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Summary. We prove almost sure convergence of a representation of normal-
ized partial sum processes of a sequence of i.i.d. random variables from the
domain of attraction of an �-stable law, �¡2. We obtain an explicit form of
the limit in terms of the LePage series representation of stable laws. One conse-
quence of these results is a conditional invariance principle having applications
to option pricing as well as to resampling by signs and permutations.
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1. Introduction

Paper [14] established weak convergence of normalized sums

X1 + · · ·+ Xn
an

− bn ; (1)

where (Xi)ni=1 is a sequence of i.i.d. random variables from the domain of
attraction of an �-stable law, �∈ (0; 2), utilizing a representation of these sums
in terms of order statistics. For the symmetric case this representation can be
written in the form

X1 + · · ·+ Xn
an

d=
�1G−1(�1=�n+1) + · · ·+ �nG−1(�n=�n+1)

an
(2)
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Fig. 1. Conditional distribution of errors versus result of permuting residuals in regression
with Cauchy errors

for each n∈N, where T= (�i)∞i=1 is a Rademacher sequence, � = (�i)∞i=1 is a
sequence of arrival times of a standard Poisson process independent of T and
G(x) =P(|(X1)|= x) while G−1(u) = inf{y= 0: G(y)5 u}. There exist natu-
ral although not unique extensions of this representation for the non-symmetric
case (cf. [14] and also Sect. 3).

The results of [14] claim convergence in distribution of such representa-
tions. In this paper we show that a use of di�erent techniques and a more
suitable choice of representation in the non-symmetric case give convergence
almost surely. Our approach applies not only for sums of random variables but
also to partial sum processes. Namely, corresponding representations in distri-
bution of such processes converge almost surely in D[0; 1] with the Skorohod
metric. This result can be considered as a strong invariance principle for the
stable case. From this we establish a new conditional invariance principle for
a.s. D[0; 1] convergence of the conditional distributions given �. A weak ver-
sion establishing convergence in probability for the symmetric case was given
in [9] by employing martingale methods.

By way of illustrating the potential usefulness of a conditional invariance
principle, in Fig. 1 is shown a decidedly non-normal conditional sampling dis-
tribution, arising in regression with Cauchy errors. As can be seen in the
�gure even rather delicate features of this conditional distribution have been
recovered by our conditional invariance principle, in this case applied to per-
mutation bootstrap (permuting residuals in regression Y =X� + � estimates the
conditional sampling distribution of the estimation error �̂ − �, given the or-
der statistics of the errors (�i) actually present in the data, without moment
assumptions on (�i)). See results in Sect. 4 and [13].

Also in the derivation of the option pricing formula in [16] conditional
limits are required. To extend these results to the case of an arbitrary dis-
tribution from the stable domain we have used our conditional invariance
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principle. It is worth emphasizing that the conditional invariance principle
stated in Proposition 1 below is not a simple consequence of the a.s. con-
vergence of a version of the partial sum process occurring in the Skorohod
representation theorem. This is demonstrated by the examples in Sect. 4.

Our approach to the strong invariance principle, presented here, di�ers from
the one undertaken in a series of papers concluded by [1] (see also references
therein). These papers studied the sequence of i.i.d. symmetric Xi’s from the
normal �-stable domain, investigating the rate of almost sure approximation of∑n

i=1 Xi by
∑n

i=1 Yi, where Yi’s are i.i.d. symmetric �-stable. The relationship
between those results and ours is as follows. In this case our strong invariance
principle can be viewed as almost sure approximation of

∑n
i=1 Xi; n, where

(Xi; n)ni=1 is a vector of i.i.d. r.v.’s from an �-stable domain, by
∑n

i=1 Yi; n,
where (Yi; n)ni=1 is a vector of i.i.d. �-stable r.v.’s. It is clear that ours is a
non-sequential form of approximation but, on the other hand, our results hold
in the general case of stable domain, not necessarily normal or symmetric.
Moreover, through our approach the rate is always at least o(n1=�) while this
rate cannot always be achieved with the other strong invariance principle (see
examples in [1]).

