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Summary. We study the spectral measure of Gaussian Wigner's matrices and
prove that it satis®es a large deviation principle. We show that the good rate
function which governs this principle achieves its minimum value at Wigner's
semicircular law, which entails the convergence of the spectral measure to the
semicircular law. As a conclusion, we give some further examples of random
matrices with spectral measure satisfying a large deviation principle and
argue about Voiculescu's non commutative entropy.
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1 Introduction

If X N � ÿX N
ij

�
is a N � N Wigner's matrix, that is a N � N real symmetric

random matrix with centered independent entries with covariance �1=2N�,
then the celebrated Wigner theorem asserts that the spectral measure

l̂N � 1

N

XN

i�1
dki

converges almost surely to the semicircular law

r1�dx� � 1

p
`jxj< ��

2
p

����������������
2ÿ x2� �

q
dx :

Recently, Voiculescu showed how this theorem can be understood in the
framework of his free probability theory (see [13], Theorem 2.2). In [14], he
introduced a concept of non commutative entropy

R�l� �
Z Z

log jxÿ yjdl�x� dl�y�
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and gave some heuristics to relate it to large random matrices. For instance,
he argued that R could be seen as a normalized limit of relative entropies of
the law of the eigenvalues of large random matrices.

We will show here a large deviation principle for the law of the spectral
measure l̂N of the Gaussian Wigner's matrix with a good rate function where
R indeed plays the role of the relative entropy in Sanov's Theorem. We will
as well recall some rigorous aspects of Voiculescu's heuristics (see the end of
section 5).
More precisely, if X N is the N � N symmetric random matrix with inde-
pendent entries and with law given by

Law of X N
ij

� �
� N 0;

1

2N

� �
if i < j Law of X N

ii

ÿ � � N 0;
1

N

� �
; �1�

then, X N has N real eigenvalues �ki�1�i�N and its spectral measure
l̂N � 1

N

PN
i�1 dki is a probability measure on R. In the following, we will

denote M�
1 �R� the space of probability measure on R and will endow

M�
1 �R� with its usual weak topology. We now can state one of the main

results of this paper.

Theorem 1.1

1) Let I1�l� � 1
2

R
x2 dl�x� ÿ R�l�ÿ �ÿ 3

8ÿ 1
4 log 2 :

Then:

a. I1 is well de®ned on M�
1 �R� and takes its values in �0;�1�.

b. I1�l� is in®nite as soon as l satis®es one of the following conditions:
b.1:

R
x2dl�x� � �1.

b.2: There exists a subset A of R of positive l mass but null loga
rithmic capacity, i.e. a set A such that:

l�A� > 0 c�A� :� exp ÿ infm2M�
1
�A�
R R

log 1
jxÿyj dm�x�dm�y�

n o
� 0 :

c. I1 is a good rate function, i.e fI1 � Mg is a compact subset of M�
1 �R�

for M � 0.
d. I1 is a convex function on M�

1 �R�.
e. I1 achieves its minimum value at a unique probability measure on R

which is described as the Wigner's semicircular law r1.

2) The law of the spectral measure l̂N � 1
N

PN
i�1 dki satis®es a full large devi-

ation principle with good rate function I1 and in the scale N2, that is

for any open subset O of M�
1 �R�;

lim
N!1

1
N2 log P 1

N

PN
i�1

dki 2 O
� �

� ÿ infO I1;

for any closed subset F of M�
1 �R�;

lim
N!1

1
N2 log P 1

N

PN
i�1

dki 2 F
� �

� ÿ infF I1:

518 G. Ben Arous and A. Guionnet



This result shows that the convergence of the spectral measure to the Wig-
ner's semicircular law r1 is exponentially fast in the sense that, for any open
neighborhood U�r1� of r1, we ®nd that:

lim
N!1

1
N2 log P 1

N

PN
i�1

dki 2 U�r1�c
� �

< 0 :

Let us also mention that some results are known about the ¯uctuations in
Wigner's Theorem; Bai [2] proved a rate of 0�Nÿ1=4� (in a much more general
setting than ours since he does not impose that the entries are Gaussian). Bai
also remarked that the ¯uctuations are expected to be on the scale 0�Nÿ1�.

Furthermore, Theorem 1.1 shows that the non commutative entropy R is
in fact related to a commutative entropy i.e the rate function of a large
deviation principle. We will see in section 5 that this is valid for more general
random matrices. We want to recall another relation between R and a
commutative entropy, more precisely with a speci®c entropy. This inter-
pretation is due to Voiculescu. Namely, we will recall in section 5 that:

Theorem 1.2 Let p : R! R be any di�eomorphism such that there exists
positive real numbers � and M so that

� < pÿ1
ÿ �0��� ������ ���

1
< M �2�

and a positive real number a, a > 2, such that

sup
N

E
1

N

XN

i�1
p X N
ÿ �

ii

�����
#�����

a" #
< �1 ; �3�

then, if QN
�p� is the law of the eigenvalues of p�X N � and I�ljm� the relative

entropy of l with respect to l, i.e:

I�ljm� �
R
log dl

dm

ÿ �
dm if l� m,

�1 otherwise,

�
there exists a ®nite constant C such that

R r1 � pÿ1
ÿ � � 2 lim

N!1
1

N 2
I QN

�p�jQN
1

� �
�
Z

p�x�2dr1�x� � C :

To prove Theorem 1.1, we use the fact that the law of the spectrum can be
described completely using the invariance by rotation of the law of X N .
Indeed, it is well known that the law QN

1 of the eigenvalues of X N is given by

QN
1 �dk1; � � � ; dkN � � 1

ZN
1

Y
1�i<j�N

jki ÿ kjj exp ÿ 1
2

N
XN

i�1
k2i

( )YN
i�1

dki ;

Large deviations for Wigner's law and Voiculescu's non-commutative entropy 519



where ZN
1 is the normalizing constant

ZN
1 �

Z
�
Z Y

1�i<j�N

jki ÿ kjj exp ÿ 1
2

N
XN

i�1
k2i

( )YN
i�1

dki :

In fact, we will prove a more general result than Theorem 1.1.
Let

QN
b �dk1; � � � ; dkN � � 1

ZN
b

Y
1�i<j�N

jki ÿ kjjb exp ÿ 1
2

N
XN

i�1
k2i

( )YN
i�1

dki;

where b is a positive real number and ZN
b is the normalizing constant

ZN
b �

Z
�
Z Y

1�i<j�N

jki ÿ kjjb exp ÿ 1
2

N
XN

i�1
k2i

( )YN
i�1

dki :

Then:

Theorem 1.3

1) Let Ib�l� � 1
2

R
x2dl�x� ÿ bR�l� � b

2 log
b
2 ÿ 3

4 b
� �

: Then:

a. Ib is well de®ned on M�
1 �R� and takes its values in �0;�1�.

b. Ib�l� is in®nite as soon as l satis®es one of the following conditions:
b.1:

R
x2dl�x� � �1.

b.2:There exists a subset A of R of positive l mass but null logarithmic
capacity.

c. Ib is a good rate function.
d. Ib is a convex function on M�

1 �R�.
e. Ib achieves its minimum value at a unique probability measure which is

described as the semi circular law:

rb�dx� � 1

bp
`jxj<

����
2b
p

�������������������
�2bÿ x2�

q
dx :

2) The law of the spectral measure l̂N under QN
b satis®es a full large deviation

principle with good rate function Ib, i.e:

for any open subset O of M�
1 �R�;

lim
N!1

1
N2 logQN

b
1
N

PN
i�1 dki 2 O

� �
� ÿ infO Ib;

for any closed subset F of M�
1 �R�;

lim
N!1

1
N2 logQN

b
1
N

PN
i�1 dki 2 F

� �
� ÿ infF Ib:

This generalization applies to other Gaussian matrices than Wigner's ma-
trices since QN

b is the law of the eigenvalues of the Gaussian matrices of the
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symplectic ensemble when b � 4 and of the unitary ensemble when b � 2 (see
[9]). Moreover, this generalization might be of some interest for other
problems than large random matrices, for instance for particles interacting
via a two dimensional Coulomb force.

We must point out that Theorem 1.1 has already been stated by T. Chan
in [4]. Unfortunately, we do not understand the proof (see Remark 3.5).

It is the reason why we give here a proof of this large deviation principle,
proof which appears to be quite simple. Indeed, we do not need precise large
deviations estimates, as one could guess in view of the singularities of the
density, mainly because of the scale N 2 of this large deviation principle. Fur-
thermore, a crucial point of the proof is given by the results of Selberg which
have been recently recalled by Mehta (see [9], Ch. 17) and which allow us to
prove the convergence of the free energy �1=N2� log ZN

b and to compute its limit.
The organization of the paper is as follows:
In section 2 we study the rate function Ib and prove Theorem 1.3.(1).
In section 3 we state and prove a weak large deviation principle.
In section 4 we prove that the law of the empirical measure under QN

b is
exponentially tight, which ends, with section 3, the proof of the full large
deviation principle stated in Theorem 1.3.(2).

In section 5, we show how Theorem 1.1 can be used to study the spectral
measure of more general sequences of large random matrices than �X N �N2N
by means of Laplace's method or contraction principle. We then derive
Voiculescu's heuristics.

We thank A. Ancona for useful conversations about Potential Theory,
P. Gerard for helping us to go through tricky integrals and O. Zeitouni for
crucial remarks about the uniqueness of the minima. Alice Guionnet wishes
to thank the Courant Institute for welcoming her for most of the research
period, and in particular S. R. S. Varadhan and H. T. Yau.

2 Study of the rate function Ib

The aim of this section is ®rst to show that Ib is a good rate function so that it
achieves its minimum value and then prove that this minimum value is
achieved at a unique probability measure which is characterized as a semi-
circular law.

2.1 Ib is a good rate function

To prove that Ib is a good rate function (i.e Theorem 1.3.1), we shall use the
obvious identi®cation between the de®nition of Ib given in Theorem 1.3 and
the new de®nition described below:
Let D denote the diagonal of R�R:

D � f�x; y� 2 R�Rj x � y g
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Let fb be the real function on R�R with value in R [ f�1g de®ned by:

fb�x; y� � 1
2

x2 � y2
ÿ �ÿ b log jy ÿ xj if �x; y� 2 R�RnD

��1 on D:

Then, if we de®ne, for any probability measure l on R:

Hb�l� � 1

2

Z Z
R�R

fb�x; y�dl�x�dl�y� ;

and F the function on R� such that:

F �b� � b
4
log

b
2
ÿ 3

8
b ;

Ib is equal to

Ib�l� � Hb�l� � F �b� : �4�
Hence, we now prove that Hb is well de®ned and has compact level sets which
will prove Theorem 1.3.1), except for the positivity of Ib. We will not prove
this last point here since the positivity of Ib can be viewed as a consequence of
the statement of the large deviation lower bound of Theorem 1.3, which will
be proven independently.

Property 2.1

(1) Hb is well de®ned on M�
1 �R� and takes its values in

��b=4� �1ÿ log 2b�;�1�.
(2) Hb�l� is in®nite as soon as l satis®es one of the following conditions:

2.1:
R

x2dl�x� � �1.
2.2:There exists a subset A of R of positive l mass but null logarithmic
capacity, i.e.

l�A� > 0 c�A� � exp ÿ inf
m2M�

1
�A�

Z Z
log

1

jxÿ yj dm�x�dm�y�
( )

� 0 :

Moreover, if l has no atom,

Hb�l� �
Z Z

x<y
fb�x; y�dl�x�dl�y�: �5�

(3) fHb � Mg is a compact subset of M�
1 �R� for any real number M .

(4) Hb is a strictly convex function on M�
1 �R�.

Remark 2.2. According to the lower bound stated in Theorem 3.2, �b=4�
�1ÿ log 2b� is not a sharp lower bound of Hb, but in fact the minimum value
of Hb is ÿF �b� � �b=4���3=2� ÿ log�b=2��.

Proof. (1) To prove that Hb is well de®ned, it is clearly enough to prove that
fb is a measurable function which is bounded from below. But it is clear that
fb is a continuous function. Moreover, the following decomposition holds for
any �x; y� 2 R�RnD

522 G. Ben Arous and A. Guionnet



fb�x; y� � 1

2
�x2 � y2� ÿ b log�x2 � y2�ÿ �� b log

������������������
x2 � y2� �p
jy ÿ xj : �6�

But, a trivial computation shows that, for any positive real number z,

zÿ b log z � b�1ÿ log b� �7�
and it is well known that, for any �x; y� 2 R�RnD:������������������

x2 � y2� �p
jy ÿ xj � 1���

2
p : �8�

Hence, we conclude, using (6), that, for any �x; y� 2 R2 ;

fb�x; y� � �b=2��1ÿ log 2b� :
This lower bound shows that Hb is well de®ned and is bounded from below
by �b=4��1ÿ log 2b�.

(2) Let us ®rst notice that, since x2 � y2 grows to in®nity much faster than
log jxÿ yj, it is clear that Hb�l� � �1 for any probability measure l such
that

R
x2dl�x� is in®nite.

Moreover, since fb is bounded from below by mb � �b=2��1ÿ log 2b�, we
have, for any probability measure l and any measurable subset B of R2, that

Hb�l� �
ZZ

B
fb�x; y�dl�x�dl�y� � �1ÿ l
2�B��mb �9�

But on the other hand, if we take B � A� A;ZZ
B

fb�x; y�dl�x�dl�y� � ÿb
ZZ

B
log jxÿ yjdl�x�dl�y�

� ÿbl�A�2 log c�A�� � ;

so that, if l ful®lls 2.2 for some A, then Hb�l� � �1.
As a special case, it is clear that Hb�l� is in®nite as soon as l has an atom.

