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Summary. Given a closed Markov (i.e. regenerative) set in �0;1�, we char-
acterize the laws of the Markov sets which are regeneratively embedded into
the latter. Typically, let U�1� and U�2� be two Laplace exponents corre-
sponding to two regenerative laws, and M �2� a Markov set with exponent
U�2�. There exists a Markov set M �1� with exponent U�1� which is regenera-
tively embedded into M �2� if and only if U�1�=U�2� is a completely monotone
function. Several examples and applications are discussed.

Mathematics Subject Classi®cation (1991): 60D05, 60J30

1 Introduction

Loosely speaking, a Markov (i.e. regenerative) set M is a random closed
subset of �0;1� such that the right-hand portion of M as viewed from a
stopping time T in this set, is independent of the left-hand portion and has
the same distribution as M . Alternatively, a Markov set can be thought of as
the closure of the set of times when some strong Markov process visits a ®xed
point in the state space. The precise de®nition that we use here is that of
Maisonneuve [21], which extends the previous ones by Krylov and
Yushkevich [18] and Ho�mann-Jùrgensen [14]. See also Kingman [16] and
Maisonneuve [19].

The motivation for the present work stems from the following tantalizing
problem: Given two independent Markov sets, M and M 0, it is easily seen
that their intersection M \M 0 is again a Markov set. Can one describe its
distribution explicitly in terms of that of M and M 0? We refer to Hawkes [12],
Fitzsimmons et al. [6] and Molchanov [23] for advances on this problem.
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A natural approach is to observe ®rst that, roughly speaking,
M �1� � M \M 0 is `regeneratively embedded' into M �2� � M (respectively,
M �2� � M 0), in the sense that the right-hand portions of the pair �M �1�;M �2��
as viewed from a stopping time T in M �1�, are independent of the left-hand
portions and have the same distribution as �M �1�;M �2��. (This notion can be
viewed as a special case of the general concept of regenerative systems de-
veloped by Maisonneuve [20].) This suggests the question of characterizing
the class of Markov sets that can be regeneratively embedded into a given
Markov set, which is the main purpose of this paper.

This question also naturally arises in the following more general setting:
Suppose Y �1� is a strong Markov process, so the closure M �1� of the set of
times when Y �1� visits a ®xed point, say y, is a Markov set. Then let f be a
Markov function for Y �1�, in the sense that Y �2� � f �Y �1�� is again a strong
Markov process. The closure M �2� of the set of times when Y �2� � f � y� is also
a Markov set, and M �1� is regeneratively embedded into M �2�. For instance, Y
may be a linear Brownian motion, y � 0 and f �x� � expf2ipxg, so that M �2�

is the set of times when Y takes integer values. To make the connection
with intersection of independent Markov sets, suppose Y and Y 0 are inde-
pendent Markov processes, put Y �1� � �Y ; Y 0� and let f be the ®rst projection
map.

We now describe our main result. It is well-known that the distribution of
a Markov set M is characterized by a function U : �0;1� ! �0;1� which is
the Laplace exponent of a subordinator X . (The relation between M and X
is that the closed range of X has the same distribution as M .) Given two
Laplace exponents, U�1� and U�2�, there exists a pair of Markov sets M �1�

and M �2� with Laplace exponents U�1� and U�2�, respectively, such that M �1�

is regeneratively embedded into M �2� if and only if the ratio U�1�=U�2� is
a completely monotone function. An alternative equivalent condition
is that any excessive measure for the subordinator X �2� is also excessive
for X �1�.

The Laplace exponent of a Markov set can be expressed via the cele-
brated LeÂ vy-Khintchine formula, in terms of a drift coe�cient d � 0 and a
measure P on �0;1�, called the LeÂ vy measure. Loosely speaking, P de-
scribes the distribution of the gaps of M . The drift coe�cient is zero or
positive according as the Lebesgue measure of M is zero or positive a.s.;
one says that M is light or heavy accordingly. It then seems natural to
address the following question: Given a light Markov set M , is there a
heavy Markov set N with the same LeÂ vy measure as M , such that M is
regeneratively embedded into N? We give a necessary and su�cient con-
dition in terms of the Laplace exponent U for the positive answer. Some-
what surprisingly, many natural examples of Markov sets have this rather
unexpected property.

