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Summary. The description of the class of all functions f � �f �t; x�;
t � 0; x 2 R� is given, for which the transformed process �f �t;Wt�; t � 0�
(where W is a standard Wiener process) is a semimartingale.
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1. Introduction and the main results

1.1. Introduction

It is known (see [1] Cinlar, Jacod, Protter, Sharp; and the previous works [2]
of Brosamler and [3] of Wang) that the necessary and su�cient condition for
the substitution �f �Wt�; t � 0� (of a Wiener process W ) being a semimartin-
gale is the representability of the function f � �f �x�; x 2 R� as a di�erence of
two convex functions. Below is given a generalization of this characterization
for functions depending on the time parameter.

To formulate the main statements let us introduce the following classes of
functions di�erentiable in generalized sense.

Introduce the measure l on the space �R� � R;B�R� � R�� (we write R�
and R for �0;1� and �ÿ1;1� respectively)

l�ds; dx� � q�s; x� ds dx ;

where q�s; x� � �2ps�ÿ1=2 exp�ÿx2=2s�.
Denote CB ± the class of bounded continuous functions, C1;2 ± the class of

functions continuously di�erentiable in t and twice continuously di�eren-
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tiable in x, C1 ± the class of in®nitely di�erentiable functions and let C0
1 be

the class of in®nitely di�erentiable functions with compact support. For
functions f 2 C1;2 the L operator is de®ned by

�Lf ��s; x� � ft�s; x� � 1=2fxx�s; x� ;
where ft and fxx are partial derivatives of the function f .

De®nition 1. We shall say that a function f � �f �t; x�; t � 0; x 2 R� admits a
generalized L-derivative (or belongs to the domain of de®nition of a generalized
L-operator) w.r.t. the measure l, if there exists a sequence of functions
�f n; n � 1� from C1;2 and a measurable locally l-integrable function �Lf � such
that

sup
�s;x�2D

jf n�s; x� ÿ f �s; x�j ! 0; as n!1 �1�

for every compact set D 2 R� � R and for some sequence of functions
�hk�s; x�; k � 1� with properties

1) hk�0; x� � 1 for each x 2 R, hk�s; x� � hk�1�s; x�; hk�s; x� " 1ÿ l-a.e.
2) rk � infft : hk�t;Wt� � kg; k � 1; are stopping times with rk " 1 P -a.s., for
some 0 < k < 1;

we haveZZ
j�Lf n��s; x� ÿ �Lf ��s; x�jhk�s; x�l�ds; dx� ! 0; as n!1 �2�

for each k � 1.
The generalized derivatives ft; fx and a second order derivative fxx (w.r.t.

the measure l) are de®ned similarly, but in the case of a ®rst generalized
derivative in x we demandZZ

�f n
x �s; x� ÿ fx�s; x��2hk�s; x�l�ds; dx� ! 0; n!1 �3�

instead of (2).

De®nition 2. We shall say that a function f � �f �t; x�; t � 0; x 2 R� admits a
generalized weak L-derivative (or belongs to the domain of de®nition of a weak
generalized L-operator) w.r.t. the measure l, if there exists a sequence of
functions �f n; n � 1� from C1;2 and a r-®nite signed measure mL on
�R� � R;B�R� � R�� (which is not necessarily r-additive), such that relation (1)
is satis®ed and for some sequence of functions �hk�s; x�; k � 1� with the prop-
erties 1), 2) of De®nition 1, we have for each k � 1ZZ

w�s; x�Lf n�s; x�hk�s; x�l�ds; dx� !
ZZ

w�s; x�hk�s; x�mL�ds; dx� as n!1
�4�

for every bounded continuous function w.
Weak Generalized derivatives mt; mx and a second order weak derivative

mxx w.r.t. the measure l are de®ned similarly.
Let

58 R. Chitashvili, M. Mania



V̂ L
l �loc� be a class of functions having a generalized weak L-derivative in

the sense of De®nition 2,
V L

l �loc� be a class of functions having a generalized L-derivative in the
sense of De®nition 1, i.e. this is a class of functions from V̂ L

l �loc� for which
the measure mf

L is absolutely continuous w.r.t. the measure l.
Denote further
V̂ 1;2

l �loc� a class of functions having a generalized weak derivative in t (mf
t )

and a second order weak derivative in x (mf
xx) w.r.t. the measure l,

V 1;2
l �loc� a class of functions having the generalized derivatives ft; fx; fxx

w.r.t. the measure l.
The following relations are obvious

V 1;2
l �loc� � V L

l �loc� � V̂ L
l �loc�; V 1;2

l �loc� � V̂ 1;2
l �loc� � V̂ L

l �loc� :
The L operator is extended on V 1;2

l �loc� naturally, i.e. if f 2 V 1;2
l �loc� then

�Lf ��s; x� � ft�s; x� � �1=2�fxx�s; x� ; �5�
with the generalized derivatives ft; fxx.

Finally, let introduce the class ADloc which we de®ne as a subclass of the
class Aloc of processes with locally integrable variations for which increments
At ÿ As are measurable w.r.t. the r-algebra r�Wu; s � u � t� for each pair
s � t. (In other words the elements of ADloc can be considered as additive
(nonhomogeneous) functionals of a Wiener process.)

1.2. Formulation of the main statements

Theorem 1. Let f � �f �t; x�; t � 0; x 2 R� be a continuous function of two
variables. Then the process �f �t;Wt�; t � 0� is a semimartingale if and only if
f 2 V̂ L

l �loc�, and it admits the decomposition

f �t;Wt� � f �0;W0� �
Z t

0

fx�s;Ws� dWs � Af
t ; �6�

where, Af 2 ADloc is uniquely determined by the relation

E
Z 1
0

w�s;Ws� dAf
s �

ZZ
w�s; x�mf

L�ds; dx� �7�

valid for each bounded continuous function w (for which the integrals in (7) are
de®ned ).