Our methods of proofs are essentially di�erent from those used in [1] and
in fact bear more similarity to those applied in [7], where asymptotic behavior
of sums of order statistics of i.i.d. variables from stable domain is studied
through a Poisson representation of order statistics di�erent from (2). However
the results and methods of [7] cannot be directly applied in our proofs as only
convergence in L1 and in probability were considered there and we require
methods strong enough to imply almost sure convergence.

The paper is organized in the following way. In Sect. 2 we present
lemmas used in the proof of the invariance principle. Di�erent versions of
the strong invariance principle for symmetric and non-symmetric cases are
proved in Sect. 3, consisting the central part of this paper. In Sect. 4 we prove
a conditional invariance principle, applying it to option pricing.

2. Main lemmas

In this paper without further mention H : (0; 1] 7→R will always denote a
non-increasing function such that for some �¿0 the function (1=x)1=�H (1=x)
is slowly varying at in�nity. Notice that if X is in the domain of an
�-stable distribution, then the function H (x) = (G−1(x))r , where r¿0 and
G(x) =P(|X |= x), satis�es this condition with �= �=r. Usually for such X
this property is expressed equivalently in terms of G(x) instead of H (x)
(cf. [3], VIII.2, Lemma 1, VIII.8, Lemma 3, XVII.5, Theorem 2). Here and
throughout the paper we write xn≈yn if limn→∞ xn=yn = 1. Let an≈H (1=n).
Then for every x¿0:

lim
n→∞H (x=n)=an = x−1=� : (3)

The following lemma is crucial for the results of Sect. 3 where we study
almost sure convergence of representations of type (2).
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Lemma 1. Let �; �¿0 and ��¡1. Assume that Vn; i; Vi; n∈N; i5 n are ran-
dom elements of D[0; 1] regarded with the Skorohod metric d such that for
each N ∈N and for each cn; i; 15 i5N; n∈N satisfying limn→∞ cn; i = ci;
we have with probability one in (D[0; 1]; d):

lim
n→∞

N∑
i=1
cn; iVn; i =

N∑
i=1
ciVi : (4)

Moreover assume that with probability one

M
def
= sup

k∈N
sup
n=k

1
k�

∥∥∥∥ k∑
i=1
Vn; i

∥∥∥∥
∞
¡∞ ; (5)

where ‖ · ‖∞ stands for the uniform norm in D[0; 1]. Then; assuming inde-
pendence (Vn; i) from �; the series

∑∞
i=1 Vi=�

1=�
i is convergent almost surely in

D[0; 1] both in ‖ · ‖∞ and in d; and with probability one in (D[0; 1]; d):

lim
n→∞

1
an

n∑
i=1
Vn; iH (�i=�n+1) =

∞∑
i=1
Vi=�

1=�
i : (6)

Proof. For n∈N and N¡n let us denote

SnN =
1
an

n∑
i=N
Vn; iH (�i=�n+1); Wn =

n∑
i=1
Vi=�

1=�
i :

Note that the Law of Large Numbers and (3) imply for each i:

lim
n→∞

1
an
H (�i=�n+1) = �−1=�

i a.s. (7)

Next, by the triangle inequality, for N¡n we have

d(Sn1 ; Wn) 5 d(Sn1 − SnN ;WN−1) + d(Sn1 − SnN ; Sn1 ) + d(WN−1; Wn) :

Observe that for �xed N , the �rst term of the right hand side converges to
zero by (4), (7) and independence (Vn; i) from �. The second term is bounded
by ‖SnN‖∞. We will show

lim
N→∞

lim sup
n→∞

‖SnN‖∞ = 0 : (8)

Moreover, as we will see later, this also implies that Wn converges in the
uniform norm so in the metric d and then

lim
N→∞

lim sup
n→∞

d(WN−1; Wn) = 0 :

