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Summary. We consider asymmetric simple exclusion processes on the lattice
Z“ in dimension d > 3. We denote by L the generator of the process, V the
lattice gradient, # the configuration, and w the current of the dynamics as-
sociated to the conserved quantity. We prove that the fluctuation—dissipation
equation w = Lu + DV has a solution for some function u and some con-
stant D identified to be the diffusion coefficient. Intuitively, Lu represents
rapid fluctuation and this equation describes a decomposition of the current
into fluctuation and gradient of the density field, representing the dissipation.
Using this result, we proved rigorously that the Green-Kubo formula con-
verges and it can be identified as the diffusion coefficient.

Mathematics Subject Classification (1991): 60k35, 82A05

Introduction

The simple exclusion process is a system of random walks with hard core
exclusion in which no two particles are allowed to be at the same site si-
multaneously. If the drift of the random walk is zero, this process can be
considered as a model for thermal particles with hard core exclusion rule; if
the drift is nonzero, it describes particles with a velocity in addition to the
thermal noise and is referred to as the asymmetric simple exclusion process.
The model is exactly solvable if the hard core exclusion is removed. The hard
core condition persists even in the hydrodynamic limit. In the hyperbolic
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scaling the hydrodynamic equation for the asymmetric simple exclusion
process is given by a viscousless Burgers equation with entropy condition
(IR], [AV], [Re], [L]):

u+y-Vu(l —u)=0 (0.0)

for some constant y depending on the jump rate of the asymmetric simple
exclusion process; here V is the usual gradient. One can ask additional
questions regarding the long time behavior or corrections to the hydro-
dynamic equation. The point of view of corrections to the hydrodynamic
equation is emphasized by R. Dobrushin [D]; the long time behavior is
formulated as incompressible limit in [EM] for general Hamiltonian systems.
On a rigorous level, the incompressible limit is proved in [EMY 1] to be

Ou+7y-Vu* =V -D-Vu (0.1)

for some diffusion coefficient D. Partly based on this analysis, the correction
to (0.0) in the hyperbolic scaling is proved in [LOY1], [LOY2] to be

Ou+vy-Vu(l —u) =¢V-D-Vu (0.2)

with the same diffusion coefficient; here ¢ is the scaling parameter. One can
also construct lattice gas models based on asymmetric simple exclusion
process with collisions and derives the incompressible Navier-Stokes equa-
tion in the scaling limit [EMY2].

The approach of these papers involves several ingredients: a multiscale
analysis, the nongradient system method originated from [V] and the relative
entropy method [Y]. Denote by L the generator of the dynamics, n the
configuration, w the current associated to the density field and V the lattice
gradient. One key step is to prove that there exists a function u (actually only
approximate solutions are needed) such that the following decomposition

w = Lu+ DVp (0.3)

holds for some constant D, identified to be the diffusion coefficient. In-
tuitively, Lu represents rapid fluctuation and the equation (0.3) describes a
decomposition of the current into fluctuation and gradient of the density
field, representing the dissipation. For this reason we call this equation the
fluctuation—dissipation equation.

We now remark briefly on the history of recent mathematical work on the
fluctuation—dissipation equation (0.3). We call a process a gradient model if
the current is already a gradient; in this case the solution of the fluctuation—
dissipation equation can be achieved, in a sense, with # = 0 and the diffusion
coefficient D can be identified as a thermodynamical quantity. The first
nontrivial solution of (0.3) was considered in [V] for Ginzburg-Landau
models and the basic nongradient system method was introduced. Later on
particle models are considered in [Q, KLO]. These models [V, Q, KLO] are
reversible, i.e., the generator L is symmetric. A nonreversible model is con-
sidered in [Xu, V2] where the asymmetric part of the generator, L — L*, turns
out to be a bounded perturbation of the symmetric part; the resulting hy-
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drodynamical equation is a nonlinear diffusion equation with no drift. In all
these cases, the solution of (0.3) depends on the ability to perform integration
by parts which in some sense converts (0.3) to what amounts to a (over-
determined) system of first order equations. This method is very general and
does not need estimation of the Green’s function and it requires only a
bound on the spectral gap and a natural integration by parts property sa-
tisfied by all these models. For asymmetric simple exclusion processes, the
asymmetric part is not a bounded perturbation of the symmetric part and
there is no natural integration by parts property. Partly due to the absence of
natural integration by parts property, the connection between the non-
gradient system method and the asymmetric simple exclusion has not been
realized until [EMY 1], where integration by parts is replaced by a multiscale
analysis procedure which we call “multiscale integration by parts lemma”’.

With this lemma, it is proposed in [EMY1] to convert (0.3) to a problem
of proving surjectiveness of some projection in a Hilbert space. We have
found this formulation and the multiscale integration by parts lemma very
useful, but its proof of the surjectiveness contains an error, to be explained in
section 1 after introducing the necessary notations. In order to solve (0.3) one
thus has to estimate the Green function (4 — L)™' in a precise sense. Because
the full generator L is an infinite dimensional nonsymmetric operator with
interactions among particles, we are not aware of any instance where such a
question is addressed in an infinite dimensional setting.

This paper is organized as follows. We shall first recall the rigorous de-
finitions of the asymmetric simple exclusion process. We then review the
concept of degree which is closely related to a duality. It is well-known that a
dual process exists for the symmetric simple exclusion process. The dual
process for the asymmetric one, however, does not exist in the conventional
sense. But the consideration of degree still provides very detailed information
on the generator which can not be obtained otherwise. We decompose the
generator according to degree. Our basic idea is to consider the part pre-
serving the degree as the main part (or the diagonal part) and the rest (off
diagonal part) as a perturbation. For this purpose, we need an estimate of the
off diagonal part in terms of the diagonal part. This will be done in section 4.
It should be emphasized that the off diagonal part is not uniformly bounded
with respect to the diagonal part and one can not do perturbation theory in a
naive way. The perturbative method requires cutoff estimates to be explained
in section 4.

A more indirect approach will be presented in section 5 and it is based on
an estimate of the resolvent equation. This proof is somewhat shorter but the
first proof gives more information which, though irrelevant to the present
problem, might be useful elsewhere.

Using this result, we prove rigorously that the Green-Kubo formula
converges and it can be identified as the diffusion coefficient. We remark that,
though Green-Kubo has been well-known for many decades, it is difficult to
establish its mathematical meaning for nonreversible systems because it in-
volves time integral from zero to infinity and space summation of current-
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current correlation functions. In order to show that the Green-Kubo formula
is valid, one needs at least to prove that the current-current correlation
functions decay fast enough so that it is summable in space and integrable in
time. We shall prove that our estimate of the fluctuation—dissipation equa-
tion carrys enough information to prove this rigorously.

We are grateful to S. Sethuraman and S. R. S. Varadhan for many dis-
cussions. In particular, Lemma 2.5 is taken from the joint work [SVY]. We
thank them for the permission to use this result here before the publication of
the paper.

1. Notation and results

The totally asymmetric simple exclusion process is a Markov process on
Zd . .
{0,1}" whose generator L acts on cylinder functions as

Z Z nx ’7v+ej (nx,x+ej) _f(’/l)] . (11)

J=1 xez?

Here {e, 1 <k <d} s}ands for the canonical basis of R?, 5 denotes a
configuration of {0, 1} so that #, is equal to 1 if site x is occupied and is
equal to 0 otherwise and #*” stands for the configuration obtained from 5 by
exchanging the occupation variables at x and y :

n; if z 75)57)’;
(™), = ¢ ny ifz=yand
n, ifz=x.

For each p in [0,1], denote by v, the Bernoulli product measure on {0, I}Zd
with density p and by (-,-), the inner product in L*(v,). The probability
measures v, are invariant for the totally asymmetric simple exclusion process.
Denote by L* (resp. S and A) the adjoint (resp. symmetric and asymmetric)
part of L in Lz(vp). A simple computation shows that L*, S and 4 act on
cylinder functions as

Z Z N[l —my e xfe,,Xf)(”I) )

Jj=1 erd
( 1/2 ZZ xx-‘rej
J=1 xez?
d
and AnNm=01/2) ZZ — Nepe, ) (Texre, /) (1)
J=1 xez?

where for any bond {x,y}, T\, is the operator defined by (7y,f)(n) =

Jr) =1 n).
For each positive integer n, denote by 2, = 2,(Z?) the space of all finite

subsets A C Z¢ of cardinality n and by |A| the cardinality of a finite subset A
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of Z. For two sets A = {ay,...,a,} and Q= {by,...,b,} in 2, define the
distance d(A, Q) by

d(A,Q) =min Y _|a; — by
=

where the minimum is carried over all permutations ¢ of {1,... n}.

Fix once for all some density 0 < p < 1. Denote by ¥ = (p) the space of
v,-mean zero cylinder functions. For a finite subset A of Z¢, denote by 5, the
mean zero cylinder function defined by

= —»p) .
xeA

and, for n > 1, denote by .#, the space of cylinder functions of degree #, i.c.,
the space generated by all monomial s of degree n:

My = {hefg;hz 3 hAnA,hAe]R} .