This paper is organized as follows. Preliminaries on subordinators, re-
generative laws and regenerative embedding are developed in Section 2. The
main results together with several examples are presented in Section 3. Proofs
are given in Section 4.
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2 Preliminaries

2.1 Subordinators

Let X � Xt : t � 0� � be a -generic- subordinator. That is X is a right-con-
tinuous process with values in the extended half-line �0;1�, started at X0 � 0
and with independent and stationary increments. More precisely, if
f � infft � 0 : Xt � 1g stands for the lifetime, then for every s � 0, given
f > s, the shifted process Xt�s ÿ Xs : t � 0� � is independent of Xt : 0 � t � s� �
and has the same law as X . The degenerate case when X � 0 will be implicitly
excluded in the sequel.

The law of a subordinator is speci®ed by its Laplace exponent U, via the
identity

E expÿkXt� � � expÿtU�k�; t � 0; k > 0 ;

with the convention eÿ1 � 0. The LeÂ vy-Khintchine formula states that

U�k�=k � d�
Z 1
0

eÿkxP�x� dx ;

where d � 0 is the drift coe�cient and P�x� � P��x;1�� the tail of the LeÂ vy
measure.

The renewal measure U is the occupation measure of X , viz.

U�A� � E
Z 1
0

1 Xt2Af g dt
� �

; A 2 B��0;1��
its Laplace transform is given byZ 1

0

eÿkxU�dx� � 1=U�k�; k > 0 :

A Radon measure m on �0;1� is called a potential if it can be expressed in the
form m � l � U for some Radon measure l on �0;1�. In that case, we write
m 2 Pot. One says that m is excessive and write m 2 Exc if for every real number
t � 0 and every measurable function f � 0

Em f Xt� �; t < f� � � m� f � ;
where Pm refers to the law of the subordinator started with initial distribution
m. Because limt!1Em f Xt� �� � � 0 for every bounded measurable function f
with compact support, it follows from the Riesz decomposition (cf. Theorem
16.7 in Berg and Forst [1], and also Getoor [8], chapter 2) that the notions of
excessive measure and potential measure coincide for subordinators, i.e.

Pot � Exc � m � l � U ; m and l Radon measures on �0;1�f g : �1�

2.2 Regenerative laws

This subsection is essentially an excerpt from Maisonneuve [21] and Fitz-
simmons et al. [6], to whom we refer for a complete account. Denote by X0
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the class of the closed subsets x0 of �0;1�, endowed with the topology of
Matheron [22]. In particular, X0 is a compact metrisable space. Recall that
given a metric q on �0;1�

limx0
n � x0 in X0() lim q t;x0

n

ÿ � � q t;x0
ÿ �

for every t � 0 ; �2�
see (1.2.5) in [22].

We write M0 for the identity mapping on X0, i.e. M0 x0
ÿ � � x0. For each

t 2 �0;1�, de®ne
dt x0
ÿ � � inf x0 \ �t;1�� 	

; st x0
ÿ � � s � 0 : s� t 2 x0

� 	
:

It is convenient to omit x0 from the notation in the sequel. We denote by G0
t

the sigma-®eld generated by dt and M0 \ 0; dt� �. (Notice that dt <1 if and
only if dt is the maximum of �0; dt� \M0.) It is easily seen that G0

t coincides
with the sigma-®eld generated by ds : 0 � s � t� �.

One says that a probability measure Q on X0 is a regenerative law if for
each t 2 �0;1� and each bounded measurable function f : X0 ! R:

Q f M0 � sdt

ÿ � j G0
t

ÿ � � Q f M0
ÿ �ÿ �

on dt <1f g :
First, we lift from [21] the following strong regenerative property.

Lemma 1 Denote by M0 the subset of M0 which consists of points which either
are isolated in M0 or are right-accumulation points in M0. Let Q be a regen-
erative law and T an G0

s�
ÿ �

-stopping time such that T 2 M0 a.s. on fT <1g.
Then

Q f M0 � sT
ÿ � j G0

T�
ÿ � � Q f M0

ÿ �ÿ �
on fT <1g

for every bounded measurable function f : X0 ! R.

Second, we rephrase Theorem 3.4 of [6] on limit of regenerative laws.