Now, let us establish (8).
Denoting Tn; k =

∑k
i=1 Vn; i and �Hn; k =H (�k =�n+1)−H (�k+1=�n+1), we have

SnN =
1
an

n−1∑
i=N
Tn; i�Hn; i +

1
an
Tn; n H (�n=�n+1)− 1

an
Tn;N−1H (�N =�n+1) :
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Denote the �rst sum by I nN , the rest of the above expression by J nN , and by
M̃ the analogue expression to M but with k� replaced by ��k . Since H is
non-increasing we have

‖I nN‖∞ 5
M̃
an

��n+1

n−1∑
i=N

��i
��n+1

�Hn; i 5 − M̃
an

��n+1

1∫
�N =�n+1

x� dH (x) :

It follows from elementary properties of regularly varying functions (see
[3, VIII]) that if n→∞

−��n+1

1∫
�N =�n+1

x� dH (x) ≈ H (�N =�n+1)
1

1− ����N :

Thus by (7) we have

lim sup
n→∞

‖I nN‖∞ 5
M̃

1− ����N lim
n→∞

1
an
H (�N =�n+1) =

M̃
1− ����−1=�

N :

Now let us consider J nN . We have

lim sup
n→∞

‖J nN‖∞5 lim sup
n→∞

1
an

[‖Tn; n‖∞H (�n=�n+1) + ‖Tn;N−1‖∞H (�N =�n+1)]

5M lim
n→∞

n�

an
+ M̃��N lim

n→∞
1
an
H (�N =�n+1) = M̃��−1=�

N :

Hence

lim
N→∞

lim sup
n→∞

‖SnN‖∞ 5
(

1
1− �� + 1

)
lim
N→∞

M̃

�1=�−�
N

= 0 :

Note that in the proof of (8) independence (Vn; i) from � is irrelevant.
To see that (8) implies convergence of the series in the uniform norm

observe that by the lower semicontinuity of ‖ · ‖∞, (4), (7), and independence
(Vn; i) from �, for every k¡m:∥∥∥∥ m∑

i=k
Vi=�

1=�
i

∥∥∥∥
∞
5 lim sup

n→∞
‖Snm‖∞ + lim sup

n→∞
‖Snk ‖∞ :

Hence Wn is a Cauchy sequence in the uniform as well as Skorohod
topology.

Remark 1. Condition (4) and independence (Vn; i) from � were used to over-
come some di�culties caused by the fact that addition is not continuous in
the Skorohod metric. In the scalar version of the result (4) can be replaced by
limn→∞ Vn; i =Vi and independence (Vn; i) from � is not required.

In Sect. 3 we consider a representation as (2) but for the non-symmetric
case. Unfortunately for 15 �¡2 Lemma 1 cannot be directly applied to this
case. We need also a version with Vn; i = 1. Such a complementary result is
stated below.
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Lemma 2. Let 15 �¡2. Then with probability one

lim
n→∞

1
an

(
n∑
i=1
H (�i=�n+1)− n

1∫
1=n
H (x)dx

)
=
∞∑
i=1

(
1

�1=�
i

− ci
)
;

where ci =
∫ i+1
i x−1=� dx.

Proof. Denote, for N5 n,

SnN =
1
an

n∑
i=N
H (�i=�n+1); SN; n =

1
an

N∑
i=1
H (�i=�n+1) :

First observe that the series
∑∞

i=1(�−1=�
i − ci) is convergent almost surely.

Thus it is enough to show that

rn
def=

∣∣∣∣∣Sn1 − n
an

1∫
1=n
H (x)dx −

n∑
i=1

(�−1=�
i − ci)

∣∣∣∣∣
converges almost surely to zero.

For �xed N¡n we have

rn 5

∣∣∣∣∣SN−1; n − n
an

N =n∫
1=n
H (x)dx −

N−1∑
i=1

(�−1=�
i − ci)

∣∣∣∣∣+

∣∣∣∣∣SnN − n
an

1∫
N =n
H (x)dx

∣∣∣∣∣
+
∣∣∣∣ n∑
i=N

(�−1=�
i − ci)

∣∣∣∣
with the last term converging to zero.