Finally, if l has no atom, l
2�D� � 0, so that one ®nds the new de®nition (5)
of Hb�l� thanks to the symmetry of fb.

(3) To prove the third point, we ®rst de®ne, for any positive real number
M , a function f M

b on R�R by:

f M
b �x; y� � minffb�x; y�;Mg :

Then, it is obvious that f M
b is a bounded continuous function. As a conse-

quence,

HM
b �l� �

1

2

ZZ
R�R

f M
b �x; y�dl�x�dl�y� �10�

is a bounded continuous function on M�
1 �R�.

Moreover, f M
b grows to fb pointwise so that, by monotone convergence

Theorem, for any probability measure l 2M�
1 �R�, HM

b �l� grows to Hb�l�.
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Thus, Hb is lower semi continuous. In other words, for any real number L,
fHb � Lg is a closed subset of M�

1 �R�.
Hence, to prove that fHb � Lg is compact, it is enough to show that

fHb � Lg is included in a compact subset of M�
1 �R�. But, for any positive

real number A large enough so that hb�z� � zÿ b log z is positive and in-
creases on �2A2;�1� �i.e 2A2 ÿ b log 2A2 > 0 and A � �������������b=2�p �, for any
probability measure l 2M�

1 �R�,

l �ÿA;�A�c� �� �2 � l
2 jxj > A; jyj > A� �
� l
2 x2 � y2 > 2A2

ÿ � � l
2 hb x2 � y2
ÿ �

> hb 2A2
ÿ �ÿ �

� 1

hb 2A2� �
Z Z

x2 � y2
ÿ �ÿ b log x2 � y2

ÿ �ÿ �
dl�x�dl�y�

� 1

hb 2A2� � 4Hb�l� � b
2
log 2

� �
by �6� and �8� :

As a consequence, there exists an integer number n0b such that:

fHb � Lg � \n�n0b
l 2M�

1 �R� j l �ÿn; n�c� � �
���������������������������������
2L� �b=4� log 2

n2 ÿ b log 2n

s( )
: �11�

Since the subset of M�
1 �R� in the right hand side of (11) is compact, we

conclude that fHb � Lg is compact.
(4) It is clearly enough to prove that R is a concave function to get that Hb

is convex. This point can be understood thanks to the following equality:

log jxÿ yj �
Z1
0

1

2t
exp ÿ 1

2t

� �
ÿ exp ÿ jxÿ yj2

2t

( ) !
dt ; �12�

which can be checked easily. Let us then de®ne, for integers numbers T > 1, a
function RT such that, for any l 2M�

1 �R�,

RT �l� �
Z Z ZT

1
T

1

2t
exp ÿ 1

2t

� �
ÿ exp ÿ jxÿ yj2

2t

( ) !
dtdl�x�dl�y� :

Then, since

vt�x; y� � exp ÿ 1

2t

� �
ÿ exp ÿ jxÿ yj2

2t

( )

has a constant sign on f�x; y� 2 R2 j jxÿ yj � 1g and on its complement
f�x; y� 2 R2 j jxÿ yj > 1g, it is not hard to see that the monotone conver-
gence theorem implies that, for any l 2M�

1 �R�:

lim
T"1

RT �l� � R�l� :
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Moreover, Fubini Theorem applied to RT gives:

RT �l� �
ZT

1
T

1

2t
exp ÿ 1

2t

� �
dt ÿ

ZT

1
T

1

2t

Z Z
exp ÿ jxÿ yj2

2t

( )
dl�x�dl�y�

 !
dt :

�13�
It is well known that the last function in the right hand side of (13) is
concave. In fact, one can even compute:Z Z

exp ÿ jxÿ yj2
2t

( )
dl�x�dl�y�

�
������
t
2p

r Z �1
ÿ1

Z
expfikxgdl�x�

���� ����2expÿ 1

2
tk2

� �
dk :

Therefore, RT is a concave function so that its limit R is concave.
Furthermore, if l1 and l2 are two probability measures in fm 2M�

1 �R�=
R�m� > ÿ1g, our computation also shows that

R�l1 ÿ l2� � ÿ
Z 1
0

1

2t

Z Z
exp ÿ jxÿ yj2

2t

( )
d�l1 ÿ l2��x�d�l1 ÿ l2��y�

 !
dt

which is obviously negative if l1 6� l2. Therefore, Hb is in fact strictly con-
vex. u

2.2 Study of the minima of the rate function Ib

In this part, we prove Theorem 1.3.(1).e, i.e:

Theorem 2.3 Ib achieves its minimum value at a unique probability measure rb,
the semi circular law given by:

rb�dx� � 1

bp
`jxj<

����
2b
p

�������������������
�2bÿ x2�

q
dx :

This theorem is in fact already proved in the literature. Indeed, the
uniqueness result is proved in [8] and the characterization of the minimum as
the semicircular law is due to Wigner's theorem (at least for b � 1). For the
sake of completeness, we would like to prove that rb is a minimum of Ib
independently of Wigner's Theorem. To this end, let us ®rst recall theorem
2. 3. of [8] (applied to our setting where what the authors called admissible
weight function w is w�x� � �1=b�x2) which gives the uniqueness of the
minima of Ib but as well some characterization of this minimum.

Theorem 2.4

(a) There exists a unique probability measure lb on R such that:

Ib�lb� � 0 :
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(b) The support Sb of lb is compact and with positive logarithmic capacity.
(c) The inequality

b
Z

log jxÿ yjdlb�y� �
1

2
x2 ÿ 2 infHb � 1

2

Z
y2dlb�y�

holds for any real number x except on a set A with null logarithmic capacity, i.e
such that:

c�A� � exp sup
m2M�

1
�A�

Z Z
log jxÿ yjdm�x�dm�y�

( )
� 0 :

(d) The inequality

b
Z

log jxÿ yjdlb�y� �
1

2
x2 ÿ 2 infHb � 1

2

Z
y2dlb�y�

holds for all x in Sb.

Let us mention about the proof that the uniqueness of the minima is a
direct consequence of the strict convexity of Ib (see property 2.1.4). The
characterization of the minimum is not di�cult but necessitates to pay
special attention on the sets with null logarithmic energy.

As a consequence of Theorem 2.4. c) and d), the minimum of Ib is
characterized by:

Lemma 2.5 l minimizes Ib if and only if for l-almost all x:

b
Z

log jxÿ yjdl�y� � 1

2
x2 ÿ 2 infHb � 1

2

Z
y2dl�y� : �14�

Proof. Indeed, we saw in Theorem 1.3.b.2 that any probability measure l
such that Ib�l� is ®nite does not put mass on sets of zero logarithmic ca-
pacity. Thus Theorem 2.4 c) and d) imply that the minimum of Ib satis®es
(14).