Lemma 2 Suppose that Qn : n 2 N� � is a sequence of regenerative laws on X0

which converges weakly towards some probability measure Q on X0. Then Q is a
regenerative law.

We next turn our attention to the connection between regenerative laws
and subordinators. When X is a subordinator, the closure of its range
fXt : 0 � t < fg viewed as a random closed subset of �0;1�, induces a re-
generative law on X0. Conversely, suppose Q is a regenerative law on X0 with
d0 � 0 Q-a.s. (that is to say that M0 is perfect, Q-a.s.). Then there exists an
Q-a.s. continuous increasing G0

s

ÿ �
-adapted process L � Ls : s � 0� �, which

increases exactly on M0, and which has the property of additivity, namely
Lt�s � Lt � Ls � st. We call L a local time on M0. Applying the strong re-
generative property of Lemma 1, it is easily seen that for every t 2 �0;1�,
conditionally on dt <1f g, the process L � sdt is independent of G

0
dt� and has

the same law as L. The inverse X� � inf s � 0 : L�s� > �f g is a subordinator,
and ®nally M0 coincides with the closed range of X , a.s.

If Q is a regenerative law with d0 > 0 Q-a.s. (that is to say that all the
points in M0 are isolated, Q-a.s.), then the same feature as above holds,
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except that the local time is then an integer-valued process and the inverse
local time an increasing random walk. Of course, one can always transform
an increasing random walk into a subordinator via a time-substitution based
on an independent Poisson process.

If two subordinators X and X 0 are such that their closed ranges have the
same regenerative law Q, then their Laplace exponents are proportional.
Among those, there is a unique U which ful®lls the -arbitrary- normalization
condition U�1� � 1. We will then refer to U as the Laplace exponent of Q;
and by extension, to U , d, P..., as the renewal measure, drift coe�cient, LeÂ vy
measure..., of Q.

We ®nally lift from [6] (see Proposition 3.9 there) the following charac-
terization of convergence of regenerative laws in terms of Laplace exponents.

Lemma 3 Let Q;Q1;Q2; � � � be regenerative laws with Laplace exponents
U;U1;U2 � � �. Then Qn converges weakly towards Q if and only if Un converges
pointwise towards U.

2.3 Regenerative embedding

Using (2), it is easy to verify that

X � x � x�1�;x�2�
� �

2 X0 � X0 : x�1� � x�2�
n o

is a closed subset of X0 � X0. As a consequence, X is a compact metrisable
space. We write M �1��x� � x�1�, M �2��x� � x�2� for the canonical projections
on X, M � M �1�;M �2�

ÿ �
, and for every t � 0:

d�1�t �x� � dt x�1�
� �

; st�x� � st x�1�
� �

; st x�2�
� �� �

:

We denote by Gt the sigma-®eld generated by d�1�t , M �1� \ �0; d�1�t

�
and

M �2� \ �0; d�1�t

�
; it is easy to check that Gt� �t�0 is a ®ltration.

We now introduce the notion of regenerative embedding laws on X by
mimicking the de®nition of regenerative laws on X0: A probability measure
P on X is called a regenerative embedding law if for each t 2 �0;1� and each
bounded measurable function f : X! R

P f M � sd�1�t

� ����Gt

� �
� P� f �M�� on d�1�t <1

n o
:

Just as in [21], one can establish the following variation of Lemma 1.

Lemma 4 Denote by M �1� the subset of M �1� which consists of points which
either are isolated in M �1� or are right-accumulation points in M �1�. Let P be a
regenerative embedding law and T an Gs�� �-stopping time such that T 2 M �1�

a.s. on fT <1g. Then

P f M � sT� � j GT�� � � P� f �M�� on fT <1g
for every bounded measurable function f : X! R.
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Plainly, when P is a regenerative embedding law on X, its ®rst marginal
on X0 is a regenerative law. We now arrive at the central notion of this work:

De®nition 1 (Embedding of regenerative laws) Let Q�1� and Q�2� be two re-
generative laws on X0. We say that Q�1� is embedded into Q�2� and write
Q�1� � Q�2� if there exists a regenerative embedding law P on X with marginal
distributions Q�1� and Q�2�.

Repeating essentially the same arguments as given in section 3 of [6] yields
the following variation of Lemma 2.