The �rst term converges to zero as well since limn→∞ SN−1; n =
∑N−1

i=1

�−1=�
i , and

lim
n→∞

n
an

N =n∫
1=n
H (x)dx= lim

n→∞
1
an

N∫
1
H (x=n)dx=

N∫
1
x−1=� dx :

Thus it is enough to show

lim
N→∞

lim sup
n→∞

∣∣∣∣∣SnN − n
an

1∫
N =n
H (x)dx

∣∣∣∣∣ = 0 a:s: (9)

Denote �1 = �1 and �i+1 = �i+1 − �i for i∈N. We have

SnN =
1
an

n∑
i=N
H (�i=�n+1)(1− �i) +

1
an

n∑
i=N
H (�i=�n+1)�i

=
1
an

n∑
i=N
H (�i=�n+1)(1− �i+1) +

1
an

n∑
i=N
H (�i=�n+1)�i+1 :
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Denoting the �rst normalized sum by J nN and the second one by I nN and using
the fact that H is nonincreasing we get

�n+1

an

1∫
�N

�
n+1

H (x)dx + J nN 5 SnN 5
�n+1

an

1∫
�N

�
n+1

H (x)dx + I nN +
�N
an
H (�N =�n+1) :

By (7), we have

lim
N→∞

lim
n→∞

�N
an
H
(

�N
�n+1

)
= lim

N→∞
�N
�1=�
N

= 0

and from the proof of Lemma 1 and Remark 1 (set Vn; i = 1− �i or Vn; i =
1− �i+1):

lim
N→∞

lim sup
n→∞

|I nN |= lim
N→∞

lim sup
n→∞

|J nN |= 0 :

Therefore to prove (9) it is enough to note that

lim
N→∞

lim sup
n→∞

∣∣∣∣∣�n+1

an

1∫
�N =�n+1

H (x)dx − n
an

1∫
N =n
H (x)dx

∣∣∣∣∣= 0 a:s: ; (10)

which follows from elementary properties of regularly varying functions, and
Laws of Iterated Logarithm and Large Numbers applied to �n.

3. Invariance principle

In the main section we derive various forms of the strong invariance principle.
In all of these results we claim almost sure convergence of special representa-
tions of sums of random variables in the domain of attraction of a stable law
of index �¡2. We begin with the general representation of a vector of real
i.i.d. random variables expressed through the order statistics of their absolute
values.

Let X be a real random variable and let

G+(x) =P(X = x|X = 0); G−(x) =P(−X ¿x| − X ¿0) ;

p0 =P(X = 0); q0 =P(−X ¿0) :

Here 0=0 is treated as zero. Let (�i)ni=1 be a vector of independent possibly non-
symmetric random signs such that P(�i = +) =p0; P(�i =−) = q0 and (Ui)ni=1
be a vector of independent random variables with the uniform distribution
on [0; 1]. As usual U( j) denotes here the j-th order statistic of (Ui)ni=1 and �
denote a uniformly distributed random permutation applied to the coordinates of
n-space. We assume also that �; (�i)ni=1 and (Ui)ni=1 are mutually independent.
The elementary proof of the following representation is omitted.
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Lemma 3. Let (Xi)ni=1 be a vector of i.i.d. random variables with the distri-
bution of X . Then

(X1; : : : ; Xn)
d= �(�1G−1

�1
(U(1)); : : : ; �nG−1

�n
(U(n))) :

For Xi’s i.i.d. symmetric random variables with G(x) =P(|X1|¿x) from
our representation

X1 + · · ·+ Xn
d= �1G−1(�1=�n+1) + · · ·+ �nG−1(�n=�n+1) ;

which is a simple consequence of the fact that (�1=�n+1; : : : ;�n=�n+1) has the
same distribution as (U(1); : : : ; U(n)). If we assume that x�G(x); 0¡�¡2, is
slowly varying at in�nity, i.e. when the distribution of X1 belongs to the sym-
metric �-stable domain, then as an immediate consequence of Lemma 1 we
derive the following result.