Remark. Note, that in (FoÈllmer, Protter, and Shiryaev [5]) an alternative ItoÃ
formula (6) is given and in (Chitashvili and Mania [6]) the survey of di�erent
generalizations of ItoÃ's formula and, in particular, the di�erent meanings of the
term Af are presented, for the general case of a random function f and a
semimartingale instead of the Wiener process.

Theorem 2. Let f � �f �t; x�; t � 0; x 2 R� be a continuous function of two
variables. Then the process �f �t;Wt�; t � 0� is an ItoÃ process if and only if
f 2 V L

l �loc�. Under this condition the decomposition
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f �t;Wt� � f �0;W0� �
Z t

0

fx�s;Ws� dWs �
Z t

0

�Lf ��s;Ws� ds : �8�

takes place.

Corollary 1. a) The process �f �t;Wt�; t � 0� is a semimartingale of the form

f �t;Wt� � Mt � At; M 2 Mloc; A 2 Aloc ;

with

sup
s�t^sa

EM2
s <1; E�VarA�t^sa

<1; for any a 2 R; t � 0 ; �9�

where sa � inffs : jWsj � ag, if and only if f 2 V̂ L
l ��0; T � � �ÿa; a�� for each

a 2 R,T � 0, (i.e. one can take hk�s; x� � I�0;k���ÿk;k��s; x� in De®nition 2).
b) The process �f �t;Wt�; t � 0� is a semimartingale with the decomposi-

tion

f �t;Wt� � Mt � At;M 2 Mloc;A 2 Aloc ;

such that for each t � 0

sup
s�t

EM2
s <1; E�VarA�t <1 ;

if and only if f 2 V̂ L
l ��0; T � � R� for each T � 0, (i.e. one can take

hk�s; x� � I�0;k��R�s; x� in De®nition 2).

Corollary 2. ([1], [3]) If f �t; x� � f �x� for all t � 0; x 2 R, then the process
�f �Wt�; t � 0� is a semimartingale if and only if there exists a second order
generalized weak derivative (w.r.t. the Lebesgue measure dx) mxx uniquely de-
®ned by the equality Z

wxxf �x� dx �
Z

w�x�mf
xx�dx� �10�

valid for each w 2 C1 with compact support, or equivalently i� the function
f is representable as a di�erence of two convex functions on every compact
interval. Besides (see [4])

Af
t �

Z
R

LW �t; x�mf
xx�dx� ;

where LW �t; x� is a local time of a Wiener process spent at the point x.
For a domain D 2 B�R� � R� the space W 1;2

p �D�; p > 1; is de®ned (see [7],
[8]) as a completion of C10 ��0; T � � D� in the norm

jjujjW 1;2
p
� sup
�t;x�2 �D

ju�t; x�j � jjutjjLp
� jjuxjjLp

� jjuxxjjLp
:

Denote W 1;2
p �loc� the class of functions de®ned on R� � R which belongs to

the class W 1;2
p �D� for every bounded open domain D 2 R� � R.

It follows from HoÈ lder's inequality and from the inequalityRR
D q2�s; x� ds dx <1 (which is valid for each bounded measurable domain

D) that for each p � 2
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W 1;2
p �loc� � V 1;2

l �loc� ; �11�

Corollary 3. ([7]). If f 2 W 1;2
loc �p� for some p � 2, then �f �t;Wt�; t > 0� will be

an ItoÃ process and the ItoÃ formula

f �t;Wt� � f �0;W0� �
Z t

0

fx�s;Ws� dWs �
Z t

0

ft�s;Ws� ds� 1

2

Z t

0

fxx�s;Ws� ds

is valid, with the generalized derivatives fx; ft; fxx:
The proof follows from Theorem 2 and relations (5), (11).

2. Some properties of regularizations by Gaussian kernel

Consider the sequence of functions

f n�s; x� � n
Z s�1=n

s

Z
R

f �u; y�q�uÿ s; y ÿ x� dy du ; �12�

where q�s; x� � �2ps�ÿ1=2 expfÿ�x2=2s�g is a Gaussian kernel.
Here we give some properties of the function f n.

Proposition 1. a) If
RR
�0;t��R� f

2�s; x�l�ds; dx� <1 for each t > 0, thenZZ
�0;t��R

�f n�s; x� ÿ f �s; x��2l�ds; dx� ! 0; n!1; t � 0 :

If f � �f �t; x�; t � 0; x 2 R� is a continuous function of two variables, then
b) for every compact D from R� � R

sup
�s;x�2D

jf n�s; x� ÿ f �s; x�j ! 0; as n!1 �13�

c) for every t � 0

sup
s�t
jf n�s;Ws� ÿ f �s;Ws�j ! 0; n!1 ; �14�

in probability.

Proof. The statements a) and b) can be proved in the same way as the similar
propositions in [8]). Assertion c) is an easy consequence of b).