AEP,

Notice that in this definition all but a finite number of coefficients 45 vanish
because / is assumed to be a cylinder function. Denote by 4, = Uj<j<,.#; the
space of cylinder functions of degree less than or equal to n. All mean zero
cylinder functions % can be decomposed as a finite linear combination of
cylinder functions of finite degree: € = U,> 1.4 .

On €, define the semi-inner product

<<gvh>> = <g>h>0 = Z<Txg7h>ﬂ = Z<Txhvg>p . (12)

xeZ? xeZ?

All but a finite number of terms in this sum vanish because v, is a product
measure and g, 4 are mean zero. Denote by || - ||, the semi-norm generated by
this semi-inner product and notice that for any local function g in ,,
llg — ©xglly = 0. Let g and & be cylinder functions of degree less than or equal
to n: g =3 A Aj<n IATAs 7= A |aj<nPANA- An elementary computation
shows that

<<ga h>>0 = ZKm(p)m_l Z ( Z gx+A> ( Z hx+A> ) (1-3)

ms<n xez?¢ xezZ¢

where the second summation is carried over all subsets A in #,, that contains
the origin, K,(p) =[p(1—p)]" and x+ A is the set defined by
x+ A ={z,z—x € A}. This identity leads us to introduce the following
equivalence relation in 2,,.

Two sets A, Q in 2, are said to be equivalent if there exists x in Z¢ such
that Q = A + x. In this case we write A ~ Q. Of course ~ is an equivalence
relation and we denote by 2, the set of equivalence classes of 2,. With this
terminology, the inner product (g, f), of two cylinder functions in .#, writes
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0.0 —Kn() 3 (zgg> (Zf:z) | (14)

Ae?, \Q~A QA

It follows from the explicit formula (1.3) that the spaces .#, are orthogonal
and a cylinder function g = ZA,\Mgn gan, belongs to the kernel of the inner
product (-, ), if and only if for all 1 <m <nand A in 2,, > 7 gxsn = 0.

Denote by A7, (resp. .A4") the kernel of the inner product in €, (resp. %),
by %2 (resp. ¢°) the quotient of %, (resp. %) with respect to .4, (resp. A"
and by Z, (resp. ) the completion of (62 (resp. €°). # and 2, are Hilbert
spaces with the inner product (1.2). Notice that £, is the one dimensional
space generated by 149 = (179 — p)-

We now investigate the action of the operators S and 4 on the space .
Fix a function g in .#,: g = 35 5=y 9ANA- A simple computation shows that

(Sg —(1/2) Z Z Z {9auicte;) — 9ouixy Hiugxrey — Naugsy] -

J=1 xez! Q,|Q]=n-1
Qﬁ{wﬁLeJ} ¢
In particular, Sng =0 so that S, = {20} In contrast, an elementary
computation  gives  that (1, —#n,)" = (1 =2p){(n, — p) + (n, — p)}
—2(n, — p)(n, — p) = 2p(1 — p). This identity permits to decompose the
asymmetric part A of the generator in two pieces M and J so that M maps
M, into itself and J =J, +J_ maps A, into M, U My.1:

( )( ) /2 1 - 2)0 Z Z Z {gQU{x+ej} - gQU{x}}

j=1 xez? Q,|Q|=n—1
Qﬁ{xx+e,} ¢

X [”QU{H@} + ﬂgu{x}} )

(+9)( Z Z Z {ggu{x+e,} - ggu{x}}ﬂgu{x,x+e,} )

J=1 xez? Q,|Q=n—1
Qﬁ{xv+ej} ¢

(J g)(l’] Z Z Z {gQU{erej} - gQU{x}}VIQ .

J=1 xez? Q,|Q]=n—1
Qﬂ{x,x+e,}:¢

Thus, while M maps .#, into .#,, J, (resp. J_) maps .4, into M, (resp.
M,—1). Let B=S + M so that L = B +J and B does not modify the degree of
the monomials, while J changes it by 1.

Consider two cylinder functions f; in .#;,i = 1, 2. The explicit form of J_,
J4+ and M shows that J_fi, J. f1, Mfi vanish. Furthermore J_f, is a gradient
and hence it also vanishes as an element of J#. Therefore,

J_@1 =J+<@1 ZM%1 ZJ_,%Q = {0} n A . (1.5)

We now introduce two new inner products in 4. The explicit formula for Sf
permits to compute the inner product {Sf,g), for two cylinder functions in
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%,. Since S#Z, = {0}, fix n > 2 and two cylinder functions f, g in #,:
9 =2 A A= 9AIA [ = 2oA ja1n SANA- We have that (f, (—S)g), is equal to

(1/HKup) Y > (ZfA - Zﬂ) (Z -y 9A>

Que?, Q1. d(Q1,Q)=1 \A~Q, A~Qy A~y A~Qq

d
= (1/2)K.(p) Z Z {favtey = Favio Hanote) — Gavioy } -

j=1 AJA|=n—1
AN{0.e;}=¢
(1.6)
In this formula, for A in 2, fA stands for
fA = foJrA .
xez?

The operator S is thus symmetric and negative in J# (in fact, it is proved in
[S] that it is self adjoint). Define the inner product (-, -), in U,>;.#, by

(f901 = (S, (=S)ag)o -

The explicit formula for the quadratic form { f, /), shows that its kernel is
equal to #;. Denote by #; the completion of U,>>.#, with respect to the
inner product {-,-); and by s _; the dual of 5| with respect to (-, -),: #_;
is the Hilbert space generated by U,>,.#, and the inner product obtained by
polarization of the quadratic form { f, f)_, defined by

(f. )= Suhp{2<<h>f>>o — (k) }

d 2 (1.7)
“sol{er) - S (o) ) ;-
P = x p

X

where the supremum is carried over all cylinder functions /4 in U,>2.#,. In
this formula, for a cylinder function 4, Vo, stands for A(n*¢) — k(). No-
tice that (1.7) defines in principle only a semi-norm that may be infinite. It is
proved in [EMY1] that (1.7) is finite for cylinder function in U,>,.#, and that
it defines an inner product. It is not hard to prove that it defines an inner
product by considering the limit

tim (£, (2= 8)" o = (£, (=) ") -

Since the symmetric operator S preserves the degree of the monomials and
the linear spaces {.#,,n > 2} are mutually orthogonal in #, they are also
orthogonal in 2, and in J#_;.

Our main result is the following theorem.

Theorem 1.1. Fix k > 2 and h in €. Then,

inf |lh = Lull_, =0 . (1.8)
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Recall the following notations and results from [EMY]: Denote by D( f)
the Dirichlet form associated to the symmetric part of the generator:

D(f)={(=S)f.1), = D ((=Se)f+ 1), - (1.9)

=t

where S, , is the piece of the generator S restricted to jumps over the bond

{x,y}: Se,f( 12) S0r™Y) = f(n). For a positive integer ¢ and for m in
{0,1/(2¢+1) 1} denote by A, the cube of linear size 2¢ 4 1 centered at
the origin: A( = { —4,. é} and by vy, the canonical measure on {0, l}

with density m:

vem(€) = v (é\ D n) =20+ 1)“’m>

xeN,
for each configuration ¢ of {0, 1}
Definition 1.2. Let g be a cylinder function and denote by s(g) its support:

s(g) = min{[ eN; supp g C {4, ... ,E}d} .

For each and ¢ > s(g) and m in {0,1/(20+ 1)?, ... 1}, define the “variance”
Vi(g,m) of g with respect to vy, by

Vilg,m) = (2 + 1)‘”’< 37 (g — Gilm)),

| <t=s(g)
(=S D (g - é(z(m))> : (1.10)
il<t=s(9) Vo

In this formula Sy is the restriction to Ay of the symmetric part of the generator
L: Sp =3 cn, Svy and g,(m) is the expected value of g with respect to the
canonical measure vy p,.

If g belongs to U,y M, we define also the “variance” of g by

Van(g) = limsup £, [Va(g.n'(0))] -

Theorem 1.3. ((EMY]) For every g in Uysy My,

Vm(g) = <<g> g>>—l

Furthermore, for any ¢ > 0 there is a local function h such that
V(g —Sh) <e .

This theorem allows us to solve the fluctuation—dissipation equation for the
symmetric simple exclusion process. It is proved in [Q] when the function /4 is
a current of a process. The general case is formulated and proved in [EMY1]
using a multiscale integration by parts lemma.
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We can now prove the following structure theorem :

Theorem 1.4. Let #'0) = {2 o1<j<a2in() —n(0)],0; € R}. Then
LA# + O =F =LA + 2" .

Proof. Fix g in #. By Theorem 1.1, for every ¢ > 0, there exists a cylinder
function h such that

lg—Lh|| , <e .