Theorem 1. If an =G−1(1=n); then

lim
n→∞

�1G−1(�1=�n+1) + · · ·+ �nG−1(�n=�n+1)
an

=
∞∑
n=1

�i
�1=�
i

a:s:

Proof. Take Vn; i = �i and H (x) =G−1(x) and then apply Lemma 1.

The rest of this section is mostly devoted to various extensions of this
result. In Theorem 2 and Corollary 1 we formulate the invariance principle
for partial sums processes in the general and symmetric case respectively,
where we establish almost sure convergence in the Skorohod metric of a proper
representation in D[0; 1] of the partial sums process

1
an

[nt]∑
i=1
Xi; t ∈ [0; 1] :

Here and in what follows an =G−1(1=n). It is well known that such
a process after appropriate centering converges weakly in D[0; 1] to an �-stable
process with independent increments (cf. [5, IX.6, Theorem 2]). Our goal is to
prove almost sure convergence for a special representation of such a process.
In order to state an appropriate representation of the partial sum process we
have to introduce the following notation and de�nitions.

Let u = (ui)∞i=1 by any sequence of numbers belonging to (0; 1). For n∈N
and t ∈ [0; 1] de�ne

I n1 (u; t) = 1{s∈[0;1]: u1 5 [ns]=n}(t) ;

I ni (u; t) = 1{s∈[0;1]: ui5 ([ns]−�i−1
r=1 I

n
r (u; s))=(n+1−i)}(t); 1¡i5 n :

The following list of properties of (I ni (u; ·))ni=1 is veri�ed in [10, 9]. For �xed
t ∈ [0; 1] a sequence (I ni (u; t))ni=1 consists of exactly k = [nt] ones and can be
interpreted as a combination of k-elements from n-elements. On the other hand,
with �xed n and u, the number of ones increase with t from 0 to n and the
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sequence of positions of jumps in the sequence (I ni (u; ·))ni=1 is a permutation of
elements of {1; : : : ; n}. We refer to them as the combinations and the permuta-
tion chosen by u. Moreover I ni (u; t) as a function of t changes its value from
zero to one at exactly one of the points k=n, say J ni , being right continuous at
this point, i.e.

I ni (u; t) = 1[J ni ;1](t) = 1[0; t](J ni ) :

If U = (Ui)∞i=1 is a sequence of i.i.d. random variables with the uniform
distribution on (0; 1), then for �xed t ∈ [k=n; (k + 1)=n); k ∈{0; : : : ; n}, a ran-
dom combination chosen by U has a uniform distribution over all possible

(n
k

)
combinations. Also the positions of jumps of (I ni (·))ni=1

def= (I ni ( U; ·))ni=1 i.e.
the permutation chosen by U will be uniformly distributed over all n! possible
permutations.

According to Lemma 3 and assuming mutual independence of �;U and �
we get the following representation of the partial sum process

1
an

[n · ]∑
i=1

Xi
d=

1
an

n∑
i=1
�iG−1

�i
(�i=�n+1)I ni (·) ; (11)

where the equality is understood in D[0; 1]. From now on the right hand side
of (11) will be denoted by Sn. For a real continuous function v on [0; 1] we
can write

1∫
0
v dSn =

1
an

n∑
i=1
v(J ni )�iG−1

�i
(�i=�n+1) :

Assume now that the distribution of Xi is in the domain of attraction of an
arbitrary stable law with �¡2 and G(x) =P(|X1|= x). Then the following
limits are well de�ned (see [3, XVII.5 Theorem 2])

p= lim
x→∞

P(X = x)
G(x)

; q= lim
x→∞

P(−X ¿x)
G(x)

:

This implies that the normalizing sequences (in the sense given by (3)) for
G−1

+ and G−1
− have the form an(p=p0)1=� and an(q=q0)1=� respectively.