Proposition 2. For each � � 0

a) the function

f ��s; x� � 1

�

Z s��

s

Z
R

f �u; y�q�uÿ s; y ÿ x� dy du

belongs to the class V L
l �loc� for every bounded continuous function f , and

�Lf ���s; x� � 1

�

Z
R
�f �s� �; y� ÿ f �s; x��q��; y ÿ x� dy : �15�
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b) the process �f ��t;Wt�; t � 0� is an ItoÃ process and its part of bounded
variation has the following form

A�t �
1

�

Z t

0

E�f �s� �;Ws��� ÿ f �s;Ws�=FW
s � ds �16�

Proof. a) Let

f �;n�s; x� � 1

�

Z s��

s�1=n

Z
R

f �u; y�q�uÿ s; y ÿ x� dy du :

Evidently f �;n 2 C1;2 and f �;n ! f � uniformly on every compact (since f is
bounded). Using the equality qs�uÿ s; y ÿ x� � �1=2�qxx�uÿ s; y ÿ x� � 0 we
obtain that

�Lf �;n��s; x�

� 1

�

Z
R

f �s� �; y�q��; y ÿ x� dy ÿ
Z

R
f �s� 1=n; y�q�1=n; y ÿ x� dy

� �
and it is easy to see that by the continuity of the function fZ

R
f �s� 1=n; y�q�1=n; y ÿ x� dy ! f �s; x�; n!1

and, consequently, Lf �;n ! 1
�

R
R�f �s� �; y� ÿ f �s; x��q��; y ÿ x� dy in the sense

of De®nition 1.
b) Evidently A� is of bounded variation for every t � 0 and �VarA��t � 2Ct

� .
Since

f n�s; x� � n
Z s�1=n

s
E�f �u;Wu�=Ws � x� du ;

by Markov property of W

M �
t � f ��t;Wt� ÿ A�t

� 1

�

Z t��

t
E�f �u;Wu�=FW

t � duÿ 1

�

Z t

0

E�f �s� �;Ws��� ÿ f �s;Ws�=FW
s � ds ;

and it is easy to show that the martingale equality E�M �
t ÿM �

s=F
W
s � � 0

holds. (

3. Condition U.T and the convergence of semimartingales

Let �Zn; n � 1� be a sequence of semimartingales given on some ®ltered
probability space �X;F; �Ft; t � 0�; P � with the canonical decomposition

Zn
t � Mn

t � An
t ;M

n 2Mloc;An 2Aloc ;

We are interested when the convergence in probability (uniformly on every
compact) of the sequence �Zn; n � 1� implies the semimartingality of a lim-
iting process, and, furthermore, when the martingale parts �Mn; n � 1�
converge to the martingale part of the limiting process.
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Denote H the set of all elementary predictable processes bounded by
unity.

De®nition 3. (Stricker [9]). The sequence of processes ��Zn
t ; t � 0�; n � 1�

satis®es the condition U :T (uniform tightness) if for each t > 0 the setZ t

0

Hs dZn
s ; H 2H; n � 1

� �
is stochastically bounded.

It was shown in (Jacubovski et al. [10]) that if ��Zn
t ; t � 0�; n � 1� is a

sequence of martingales converging weakly to some process Z and the se-
quence �Zn; n � 1� satis®es the condition U.T then the limiting process Z is
also a semimartingale. Further (in Memin and Slominski [11]) it was proved
that if the sequence of semimartingales �Zn;� 1� converges to the process Z
in probability (uniformly on every compact �0; t�) then the U.T condition
guarantees the convergence of martingale terms (and hence of terms with
bounded variation) of Zn to the martingale part of Z. For continuous
semimartingales (which we consider) the U.T property is equivalent to the
stochastic boundedness of the sequence of random variables Var�An�t; hMnit
for each t > 0; and if sups�t jZn

s ÿ Zsj ! 0; n!1, for each t > 0 the U.T
property is satis®ed if and only if the sequence Var�An�t is stochastically
bounded for each t > 0. Thus the following assertion takes place

Proposition 3. If �Zn; n � 1� is a sequence of continuous semimartingales and
Z is some process for which

sup
s�t
jZn

s ÿ Zsj ! 0; n!1 ; �17�

in probability for every t � 0, and

lim
N
limnP�Var�An�t > N� � 0 �18�

for each t > 0, then the process Z is also a semimartingale and
a) for each t > 0

hMn ÿMit ! 0; sup
s�t
jAn

s ÿ Asj ! 0; n!1 : �19�

in probability,
b) there exists a subsequence of the sequence �Zn; n � 1� and a sequence

�sk; k � 1� of stopping times with sk !1 such that

EhMn ÿMisk
! 0; E sup

s�sk

jAn
s ÿ Asj ! 0; n!1 �20�

for every k � 1.
The proof of the assertion a) one can see in MeÂ min and Slominski [11]

(see also Lemma 2 in Chitashvili Mania [6]). The validity of b) follows from
a) and from the Proposition 1 of Emery [12].

Thus, to prove that the process �f �t;Wt�; t � 0� is a semimartingale it is
su�cient to show that there exists a sequence of functions ��f n�s; x�; s �
0; x 2 R�; n > 1� from C1;2 for which
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sup
s�t
jf n�s;Ws� ÿ f �s;Ws�j ! 0; n!1

for each t � 0 and, besides, the sequence of semimartingales ��f n�s;Ws�;
s � 0�; n � 1� satis®es the U.T condition. It would be noted here that the
approximations (12) have the property to de®ne semimartingale (submar-
tingale, martingale) �f n�t;Wt�; t � 0; n � 1�, for the semimartingale (sub-
martingale, martingale) �f �t;Wt�; t � 0�; and, as it will be shown below, the
processes �f n�t;Wt�; t � 0� satisfy the condition (18) of Proposition 3.