Reversely, if l satis®es (14), then it is clear that 2Hb�l� �
R R

fb�z; y�
dl�z�dl�y� � 2 infHb, so that l minimizes Hb, that is Ib. Hence, the proof of
Lemma 2.5 is complete. u

As a consequence, we only need to show that rb satis®es (14) to achieve
the proof of Theorem 2.3. Let us ®rst notice that it is enough to concentrate
on the case where b � 1 since:

Corollary 2.6 lb minimizes Ib i� the probability measure elb de®ned by:

elb�x 2 :� � lb

� ���
b

p ÿ1
x 2 :

�
minimizes I1.

Proof. Indeed, with this de®nition of elb, Lemma 2.5 shows that lb mini-
nimizes Ib i� for elb- almost all x, we have:
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b
2

x2 � b
2

Z
y2delb�y� ÿ b

Z
log
��� ���

b
p

xÿ
���
b

p
y
���delb�y� � 2 infHb :

Since infHb � ÿF �b� (see Remark 2.2) and according to the de®nition of
F �b�, we deduce
1

2
x2 � 1

2

Z
y2delb�y� ÿ

Z
log jxÿ yjdelb�y� �

2

b
infHb � log

���
b

p
�ÿ 2

b
F �b� � log

���
b

p
� 3

4
ÿ 1

2
log

1

2

�ÿ 2F �1� � 2 infH1;

so that, again by Lemma 2.5, this is equivalent to say that elb mini-
mizes I1. u

Therefore the problem boils down to show that, for any x in �ÿ ���
2
p

;� ���
2
p �:

1

2
x2 � 1

2

Z
y2dr1�y� ÿ

Z
log jxÿ yjdr1�y� � 2 infH1 :

which resumed to prove (since
R

y2dr1�y� � �1=2� and 2 infH1 � �3=4�
��1=2� log 2) that

Lemma 2.7 For any x in �ÿ ���
2
p

;� ���
2
p �,Z

log jxÿ yjdr1�y� � 1

2
x2 ÿ 1

2
log 2ÿ 1

2
: �15�

Proof. It appears to us that it was easier to compute the derivative (in the
sense of distribution) of the left hand side of (15) and then the constant term.
This strategy follows the idea of Mehta ([9], p. 74) who computed the
principal value of this derivative. Indeed, the derivative of

R
log jxÿ yjdr1�y�

on the support of r1 can only be computed in the sense of distribution and is
then called a principal value. There are at least two ways to compute it. The
®rst one (used by Mehta) is to write:

PV
Z

1

xÿ y
dr1�y� � lim

�#0

Z
jyÿxj��

1

xÿ y
dr1�y� :

Metha found that, for any x 2 �ÿ ���
2
p

;� ���
2
p �:

PV
Z

1

xÿ y
dr1�y� � x : �16�

For the sake of completness, let us mention the second method (which gives
some information on the behavior of the derivative on the whole real line).
Indeed, the second method is based on the remark that, if one knows the
value of
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D�z� �
Z

1

zÿ y
dr1�y�

for complex number z in �ÿ ���
2
p

;� ���
2
p �c, the principal value is then given by:

PV
Z

1

xÿ y
dr1�y� � 1

2
D�x� i0� � D�xÿ i0�� � :

One can in fact compute D in �ÿ ���
2
p

;� ���
2
p �c using the residue method. Indeed,

D�z� � 1

p

Z ��
2
p

ÿ ��2p 1

zÿ y

�������������
2ÿ y2

p
dy �17�

� 1

p

Z 1
ÿ1

1

�1� t2� z��
2
p ÿ 2t

1ÿ t2

1� t2

� �2

dt �18�

where we have used several changes of variables. For z 2 �ÿ ���
2
p

;� ���
2
p �c, we

can apply the residue method to compute the right hand side of (18). We then
®nd that:

D�z� � zÿ
������������
z2 ÿ 2
p

where one should take care to choose the good determination of the square
root. We then recover (16) since

������������
z2 ÿ 2
p

� ÿ
������������
�z2 ÿ 2
p

.
As a consequence, (16) implies that there exists a ®nite constant C such

that: Z
log jxÿ yjdr1�y� � 1

2
x2 � C: �19�

Finally, we prove that C � ÿ�1=2��1� log 2�. Indeed, taking x 2 �0; ÿ ���
2
p

;���
2
p � and using the change of variables y � ���

2
p

sin�h�, we ®nd that C must
verify the three following equalities:

C � log
���
2
p
� 4

p

Z p
2

0

log sin�h�� � cos2�h�dh ; �20�

C � log
���
2
p
ÿ 1� 4

p

Z p
2

0

log 1ÿ sin�h�� � cos2�h�dh ; �21�

C � log
���
2
p
ÿ 1� 4

p

Z p
2

0

log 1� sin�h�� � cos2�h�dh : �22�

Summing the two last equations, we get:

C � log
���
2
p
ÿ 1� 4

p

Z p
2

0

log sin�h�� � sin2�h�dh : �23�

Let us now sum this last equality (20) with the ®rst one (20) so that we ®nd:

2C � 1 � log 2� 4

p

Z p
2

0

log sin�h�� �dh : �24�

The last integral I � 4
p

R p
2

0 log sin�h�� �dh can easily be computed. Indeed,
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I � 4

p

Z p
2

0

log sin�h�� �dh � 2

p

Z p
2

0

log
sin�2h�

2

� �
dh � 1

2
I ÿ log 2

so that I � ÿ2 log 2. Thus, we have proved that:

C � ÿ 1
2
�1� log 2� ;

which ®nishes to prove that:Z
log jxÿ yjdr1�y� � 1

2
x2 ÿ 1

2
�1� log 2� : (

3 Weak large deviation principle

We start with the study of the normalizing factor ZN
b and prove that:

Property 3.1 For any positive real number b,

lim
N!1

1

N 2
log ZN

b � F �b�

Proof. According to Selberg (see also [9], theorem 4.1.1), for any positive
integer number N and real or complex b we have, identically,

wN
b :�

Z Z Y
1�i<j�N

jki ÿ kjjb exp ÿ 1
2

b
XN

i�1
k2i

( )YN
i�1

dki

� �2p�N=2bÿ�N=2�ÿbN�Nÿ1�=4 C 1� b
2

� �� �ÿNYN
j�1

C 1� b
2

j
� �

: �25�

But

ZN
b �

����
b
N

r !bN�Nÿ1�=2�N

wN
b ;

so that (25) gives

ZN
b � �2p�

N
2�N�ÿ�N=2�ÿbN�Nÿ1�=4 C 1� b

2

� �� �ÿNYN
j�1

C 1� b
2

j
� �

: �26�

Moreover, for j large enough,

C 1� b
2

j
� �

'
N!1

1

e
� bj
2e

� �1�bj=2 ���������������������������
2p�1� bj=2�

p
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So that (26) gives:

1

N2
log ZN

b '
N!1

ÿ b
4
logN � b

2N 2

XN

j�1
j log

bj
2e

� �

'
N!1

b
2N 2

XN

j�1
j log

bj
2eN

� �
'

N!1
b
2

Z 1

0

x log
bx
2e

dx : �27�

Finally, it is not hard to compute the right hand side of (27) so that:

b
2

Z 1

0

x log
bx
2e

dx � b
4
log

b
2
ÿ 3

8
b � F �b� ;

which achieves, according to (27), the proof of property 3.1. (
From this, we derive the weak large deviation principle:

Theorem 3.2 QN
b sati®es a weak large deviation principle with good rate

function Ib � Hb � F �b�, i.e:

for any open subset O of M�
1 �R�;

lim
N!1

1

N 2
logQN

b l̂N 2 O
ÿ � � ÿ inf

O
Hb ÿ F �b� ;

for any compact subset K of M�
1 �R�;

lim
N!1

1

N 2
logQN

b l̂N 2 K
ÿ � � ÿ inf

K
Hb ÿ F �b� :

Proof of theorem 3.2. According to Exercise 2.1.14 (v) of [6] (or Theorem
4.1.11 of [5]), it is enough to prove that for any probability measure
m 2M�

1 �R�:

ÿHb�m� ÿ F �b� � lim
d&0

lim
N!1

1

N2
logQN

b l̂N 2 B�m; d�ÿ �
� lim

d&0
lim

N!1
1

N2
logQN

b l̂N 2 B�m; d�ÿ �
; �28�

if B�m; d� is the open ball centered at m and with radius d for the weak
topology, i.e:

B�m; d� � l 2M�
1 �R� j d�l; m� < d

� 	
;

where we can take d to be the distance de®ned by:

d�l; m� � inf

Z
fdlÿ

Z
fdm

���� ���� ;
where the in®mum is taken over the Lipschitz functions f with Lipschitz
constant bounded by one.

Moreover, according to property 3.1, it only remains to prove that, if
Q

N
b � ZN

b QN
b is the non normalized measure de®ned by:
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dQ
N
b �

Y
1�i<j�N

jki ÿ kjjb exp ÿ 1
2

N
XN

i�1
k2i

( )YN
i�1

dki ;

then:

lim
d&0

lim
N!1

1

N2
logQ

N
b l̂N 2 B�m; d�ÿ � � ÿHb�m� �29�

and

lim
d&0

lim
N!1

1

N2
logQ

N
b l̂N 2 B�m; d�ÿ � � ÿHb�m� : �30�

We will ®rst prove the upper bound (29) and then show that the lower bound
(30) holds.

3.1 Proof of the upper bound

To prove (29), we notice that if DN � fk1 < k2 < � � � < kNg then:
Q

N
b l̂N 2 B�m; d�ÿ �
�
Z
fl̂N2B�m;d�g

Y
1�i<j�N

jki ÿ kjjb exp ÿ 1
2

N
XN

i�1
k2i

( )YN
i�1

dki

� N !

Z
fl̂N2B�m;d�g\DN

exp b
X
ki<kj

log jki ÿ kjj ÿ 1

2

X
ki<kj

�k2i � k2j �
8<:

9=;
� exp ÿ 1

4

XN

i�1
k2i

( )YN
i�1

dki

� N !

Z
fl̂N2B�m;d�g\DN

exp ÿN 2

ZZ
x<y

fb�x; y�dl̂N �x�dl̂N �y�
� �

� exp ÿ 1
4

XN

i�1
k2i

( )YN
i�1

dki :

Moreover, under Q
N
b , the ki's are almost surely distinct so that

�l̂N �
2 DN� � � 1

N
a.s

which allows us to conclude that, if H M
b is de®ned as in (10), for any positive

real number M ,

Q
N
b l̂N 2 B�m; d�ÿ �
� N !

Z
fl̂N2B�m;d�g\DN

exp ÿN2

ZZ
x<y

fb�x; y�dl̂N �x�dl̂N �y�
�
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ÿ N 2M �l̂N �
2�DN � ÿ 1

N

� ��
� exp ÿ 1

4

XN

i�1
k2i

( )YN
i�1

dki

� exp ÿN2 inf
l2B�m;d�

H2M
b �l� �MN

� �
N !

Z
DN

exp ÿ 1
4

XN

i�1
k2i

( )YN
i�1

dki

� exp ÿN2

2
inf

l2B�m;d�
H2M

b �l� �MN
� �

�
������
4p
p
�N :

So that, for any positive real number M , we get

lim
N!1

1

N2
logQ

N
b l̂N 2 B�m; d�ÿ � � ÿ inf

l2B�m;d�
H M

b �l� : �31�

But we have seen in section 2 that H M
b �l� is continuous so that it is clear that

lim
d&0

lim
N!1

1

N 2
logQ

N
b l̂N 2 B�m; d�ÿ � � ÿH M

b �m� : �32�

Using the fact that HM
b �m� grows to Hb�m� when M goes to in®nity gives (29).

3.2 Proof of the lower bound

To prove (30), we ®rst give a technical lemma:

Lemma 3.3 Let m be a probability measure on R such that m has no atom. Let
xi;N� �1�i�N be the sequence of real numbers de®ned by:

x1;N � inf xj m � ÿ1; x�� � � 1

N � 1

� �
xi�1;N � inf x � xi;N j m �xi;N ; x�ÿ � � 1

N � 1

� �
1 � i � N ÿ 1 :

Then

ÿ1 < x1;N < x2;N < � � � < xN ;N < �1 ;

and, for any real number g, there exists an integer number N�g� such that, for
any N larger than N�g�,

d m;
1

N

XN

i�1
dxi;N

 !
< g :

The proof is simple and is left to the reader.
We now turn to the proof of (30).

It is clear that we can assume without loss of generality that H�m� is ®nite
so that m has no atom (see property 2.1). Then, we can use Lemma 3.3 to see
that, for N � N�d2�:
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�ki�1�i�N j jki ÿ xi;N j < d
2
8i 2 �1;N �

� �
� �ki�1�i�N j l̂N 2 B�m; d�� 	

:

Thus,

Q
N
b l̂N 2ÿ

B�m; d��

�
Z
\1�i�N ki:jkiÿxi;N j<d

2f g
Y
i<j

jki ÿ kjjb exp ÿN
2

XN

i�1
k2i

( )YN
i�1

dki

�
Z
�ÿd

2;
d
2�N\DN

Y
i<j

xi;N ÿ xj;N � ki ÿ kj
�� ��bexp ÿN

2

XN

i�1
�xi;N � ki�2

( ) YN
i�1

dki �33�

But, when k1 < k2 � � � < kN and since we have constructed the xi;N 's such that
x1;N < x2;N < � � � < xN ;N , we have, for any integer numbers �i; j�, the lower
bound

xi;N ÿ xj;N � ki ÿ kj
�� �� > max xj;N ÿ xi;N

�� ��; jkj ÿ kij
� 	

:

As a consequence, (33) gives:

Q
N
b l̂N 2 B�m; d�ÿ � � Y

i�1<j

jxi;N ÿ xj;N jb
YNÿ1
i�1
jxi�1;N ÿ xi;N jb2

� exp

�
ÿ N
2

XN

i�1
�jxi;N j � d�2

�

�
Z
�ÿd

2;
d
2�N\DN

YNÿ1
i�1
jki�1 ÿ kij

b
2

YN
i�1

dki �34�

Moreover, one can easily bound from below the last term in the right hand
side of (34). Indeed, if one uses the change of variables

u1 � k1; ui�1 � ki�1 ÿ ki 1 � i � N ÿ 1 ;

Then, Z
�ÿd

2;
d
2�N\DN

YNÿ1
i�1
�ki�1 ÿ ki�

b
2

YN
i�1

dki �
Z

AN

YN
i�2
�ui�

b
2

YN
i�1

dui;

where AN � f�ui�1�i�N =u1 2 ÿ d
2 ;� d

2

� �
; ui 2 0;� d

2

� �
; 2 � i � N ;

PN
i�1 ui

�� ��
� d

2g. But \1�i�Nfui 2 �0;� d
2N�g � AN , so that one can get the lower bound.Z

�ÿd
2;

d
2�N\DN

YNÿ1
i�1
�ki�1 ÿ ki�

b
2

YN
i�1

dki � 1

b=2� 1

� ��Nÿ1� d
2N

� ��b=2�1��Nÿ1��1
: �35�

Hence, (34) implies:
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Q
N
b l̂N 2 B�m; d�ÿ � � Y

i�1<j

jxi;N ÿ xj;N jb

�
YNÿ1
i�1

xi�1;N�� i;N jb2 exp ÿN
2

XN

i�1
�xi;N �2

( )
�36�

� 1

b=2� 1

� ��Nÿ1� d
2N

� ��b=2�1��Nÿ1��1
� exp ÿNd

XN

i�1
jxi;N j ÿ N 2d2

( )
:

Moreover

1

2�N � 1�
XN

i�1
xi;N
ÿ �2ÿ b

�N � 1�2
X

i�1<j

log xi;N ÿ xj;N
�� ��

ÿ b

2�N � 1�2
XNÿ1
i�1

log xi�1;N ÿ xi;N
�� ��

� 1

2

Z
x2dm�x� ÿ b

Z
x1;N�x<y�xN ;N

log�y ÿ x�dm�x�dm�y�

�37�

Indeed, it is easy to see that, with our choice of the xi;N 's,

1

N � 1

XN

i�1
xi;Nÿ �2� Z x2dm�x� : �38�

Similarly, since x! log�x� increases on R�, we notice thatZ
x1;N�x<y�xN ;N

log�y ÿ x�dm�x�dm�y�

�
X

1�i�j�Nÿ1
log xj�1;N ÿ xi;Nÿ �

m
2 xi;N � x � xi�1;N ; x < y; xj;N � y � xj�1;Nÿ �
� 1

�N � 1�2
X
i<j

log xi;N ÿ xj�1;N�� ��� 1

2�N � 1�2
XNÿ1
i�1

log xi�1;N ÿ xi;N
�� �� : �39�

(38) and (39) give (37).
On the other hand, we can see as in (38) that 1=�N � 1�PN

i�1 xi;Nj j is bounded
by
R jxjdm�x� so that (36) ®nally gives:

Q
N
b l̂N 2 B�m; d�ÿ �
� exp �N � 1�2 b

Z
x1;N�x<y�xN ;N

log�y ÿ x�dm�x�dm�y� ÿ 1

2

Z
x2dm�x�

� �� �
� exp ÿ�N 2 � N� d

Z
jxjdm�x� � 1

N

Z
x2dm�x� � d2

� �� �
� 2

b� 2

� �Nÿ1
� d

2N

� ��b=2�1��Nÿ1��1
: �40�
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But it is not hard to see that since Hb�m� is ®nite,
R

x2dm�x� is also ®nite so that
we can conclude from (40) that

lim
N!1

1

N2
logQ

N
b l̂N 2 B�m; d�ÿ �

�ÿd
Z
jxjdm�x� ÿ d2� lim

N!1
b
Z

x1;N�x<y�xN ;N
log�y ÿ x�dm�x�dm�y�

�
ÿ 1

2

Z
x2dm�x�

�
:

�41�

It is clear that the last term in the right hand side of (41) converges so that we
get that for any positive real number d,

lim
N!1

1

N2
logQ

N
b l̂N 2 B�m; d�ÿ � � ÿd

Z
jxjdm�x� ÿ d2 ÿ Hb�m� �42�

so that, since
R jxjdm�x� � �������������������R

x2dm�x�p
is ®nite, the proof of (30) is complete

once we let d tends to zero. (

Remark 3.4. The arguments used for the proof of Theorem 3.2 seem rather
unusual among large deviations techniques. In fact, the very crude estimates
that we make here are only possible because of the scale N2 of the weak large
deviation principle 3.2 which allows us to neglect even reordering in the
eigenvalues (of weight N !). Nevertheless, we never use any continuity prop-
erty of Hb or R. Indeed, even if Hb is lower semi continuous, it has no reason
to be upper semi continuous since fb is not bounded. In fact, if one considers
the sequence of probability measures �ln�n2N de®ned by:

ln�dx� � nan`�0;1n��x� � �1ÿ an�`�0;1��x�
� �

dx ;

where an is a sequence of positive real numbers which goes to zero when n
goes to in®nity, then one can check that �ln� converges to `�0;1��x�dx when n
goes to in®nity. On the other hand, if an goes to zero more slowly than
�1= log n�12, R�ln� goes to ÿ1 when n goes to in®nity whereas R�`�0;1��x�dx� is
obviously ®nite.

Remark 3.5. It is the main reason why we do not understand the proof given
by Chan [4]. Indeed, the author assumes there (see p. 187 and Lemma 3.1)
that R is continuous at any probability measure m absolutely continuous with
respect to Lebesgue measure and with bounded density, which does not hold
under the weak topology according to the above example.

4 Exponential tightness

We ®nally prove that QN
b is exponentially tight.