Let us de�ne

zi = (p=p0)1=� �i + 1
2

+ (q=q0)1=� �i − 1
2

:

Then P(zi = (p=p0)1=�) =p0 and P(zi = − (q=q0)1=�) = q0 and

E(z+i )� =p; E(z−i )� = q : (12)

Set Ci =Ezi
∫ i+1
i x−1=� dx and bn =E(zi

∫ 1
1=n G�i(x)dx)n=an.

The next result is the general version of the strong invariance principle.



290 R. LePage et al.

Theorem 2. With the above notation for any �∈ (0; 2) we have

lim
n→∞(Sn(t)− bnt) =

∞∑
i=1

(
zi

�1=�
i

1[Ui;1](t)− Cit
)

a:s: ;

in the Skorohod metric in D[0; 1]. Moreover for a continuous real function v
of bounded variation on [0; 1]

lim
n→∞

( 1∫
0
v dSn − bnEv(U )

)
=
∞∑
i=1

(
ziv(Ui)

�1=�
i

− CiEv(Ui)
)

a:s:

In the proof of the above theorem we will use the following result which
is proven right after the proof of Theorem 2.

Lemma 4. Let r = (ri)∞i=1 be a sequence of i.i.d. zero mean random variables
independent of U = (Ui)∞i=1 and such that |ri|5 a¡∞ a.s. Then for every
�¿1=2 we have

sup
k∈N

sup
k5n

1
k�

∥∥∥∥ k∑
i=1

(I ni (t)− t)
∥∥∥∥
∞
¡∞ ; (13)

sup
k∈N

sup
k5n

1
k�

∥∥∥∥ k∑
i=1
riI ni (t)

∥∥∥∥
∞
¡∞ : (14)

Proof of Theorem 2. Let us de�ne

R1; n(t) =
1
an

n∑
i=1

[
G−1

+ (�i=�n+1)
(
�i + 1

2
I ni (t)− p0t

)

+G−1
− (�i=�n+1)

(
�i − 1

2
I ni (t) + q0t

)]
and

R2; n =
[
p0

an

n∑
i=1
G−1

+ (�i=�n+1)− q0

an

n∑
i=1
G−1
− (�i=�n+1)− bn

]
:

Then to prove the �rst part of the theorem it is enough to show

lim
n→∞ R1; n(t) =

∞∑
i=1

(
zi

�1=�
i

1[Ui;1](t)− Ci
ci

t

�1=�
i

)
; (15)

where convergence is understood in (D[0; 1]; d); and

lim
n→∞ R2; n =

∞∑
i=1

(
1

ci�
1=�
i

− 1

)
Ci : (16)

Indeed, the last statement implies that tR2; n converges in the uniform norm in
D[0; 1] and consequently this and (15) establish the convergence of R1 + R2

in the Skorohod metric. Note that in general addition is not continuous in
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(D[0; 1]; d) but we can use here the following property. If hn→ h in (D[0; 1]; d)
and gn→ g in ‖ · ‖∞ then hn + gn → h+ g in (D[0; 1]; d).

To prove (15) we use Lemma 1 with H =G−1
+ ; H̃ =G−1

− with the corre-
sponding normalizing sequences (p=p0)1=�an; (q=q0)1=�an and

Vn; i(t) =
�i + 1

2
I ni (t)− p0t=

(
�i + 1

2
− p0

)
I ni (t) + p0(I ni (t)− t) ;

Ṽn; i(t) =
�i − 1

2
I ni (t)− q0t=

(
�i − 1

2
+ q0

)
I ni (t)− q0(I ni (t)− t) :

Note that Vn; i and Ṽn; i satisfy assumptions of Lemma 1, i.e. �rst (4) since
limn→∞ J ni = ui (see [9]) and then (5) by Lemma 4. Moreover,

lim
n→∞Vn; i(t) =

�i + 1
2

1[Ui;1](t)− p0t

and

lim
n→∞ Ṽn; i(t) =

�i − 1
2

1[Ui;1](t)− q0t ;

where convergence holds a.s. in (D[0; 1]; d).
Equality (16) follows easily by a double application of Lemma 2 to func-

tions H =G+ and H =G−.
To prove the second statement we use partial integration to get