4. Some properties of the class ADloc of additive (nonhomogeneous)
functionals of ®nite variation

Below we shall use the following property of processes from the class ADloc

Lemma 1. If A 2 ADloc then for every FW -adapted bounded cadlag process Z
such that E

R1
0 jZsjjdAsj <1 we have

E
Z 1
0

Zs dAs � E
Z 1
0

E�Zs=Ws� dAs ; �21�

where E�Zs=Ws�; s � 0; is a regular modi®cation of the process
E�Zs=Ws� � E�Zs=F

W
�s;1��, with FW

�s;1� � r�Wu : u � s�
Proof. Let

An
t � n

Z t

0

E�As�1=n ÿ As=F
W
s � ds �22�

Applying the method used in Theorem 54 from Dellacherie [13] it can be
proved that for every bounded cadlag process Z

E
Z 1
0

Zs dAn
s ! E

Z 1
0

Zsÿ dAs � E
Z 1
0

Zs dAs; n!1 �23�

(the last equality is true, because A is continuous).
Since A 2 ADloc and W is a Markov process we have

E�As�1=n ÿ As=F
W
s � � E�As�1=n ÿ As=Ws� �24�

and therefore (taking into account (22) and Lemma 8.3 of [20])

E
Z 1
0

Zs dAn
s � E

Z 1
0

E�Zs=Ws� dAn
s �25�

Evidently the relation (21) follows from (23) by passage to the limit in
(25). (

Corollary 5. ([1] Cinlar et al.). Let A;B 2 ADloc. If for every bounded mea-
surable function w�s; x�

w�s;Ws� dAs � 0�a:s� implies w�s;Ws� dBs � 0 �a:s� ; �26�
then dBs � dAs and there exists a measurable function g�s; x� such that
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Bt �
Z t

0

g�s;Ws� dAs �a:s:�

in particular, if A 2 ADloc and dAs � ds then there exists a measurable
function a�s; x� for which

At �
Z t

0

a�s;Ws� ds �a:s:�

Proof. Without loss of generality we can assume that A;B 2 AD. If
E
R1
0 Zs dAs � 0 for some bounded cadlag adapted process Z, then Lemma 1

implies that E
R1
0 E�Zs=Ws� dAs � 0 and since there exists a measurable

function w�s; x� for which w�s;Ws� � E�Zs=Ws� (a.s.) from (26) we have that
E
R1
0 E�Zs=Ws� dBs � 0. Therefore using again Lemma 1 we get that

E
R1
0 Zs dBs � 0 and hence dBt � dAt. Thus there exists a predictable process

y such that Bt �
R t
0 ys dAs and from Lemma 1 we obtain the equality

Bt �
R t
0 E�ys=Ws� dAs �

R t
0 w�s;Ws� dAs for some measurable function w. (

The following statement for the construction of localizing moments for
additive functionals is similar in character to those used in [14] (Revuz), [1]
(Cinlar et al.) (Lemma 4.7) and [15] (HoÈ hnle and Sturm).

Lemma 2. (localization lemma) Let A � �At; t � 0� 2 ADloc and �sk; k � 1� be
the localizing sequence of stopping times of the process A (i.e. sk " 1 and
E�varA�sk

<1 for every k � 1).

Let, for some 0 < k < 1;

hk�s; x� � E�I�s<sk �=Ws � x� :
Then the sequence of functions hk�s; x�; k � 1� satis®es the conditions 1), 2) of
De®nition 1 and for each k � 1

E
Z rk

0

jdAsj � �1=k�E
Z 1
0

hk�s;Ws�jdAsj � �1=k�E
Z sk

0

jdAsj ; �27�

where

rk � infft : hk�t;Wt� � kg :

Proof. Evidently, hk � hk�1; for every k � 1 and hk " 1, since sk " 1.

Let us show that the random variables rk; k � 1; are stopping times, for
each k � 1, such that for every t

P �rk > t� ! 1; k !1 :

Consider the process hk�s;Ws� � E�I�s<sk �=Ws�; s > 0. This process is a sub-
martingale with respect to the inverse ¯ow of r-algebras �F W

�t;1�; t � 0�. In
fact, by the Markovian property of the Wiener process W

E�I�s<sk �=F
W
�s;1�� � E�I�s<sk �=Ws�

which gives that for s � t
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E�hk�t;Wt�=FW
�s;1�� � E�E�I�t<sk �=F

W
�t;1��=FW

�s;1��
� E�I�t<sk �=F

W
�s;1�� � E�I�s<sk �=F

W
�s;1�� � hk�s;Ws� :

The function Ehk�s;Ws� � P �sk > s� is right continuous in s and, hence, there
exists a right continuous modi®cation of the submartingale �hk�s;Ws�; s � 0�.
It follows from this that the variable rk is a stopping time (for each k � 1�
and from Doob's inequality for supermartingales we have

P�rk > t� � P �inf
s�t

hk�s;Ws� > k�

� 1ÿ P sup
s�t
�1ÿ hk�s;Ws�� � 1ÿ k

� �
� 1ÿ �1=�1ÿ k��P �sk � t� ! 1 ;

since sk !1 as k !1.
Let us show now the validity of (27).
Since �s < rk� � �hk�s;Ws� > k�, using Lemma 1 we haveZ rk

0

jdAsj �
Z 1
0

I�s�rk�jdAsj � E
Z 1
0

I�hk�s;Ws�>k�jdAsj

� 1

k

Z 1
0

hk�s;Ws�jdAsj � 1

k

Z 1
0

E�I�s�sk�=Ws�jdAsj � 1

k
E
Z sk

0

jdAsj

and relation (27) is valid. (

Sometimes the following de®nition, equivalent to De®nition 1, is useful.

De®nition 1¢. A function f � �f �t; x�; t � 0; x 2 R� admits a generalized L-de-
rivative (w.r.t. the measure l), if there exists a sequence of functions
�f n; n � 1� from C1;2, satisfying the relation (1), and a measurable locally l-
integrable function �Lf � such that for some sequence of bounded measurable
domains �Dk; k � 1� with
10� �0; x� 2 D1 for each x 2 R, Dk � Dk�1; k � 1;[kDk � R� � R, l-a.e.
20� uk � infft : �t;Wt� =2 Dkg are stopping times with uk " 1 we have for each
k � 1 ZZ

Dk

j�Lf n��s; x� ÿ �Lf ��s; x�jl�ds; dx� ! 0; as n!1 �28�

Proposition 4. De®nition 1 and De®nition 10 are equivalent.