Lemma 5 Suppose that Pn : n 2 N� � is a sequence of regenerative embedding
laws on X which converges weakly towards some probability measure P on X.
Then P is a regenerative embedding law.

Thanks to the normalization for the Laplace exponent of a regenerative
law, the drift coe�cient d of a regenerative law Q coincides with the expected
Lebesgue measure of M \ �0; s�, where s is an independent exponential
variable with mean 1. One says that Q is light if d � 0, and is heavy otherwise.
This motivates the following -dual- de®nitions.

De®nition 2 (Thinning) Let Q be a heavy regenerative law. Denote by U its
Laplace exponent and by d > 0 its drift coe�cient. Then U�ÿd��k� �
ÿdk� U�k� is the Laplace exponent of a subordinator with zero drift; denote
the corresponding regenerative law by Q�ÿd�. We say that Q can be thinned if
Q�ÿd� is embedded in Q.

De®nition 3 (Thickening) Let Q be a light regenerative law with Laplace ex-
ponent U. For every d > 0, write U�d��k� � dk� U�k� and Q�d� for the regen-
erative law associated with U�d�.We say that Q can be thickened if Q embedded
in Q�d� for every d > 0.

3 Results and examples

We ®rst characterize the class of regenerative laws which can be embedded
into a given one, in the sense of De®nition 1.

Theorem 1 Let Q�1� and Q�2� be two regenerative laws, with Laplace exponents
U�1� and U�2�, respectively. Then Q�1� is embedded into Q�2� if and only if
U�1�=U�2� is a completely monotone function.

Examples 1. Suppose Q�1� is Gamma and Q�2� is stable, i.e. U�1��k� � a log
�1� k=b� for some parameters a; b > 0, and U�2��k� � kb for some b 2 �0; 1�.
Then the derivative of U�1�=U�2� is

a

�b� k�kb ÿ
ab log�1� k=b�

kb�1 � akÿb 1

b
ÿ b

b

� �
as k! 0�

is positive is some neighbourhood of k � 0. Therefore, a Gamma Markov set
cannot be regeneratively embedded into a stable Markov set.
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2. Suppose Q�1� is Stable�a� for some a 2 �0; 1�. Then U�1�=U�2� is the
Laplace transform of the fractional derivative of order a of U �2�. In other
words, a Stable�a� Markov set can be regeneratively embedded into a given
Markov set if and only if the a-fractional derivative of the renewal measure
of the latter is a Radon measure on �0;1�.

3. Suppose Q�2� is Stable�b� for some b 2 �0; 1�. Then U�1�=U�2� is the
Laplace transform of the fractional derivative of order 1ÿ b of d�1�d0 �P

�1�
.

In other words, a Markov set can be regeneratively embedded into a Sta-
ble(b) Markov set if and only if its drift coe�cient is zero and the �1ÿ b�-
fractional derivative of the tail of its LeÂ vy measure is a Radon measure on
�0;1�.

We stress that, thanks to (1) and Bernstein's theorem, the complete
monotonicity condition in Theorem 1 for the ratio of two Laplace exponents
can be expressed as follows in terms of excessive measures and potentials (in
the obvious notation):

U�1�=U�2� is completely monotone () U �2� 2 Pot�1� () Exc�2� � Exc�1� :

To this end, we recall that Markov processes having the same excessive
measures have been characterized by Getoor and Glover [9]. In a di�erent
direction, it is also interesting to mention that the complete monotonicity
condition also appears in connection with the maximum principle for con-
volution kernels; see ItoÃ [15], Hirsch [13] and the references therein.

Then, we present a property of subordinators which provides a further
insight on the structure induced by regenerative embedding for Markov sets.

Proposition 1 Suppose that U�1�=U�2� is completely monotone. Then, on some
probability space endowed with a ®ltration Ft� �t�0, there are an Ft� �-adapted
subordinator X �2� with Laplace exponent U�2�, and two subordinators r and
X �1�, such that for each s � 0, rs is an Ft� �-stopping time, and

X �1� � X �2� � r :

It is interesting to relate Proposition 1 with the concept of subordination in
the sense of Bochner [3]. When r is independent of X �2�, Proposition 1 means
that X �1� is subordinated to X �2�, and then U�1� � j � U�2� where j denotes the
Laplace exponent of r. To check that, in this case, U�1�=U�2� is completely
monotone, we recall that j�k�=k is completely monotone and that U�2� has a
completely monotone derivative. According to Criterion 2 on page 441 in
Feller [4], j � U�2�

ÿ �
=U�2� � U�1�=U�2� is completely monotone. In general, r is

not independent of X �2�, and Proposition 1 can be viewed as a solution to a
continuous version of the Skorohod embedding problem, which consists of
exhibiting two subordinators with Laplace exponents U�1� and U�2�, respec-
tively, such that the ®rst is obtained from the second by some time-substi-
tution. We refer to Fitzsimmons [5] and Shih [25] for related works.

