

Note that limt!1 G�t� � 1; then there exists t0 > 0 such that

Ri�t0� � Zÿ2
Z

M�M
exp 2mÿ 1

2
dK q� p; x�2 � q� p; y�2
� �� �

dx dy :

By (2.3) we have Ri�t0� <1: Hence, there exists Ni > 0 such that kPt0f kri� Nikf kriÿ1 : Therefore

Pnt0fk k4� Nn P�nÿ1�t0f


 



rnÿ1
� � � � � N1N2 � � �Nnkf k2 :

Now the proof is completed by Theorem 1.0. (

Just as pointed out by Aida [1], the proof of Theorem 1.1 implies the
following result.

Theorem 2.1. Assume that there exists K � 0 and e > 0 such that infM k � ÿK
and l�exp�2�K � e�q� p; x�2�� :� N <1: Then

kPthk2!2h � N
2ÿh
2h ;

where th > 0 and h 2 �1; 2� satisfy hK
�2ÿh��1ÿeÿ2Kth � � K � e:

Proof of Theorem 1.2. Let k0 � limq�p;x�!1k�x�: If (1.4) holds, then there
exists d > 0 such that

limq�p;x�!1
V �x�

q� p; x�2 � 2�k0 ÿ d� : �2:4�

If cut �p� � ; and the sectional curvature of M is nonpositive, then there
exists U 2 C2�M� such that U � V out of a compact set but Ric ± HessU �
k0 ÿ d=2: See [15] or [4]. Let k1�U� be the spectral gap of D�rU ; then (see
[8] and [15])

k1�U� � exp inf�U ÿ V � ÿ sup�U ÿ V �� �k1 > 0 :

By Theorem 1.1 we have a�U� > 0: Hence (see [8])

a�V � � exp inf�U ÿ V � ÿ sup�U ÿ V �� �a�U� > 0 : (

Proof of Theorem 1.4. Since M is compact, by taking g�s� � 1 in Lemma 2.1,
we obtain

Ptf �x�� �2� Ptf 2� y� exp K2tD2

2�1ÿ eÿKt�2
" #

:
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ThenZ
M
�Ptf �4 dl � exp

K2tD2

2�1ÿ eÿKt�2
" # Z

M�M
�Ptf �x��2Ptf 2� y� l�dx� l�dy�

� exp
K2tD2

2�1ÿ eÿKt�2
" #

kf k22kPtf k22 :

If l� f � � 0, then

kPtf k2 � eÿk1tkf k2 :
Hence

kPtf k4 � exp ÿ k1
2

t � K2tD2

8�1ÿ eÿKt�2
" #

kf k2; l�f � � 0 :

Now the ®rst inequality follows from Theorem 1.0 and its remark, and the
second one follows from the choice t � 1 and the fact that

maxflog 2;Ng � maxflog 2; 2Ng : (
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