Proof. If f is generalized L-di�erentiable in the sense of De®nition 1, then,
evidently, the sequence Dk � f�s; x� :hk�s; x� > k < 1g possesses properties
10�; 20� (obviously uk � infft : �t;Wt� =2 Dkg � infft : hk�t;Wt� � kg � rk " 1)
and for each k � 1ZZ

Dk

jLf n�s; x� ÿ �Lf ��s; x�jl�ds; dx�

� �1=k�
ZZ
j�Lf n��s; x� ÿ �Lf ��s; x�jhk�s; x�l�ds; dx� ! 1 ;
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as n!1.
Conversely, let �Dk; k � 1� be a sequence with properties 10�; 20�. Then the

sequence of functions hk�s; x� � E�I�uk�s�=Ws � x� satis®es conditions 1), 2) of
De®nition 1, since according to Lemma 2 uk " 1 implies that
rk � infft : hk�t;Wt� � kg " 1 and using Lemma 1 and equality I�s<uk� �
IDk �s;Ws� we haveZZ

j�Lf �n�s; x� ÿ �Lf ��s; x�jhk�s; x�l�ds; dx�

�
ZZ

Dk

j�Lf n��s; x� ÿ �Lf ��s; x�jl�ds; dx� : (

5. Proof of Theorem 1 and its corollaries

Proof of Theorem 1. Su�ciency. Let us show that if f 2 V̂ L
l �loc� then the

process �f �t;Wt�; t � 0� is a semimartingale with the decomposition (6).
Let �hk�s; x�; k � 1� be a localizing sequence of functions from De®nition

2 of the class V̂ L
l �loc� and let �rk; k � 1� be corresponding stopping times

de®ned by

rk � inf�t � k : hk�t;Wt� � k < 1� :

Since rk !1, to prove that the process �f �t;Wt�; t � 0� is a semi-
martingale it is su�cient to show that the process �f �t ^ rk;Wt^rk �; t � 0�
is a semimartingale for every k � 1. For convenience we shall omit the
index k.

Let �f n; n � 1� be the sequence of smooth functions from De®nition 2.
Evidently, for every n � 1 the process Zn � �f n�t ^ r;Wt^r�; t � 0� is a
semimartingale with the decomposition

f n�t ^ r;Wt^r� � f n�0;W0� �Mn
t � An

t ;

where

Mn
t �

Z t^r

0

f n
x �s;Ws� dWs; An

t �
Z t^r

0

�Lf n��s;Ws� ds :

It follows from the relation (1) that for each t � 0

sup
s�t
jf n�s ^ r;Ws^r� ÿ f �s ^ r;Ws^r�j ! 0; n!1 �29�

in probability and according to Proposition 3 it is su�cient to show that for
each t > 0

lim
N
sup

n
P ��VarAn�t^r > N� � 0 : �30�

We have

Generalized ItoÃ 's formula 67



E�VarAn�t^r � E
Z t^r

0

j�Lf n��s;Ws�jds � 1

k
E
Z t^r

0

hk�s;Ws�j�Lf n��s;Ws�jds

� 1

k

ZZ
j�Lf n��s; x�jhk�s; x�l�ds; dx� ;

butZZ
w�s; x��Lf n��s; x�hk�s; x�l�ds; dx� !

ZZ
w�s; x�hk�s; x�m f

L�ds; dx� ; �31�

as n!1, for all w 2 CB and, hence, for each k � 1

sup
n

ZZ
j�Lf n��s; x�jhk�s; x�l�ds; dx� <1 : �32�

Therefore the process �f �t ^ rk;Wt^rk �; t � 0� is a semimartingale for each
k � 1 and, consequently, the process �f �t;Wt�; t � 0� is also a semimartingale.

Let us show now that the function f is generalized di�erentiable in x. Let

Zt � f �t;Wt� � Mt � At �33�
be the minimal decomposition of the semimartingale Zt � f �t;Wt�, i.e.
M 2Mloc�FZ�; A 2Aloc�FZ�.

Since the sequence of semimartingales ��f n�t;Wt�; t � 0�; n � 1� satis®es
the U :T condition and converges to the semimartingale �f �t;Wt�; t � 0� in
probability uniformly on every compact, then it follows from Proposition
3.b) that there exists a subsequence of the sequence f n (for convenience we
use the same index n for the subsequence) and a sequence �sk; k � 1�, of
stopping times with sk " 1; k " 1 such that, for every k � 1

EhMn ÿMisk
! 0; E sup

s�sk

jAn
s ÿ Asj ! 0; n!1 : �34�

Let us de®ne a new sequence of localizing functions ~hk�s; x� �
E�I�s<sk �=Ws � x� and let Ck � ��s; x� : ~hk�s; x� > k� for some 0 < k < 1. Then
according to Lemma 2

~rk � infft : ~hk�t;Wt� � kg � infft : �t;Wt� =2Ckg; k � 1 ;

are stopping times with ~rk " 1. It follows from Lemma 1 and (34) that for
each k � 1ZZ

Ck

�f n
x �s; x� ÿ f m

x �s; x��2l�ds; dx�

� �1=k�
Z 1
0

Z
R
�f n

x �s; x� ÿ f m
x �s; x��2~hk�s; x�l�ds; dx�

� �1=k�E
Z sk

0

�f n
x �s;Ws� ÿ f m

x �s;Ws��2 ds! 0; n!1; m!1 : �35�

Evidently, for each k � 1, there exists a function f �k�x for whichZZ
Ck

�f n
x �s; x� ÿ f �k�x �s; x��2l�ds; dx� ! 0; n!1 : �36�
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Since f �r�x � f �k�x on the set Ck for all r � k, one can de®ne the function fx

coinciding with f �k� on the set Ck such thatZZ
Ck

�f n
x �s; x� ÿ fx�s; x��2l�ds; dx� ! 0; n!1 : �37�

Thus, taking into account Proposition 4, we can conclude that the function f
is locally generalized di�erentiable in x w.r.t. the measure l. Besides the
martingales �Mt; t � 0� and �R t