Property 4.1 For any positive real number L, there exists a compact subset KL

of M�
1 �R� such that
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lim
N!1

1

N 2
logQN

b l̂N 2 Kc
L

ÿ � � ÿL :

Proof. Using Cauchy Schwarz's inequality, one ®nds that for any measurable
subset K of M�

1 �R�,

QN
b l̂N 2 Kcÿ � � ZN

2b

ZN
b

� �2
0B@

1CA
1
2 Z

l̂N2Kc
exp ÿ 1

2
N
XN

i�1
k2i

( )YN
i�1

dki

 !1
2

:

Hence, property 3.1 implies that

lim
N!1

1

N2
logQN

b l̂N 2 Kcÿ �
� 1

2
�F �2b� ÿ 2F �b��� lim

N!1
1

2N2
log

Z
l̂N2Kc

exp ÿ 1
2

N
XN

i�1
k2i

( )YN
i�1

dki :

�43�
Moreover, for any positive real number g, if we choose

K � \i2N

�
l 2M�

1 �R� l ÿ i� 4
g

� �
;� i� 4

g

� �h ic� �
< i� 4

g

� �ÿ1��
, then K is

a compact subset of M�
1 �R� and:Z

l̂N2Kc
exp ÿ 1

2
N
XN

i�1
k2i

( )YN
i�1

dki

�
X
i2N

Z
l̂N ÿni;�ni� �c� �< i�4

g� �ÿ1
� 	c exp ÿ 1

2
N
XN

i�1
k2i

( )YN
i�1

dki :

But one can check thatZ
l̂N ÿ i�4

g� �;� i�4
g� �� �c� ���i�4

g�
ÿ1� 	c exp ÿ 1

2
N
XN

j�1
k2i

( )YN
j�1

dkj

� 2
������������
4p=N

p� �N
exp ÿ 1

4

�
i� 4

g

�
N 2

� �
so that we get

Z
Kc
exp ÿ 1

2
N
XN

i�1
k2i

( )YN
i�1

dki �
2
������������
4p=N

p� �N

1ÿ exp ÿ N2

4

� 	 exp ÿ 1
g

N2

� �
:

Choosing gÿ1 � 2L� �F �2b� ÿ 2F �b�� ends, with (43), the proof of
property 4.1. (
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5 Large deviation principles for more general large random matrices

In this section, we would like to point out how the large deviation principle
stated in Theorem 1.3 for the Gaussian ensembles can be extended to other
random matrices.

As a ®rst generalization, we mention the case of Hermitian (resp. sym-
metric) random matrices �MN �N�0 which appear in quantum ®eld theory and
quantum chaology (see [3], [11] and [10]) and which law can be described by

pN �MN �dMN � 1

ZN
b;V

exp ÿN2s�V �MN ��
� 	

dMN ; �44�

where s is the normalized trace s�A� � �1=N�PN
i�1 Aii, V is a real function,

ZN
b;V is the normalizing constant and dMN is the Lebesgue measure on the
space of N � N complex (resp. real) matrices:

dMN �
Y
i�j

dIm Mij dRe Mij

�
resp: dMN �

Y
i�j

dMij

�
:

Then, if MN is assumed to be invariant either under the action of the unitary
group or of the symplectic group in the complex setting, or under the action
of the orthogonal group in the real setting, the joint law of the eigenvalues
�ki�1�i�N of the matrix MN can be seen to be of the form:

QN
b;V �dk� � 1

ZN
b;V

Y
i<j

jki ÿ kjjb exp ÿN
2

XN

i�1
V �ki�

( )YN
i�1

dki;

with b � 1 (resp. b � 2, resp. b � 4) for the orthogonal (resp. unitary, resp.
symplectic) case. Of course, the Gaussian ensembles we studied above can be
recovered by choosing V �k� � �1=2�k2. We now wish to give some extension
to other potentials. The ®rst obvious generalization can be deduced from
Theorem 1.3 thanks to Laplace-Varadhan's Lemma (see [5], Theorem 4.3.1):

Corollary 5.1 If there exists a ®nite positive real number a such that
f �x� :� V �x� ÿ ax2 is a bounded continuous function on R, the law of the
empirical measure 1

N

PN
i�1 dki under QN

b;V satis®es a large deviation principle
with good rate function

IV
b �l� � aIb

a
�l� � 1

2

Z
fdlÿ inf

m2M�
1
�R�

aIb
a
�m� � 1

2

Z
fdm

� �
:

More generally, Laplace-Varadhan's Lemma shows that, for any bounded
continuous function /: M�

1 �R� ! R, the law of the spectral measure under

QN
b;/�dk� � 1

ZN
b;/

Y
i<j

jki ÿ kjjb exp ÿN 2/
1

N

XN

i�1
dki

 !
ÿ N
2

XN

i�1
k2i

( )YN
i�1

dki

satis®es a large deviation principle with good rate function
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I/
b �l� � Ib�l� � /ÿ inf

m2M�
1
�R�
�Ib�m� � /� :

On the other hand, one could be interested in matrices satisfying (44) but with
a potential V which is not a bounded modi®cation of x2 (for instance
V �x� � x4). Then, it is worth noticing that the method used to prove Theorem
1.3 can be applied in many of these cases. For instance, one can easily see that:

Theorem 5.2 If V is a continuously di�erentiable function on R going to in-
®nity su�ciently fast with jxj (faster than logarithmicaly) but not too fast so
that:

lim
d!0

lim
jxj!1

sup
jyj�d

V 0�x� y�
V �x�

���� ���� <1;
then:

1) Let IV
b �l� �

1

2

Z
Vdlÿ bR�l�

� �
ÿ 1

2
inf

m2M�
1
�R�

Z
Vdmÿ bR�m�

� �
.

a. IV
b is a good rate function.

b. IV
b achieves its minimal value at a unique probability measure rV

b which is
characterized by:
1

2
V �x� ÿ b

Z
log jy ÿ xjdrV

b �y� �
1

2
inf

m2M�
1
�R�

Z
Vdmÿ bR�m�

� �
rV

b a:s :

and, for all x except possibly on a set with null logarithmic capacity,
1

2
V �x� ÿ b

Z
log jy ÿ xjdrV

b �y� �
1

2
inf

m2M�
1
�R�

Z
Vdmÿ bR�m�

� �
:

2) The law of the spectral measure 1
N

PN
i�1 dki under QN

b;V satis®es a large
deviation principle in the scale N 2 with good rate function IV

b .

Let us remark that the assumptions on V have two di�erent origins: the ®rst
one is needed at least to insure the existence of the probability measure QN

b;V
and the second one is needed on a technical level to prove the lower bound of
the large deviation principle. It implies that we can not consider potential V
which are going to in®nity faster than exponentially at in®nity.

In a slightly di�erent context, one could wonder what our approach could
tell about the eigenvalues of the circular ensembles which are known to have
complex eigenvalues �eihj�1�j�N with real numbers hj in �0; 2p� satisfying:

QN
b;c�dh� � 1

ZN
b;c

Y
k<j

eihj ÿ eihk
�� ��bYN

k�1
dhk :

In that case, it is clear that:

Property 5.3 For any probability measure l on �0; 2p�, let

Ic
b � ÿb

Z 2p

0

Z 2p

0

log eia ÿ eia0
�� ��dl�a�dl�a0� :
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Then

1) Ic
b is a good rate function which achieves its minimal value at a unique
probability measure which is the uniform law on �0; 2p�.