From remark just before (1.5), the part of Lk with degree one is a gradient of
the form } ., ;[n(e;) — n(0)]. Hence,

V<g —Lu — Z ain(e;) — ’7(0)]> =l g—Lh ||2—1§ & )

1<j<d
what proves the theorem. [

The last result is formulated in [EMY1] and a proof was given. It is
proposed in [EMY1] that the nongradient system method of [V] can be
understood in Hilbert space formulation once a multiscale integration by
parts lemma is used. This formulation is instructive and the multiscale in-
tegration by parts lemma is indeed useful, stated here in the form of Theorem
1.3, but the subsequent proof given there, essentially using a projection ar-
gument in a Hilbert space (proof of part (i) of Theorem 5.9 in [EMY1]),
holds only for finite dimensional space.

We shall prove Theorem 1.1 in two ways. The first proof is divided in
three parts. We first prove a truncated version of this result in Theorem 2.4
below. We then obtain uniform bounds of the /| norm of the solution of the
truncated equation. These estimates permit us to remove the cutoff in the
third step.

The second proof is shorter. We first prove an a a-priori uniform bound
of the # _| norm of the solution of the equation. This is the same as the step
2 in the previous approach. Using this bound, we then prove an a priori
estimate on the # norm of the solution. These two a priori estimates permit
us to construct a solution.

2. First proof of Theorem 1.1

We begin this section with some comments on the degree preserving op-
erators S and M. Recall that for each n > 1, we denote by %, the Hilbert
space generated by .#, and the inner product {-,-), introduced in (1.4).
Denote by %, (resp. %,,—) the Hilbert space generated by .#, and the inner
product {-,-), defined in (1.6) (resp. the quadratic form {-,-) _, defined in
(1.7)). A simple computation shows that for f in .#,, {f,f), < 2dn {f, f)o-
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In particular, Z,_1 C Ry C Rny and (f,f)y <2dn (f,f)_, for all f in
Rn—1-

The explicit formula for M permits to compute the inner product
(Mf,g), for every f, g in .#,. It is given by

ki XSS - ) (S Sl

Qoey:)n Q[ ANQl ANQO ANQ] ANQO
1—2p d } ) (2.1)
= TK"(/’)Z > {aoten = faooy Haaoge + davor ) -
=1 ANt
A0}

In the first line, the second sum is carried over all set Q; at distance 1 from
Q. In particular, M is an antisymmetric operator :{(Mf,g), = —{/, Mg),.

On %, the operators S and M are bounded : there exists a constant C(d)
depending only on the dimension such that

(87,81 ) < Cld)w*(f.f)y and (Mf, Mf )y < C(d)n*(f.f o

for all f in #,. Moreover, S is bounded operator from #_; to #:
(Sf,SfY_, = (f,f), and, by Lemma (4.2), M is a bounded operator from
R 10 R —1: (Mf,Mf)_, < C(d)n{f,[), for some finite constant depending
only on the dimension. Hence, Sf and Mf belong to #,,_; for any function f
in &,.

Theorem (1.1) would not be difficult to prove if the operator L was
symmetric. This is the content of the next result where we show that the
range of S is dense in J#_;.

Lemma 2.1. For each k > 2 and h in .y,

inf ||Sf—h|l , =0 .
fleI}ilk ISf [

Proof. Fix k>2 and h in .#,. A direct computation shows that S is a
bounded operator on %;. In particular, for any 1 > 0, the operator (1 — S)fl
is well defined and has norm bounded by 4A~' (cf. [Li]). Consider, therefore,
for 4 > 0, the solution f; of the equation

(—S)fi=h . (2.2)

We have seen at the beginning of this section that Sf; belongs to # _;. Since
by Lemma 4.1 & also belongs to 5 _, so does f;. Moreover, by equation
(2.2), ||h||271 is equal to

P fi) o + 2046100 + (i

so that ||Af;||_, and ||f3||, are uniformly bounded in A. In particular, there
exists a subsequence 4, for which 4,f;, (resp. f,) converges weakly in 5 _;
(resp. in 1) to some limit denoted by F_; (resp. F1). We claim that F_| = 0.
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Indeed, let g be a function in .# that belongs therefore to # N #_,. By
definition,

(Fo1,9)0 = nli_{rolo In{fr9)o =0,

because f;, converges weakly to Fy in ;. It follows from this identity and
formula (1.7) for the #_; norm of F} that F_; =0 in & _;.

It is now easy to deduce from this convergence the existence of a sequence
Jnjs 1 < j < n,such that (1/n) Zl<1<n Jnjf3,, converges strongly to 0in #_;.
Since f;,, is the solution of (4,; — S)f;,, = h, we obtain that

‘n.j

( 2;m>+h

1<j<n

converges strongly to 0 in 2 _;. Since .#y is dense in % and S is a bounded
operator from # to # _;, we may replace f;, by a cylinder function in ./#y.
This concludes the proof of the lemma. []

The same argument and some estimates on the asymmetric operator M
permit to show that the range of S + M is dense in #_;.

Theorem 2.2. For every k > 2 and every h in My,
inf M)f — =0 .
inf S+ M0)f —H]_, =0

The proof of this result requires some notation. Denote by 2, the config-
urations of NZ* with n particles. Notice that £, can be considered as the
subset of 2, consisting of all configurations of 2, with at most one particle
per site. We shall now extend to 2, the structure defined in 2,.

Denote by {, £ the configurations of 2, and by ~ the equivalence relation
defined by { ~ & if there exists x in Z? such that {(z) = &(z + x) for every z in
Z¢. Let 2, the quotient of 2, with respect to this equivalence relation.

On 2, consider the operator S® (resp. M) that corresponds to nearest
neighbor symmetric (resp. totally asymmetric) independent random walks:

(8¢ =(1/2) > WA () - £ Q)

ly|=1 xez?

Z D @A) = £(O]

J=1 xez?
where ¢"{ is the configuration obtained from ( letting one particle jump
from x to y:
{(x)=1 ifz=x,
(@) =q ) +1 ifz=y,
{(2) otherwise .

Notice that (S? is the discrete Laplacian on (Z“)". Hereafter up to the end of
the proof of Lemma 2.2, i stands for independent.
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Denote by %; the collection of functions f: 2, — IR of finite support, i.e.,
/ belongs to %; if there exists a positive integer ¢ such that f({) =0 if
{(x) > 0 for some x not in A,. On %, consider the inner product {-,-);,
defined by

{90 = (Zf(é)) (Z g(C)) :

(e, \ ¢~ &g

We may now define the Hilbert space ' generated by %; and this inner
product. An elementary computations shows that S® (resp. M) is a sym-
metric (resp. antisymmetric) operator with respect to this inner product. We
may thus define the Hilbert spaces 2#;; and ;_; obtained from the op-
erator S®. The inner product are respectively denoted by (-,-);, and

(s Dio-
Every function f in L?(2,) can be extended to 2, by setting f({) = 0 for
every configuration { not in &,. Clearly, with this convention,

(f.f Do = (f, 1) for every f in L*(2,). Moreover,

Lemma 2.3. There exists an universal constant C such that

(9,901 < (9,91 < Cn{g.9),,
(Cn)"(g,9) 1 < (9.9): 1 < (9.9)

for any cylinder function g in M.

Proof. We only have to prove the first set of inequalities since the second is
deduced from the first by duality. The first inequality is trivial from the
definition of S®). To prove the second inequality, recall from section 4 the
definition of the set R,; and notice that

(9,901 < g, 90 + (1 = wi)g, (1 —wi)g) -
The second inequality is now easily obtained from Corollary 4.11. [
We now return to Theorem 2.2.

Proof of Theorem 2.2. For each positive A, consider the solution f; of

A=8S—-M)fi=h. (2.3)
Taking the inner product with respect to f; on both sides of the equation, by
Schwarz inequality we get that

Mo Lido + o fidy = (s hho < IGIL 1ALy

because M is asymmetric and % belongs to # _; by Lemma 4.1. In particular,
I£21l; is bounded above by ||A] ;.
With the notation introduced above we may rewrite equation (2.3) as

(=8O — M, =h+Eif; . (2.4)
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where E; = (S — SY) + (M — M%), Since Mf; and Sf; belong to #_;, by
Lemma 2.3, they also belong to J#;_;. On the other hand, by the same
reasons presented just after (2.1), M f; and S¥f; belong to H;_1. There-
fore, all terms in (2.4) belong to 2#; _1. The S#; _; norm of h + E;f; is equal to

P2 (=S )0+ 22485, £i) 10 — 2240, (=S IO 1),
=205 MOS0+ (s (=S fid o
+ (MOf;, (=S MO 1),

It is easy to check that M@ and S® commute and thus (S@)~" and M© also
commute. In particular, the third term on the first line vanishes because M)
is antisymmetric, for the same reasons, the first term on the second line
vanishes. Since all other terms are positive,

P (=8N fi)ie < (h+Efy, (=S h+ Eifi)yo - (25)

The rlght hand side is bounded above by 2Hh||, L+ 2\|ElfA||l _;. By Lemma
2.3, Hh||l | is less than or equal to (2= I-

For a positive integer ¢, denote by W, the subsets of Z¢ in 2, whose
elements are at least at distance ¢:

Woo={4=A{ai,...,a,} € Py;|a; —a;| > L for i # j} (2.6)

and by w, = w, the indicator function of this set. Since S, S0 and M, MO
coincide on the sets A belonging to W, ,, Eif; = (1 — w3)E,f;. Therefore, by
the variational formula for the ;| norm, Schwarz 1nequc111ty and a version
of Corollary 4.11 for independent random walks, ||E; fA||, , is bounded above
by Cn||E; fAHI |- A direct computation similar to the one performed to proye
Lemma 4.3 shows that this express1on is less than or equal to Cn’|| f;||l 1s
which is bounded by Cn?|| f;||1, in virtue of Lemma 2.3. In conclusion, it
follows from the estimate deduced in the beginning of this proof, Lemma 2.3
and (2.5) that

(i fi) oy < O (o, (=S) )0 < Cr*(h)

for some constant C depending on the dimension only. We may now
repeat the arguments presented at the end of the proof of Lemma 2.1 to
conclude. []

Forn > 1, let n,: # — 2, denote the projection onto the space generated
by the monomials of degree n and let P, = )| m,. To restrict the operator J
to 4,, define J, as P,JP,. Notice that

<<g"]g>>0 = <<gaJng>>0 =0

The leftmost expression vanishes because J = 4 — M and both 4 and M are
asymmetric operators. On the other hand, by definition of J,,
(g.Jn9)o = (Png,JP.g), that vanishes because we just showed that J is an
asymmetric operator.
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In section 5, using perturbative arguments, we shall extend the previous
result to the operator L, defined by

L,=S+M+PJP, .
Theorem 2.4. Fix k > 2 and h in 6. For any n > k,
uleqéf |h—Lyu|_, =0 . (2.7)
We need the following estimates from [SVY] on the #; norm of the solution

to the equation (2.7) :

Lemma 2.5 (A priori estimate). Fix k > 2, h in €, and n > k. Consider u a
solution of equation (2.7) in the sense that u belongs to €, and
|h = Lyu|l_y < e". Then, for every m > 1

> llmull < Clk,m) {1+ 1A}

J=2

for some finite constant C(k,m) depending only on k and m.

Proof. Fix m > 1, a cylinder function u in %, such that ||h — Lyu||_; <e™"
and denote mu by u;. To prove the lemma we shall estimate
> i<jenl@+j"){u;, Lu), for all @ > 0. Fix 1 < j < n and adopt the conven-
tion that ug = u,.; = 0. Since L = § + 4, A is asymmetric and S preserves the
degree of a monomial while 4 changes it by at most 1,

(uj, Luy = Quj, Supho + Qujs Aujr g + (uyy Auji g
= ujs Supho + (), Aujii)o — (ujr, Auj)g
Therefore, by summation by parts and the convention that uy = u,; =0,
Zlgjgn(a + ") (u;, Lu), is equal to

n

D (a+ ") (uj Suz)o + i(d + /") g Aup1 )0 — Qujmr, Auj)o }

:Z(a—l—jm ) uj, Sui), —I—Z — (J+ )" u;, Aujir), -
=1

Since 4 = M + J and M preserves the degree, (u;, Aujy1), = (u;, Juj1)y. By
Schwarz inequality, the absolute value of this expression is bounded above
by (1/2y){uju;), + (2/2){Juj1,Juzq1)_, for every y > 0. By Corollary 4.5
below, (Ju;i1,Ju;r1)_; is bounded above by Cj{uj;1,u;11), for some uni-
versal constant C. Therefore, choosing y = j~/2,

[{uj, Aujr1 ol < C\/}{«”j?”j»l + <<”j+1>”j+1>>1}
so that
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n n

D" = G+ D" Wy, Aupir)o| < Clm) "2 (uj ),
=1 =1
for some constant C depending only on m.
On the other hand, 3., (a + j"){u;, Lu), is equal to
Z(a + ") {{uj, Lou — By + (u h)o} - (2.8)
=1
By Schwarz inequality and the assumption on u, (u;, L,u — h), is bounded
above by (1/4){u;,u;), +e". In contrast, since the spaces .#; are ortho-
gonal, by Schwarz inequality, (u;,h), = (u;,h;), is bounded above by
(1/4){uj,u;), + (hj, h;)_,. Since by assumption % belongs to %, the absolute
value of (2.8) is bounded above by

n

k
(1/2) Y (a+ /")y w5}, +Z (a+,") Z (a+ ") h )
=1 =1

= (1/2) Y (a+/"Wu,up)y + Cla,m k{1 + (h,h)_}

J=1

for some constant C(a, m,k) depending only on a, k and m.
Recollecting the two previous estimates and since by definition
(u,u), = (u, (=S)u),, we have that

{5+ 5w~ U ) < Camb i+ G )

J=1

To conclude the proof of the lemma it remains to choose a = a(m) large
enough so that (1/2) + (a/2/") — {C(m)/\/j} > 1/4 for every j > 1. O

Proof of Theorem 1.1. Fix n > 2. By Theorem 2.4 and Lemma 2.5, there
exists u in %, such that |2 — L,u||_; < e " and Zlggnjzﬂnjuﬂf < C(h). Since
u belongs to 4, and the generator modifies the degree of a monomial by at
most 1, Lu = P,.1Lu. Therefore, Lu = L,u + n,.1Lu = L,u + J,u, because S
and M preserve the degree of monomials and J_ reduces it by 1. In particular,
by deﬁnmon of u and Schwarz inequality, |[Lu — &), is bounded above by
2| | +2e7". By Corollary 4.5 and the estimate of the 5| norm of Uy,
[sua|” ) < nllun||; < C(h)n~". In conclusion, we showed that [|Lu — &, is
bounded above by 2C(h)n~! + 2¢™", what concludes the proof of the theo-
rem. O

3. Second proof of Theorem 1.1
Recall that we denote by L, the operator L restricted to the space of functions

of degree n: L, =S + M + P,JP,. We have already seen in the previous sec-
tion that the operator J, = P,JP, is antisymmetric. A simple computation
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shows that it is bounded in %, for every n > 1. In particular, for any 4 > 0,
the operator (A —L,)”" is well defined and has norm bounded by 4~'. Fix
k>2, h in 6, n>k and consider the solution f;, of the equation
(A= Ly)fo,n = h. Our first task is to obtain estimates, uniform in n, of the
various norms of f),.

With the same proof of Lemma 2.5, we deduce

Lemma 3.1. For every 2> 0,n >k and m > 1,

& o 2 - . 2 2
WD M mfalls > Imifoalls < Clm, k)R,
J=1 j=1

Sfor some finite constant C(m, k) depending only on m and k.

Lemma 3.2. For each fixed n and 1,

A fnll - < CHIA] -
for some finite constant C depending only on k.

Proof. It follows from estimate (4.3), Corollary 4.5 and Lemma 3.1 that L, f; ,
belongs to # _;. In particular, f;, belongs to J#_; because h € #_; and
Son = Kl(h +L,f;n). Moreover, from the equation (1 —L,)f;,=h, we
obtain that ||A]]*, is equal to

;Lz«f/l,mf)v,n»fl + 2/1«fi,nafi,n>>0 - 2/1«.f/l,n7Anf‘/l,n>>71
- 2<<f).,n>Anf/l,n>>() + «fk,naf}”n»l + <<Anf/1,n7Anf/l,n>>71 ’
where A4, stands for M + J,. The first term on the second line vanishes be-

cause A4, is antisymmetric. Since all but the third term on the first line are
positives,

P fims frn) 1 S NBIZ L+ 224 fns Anfr) -y - (3.1)

To conclude the proof of the lemma it remains to estimate the second term
on the right hand side of this inequality.
On the one hand, we claim that for all n > &,

/12
24 o I 1| < G Woall2y + CR)IIAIZ, (3.2)

for some constant C(k) depending only on k. Indeed, 2A(f;,,Jufin)_; is
equal to

1<jk<n
lj—#=1

20 Amifomd miia) 1 < 2/ Y NwifiallZy +16 Y I mifiallZ -
=1 j=1

Since the spaces {.#;,j > 2} are orthogonal in 4 _;, the first term on the
right hand side is just (2%/4)|fi.|I”,. The second, by Corollary 4.5, is
bounded above by Cy Y jllnifisll; for some universal constant Co. In
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virtue of Lemma 3.1, this expression is less than or equal to C; (k)||A||* . what
proves (3.2).
On the other hand, we claim that

12
22\ Mfia) | < G Wl + CL )P, (33)

for some constant depending only on the degree £ and the dimension d.
Indeed, since M preserves the degree, 2A(f; ., Mf,,)_, is equal to

27 Z«njfi,m Mm;fon)_y -
=1

By Lemma 4.12, with y = 4/8, this expression is bounded above by

Jj=1

(/4D mifoms (mifin) 1 + C Y P (mifom mifon)y
j=1

for some constant C(d) depending exclusively on the dimension d. The first
term is just (2%/4)||f;..]>, because the spaces M ; are orthogonal in /#_;. By
Lemma 3.1, the second term is bounded by C(k)||4||*,, what proves claim
(3.3).