We ®nally turn our attention to thickening and thinning of regenerative
laws.
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Corollary 1 The following assertions are equivalent:

(a) Q is a heavy regenerative law that can be thinned.
(b) The renewal measure U is absolutely continuous on �0;1� and possesses a
continuous monotone decreasing density u: �0;1� ! �0;1�.
(c) j�k� � k=U�k� is the Laplace exponent of a subordinator with zero drift and
®nite LeÂvy measure (i.e. of a compound Poisson process).

Corollary 2 The following conditions are equivalent:

(a) Q is a light regenerative law that can be thickened.
(b) The renewal measure U is absolutely continuous on �0;1�, possesses a
monotone decreasing density u: �0;1� ! �0;1�, and either u�0�� � 1 or U
has an atom at 0.
(c) j�k� � k=U�k� is the Laplace exponent of a subordinator with either posi-
tive drift or in®nite LeÂvy measure (i.e. not of a compound Poisson process).

The equivalences �b� , �c� in Corollaries 1 and 2 are doubtless well-
known (see e.g. [10]); however we shall present the simple proof for the sake
of completeness.

We now conclude this section presenting a number of natural examples in
which the conditions of Corollary 2 are ful®lled.

Examples. 1. Suppose that the drift is zero and the tail of the LeÂ vy measure P
is log convex. Then the condition (b) of Corollary 2 holds. Indeed, this is
Theorem 2.1 of Hawkes [11].

2. Suppose M is the zero set of some regular di�usion process on R
started at the origin. Then M is a Markov set, and is light whenever 0 is not a
sticky point for the di�usion. According to the spectral theory of M.G.
Krein, the renewal measure of M is absolutely continuous and possesses a
completely monotone density; see Kotani and Watanabe [17]. In particular,
condition (b) of Corollary 2 holds.

3. Let l be some sigma-®nite Borel measure on �0;1�, and consider a
family of random open intervals xi; xi � `i� � : i 2 If g, where the point
xi; `i� � 2 R2

� is issued from a Poisson measure with intensity dx
 l�d`�. Let
M be the subset of �0;1� left uncovered by these random intervals, viz.

M � �0;1� ÿ
[
i2I

xi; xi � `i� � :

See Fitzsimmons et al. [7] for details. Then M is a light Markov set wheneverR �1 ^ `�l�d`� � 1 (Proposition 1 in [7]) and its renewal measure is absolu-
tely continuous on �0;1� with a convex decreasing density (Theorem 1 in
[7]). Thus condition (b) of Corollary 2 holds.

4. Suppose that M is the ladder time set of some real LeÂ vy process, i.e. the
set of times when the LeÂ vy process reaches a new supremum. Then M is a
Markov set, and is light whenever 0 is regular for �ÿ1; 0�. Moreover, the
Laplace exponent of M has U�k� � k=bU�k�, where bU stands for the Laplace
exponent of the ladder times of the dual LeÂ vy process. See Equation (VI.3) in
[2]. Thus condition (c) of Corollary 2 is ful®lled.
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4 Proofs

Proof of Theorem 1: For simplicity, we will focus on the case when both M �1�

and M �2� are perfect (i.e. have no isolated points) a.s., or equivalently when
both X �1� and X �2� are not compound Poisson processes. The arguments for
the case when at least one of the subordinators is a compound Poisson
process are very similar, and sometimes even easier.