1∫
0
vd(Sn(t)− bnt) = (Sn(1)− bn)v(1)− Sn(0)v(0)−

1∫
0

(Sn(t)− bnt) dv :

Now by the �rst part of the theorem the integrand converges in D[0; 1] to
L(t) de�ned as the right hand side limiting process from the �rst part of the
theorem. Since dv has no atoms (v is continuous) then Sn(t)− bnt is convergent
to L(t) a.e. with respect to dv and by the Dominated Convergence Theorem
we obtain

lim
n→∞

1∫
0
vd(Sn(t)− bnt) =L(1)v(1)−

1∫
0
L(t) dv : (17)

Next since L(t) as a series of functions is convergent with probability one a.e.
with respect to dv we have by the Dominated Convergence Theorem

1∫
0
L(t)dv= lim

n→∞

n∑
i=1

1∫
0

(
zi

�1=�
i

1[Ui;1](t)− Cit
)
dv

= lim
n→∞

n∑
i=1

(
zi
v(1)− v(Ui)

�1=�
i

+ Ci

( 1∫
0
v(t) dt − v(1)

))

= v(1)L(1)−
∞∑
i=1

(
ziv(Ui)

�1=�
i

− CiEv(Ui)
)
:
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Proof of Lemma 4. Let Tn; k(t) =
∑k

i=1 (I ni (t)− t) for 1 5 k 5 n. Let us �x k
and let U(1) 5 U(2) 5 · · ·5 U(k) be the order statistics of U1; U2; : : : ; Uk . We
de�ne

A= {U(2) − U(1)¿k−4; U(3) − U(2)¿k−4; : : : ; U(k) − U(k−1)¿k−4} :
Let n0 = 2k5; J ni be the jump of I ni and � be a permutation of {1; 2; : : : ; k} such
that U(i) =U�(i). From the de�nition of I ni we have for n= n0 that

|J n�(i) − U(i)|5 �(i)
n
5

k
n0
5

1
2k4 :

Hence on the event A we have

U(i−1)¡J�(i)¡U(i+1); i= 1; : : : ; k ; (18)

where we set U(0) = 0 and U(k+1) = 1. Moreover J n�(i) is increasing in i; 1 5

i 5 k. Since
∑k

i=1 I
n
i (t) = max{i 5 k: J n�(i) 5 t} it follows from (18) that on

A for n= n0 ∥∥∥∥ k∑
i=1

(I ni (t)− 1[Ui;1](t))
∥∥∥∥
∞
5 1 : (19)

Next, by the classical estimate for the uniform empirical process (see [2]) we
have

P
(∥∥∥∥ k∑

i=1
1[Ui;1](t)− t

∥∥∥∥
∞
= x

)
5 58 exp(−2x2=k)

and by (19) we conclude that for x= 0 we have

P
(

sup
n=n0

‖Tn; k(t)‖∞ = x + 1; A
)
5 58 exp(−2x2=k) : (20)

Now we will deal with Tn; k for n5 n0. First observe that
∑k

i=1 I
n
i (t) has a

hypergeometric distribution with parameters i; [nt]; n. By the result of Hoe�ding
(see [6]) for x= 0 we have

P
( ∣∣∣∣ k∑

i=1
(I ni (t)− [nt]=n)

∣∣∣∣= x
)
5 2 exp(−2x2=k) :

Since I ni (t) have jumps only at points of the form j=n; 05 j5 n we obtain

P
(∥∥∥∥ k∑

i=1
(I ni (t)− [nt]=n)

∥∥∥∥
∞
= x

)
= P

(
max

15j5n

∣∣∣∣ k∑
i=1

(I ni (j=n)− j=n)
∣∣∣∣= x

)
5 2n exp(−2x2=k) :