Estimates (3.2) and (3.3) together with inequality (3.1) conclude the proof
of the lemma. [J

We are now ready to prove Theorem 1.1

Proof of Theorem 1.1. In the previous two lemmas, we showed that the
solution f;, of the equation (1 — L,)f), = h is such that

ANFrally + 2N Sl 24+ Wfaallt < CERY A,

for some finite constant C(k) depending only on k. Since these estimates are
uniform over n, we may consider a subsequence, still denoted by n for
convenience, so that f; , converges weakly in #_;, # and 4, to a function
fi. Tt is straightforward to check that f; is a solution of (1 —L)f; = h.
Moreover, from the previous estimates we obtain that

I 2 2 2
ZIGIZ U < Clial,

We may now consider a subsequence 4; for which f;, converges weakly in
A1 to some Fy and J;f;, converges weakly in s _; to some F_;. For g in
H N A _y, we have that

(9. 1) = lim Zu(g.fi)o = O

because f), converges weakly in 5#; to F. This shows that /. f;, converges
weakly to 0 in ##_;. From this convergence, it follows that there exists a
sequence 4, ;, 1 < j < n, such that (1/n) 37, Znf’,, converges strongly to
0 in # . Since f;,, is the solution of (4,; — L)f;,, = h, we obtain that
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( > fm,) +h

1<j<n

converges strongly to 0 in s _;, what concludes the proof of the theorem
because f;, . belongs to # and may thus be approximated in # _; by linear
combinations of cylinder functions. [

4. Estimates on the asymmetric part of the generator

We start this section with some remarks concerning the operators M, S, J
and the Hilbert spaces #, #| and # _;. Recall from (1.9) the definition of
the Dirichlet form D. For a fixed cylinder function g in ./#,:
g= ZMA‘:n gana, the Dirichlet form of g writes

D(g) = (1/4)K, ZZ > {gAU{x—O—ej} _gAu{x}}2 : (4.1)

X AJAl=n—1
AN{xx+e;}=¢

Moreover, every cylinder function % in .4, has a finite /', norm equal to

(h,hY), = }Lm(zf)*dD > ok, (4.2)

x| <l=sn

where s, is the linear size of the support of 4 : s, = min{k, & is measurable
with respect to 7 = a(n(x),x € Ax)} so that 7,4 is #, measurable for all x in
Ay,

Next result is a restatement of Lemma 5.1 in [EMY].
Lemma 4.1. In dimension 3 or higher every cylinder function h in My, k > 2,
has finite # _| norm and

(A 1)y Z}Lrglo(ZE)’”’SI}p 2< > Txh7f> —D(f) ¢ s
’ |x|<l—sp P

where the supremum is carried over all cylinder functions f measurable with
respect to F ¢ and Dy(f) is the Dirichlet form restricted to Ay:

Di(f) =D (=S 1),

xyeAy
Jx=yl=1

We turn now to the proof of some estimates on the asymmetric operators M
and J used throughout the article.

Lemma 4.2. For every n > 2 and every function f in R,,

(Mf.Mf)_y < 2(1=2p)*nd(f [ )y - (4.3)
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Proof. Fix a function f in .#,. Recall from (2.1) the explicit formula for the
inner product (Mf,g), for some cylinder function g in .#,. By Schwarz
inequality,

taar. o < (1 = 260 { L1l + 21715}

for every y > 0. The statement of the lemma for cylinder functions in .#,
follows from this inequality and formula (1.7) for the ##_; norm. To extend
it to functions in #,, one just need to recall that .#, is dense in %, and that M
is a bounded operator on #,,. []

Lemma 4.3. There exists a constant C depending only on the dimension d such
that for every n > 2,

(SMf,SMf), < Cr*(Sf,Sf)y and (Mf,Mf), < Cn*(f.f),
for every fin R,.

Proof. This statement follows straightforwardly from the explicit form (1.6)
for the inner product (-, -), and Schwarz inequality. [

We investigate now the antisymmetric operator J. This result was ob-
tained in collaboration with S. Sethuraman and S. Varadhan.

Theorem 4.4. There exists an universal constant C such that for every n > 2
and cylinder functions h in M\, g in M,

(h,J1g), < Cy/n{3D(h) + 7' D(g)}

for every y > 0. Moreover, if both functions h and J.g are & y-measurable we
may replace on the right hand side D(h) + D(g) by D(h) + Di(g).

Before proving this theorem, we deduce an estimate repeatedly used in the
previous section.

Corollary 4.5. There exists an universal constant C such that for every k > 2
and cylinder function g in €,

(9,79) -1 < Cp(1 — p)k(Sg,Sg) _, = Ck{g,9), -

Proof. Since the spaces .#;, 2 < j <k, are orthogonal in #_,, assume
without loss of generality that g belongs to .#; for some 2 < j<k. By
Lemma 4.1,

«ng,Jg»_l:élir{.lo(2f+1)*dsup 2< > rng,f> —Di(f)

/ [x|<t—s4 P
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Since both t,Jg and f are & ,-measurable, by Theorem 4.4, for each fixed ¢,

2< Z rng,f> < CkD Z g | +Di(f)
p

[x|<l—s4 [x|<b—s4

for some universal constant C. In particular, the last supremum is bounded
above by

Ck(2t+1)"'Df Y g

[x|<l—s4

By (42), as {1 oo, this expression converges to Ck{g,g), = Ck
(Sg.89)_,. O

Corollary 4.6. There exists an universal constant C such that for every k > 2
and cylinder functions g, f in €,

{Jg,/)- < CVEIgIIIAAL -

Proof. Since the spaces .#;, 2 < j <k, are orthogonal in J#_;, assume
without loss of generality that g belongs to .#; and f belongs to .#;; for
some 2 < j < k — 1. In this case, by definition of the inner product -, ),

<<J+g,f>>o=g;ngo<zf>—d< > s Y ryg> .

I <t=ss [y|<t=s,

By Theorem 4.4 and identity (4.2), this expression is bounded above by

. —d . —1
C\/ﬁ[lillc)lo(2f) vD Z Ju.f | +7 D Z Ty

x{<t—s; bi<t—s,

= CVu{p{f )+ g o} -
To conclude the proof of the corollary it remains to optimize in y. []

Proof of Theorem 4.4. Fix n > 2 and cylinder functions % in .#,,, and g in

My h = ZA,\A\:nH hanip, g = ZA“’W:,, gana- By the explicit formula for J g
obtained in the previous section,

<h J+g n+1 Z Z Z {gAU{x+ej} — JAU{x} }hAU{x,erej} .

X AJAl=n—1
An{xx+e;}=¢

(4.4)

By Schwarz inequality, this expression is bounded above by
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d
Z%Knﬂ(p) ;Z Z {gAU{x+ej} - gAu{x}}2

x A;|A|=n—1
Aﬂ{x,x+€/}:¢

d
+ %Klﬂ-l (,0) Z Z Z h?\u{x,ere,v}
=

X AAl=n—1
An{xx+e;}=¢
for every y > 0. By (4.1), the first line is just {{p(1 — p)}/2y}D(g).

To conclude the proof of the theorem, it remains to show that the second
line is bounded above by Cyp(1 — p)nD(h) and choose y = n~!/?y,. This es-
timate is the content of the next result.

Note that in the case where 4 and g are % ;-measurable, on the right hand
side of (4.4), we may restrict the summation over all sites x such that x and
x +e; belong to A, because otherwise Apyirxie;) = 0. Thus we obtain an
estimate with Dy(g) in place of D(g). [

Theorem 4.7. There is a constant C > 0 independent of n such that

d

CK, (p) Z Z Z h%\u{x‘,x+e/} < (n - 1)D(h)

J=1 xez? A|A|=n-2
An{xx+e;}=¢

for every function h in L*(2,).

The proof of Theorem 4.7 is divided in several lemmas. We start with
a Schwarz inequality. For each function g¢:2,— R in L*(2,)
(Z‘ Al=n g4 < 00), denote by p, and p, the one and two point functions:

P = > = Y. G

A;|A|l=n A;|A|=n—1
xeA An{x}=¢
p2(xay) = Z g?\ = Z g%\u{x,y}
A;|A|l=n As|A|=n-2
xyeA AN{x,y}=¢

for all x # y in Z°.
Lemma 4.8. For any site x # y,

{\/ p1(v) — v Pl(x)}zﬁ Z {9aupy — gAu{x}}2

A;|A|]=n—1
AN{xy}=¢

{\/ p2(3.2) =/ pz(w)}zﬁ > {oavps - Irotea )

A;|A|=n-2
An{zx.y}=¢

forall z#x, y.
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Proof. Fix two distinct sites x and y. We may rewrite p;(x) as

= Y Gt D hup -
A;|A|=n—1 A;|A|=n-2
An{xy}=¢ An{x,y}=¢

To conclude the proof of the first inequality, it remains to rewrite p,(y) in a
similar way and recall the Schwarz inequality

1/2 12\ 2
{Z"]z} _{ijz} <D (e =)

The proof of the second inequality is similar to the one presented. We leave
the details to the reader. []

Lemma 4.8 and the explicit formula (4.1) for the Dirichlet formula give
that

zd; S+ e) - Vm(x>}2§ Ka(p)"'D(g) -

By the same reasons,

> 3 {nb e -V}

d
J=1 x,yeZ‘l
y#xx+e;

d
< Zl Z Z {QAU{H@_/} - g/\U{x}}z
=

xyeZ! Ai|Al=n—1yeA
y#Exxt+e; An{xxte;t=¢

d
=mn-DY3" > {gavrie) — 9avm == 1K,(p) 'D(g) .