Suppose ®rst that there is a regenerative embedding law P with marginals
Q�1� and Q�2�. Let M �1�, M �2� and Gs� �s�0 be as in sub-section 2.3. Denote by
L�i� the local time on M �i� (which is a continuous Gs� �-adapted process), and
by X �i� the inverse local time, so that X �i� is a subordinator with Laplace
exponent U�i� �i � 1; 2�. For every k > 0, we have

1

U�i��k� � P
Z 1
0

exp ÿkX �i�t

n o
dt

� �
� P

Z 1
0

eÿkt dL�i�t

� �
:

On the one hand, the uniqueness ± up to some constant factor ± of the local
time on M �1� ensures the existence of a real number k � 0 such that the
following identity between Stieltjes measures on �0;1� holds a.s.

1 t2M �1�f g dL�2�t � k dL�1�t :

On the other hand, the strong regenerative property of Lemma 4 enables us
to apply Maisonneuve's exit-system formula (cf. [20]) as follows:

P

Z 1
0

eÿktdL�2�t

� �

� P
Z

M �1�
eÿktdL�2�t

� �
�P

X
s�0

Z X �1�s

X �1�sÿ
eÿktdL�2�t

 !

� kP
Z 1
0

eÿktdL�1�t

� �
�P

X
s�0

eÿkX �1�sÿ

 Z d�1�
0

0

eÿktdL�2�t

 !
� sX �1�sÿ

!

�
Z 1
0

eÿktdL�1�t

� �
k �P?

Z d�1�
0

0

eÿktdL�2�t

 ! !
;

whereP? denotes the excursionmeasure away from the homogeneous setM �1�.
Putting the pieces together, we get that

1

U�2��k� �
1

U�1��k�Ll�k� ;

where Ll is the Laplace transform of the measure

l�dt� � kd0�dt� �P? 1 t�d�1�
0f g dL�2�t

� �
; t � 0 :

Conversely, suppose that U�1�=U�2� �Ll for some Radon measure l on
�0;1�. Because the Laplace transform of the renewal measure U �i� is 1=U�i�,
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we see by Laplace inversion that U �2� is a potential for the subordinator X �1�.
In particular, U �2� 2 Exc�1�.

First ®x a step g > 0, and let P �1�g be the law of X �1�g . The preceding
observation ensures Rost's balayage inequality:

d0 � U �2� � P �1�g � U �2� :

We appeal to the well-known result of Rost [24] on Skorohod's embedding
problem. There exists a family S�t� : 0 � t � 1� � of stopping times ± in the
natural ®ltration of X �2� ± such that if v is an independent random variable
with a uniform distribution on �0; 1�, then X �2�S�v� has the same law as X �1�g .

Using the independence and homogeneity of the increments of subordi-
nators and an immediate induction, we can construct a probability space
with a ®ltration Ft� �t�0, an Ft� �-adapted subordinator X �2�, and an in-
creasing sequence of stopping times T � T �k� : k � 0; 1; � � �� � such that:

� T �0� � 0, T �1� � S�v�.
� For each integer k, conditionally on fT �k� <1g, the shifted pair

X �2�; T
ÿ �� hT �k� is independent of FT �k� and has the same law as X �2�; T

ÿ �
,

where

X �2� � hT �k� � X �2�t�T �k� ÿ X �2�T �k� : t � 0
� �

;

T � hT �k� � T �k � j� ÿ T �k� : j � 0; 1; � � �� � :

This entails that the discrete set
�

X �2�T �k� : k � 0; 1; � � �	 is regeneratively em-
bedded in the closed range of X �2�. If we denote by Pg the corresponding law
on X, the marginals of Pg are clearly Q�1;g� and Q�2�, where Q�1;g� is the
regenerative law associated with the increasing random walk with step dis-
tribution P �1�g . In other words, the Laplace exponent of Q�1;g� is

U�1;g��k� � 1ÿ exp ÿgU�1��k�� 	
1ÿ exp ÿgU�1��1�� 	 ; k > 0 :

(Recall that the Laplace exponent evaluated at k � 1 equals 1.)
Next, we let g tend to 0�; notice that

lim
g!0�

U�1;g��k� � U�1��k�; k > 0 : �3�

Because X is a compact metrisable space, we may extract from Pg : g > 0
ÿ �

a
sequence that converges; let P denote the limit. By Lemma 5, we know that
P is a regenerative embedding law. By (3) and Lemma 2, its ®rst marginal is
Q�1�. Its second marginal is plainly Q�2�. This shows that Q�1� � Q�2�. h