0 fx�s;Ws�; dWs; t � 0� are indistinguishable. In
fact, since

E
�Z :

0

f n
x �s;Ws� dWs ÿ

Z :

0

fx�s;Ws� dWs�
�

~rk

�38�

�
ZZ

Ck

�f n
x �s; x� ÿ fx�s; x��2l�ds; dx� ! 0; n!1 ;

from (34) we have that

E
�Z :

0

f n
x �s;Ws� dWs ÿM

�
sk

! 0; n!1 ; �39�

and, consequently,

E
�Z :

0

fx�s;Ws� dWs ÿM
�

~rk^sk

� 0 �40�

for each k � 1. Now taking into account that ~rk " 1; sk " 1 we obtain the
indistinguishability of the processes M and

R
fx dW .

Thus the semimartingale �f �t;Wt�; t � 0� can be represented in the form

f �t;Wt� � f �0;W0� �
Z t

0

fx�s;Ws� dWs � Af
t ; �41�

where fx is a generalized derivative in x w.r.t. the measure l and, evidently,
Af 2 ADloc.

The proof of necessity. Let the process �f �t;Wt�; t � 0�� be a continuous
semimartingale and let

Zt � f �t;Wt� � Mt � At �42�
be its minimal decomposition.

We ®rst assume that the semimartingale �f �t;Wt�; t � 0� is bounded, i.e.
sup

t
jf �t;Wt�j < C �43�

Let �sk; k � 1� be a sequence of stopping times (with sk " 1; k !1� for
which

E�VarA�sk
<1; EhMisk

<1 �44�
for every k � 1.

Consider the sequence of functions �f n; n � 1�
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f n�s; x� � n
Z s�1=n

s

Z
R

f �u; y�q�uÿ s; y ÿ x� dy du �45�

It follows from Proposition 2 that the process �f n�t;Wt�; t � 0� is a semi-
martingale (for every n � 1) with the decomposition

f n�t;Wt� � Mn
t � An

t ; �46�
where Mn is a martingale and the part of bounded variation has the form

An
t � n

Z t

0

E�f �s� 1=n;Ws�1=n� ÿ f �s;Ws�=Ws� ds : �47�

According to Proposition 1c)

sup
s�t
jf n�s;Ws� ÿ f �s;Ws�j ! 0; n!1 �48�

in probability for every t � 0.
Let us show that the family of semimartingales �f n�t;Wt�; t � 0; n � 1�

satis®es the U :T condition. In fact, it is su�cient to prove that for every
k � 1

sup
n

E�VarAn�sk
<1 �49�

From (47) it follows that

�VarAn�sk
� n

Z sk

0

jE�f �s� 1=n;Ws�1=n� ÿ f �s;Ws�=FW
s �j ds

� n
Z sk�1=n

sk

jE�f �u;Wu� ÿ f �uÿ 1=n;Wuÿ1=n�=FW
uÿ1=n�j du

� n
Z sk

1=n
jE�f �u;Wu� ÿ f �uÿ 1=n;Wuÿ1=n�=FW

uÿ1=n�j du

� 2C � n
Z sk

1=n
jE�Au ÿ Auÿ1=n=F

W
uÿ1=n�j du ;

since supt jf �t;Wt�j < C and

E�f �t;Wt� ÿ f �s;Ws�=FW
s � � E�At ÿ As=F

W
s �

on the set s < t � sk.
Therefore

E�VarAn�sk
� 2C � nE

Z sk

1=n
jAu ÿ Auÿ1=nj du � 2C � nE

Z sk

1=n

Z u

uÿ1=n
j dAsj du

Now using Fubini's theorem

E
Z sk

1=n

Z u

uÿ1=n
jdAsj du � E

Z sk

0

Z �s�1=n�^sk

s_1=n
duj dAsj

and taking into account the inequality �s� 1=n� ^ sk ÿ s _ 1=n � 1=n we
obtain that
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E�VarAn�sk
� 2C � E�VarA�sk

�50�
for every n � 1.

Thus the conditions of Proposition 3 are ful®lled and therefore there
exists a subsequence of the sequence �f n; n � 1� and a sequence �sk; k � 1� of
stopping times with sk !1 (for convenience we use the same indexeis for
this subsequence) such that

EhMn ÿMisk
! 0; n!1 �51�

E sup
s�sk

jAn
s ÿ Asj ! 0; n!1 �52�

for every k � 1.
Evidently the process �An

t ; t � 0� belongs to the class ADloc for each n and
it follows from the relation (52) that the process �At; t � 0� also belongs to the
same class.

De®ne a measure mA�ds; dx� on the Borel sets from R� � R: For measur-
able positive function w � �w�s; x�; s � 0; x 2 R� with E

R1
0 w�s;Ws�jdAsj <1

let

mA�w� � E
Z 1
0

w�s;Ws� dAs �53�

The measure mA is r-®nite on B�R� � R�, since for the sequence of domains
�Dk; k � 1�

Dk � ��s; x� : E�I�s<sk �=Ws � x� > k�; 0 < k < 1 ;

we have that [kDk � R� � R and

jmA�Dk�j � E
Z 1
0

IDk �s;Ws�jdAsj � �1=k�E
Z 1
0

E�I�s<sk �=Ws�jdAsj

� �1=k�E
Z sk

0

jdAsj <1 ;

which follows from Lemma 1, since A 2 ADloc.
Since the function f n�s; x� belongs to the domain of de®nition of L op-

erator for each n � 1 (Proposition 2a), the assertion of the su�ciency part of
this theorem implies that the semimartingale �f n�t;Wt�; t � 0� admits the
decomposition

f n�t;Wt� � f n�0;W0� �
Z t

0

f n
x �s;Ws�; dWs �

Z t

0

�Lf n��s;Ws� ds : �54�

Therefore, it follows from (46), (54) and from the uniqueness of the canonical
decomposition of semimartingales that