J=1 xez? A;|A|l=n—1
An{xx+ej}=¢
We are now in a position to conclude the proof of Theorem 4.7.

Proof of Theorem 4.7. From the definition of the two point functions and the
previous estimate, we just have to show that there exists a constant C > 0
such that

CY nt) =3 Y { ot o) = Vioslen) b <0

[x—y|=1 J=1 xyez!
V#Xx+e;

for all two point functions. We may rewrite this inequality as
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d 2
S )= Y {nbten) -V} s <o
¥ x;e—y|=1 J=1 xez?
X£y.y—e;j

Since the problem is covariant in y, we can assume y = 0. The problem is thus
reduced to show that there exists a constant C > 0 such that

d
CY V@@ =3 > {fere)—f@Y <0 (43)
xezZ? J=1 x#0,—¢;
for all L>(Z%) functions f. Here V(x) is the finite supported function
V(x) = I{]x] = 1}. This estimate follows from a general result based on the
Birman—Schwinger kernel.
Consider the Schrédinger operator

H=-A-CV

where A is the Laplace operator in Z¢ with Neumann boundary at origin, ¥
is a nonnegative function with finite support and C > 0. We claim that in
dimension d > 3, H > 0 for C small enough. It is enough to show that there
exists C > 0 such that

-A+.>CV

for any constant 4 > 0. To keep notation simple, let V- = CV. Multiplying
both sides by ¥}*[41— A]™! from the left and by ¥ '/* from the right, the
proof of the last inequality is reduced to show that

VPN <

The kernel of this operator is K(x,y) = Vc(x)l/zGi(x,y) Vc(y)l/z, where
G, = [4— A]"". The Hilbert-Schmidt norm of K is bounded above by

Y Ky =CY V@GV () .
X,y Xy

As /4 decreases to 0 this expression converges to

S V(0GP ()

where, G(x,y) is the Green function of the operator —A. The operator
Vcl/2 = A" Vé/z is thus bounded above by 1 for all C small enough because
in dimension d > 3 the Green function G is finite and ¥ has finite support. []

We conclude this section with an alternative version of Theorem 4.7 and
further estimates on the antisymmetric operator M. Denote by Z¢ the lattice
Z¢ without the origin and by 2, the subsets of Z? with cardinality n. For
each function ¢: 2, — R in L*(2}) Crer: g3 < o0), denote by p3 the two
point functions:
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PAEY) =D Gh= D GAuat

AeZ;; AeZ,_,;
xyEA An{xy}=¢

for all x # y in Z?. Denote furthermore by S* the generator S with Neumann
boundary conditions at the origin: §* = Zx.yel‘ﬁ\x—y\:l S,y and by D" the
Dirichlet form associated to S*:

D(g) = (g, (=89, = (1/HK(p) D > Honvp) — 9avm )’ (46)

xygzd Ae?,_,
|x—y|= 1Aﬂ{x,y} ¢

for every cylinder function g = >, gaa-
The arguments presented in the proof of Theorem 4.7 gives that

Theorem 4.9. There is a constant C > 0 independent of n such that
CKu(p) > Y. My < (n—1)D(h)
x,yng; AGJ/
e—y|=1 AN} =
Sor every function h in L*(2%).

The next result follows straightforwardly from this theorem and Schwarz
inequality.

Corollary 4.10. For every positive integer ¢, there is a constant C({) depending
only on { such that

COKAp) D > Mgy < (n—1)D*(h)

xyezd AEZ, ,
I<|x—y|<t AN{xy}=¢

for every function h in L*(2%).

Recall from (2.6) that for a positive integer £ we denote by W, , the subsets
of Z¢ in 2, whose elements are at least at distance ¢ and by w, = Wy the
indicator function of this set.

Corollary 4.11. For n > 2 and a cylinder function f in M,

£ (1 =we)llg < COn| 117

for some constant C(£) depending on € only.

Proof. Fix n > 2 and a cylinder function f =Y fan, in .#,. Define a new
monomial F' = > Fany, in .4, by

FAz{OZB~AfB if0eA

otherwise .

With this definition, we may write



Asymmetric simple exclusion processes 345

2 Kulp) 12 _ Kalp) 2
1fllo ==, > Fioy and |17 = ™ > {Fauoy — Fauoy )
AeZ, | AQeZ,
& (AQ)=1

where d* is the natural distance in £ so that d*(A,Q) =1 if either
d(A,Q) =1 or if there exists x with |x[ = 1 and A = x + Q. In particular, if
for a set A'in 2, | we denote Fj(0, by Fa, we have

Kn P [
113 = ,ﬁ) Z R and

S
2 ( ) > - 2
11y = 4 Z {Fa—Fal? > =223 > {Faugy — Favpy }
AQeZ: | xyeZ! AeZ,
a(AQ)=1 [x—y|=1 An{x,y}=¢

(4.7)

Fix n > 3. From the definition of the new monomial F, it follows that
K (p) " If (1 — wo)l[§ is equal to

1 N
> F . (4.8)

LN

AU{0}emy,

For each set A in 2, N W, there are n distinct sets Q;, 1 <i < n, equivalent
to A containing the origfn. At least n — 2 of these sets contain two sites
distinct from the origin that are at distance less than ¢. Since Fq, does not
depend on i, the preVious expression is bounded by

Z == 2 > FRoew

AE( ) xyeZd  AeZ,
1<‘v y‘<é Aﬂ{x,y}:(]ﬁ
provided (W) stands for the set 2, NWy,. By Corollary 4.10, this ex-
pression is bounded above by C(¢)(n/n — )K (p)~'D*(F), which in virtue of
the definition of F, the explicit formula for the Dirichlet form D* given in
(4.6) and equation (4.7), is bounded by C(Z)anH%
It remains to consider the case » = 2. We have already seen in (4.8) that

Ka(p) Ml (1 = o) is equal to

1 )

3> Fy

I<]x|<e

By formula (4.5) this expression is bounded above by

) D Ry - Ry
x,y€Z¢
[x—y|=1
for some constant C(¢) depending only on ¢. This expression by (4.7) is
bounded above by C(¢)K,(p) '||f||} what concludes the proof of the cor-
ollary. [
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Lemma 4.12. There exists a constant C(d) depending only on the dimension
such that for every n > 2 and h in X,,

C(d)n?

(h,MBY)_, < Al + 1Al

for every y > 0.

Proof. Denote by [M,S] the commutator of S and M defined by MS — SM. A
simple computation shows that for any n > 1 [M, S] is symmetric operator on
R, and that M and S commute on W, , for £ > 3: MS(wyf) = SM(w.f). This
follows from the fact that for the generators M and S particles jump at most
by one unit. In particular, [M,S](wyf) =0 for all £ > 3 and f in &,.

Consider a function % in the range of S:h = Sg for some ¢ in #,. By
definition of [M,S] and since M is an asymmetric operator,

{n, Mh)_, = —(1/2)(g,[M,Slg)o -

By the properties of the commutator mentioned in last paragraph,
(g, M, S]g), is equal to

(g, 1M, S|(1 —ws)g)y = ([M,S]g, (1 —w3)g),

1 y (4.9)
<5l - ws)[M, Sgl + o1 U w3)gllg

for every y > 0. By Schwarz inequality, Corollary 4.11 and the definition of
the commutator [M,S], ||(1 —ws3)[M, S]g||§ is bounded above by

20(1 = wa)M[ + 21— ws)sMgl3 < Cn{ M7 + [15Mg3

for some universal constant C because 4 =Sg. By the same reasons
[[(1 = w3)g|? is bounded above by Cn||k||* ,. Therefore, the right hand side of
(4.9) is less than or equal to

1 2, 1 2, T2 }
Cnd = |Mh|? + — ISMg|> + 2 |1Al2, b .
{2 e+ iswag + 2 12,

By Lemma 4.3, |[Mh|; is bounded above by Cn?|||; for some universal

constant C and ||SMg|)? is bounded above by Cn2||Sg||? = Cn?|||}. We have
therefore proved that

n’ Y
iy, < cof = 3+ L |

for every y > 0 and every 4 in the range of S. To extend the result to every A
in %, recall that in virtue of Lemma 2.1, the range of S is dense in #_; ,,, %)
and in Z,. On the other hand, by (4.3), (Mf,Mf)_, is bounded by {f, ),
what concludes the proof. [
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5. Perturbation Theorem

Consider a Hilbert space H, a dense subset U of H and three operators S, IM
and J defined on U and satisfying

(H1) S is a symmetric nonnegative operator and IM, J are asymmetric.