2) The law of the empirical measure of the arguments �hk�1�k�N under QN
b;c

satis®es a large deviation upper bound with good rate function Ic
b, i.e:

for any closed set F lim
N!1

1

N 2
logQN

b;c
1

N

XN

i�1
dki 2 F

 !
� ÿ inf

F
Ic
b :

Of course, this result is not as satisfactory as a full large deviation principle
since it does not give the lower bound (which proof would need some new
argument). Nevertheless, Property 5.3 is already enough to prove the con-
vergence of the empirical measure �1=N�P dhi to the uniform law on �0; 2p�
and thus the convergence of the spectral measure. Moreover, the proof is
straightforward. Indeed, the ®rst point is obvious since Ic

b can be seen to be
lower semicontinous because:

gb�a; a0� � ÿ log eia ÿ eia0
�� �� if a 6� a0

�1 otherwise

�
is a positive continuous function. But since the space of probability measures
on �0; 2p� is compact, it is then a good rate function. Moreover, the
uniqueness of the minimum is here a direct consequence of logarithmic ca-
pacity problem. Finally, the proof of the upper bound is exactly similar to
that given for the Gaussian setting, since the normalizing constant ZN

b;c has
already been computed (see [9], Theorem 11.1.1).

The second generalization of Theorem 1.3 that we would like to point out
is given by the contraction principle (see Thm 4.2.1 of [5]). For simplicity, let
us focus on the real case where b � 1 and consider the random matrices X N

de®ned in (1). Then, the contraction principle allows us to deduce from
Theorem 1.1 that the spectral measure of any continuous image of X N sat-
is®es a large deviation principle. More precisely:

Theorem 5.4 If p is a continuous map, then the law of the spectral measure of
Y N � p�X N � satis®es a large deviation principle with good rate function Ip

given by

Ip�l� � inf I1�m� m�p�x� 2 :� � l�x 2 :�= gf :

Remark 5.5 Of course, if p is a continuous bijective map, Theorem 5.4 ap-
plies. Then, Ip�l� � I1�l � p�. As a consequence, Theorem 2.3 shows that Ip

achieves its minimal value at a unique probability measure which is r1 � pÿ1

so that the spectral measure of Y N converges to r1 � pÿ1.

For all the large deviations principles we have been stating, ÿR plays the
role of an entropy. We would like, as a ®nal remark, recall how Voiculescu
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interpreted ÿR as an entropy in [14]. In this paper, he indeed considered the
relative entropy I QN

�p�jL
� �

of the law QN
�p� of the eigenvalues of p X N� � with

respect to the Lebesgue measure:

LN �dk� �
Y

1�i<j�N

jki ÿ kjj
Y

i

dki :

Voiculescu then stated that:

lim
N!1

1

N2
I QN

�p�jLN
� �

� R r1 � pÿ1
ÿ �� const.

so that R appears as a normalized limit of entropies of laws of random
matrices and thus as a good candidate for the de®nition of a non commu-
tative entropy. Of course, the above heuristics are not really rigorous since
the ``Lebesgue'' measures LN are not probability measures. With this remark
in mind, we ®nally want to give a rigorous statement of Voiculescu's heu-
ristics and generalize them to other random matrices as follows:

Voiculescu's heuristics 5.6. For any positive b, if p : R! R is any di�eo-
morphism such that there exists positive real numbers � and M so that

� < pÿ1
ÿ �0��� ������ ���

1
< M �45�

and if V is any continuous function going to in®nity fast enough and so that
there exists a positive real number a, a > 1, such that

sup
N

E
1

N

XN

i�1
V p X Nÿ �

ii

� ������
#�����

a" #
< �1 ; �46�

the relative entropy of the law of the eigenvalues of Y N � p�X N
b;V � with respect

to the law QN
b;V of the eigenvalues of X N

b;V converges, once divided by N2, to
IV
b rV

b

� �
ÿ IV

b

ÿ
rV

b
� pÿ1

�
.

Hence, leaving asides the constants, bR�l� ÿ R V �x�dl�x� appears as a limit
of normalized relative entropies of the spectral law of a set of large random
matrices. In this sum of two terms, R is the most relevant term since it is
closely related to the matrix origin of our problem.

Moreover, we must emphasize that the hypotheses (45) has only be been
assumed to make the proof shorter. Furthermore, we here need assumption
(46) because we do not consider the relative entropy with respect to the
Lebesgue measure but with respect to QN

b;V .
The proof of 5.6 follows that given by Voiculescu in [14].
Indeed, if one considers the relative entropy of the law QN

�p� of the ei-
genvalues of Y N � p X N� � with respect to the law QN

1 of the eigenvalues of X N ,
then, denoting q � pÿ1, one gets:
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I QN
�p�jQN

1

� �
�
Z

log
dQN
�p�

dQN
1

 !
dQN
�p�

�b
Z X

i<j

log
ki ÿ kj

q�ki� ÿ q�kj�
���� ����� N

2

X
i

V �q�ki�� ÿ V �ki�f g
 

ÿ
X

i

log q0�ki�
!

dQN
�p�:

Hence

1

N2
I QN

�p�jQN
1

� �
�
Z
ÿ b
2

Z Z
x6�y

log
q�x� ÿ q�y�

xÿ y

���� ����dl̂N �x�dl̂N �y�
�
� 1
2

Z
V �q�x��2 ÿ V �x�2
n o

dl̂N �x�

ÿ 1

N

Z
log q0�x�dl̂N �x�

�
dQN
�p� : �47�

But, under assumption (45),

l!
ZZ

x6�y
log

q�x� ÿ q�y�
xÿ y

���� ����dl�x�dl�y�

is a bounded continuous function so that, according to Remark 5.5,

lim
N!1

Z ZZ
x6�y

log
q�x� ÿ q�y�

xÿ y

���� ����dl̂N �x�dl̂N �y�
� �

dQN
�p�

�
ZZ

x6�y
log

q�x� ÿ q�y�
xÿ y

���� ����dr1 � q�x�dr1 � q�y�

� R�r1� ÿ R�r1 � q� :
Moreover, assumption (45) implies that log q0 is uniformly bounded so that:

lim
N!1

1

N

Z Z
log q0�x�dl̂N �x�

� �
dQN
�p� � 0 :

And ®nally, one can see that assumption (46) and Theorem 1.1 imply that:

lim
N!1

Z Z
V �q�x�� ÿ V �x�f gdl̂N �x�

� �
dQN
�p�

�
Z

V �x�dr1�x� ÿ
Z

V �x�dr1 � q�x� :

Thus (47) gives:

lim
N!1

2

N 2
I QN

�p� QN
1

��� �
�bR�r1 � q� ÿ bR�r1�

�
Z

V �x�dr1�x� ÿ
Z

V �x�dr1 � q�x�
� �

i.e Voiculescu's heuristics 5.6. (
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