Proof of Proposition 1:We use the same setting as in the proof of Theorem 1.
Fix t > 0 and notice that X �1�t necessarily takes values in the set M �1� of points
in M �1� which are not isolated on their right (because X �1� is strictly increasing
and right-continuous, and M �1� is the closed range of X �1�). Moreover X �1�t is
clearly an Gs�� �-stopping time.
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Put rt � L�2� � X �1�t ; notice that rt is
ÿ
GX �1�t

�
-adapted. Applying the addi-

tivity of the local time and the strong regenerative property of Lemma 4, it is
immediately seen that, conditionally on

�
X �1�t <1	, the process

L�2� � sX �1�t
� L�2�

X �1�t �s
ÿ rt : s � 0

� �
is independent of GX �1�t

and has the same law as L�2�. This entails that r is a
subordinator. Finally, we have

X �1� � X �2� � L�2� � X �1� � X �2� � r ;

where the ®rst identity stems from the fact that X �1�t 2 M �2� a.s. h

Proof of Corollary 1: It is well-known that the drift d is positive if and only if
the renewal measure U is absolutely continuous and has a continuous density
u : �0;1� ! �0;1� with u�0� � 1=d; see e.g. Theorem III.5 in [2]. Recall that
the Laplace transform of the renewal measure U is 1=U.

�a� , �b� Suppose ®rst that Q is heavy and can be thinned. By Theorem 1
and Bernstein's theorem, there is a measure l on �0;1� with Laplace
transform

Ll�k� � U�ÿd��k�
U�k� � 1ÿ dk

U�k� : �4�

Since 1 is the Laplace transform of the Dirac point mass at 0, (4) forces the
renewal density u to be monotone decreasing.

Conversely, suppose that the renewal measure has monotone decreasing
and bounded density on �0;1�. Then we know that Q is heavy. Because
u�0� � 1=d, we see that the right-hand side of (4) is the Laplace transform of
a Radon measure on �0;1�. According to Theorem 1 for U�1� � U�ÿd� and
U�2� � U, Q can be thinned.
�b� , �c�When (b) holds, the renewal density u can be thought of as the

tail of the LeÂ vy measure of some subordinator with zero drift and ®nite LeÂ vy
measure (because u�0� <1). If j denotes its Laplace exponent, then

j�k�=k �Lu�k� �
Z 1
0

eÿkxu�x� dx � 1=U�k� ;

which establishes (c).

Conversely, if (c) holds, then

1=U�k� � j�k�=k �
Z 1
0

eÿkxm�x� dx ;

where m stands for the tail of the LeÂ vy measure of j. By Laplace inversion,
m�x� dx � U�dx�, and (b) holds. h

Proof of Corollary 2: �a� ) �b� We use obvious notation. We know by
hypothesis that for every d > 0, Q�d� can be thinned. By Corollary 1, this
entails that the renewal density u�d� is decreasing. Since 1=U�d� converges
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pointwise towards 1=U as d tends to 0�, the renewal measure U �d� converges
weakly towards the renewal measure U , and this implies that U has a
monotone decreasing density on �0;1�. Since the drift d is zero, either U has
an atom at 0 or u is unbounded.
�b� ) �c� By hypothesis, we know that there is a monotone decreasing

function u : �0;1� ! �0;1� with Laplace transform

Lu�k� �
Z 1
0

eÿkxu�x� dx � 1

U�k� ÿ
1

U�1� ;

that is
1

U�k� �
1

U�1� �Lu�k� :

Since
R 1
0 u�x� dx <1, u can be thought of as the tail of the LeÂ vy measure of

some subordinator with drift 1=U�1�; denote the Laplace exponent of the
latter by j. We then have

j�k�
k
� 1

U�1� �Lu�k� � 1

U�k� :

Plainly j cannot be bounded, as either U has an atom at 0 or u is unbounded;
this establishes (c).
�c� ) �a� Because limk!1 j�k� � 1, U�k� � o�k� as k!1, which im-

plies that the drift of U is zero. Using the identity U�k�j�k� � k, we get for
every d > 0

U�k�
U�k� � dk

� 1

1� dj�k� :

the right-hand side is the Laplace transform of the 1-resolvent measure of the
subordinator with Laplace exponent dj. By Theorem 1, this proves (a). h
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