Denote by (-,-) the inner product in H, by D(v/S) the domain of the
symmetric nonnegative operator /S and by H; the closure of D(v/S). On H,
consider the inner product (-,-), defined by (u,v), = (u, Sv), and denote by
H_, the dual of H; with respect to (-, so that (u,u) ;=
(u,S7'u) := sup,{2(u, h) — (h,h),}, where the supremum is carried over all &
in H. We assume that

(H2) There is a constant C; such that

[(v, Bu)o| < Cilfull o]l
for all u,v € U.

(H3) Let B, = S + AIM. For 4 small enough the range of IB, is dense in
H_,: for any ¢ > 0 and g € H_ there is u € U so that

B — gl <o .

(H4) M, S and J are bounded operators from H to H_;.

Assumptions (H3) and (H4) guarantee the existence of an inverse lB;1
from H_; to H. The main theorem of this section states that assumptions
(H1)-(H4) guarantee that the range of the operator S + J + IM is also dense
in H_;. Thus, we may not only extend (H3) to A large but add a bounded
operator in the sense of (H2).

Theorem 5.1. Assume hypotheses (H1)—(H4). For any g in H | and any ¢ > 0
there exists u € U such that

IS+ 2u—g|_ <e for A=IM+T (5.1)

Before proving Theorem 5.1, consider the case where H = %, U = @;?: VM
S=-8,J=J,M=Mand (-,-) = (-, -),. In this context assumption (H2) is
satisfied in virtue of Corollary 4.6, assumption (H3) is fulfilled for every
0 < A <1 by Theorem 2.2 and assumption (H4) follows from Lemma 4.2,
Corollary 4.5 (because (f,f), < 2dn{f,f), for f in %,) and the fact that
(Sf,SfY_y ={f,f);- Theorem 2.4 follows therefore from Theorem 5.1 and
the results proved in section 2.

We now turn to the proof of Theorem 5.1 and derive some simple bounds
of the operators.

Lemma 5.2. Assume hypotheses (HI), (H2) and (H3). Let IE be an asymmetric
operator defined on U and denote by C; the constant introduced in assumption
(H2). For any function u € U and any A > 0 we have

ISull -y <I[(S+ AB)ull_, and ||Ju|_; < Cif|Sul|_; (5:2)
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In particular, setting IE =M, ||Sul||_,; < ||B,u||_,. Moreover,
|98, < ¢

so that JI]B/{1 defines a bounded operator in H_;.

Proof. By definition,

(S + ZB)ul®, = [Sull®, + 240, By + 2 Eul, > [|Sul?,

because IE is an asymmetric operator by assumption. This proves the first
bound of (5.2). On the other hand, by assumption (H2) and the variational
formula for the A_; norm, ||Ju||_, < C;||Su|_, for every u in U.

To prove that .]I]B)fl is a bounded operator in H_, it suffices to show that

1985 o]y < Clloll, (5.3)

for a dense subset of functions v in H_;. It follows from the inequalities in
(5.2) with [E =M that | Ju||_, < C||B,ul||_, for every u in U. Therefore,
(5.3) holds for v = Bu, u in U. By assumption (H3), the subset {IB,u,u € U}
is dense in H_;. This concludes the proof of the lemma. []

Our goal is to solve (5.1). Note that it is not sufficient to construct the
Green function (S+ A)~' as a bounded operator from H_; to H,. To see
this, suppose it is true. By definition,

IS+ 2)(S+8)'g—g] =0

We would like to define u to be a local function that approximates
(S+A) 'ginH : |lu—(S+2) 'g||, < e On the other hand, since S + A is
not a bounded operator from H; to H_;, we can not conclude (5.1).

We start now our route to prove Theorem 5.1. We first show that we can
extend property (H3) to large /.

Lemma 5.3. Let E be an asymmetric operator defined on U and satisfying
assumption (H4). Assume that there is Ly > 0 such that for any g € H_| and
any & > 0 there exists u € U so that

(S + AE)u—gll <& . (5.4)

The statement remains in force for A= 1.

Proof. Let T:= S + /yIE. By (5.4) and (H4), we may define the inverse 7!
from H_; to H. By the proof of the previous lemma, ||Su||_, < ||Tu||_, and
we may extend S7~! is a bounded operator on H_; with norm [|ST™'||_,
bounded by 1. In particular, for every 0 < 6 < 1, we may define the bounded
operator (1 —dST~')™" by the series im0 (6STH".

Fixe>0andgin H_y. Let h = Ao [1 — (1 — ig)S”ﬂ'*l]_lg. Since % belongs
to H_j, by assumption (5.4), there exists u in U (or u € H N Hj) such that
(|7w — h||_, < e. Since,
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S+E=7'[T—(1-2)S]=/45'[l = (1 - 2)ST'|T ,
we have that
(S + E)u—gll_y = 25 [I[1 = (1 = 70)ST™']
x (Tu=20[1 = (1= 20)ST™] g I,
< C(20)||Tu — hl|_; < C(4o)e

for some constant C(4¢) that depends only on A. This proves the lemma. []

Lemma 5.4. Assume that B and E are operators defined on U satisfying
[EEB |-, < 1. Suppose that for any g € H_y and any & > 0 there existsu € H
so that

Bu—gl|_; <& . (5.5)
The same statement remains in force if B is replaced by B + IE.

Proof. Fix g in H_| and ¢ > 0. Assumption (5.5) and the proof of the pre-
vious lemma show that [1 +EB~']"" is a well defined bounded operator in
H_ . Let h=[1+ IE]B’I]flg. By assumption, there exists u in U such that
|Bu — h||_, <e. Since B4+ E =[1 +EB™']B,

_ -1
B+ Eyu — g, = I[1+ EB'] (B — [1+EB]'g)||_,
<2||Bu—h|_, <2 .
This concludes the proof of the lemma. []

Proof of Theorem 3.1. Let J, = J. By Lemma 5.2 E=J, and B=1B,
satisfy the assumptions of Lemma 5.4 for A small enough. In particular,
E=M+J satisfy the assumptions of Lemma 5.3. Therefore, for any
g € H_) and any ¢ > 0 there is a u € U such that

[(S+R)u—gll_, <e.
what concludes the proof of the theorem. []
The same proof applies to a slightly different set up.
Corollary 5.5. Instead of (H3) and (H4), assume that
(H3b) Let B, =S + AIM. Then for A small enough the range of ]B;1 re-

stricted to U N H; is a dense subset of H_|: for any g € H_| there is

uec UNH, so that
[Bu—gll_y <e.

(H4b) M is a bounded operator from H to H_y and S and I are bounded
operators from Hy to H_y. Furthermore, U is dense in H N H, with norm

Mo + 1 -
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Then, for any g in H_| and any ¢ > 0 there exists u € U such that
NS+ 2u—g|_ <e for A=IM+T

6. The Green—Kubo formula

Recall the nearest- nelghbor asymmetric simple exclusion process is a Markov
process on {0, 1}*" whose generator L acts on cylinder functions as

Z Z ’7x+e][f(’7x’x+e) _f(’/])] .
J=1 xez?
e le|=1
where p(e) is the jump rate from x to x + e. For configuration # and a density
p, denote respectlvely by IP, and IP, the probability on the path space
D([0, 7], {0, 1}~ ) corresponding to the Markov process with generator L
starting from #, v,. Expectations with respect to P, or P, are respectively
denoted by E, and E,. Thus IE,[{n,(x) — ny(x)}n(0)] stands for the time
dependent correlation functions of a general driven diffusive system in
equilibrium with density p. Suppose these correlation functions behave like
(non centered) Gaussian. Then one obtains the diffusion coefficient (the bulk
diffusion coefficient) by the following limit

D;y(p):nmlzi{zm, ol{n(x) - <x>}no<0>]—x<u,-r>(vjr>} (6.1)

where v in IRY is the velocity defined by

vt = % > X, [{n,(x) = 19(x)}1(0)] (6.2)

v xeZ?

and y the static compressibility which for simple exclusion processes is equal
to x(p) = p(1 — p). Here we have followed the convention of [LOY?2] to
denote the diffusion coefficient obtained in (6.1) as the first definition adn
thus the superscript 1. The velocity can be explicitly computed (cf. [S]):

v=(1-2p) > ple)e . (6.3)
e:le|]=1
Another definition of the diffusion coefficient is through the linear response
theory. To fix ideas, consider the nearest neighbor simple exclusion process.
Denote the instantenuous currents (that is difference between the rate at
which a particle jumps from x to x + ¢; and the rate at which a particle jumps
from x + e; to x) by W, ye,:

Werre, = plein(x)[1 — n(x + ;)] — p(—ei)n(x + ) [1 — n(x)] (6.4)
so that
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= Z{er,-,o - I/V(),e,-} .