An
t �

Z t

0

�Lf n��s;Ws� ds : �55�

Since from (50), (52) we have that, for every k � 1,

E
Z sk

0

w�s;Ws� dAn
s ! E

Z sk

0

w�s;Ws� dAs �56�
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for every bounded continuous function w and according to equality (55) and
Lemma 1

E
Z sk

0

w�s;Ws� dAn
s �

ZZ
w�s; x��Lf n��s; x�hk�s; x�l�ds; dx� ; �57�

we obtain that, for each k � 1,

Jn
k �w� �

ZZ
w�s; x��Lf n��s; x�hk�s; x�l�ds; dx� ! E

Z sk

0

w�s;Ws� dAs �58�

for every bounded continuous function w. Thus, for every k � 1 Jn
k �w� is a

sequence of linear bounded functionals on CB which converges for each
w 2 CB. Therefore (see e.g. Th. 1. II.1 of [16]) the functional Jk de®ned by
Jk�w� � limn!1 Jn

k �w� is also linear bounded functional on CB and, hence, it
is representable in the form (see e.g. Th. 2. Ch. IV.6 of [17])

Jk�w� �
ZZ

w�s; x�mk�ds; dx� �59�

where mk is a ®nite measure on B�R� � R�.
Evidently the relations (56)±(59) imply the equality

E
Z sk

0

w�s;Ws� dAs �
ZZ

w�s; x�mk�ds; dx� �60�

and, hence measure mk is absolutely continuous with respect to the measure
mjAj which is de®ned by mjAj�w� � E

R1
0 w�s;Ws� dVar�A�s. Therefore, it follows

from the de®nition of the measure mA that mk�ds; dx� � hk�s; x�mA�ds; dx� and
from relations (58), (60) we obtain that, for each k � 1,ZZ

w�s; x��Lf n��s; x�hk�s; x�l�ds; dx� !
ZZ

w�s; x�hk�s; x�mA�ds; dx� �61�

for every bounded continuous function w.
Since

sup
�s;x�2D

jf n�s; x� ÿ f �s; x�j ! 0; n!1 �62�

on every compact D 2 R� � R (Proposition 1) and f n itself belongs to the
class V L

l �loc� for every n � 1, then it is easy to prove (using the diagonal
sequence) the existence of a sequence of functions from C1;2 with the same
properties ((61), (62)), hence, f 2 V̂ L

l �loc� and the measure mf
A�ds; dx� is a

generalized weak L-derivative of the function f , i.e. mf
L � mf

A.
Evidently the relations (56), (61) imply the equality

E
Z 1
0

w�s;Ws� dAs �
ZZ

w�s; x�mL�ds; dx� �63�

valid for every bounded continuous function w.
Let us show that this equality uniquely determines the process A 2ADloc.

Let some B 2ADloc also satis®es the relation (63). Then we have that
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E
Z sk

0

w�s;Ws� dAs � E
Z sk

0

w�s;Ws� dBs �64�

for every bounded continuous function w.
If w�t; x� is a bounded function such that the composite process

�w�t;Wt�; t � 0� is right-continuous, then we can approximate this function
by bounded continuous functions in the sense of Proposition 1c) and,
therefore, one can conclude that the equality (64) is valid for every bounded
function w for which the process w�t;Wt� is right-continuous.

Since for each cadlag process Y there exists a cadlag modi®cation of the
process w�t;Wt� � E�Yt=Wt� � E�Yt=F

W
�t;1�� (M. Rao [18]), (i.e. for such a

function w�s; x� � E�Ys=Ws � x� the equality (64) is true) and since
A;B 2ADloc it follows from Lemma 1 and equality (64) that for every
adapted bounded cadlag process X

E
Z sk

0

Xs dAs � E
Z 1
0

E�I�s�sk�Xs=Ws� dAs

� E
Z 1
0

E�I�s�sk�Xs=Ws� dBs � E
Z sk

0

Xs dBs

which implies that the processes A and B are indistinguishable.
Thus, it was proved that if the process �f �t;Wt�; t � 0� is a bounded

continuous semimartingale, then the function f belongs to the class V̂ L
l �loc�:

To get rid of the assumption of boundedness of �f �t;Wt�; t > 0�, consider the
family of functions fC � min�max��ÿC�; f �t; x��;C�. Obviously, since
�f �t;Wt�; t � 0� is a continuous semimartingale, the process �fC�t;Wt�; t � 0�
is a continuous bounded semimartingale for every C and the function

f n
C�s; x� � n

Z s�1=n

s

Z
R

fC�u; y�P �s; x; u; dy� du

belongs to the class V L
l �loc� for each n � 1;C > 0. Hence, the function fC

belongs to the class V̂ L
l �loc� for every C > 0 and, consequently (since fC

converges to f uniformly on every compact), the function f belongs to the
same class. (

Remark. It follows from the proof of this theorem that if f admits a generalized
weak L-derivative then there exists a generalized ®rst derivative in x of the
function f.

Proof of Theorem 2. Su�ciency. Let f 2 V L
l �loc�. Then f 2 V̂ L

l �loc�; mf
L�ds; dx�

� l�ds; dx� and from Theorem 1 we have that the process �f �t;Wt�; t � 0� is a
semimartingale with the decomposition

f �t;Wt� � f �0;W0� �
Z t

0

fx�s;Ws� dWs � Af
t ; �65�

and the process Af 2 ADloc is uniquely determined by the relation
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E

Z 1
0

w�s;Ws� dAf
s �

ZZ
w�s; x�m f

L�ds; dx� ; �66�

valid for every bounded continuous w.
Evidently the process �R t

0�Lf ��s;Ws� ds; t � 0� also satis®es (66) and,
hence, the processes �Af

t ; t � 0� and �R t
0�Lf ��s;Ws� ds; t � 0� are indistin-

guishable.
Necessity. Let f �t;Wt� be an ItoÃ process. Then from Theorem 1

f 2 V̂ L
l �loc�, the process f �t;Wt� admits the decomposition (65) and the

process Af 2 ADloc is uniquely determined by the relation (66). Since
dAf

s � ds, by the corollary of Lemma 1, a measurable function g�s; x� exists
such that Af

t �
R t
0 g�s;Ws� ds.

Therefore from the relation (66) we have thatZZ
w�s; x�m f

L�ds; dx� � E
Z 1
0

w�s;Ws�g�s;Ws� ds �
ZZ

w�s; x�g�s; x�q�s; x� ds dx

for every w 2 CB which implies that m f
L�ds; dx� � l�ds; dx� and, hence,

f 2 V L
l �loc�. (

Proof of Corollary 1. Since in this case the localizing sequence of stopping
times �sk; k � 1� has the form

sk � infft : jWtj � kg ^ k ; �67�
using the formula (see e.g. [19]) for the common distribution function of
sup0�s�t jWsj and Wt

P sup
0�s�t

jWsj < a;Wt 2 �c; d�
� �

�
Z d

c

X1
i�ÿ1
�ÿ1�iq�t; 2iaÿ x� dx

for a � 0; �c; d� 2 �ÿa; a�, it is easy to see that

hk�s; x� � E�I�sk�s�=Ws � x�

� I�0;k���ÿk;k��s; x�P sup
0�u�s

jWuj < k=Ws � x
� �

� I�0;k���ÿk;k��s; x�
X1

i�ÿ1
expfÿ4ik�xÿ ik�g �68�

and, hence, hk�s; x� is a bounded continuous function, which is zero if
�s; x� =2 �0; k� � �ÿk; k� and is strictly positive if �s; x� 2 �0; k� � �ÿk; k�.
Therefore it follows from Theorem 1 that if the process f �t;Wt� is a semi-
martingale of the form (9) then there exists a sequence of functions �f n; n � 1�
from C1;2 converging (uniformly on every compact) to f and a signed measure
mL, ®nite on every compact (hence mL�ds; dx� will be a r-additive measure
according to Theorem 3 (Ch. IV.6) of [17]), such that for every k � 1ZZ

w�s; x��Lf n��s; x�l�ds; dx� !
ZZ

w�s; x�mL�ds; dx�
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for every bounded continuous function w ®nite on �0; k� � �ÿk; k�, which is
equivalent to f 2 V L

l ��0; T � � �ÿa; a�� for any T > 0 and a > 0. It follows from
the proof of the su�ciency part of Theorem 1 that if f 2 V L

l ��0; T � � �ÿa; a��
for any T > 0 and a > 0 then f �t;Wt� will be a semimartingale of the form (9).
Proof of the assertion b), evidently, follows from a). (

Proof of Corollary 2. If f �t; x� � f �x� for every t � 0 and if the process
�f �Wt�; t � 0� is a continuous semimartingale, then, evidently
�f � f �x�; x 2 R� will be a continuous function (really, let �an; n � 1� be a
sequence of real numbers converging to some a0 2 R and let
sn � infft : Wt � ang; n � 0: Obviously, sn ! s0, Wsn � an for every n � 0 and
the continuity of the process �f �Wt�; t � 0� implies that
f �an� � f �Wsn� ! f �Ws0� � f �a0�; n!1).

Therefore for the regularizations

f n�s; x� � n
Z s�1=n

s

Z
R

f �y�q�uÿ s; y ÿ x� dy du

�
Z

R
f �y� n

Z 1=n

0

q�u; y ÿ x�du

 !
dy � f n�x�

we have that

sup
x2D
jf n�x� ÿ f �x�j ! 0; n!1

on every compact D 2 R and besides

�Lf n��s; x� � f n
xx�x� :

Since in this case, according to [1], the localizing sequence of stopping times
�sk; k � 1� of the semimartingale f �Wt� has the form (67), it follows from (68)
that

hk�s; x�q�s; x� � I�0;k���ÿk;k��s; x�qk�s; x� ;
where qk�s; x� �

P1
i�ÿ1 q�s; xÿ 2ik�.ZZ

w�s; x��Lf n��s; x�hk�s; x�l�ds; dx� �
Z k

ÿk
f n

xx�x� w�x�
Z k

0

qk�s; x� ds
� �

dx

and �R k
0 qk�s; x� ds; x 2 R� is continuous function ®nite on �ÿk; k�, which is

strictly positive on �ÿk; k�. Therefore, it follows from Theorem 1 that for
every continuous function u which is ®nite on �ÿk; k� there exists a limit

lim
n!1

Z
f n

xx�x�u�x� dx

and, hence, there exists a signed measure mxx, bounded on every compact
(therefore the restriction of mxx�dx� on every compact is a r-additive measure
according to Theorem 3 (Ch. IV.6) of [17]), such that
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Z
f n

xx�x�u�x� dx!
Z

u�x�mxx�dx�

for every continuous function u with compact support, which is equivalent to
(15) and to the representability of the function f as a di�erence of two
convex functions on every compact interval �ÿk; k�. Finally note that the
process

Af
t �

Z
R

LW �t; x�mxx�dx� ;

evidently, satis®es the relation (7). (
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