Let wi(p,n) =w;i(n), 1 <i<d, denote the normalized current in the i-th
direction :

d

i) = Mo, = (W), = g (Mo,

(n(0) = p) - (6.5)
Similarly, we can define the currents W', of the reversed process char-

acterized by the generator L* which is the formal adjoint of L with respect to

vp, or the generator of the reversed dynamics. The current W, is given
explicitly by
Werre, = P(—e)n()[1 = n(x + )] = pler)n(x + e)[1 = n(x)] -
Similarly w;(p,n) = wi(n) is defined by
Wi = Wiy = 0500, — el n0) = p) (6.6
and a simple computation shows that
wi = [p = p(=e:)|]Ven(0) = [ple;) = p(=e;)][n(0) = plln(er) = pl 6.7)

= [p = p(e)]Ven(0) + [p(ei) — p(—en)l[n(0) — pln(e:) — p] -

The second definition of diffusion coefficient according to the convention of
[LOY2], DP(p) = (Dlg’zj)(p))1 <ij<q» Obtained through the linear response
theory is given by the Green—Kubo formula as [ELS]:

Dl(i)(p) = }’(1p){ - %5i,j<[’1(ei) - ’7(0)]WO,ei>p

_/ dtz<w, el T (n)>p}-

In this formula and below J; ; (or . ) stands for the delta of Kroenecker and
is equal to 1 if i = and 0 otherwise. Moreover, e (eX") represents the
semigroup of the Markov process with generator L (L*).

The static term of the Green—Kubo formula is easy to compute. It is equal
to (1/2)6;,y so that

1 [ .
Df‘j') —(1/2)0;; = —%/0 dtz <wi;e’L ‘cxw;f>p

: * (6.9)
:—}/0 dtz;< j,eerw,>p

The purpose of this section is to show that the bulk diffusion coefficient D(!)
is equal to the symmetric part of the Green-Kubo coefficient : D(V) = (D))",
In [LOY2] we proved that the bulk diffusion coefficient is such that

(6.8)
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DY — (1/2)5 ,j_tlggTy{ /ds/ Y w,, wj>p
— | ds | dr wi et Towt .
/0 /0 ; ! ’>P}

(6.10)
Recall the inner product (-, -}, from (1.2) and define the norm:

IIf\Ipo Do - (6.11)

Fix a unit vector ¢ € Z?. We can rewrite (6.10) as

&.pWeE—(1/2) 7t1l>r£o /{ /ds/ dr{e™we;w po} .

where w; = - w. Since for the inner product (-,-),,, the gradients are
equivalent to 0, we have that w; = —w; for this inner product. Hence the last
term is equal to

e.pWeE—(1/2) = 11m ds/ dr{e™we;w

t—00 y

— tim L |12 /0 ds w<<n<s>>H

t—oo y

2

p,0 '

We shall prove that the time correlations of the current decay fast enough so
that

t—00

) 3 t 2 [e'¢] E
lim Hr 1/2/0 ds W‘f(”(s))Hp,o:/o ds(ewewe) o (6.12)
so that
¢.pVe—(1)2) = %/OO ds((eSLwcj;wé))p‘O )
A :

This is exactly the symmetrization of the Green—Kubo formula (6.8).
We start with a general result on Markov processes.

Lemma 6.1. Suppose p is an invariant measure of a Markov process with
generator L. Then, for every function w in H_ (1),

limsup IE,,

t—00

(2 [ wioton d)] < 6w, (~L) ) = 6wl - (6.13)

In this formula (-,-) stands for the inner product in L*(u) and Ly for the sym-
metric part of the generator L.

Proof. Fix a function w in H_;. Consider the resolvent equation

(A=Lu,=w (6.14)



Asymmetric simple exclusion processes 353
By Ito’s formula
t
u;(t) = u,(0) +/ Luj;(x(s))ds + M, ,
0

where M, is a martingale satisfying
2
E M) = t(u;, (—Lo)us) = tlluz ]|y -
In particular, by the resolvent equation, the left hand side of (6.13) is

bounded above by
, 2
<t1/2/ uy(x(s)) ds)
0

By Schwarz inequality, the last term is bounded by

t
2*E, { /0 u; (x(s))? ds} = 2t|usl5 -

Set 2 = +~'. We have thus proved that

P 2
<t1/2/ w(x(s)) ds) ] < 127uilg + 4lluzll? -
0

To conclude the proof of the lemma, it remains to estimate the L? and the H|
norms of u; in terms of the H_; norm. Multiplying the resolvent equation by
u; and taking the expectation with respect to u, we have that

Aluzl§ + Nluil|T =z w) < (1/2)Juallf + (1/2)wll -

86 [luslI§ + 4llusf + 42°EE,

E,

Hence,
Auillo + (1/2)uall} < (1/2) Wl

what concludes the proof. []

Notice that Lemma 6.1 remains in force if the left hand side of (6.13) is
replaced by the expression ||r~!/2 fé ds wi(n(s))”ip and the inner product on
the right hand side is replaced by (we, (—Ls)~ we), . We have thus proved
that '

imsup 7 [ i) < e (<L) el

t—00 p,0

It is proved in [EMY1] that {we, (—LS)_IW§>>'D‘O is finite. Therefore, as¢ T oo a
limit up to a subsequence of the left hand side of (6.12) exists. The subtle
point is to prove that this limit is indeed given by the right hand side of
(6.12). The following lemma gives sufficient conditions for the convergence.

Lemma 6.2. Suppose that equation (6.14) can be solved for each /. > 0 and that

lim 7z [g = 0 . (6.15)
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Then,

lim IE,

t—00

; 2
(’]/2/ W<x(s>>d3) ] = lim(w, (2= ) ) 1= (w, (=1) "w) -

0

Suppose, on the other hand, that we are able to solve the equation —Lu = w in
H_y in the sense that for any ¢ > 0 there is a bounded local function u, such that

| Lu, +w|?, <e. (6.16)
Then,

lim ||u,||; = B
e—0

exists for some constant B and

(] tw(x(s))ds)z

Proof. The proof is similar to the proof of the previous lemma. For a fixed
A > 0, consider the resolvent equation (6.14). Replacing w by its value in
terms of u; and expanding the suqare, we obtain that for any y > 0,

lim [E,, =B :=(w, (L) 'w) .

t—00

B (7 [ wtatsas) | = 1+ 00D i + 001 57

Here we applied Scwharz inequality to estimate the cross terms. By as-
sumption, the last term vanishes for any y fixed. On the other hand,

Aluzllg + it = (A=) w, (2= L) (2= L)"'w) .

By definition, we can replace the operator L; by L because it appears in a
quadratic form. Hence,

Aluzllg + il = (2= L) w,w)

This proves the first statement of the lemma.
Assume now that (6.16) holds. For each ¢ > 0, let &, = w + Lu,. Then,

||u£||% = (Us, (—L)tte) = (e, w) — (Uz, 1)

The second term on the right hand side is bounded by ||u]|,]|%||_,, while the
first one is bounded by ||u.||,||w|_,. In particular, by assumption (6.16),

uelly < Ceo+ Wl (6.17)

where C, is such that lim,_ C, = 0.

We can now take a weakly convergent subsequence, still denoted by u,,
that converges to some u in H;. Since Lu, = h, + w, h, converges to 0 in H_,
and ||u.||, is a bounded sequence,
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lirr(%(us, (—L)u,) = lirré<ug,w> = (u,w) . (6.18)
&— &—

Using (6.16) again, we obtain that
(u,w) = lim{u, Lu,) = im (L u, u;) .
e—0 e—0
Since L*u = 2Lu — Lu = 2L;u — w, from the a priori estimate (6.17) we de-

duce that L*u belongs to H_;. Since u, converges weakly to u in H, we have
thus proved that

(u,w) = lir%(L*u,uE) = (L*u,u) = ||ul]} . (6.19)

&—
It follows from identities (6.18) and (6.19) that
tim a7 = [Jull}
e—0

Since u, converges weakly to u in H;, we conclude that u, converges strongly
to u H;. Moreover, the limit is unique.
By the previous lemma and by assumption (6.16), for each fixed ¢ > 0,

E,

<t1/2 /Otw(x(s)) + Luy(x(s)) ds) 2] <6|w+Lu|*, <6c  (6.20)
On the other hand, for any bounded local function u,,
ug(t) = u(0) + /OtLus(x(s))ds +M,
where M, is a martingale such that
B [M7] = (e, (—Lo)us) = will} -
Since u, 1s a bounded local function,
£ By (1)’ = ¢ Ey[us(0)°)

that vanishes as ¢ T co. Hence

(2 'Lug<x<s>>ds)2] —

This limit together with (6.20) concludes the proof of the lemma. []

lim IE,

—00

This lemma holds in our setting with the norm defined according to
(6.11). The right hand side of (6.12) is equal to lim;_o(w, (i — L) 'w) =
(w, (—L)_lw>>, which, up to the change of the norm, appears at the right
hand side of the equations after (6.15) and (6.16). Hence we only have to
prove (6.15) or (6.16) (with the correct norm) in order to prove (6.12). The
condition (6.15) is suitable for reversible models and is used extensively in
[KV] for proving central limit theorem of tagged particles. In nonreversible
setting, we have to prove (6.16). But this is the main context Theorem 1.1.
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This concludes the proof of (6.12) and the identification of D) and D® is
completed.
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