This leads to

P
(

sup
n5n0

‖Tn; k‖= x + 1
)
5

n0∑
n=1
P(‖Tn; k‖= x + 1) 5 2n2

0 exp(−2x2=k) :

(21)
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Next, notice that

P(Ac) 5
(
k
2

)
P(|U1 − U2|5 k−4) 5 const=k2 (22)

and this last inequality together with (20) and (21) yields (set x= k� and recall
that n0 = 2k5)

P
(

sup
n∈N

‖Tn; k‖∞¿k� + 1
)
5 const=k2 + (8k10 + 58) exp(−2k2�−1) :

Application of the Borel–Cantelli Lemma concludes the proof of (13).
To prove (14) denote T̃n; k =

∑k
i=1 riI

n
i for n= n0 and observe that on the

even A we have

‖Tn; k‖∞ =
∥∥∥∥ k∑
i=1
r�(i)I n�(i)(t)

∥∥∥∥
∞

= sup
n5k

∣∣∣∣ n∑
i=1
r�(i)

∣∣∣∣
since the jumps J n�(i); i= 1; : : : ; k, form an increasing sequence. Now us-
ing independence of r = (ri)∞i=1 and U, exchangeability of (ri)ni=1 and �nally
Hoe�ding’s bound for supn5k |

∑n
i=1 ri| (see [6]) we obtain

P
(

sup
n=n0

‖T̃n; k‖∞ = y; A
)
5 P

(
sup
n5k

∣∣∣∣ n∑
i=1
ri

∣∣∣∣= y
)
5 2 exp(−y2=(2a2k)) :

(23)
Next observe that for a �xed t again by Hoe�ding’s inequality applied

conditionally we have

P
( ∣∣∣∣ k∑

i=1
I ni (t)ri

∣∣∣∣= y
)
5 2 exp(−y2=(2a2k)) :

Having this inequality we can repeat all steps in the proof of the �rst part
leading to the inequality (21). Then making some minor adjustments we obtain

P
(

sup
n5n0

‖T̃n; k‖∞ = y
)
5 2n0 exp(−y2=(2a2k)) :

The last inequality together with (22) and (23) provide us with all we need
to conclude the second part of the lemma in a similar fashion as we did the
�rst one.

Remark 2. If Ev(U ) =
∫ 1

0v(t) dt= 0, then by the above result

lim
n→∞

1∫
0
v dSn =

∞∑
i=1

ziv(Ui)

�1=�
i

:

Remark 3. For �¡ 1 the constants bn; Ci can be set zero. In this case we
can use directly Lemma 1 since k−1‖∑k

i=1 I
n
i ‖∞5 1.
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As an immediate consequence we obtain the invariance principle for the
symmetric case which can be considered as an extension of the results given
in [9].

Corollary 1. With the above notation in the symmetric case (p0 = q0 = 1=2)
we have with probability one in (D[0; 1]; d):

lim
n→∞

1
an

n∑
i=1
�iG−1(�i=�n+1)I ni ( · ) =

∞∑
i=1

�i
�1=�
i

1[Ui;1] :

Next we deal with the partial sum process of absolute values of the se-
quence (Xi)∞i=1. Analogously as before we have the following representation in
D[0; 1]

1
arn

[n · ]∑
i=1

|Xi|r d=
1
arn

n∑
i=1

[G−1(�i=�n+1)]rI ni ( · ) :

The following simple consequence of Lemma 1 establishes a.s. limit of the
above representation.

Theorem 3. For r¿� with probability one in (D[0; 1]; d):

lim
n→∞

1
arn

n∑
i=1

[G−1(�i=�n+1)]rI ni ( · ) =
∞∑
i=1

1

�r=�i
1[Ui;1]( · ) :

Proof. Apply Lemma 1 with Vn; j = I nj ( · ). Let �= �=r; �= 1 and H (x) = [G−1

(x)]r . Then since ‖I nj ( · )‖∞5 1 the condition (5) is satis�ed.

4. Conditional invariance principle and its applications

As an important consequence of Theorem 2 we have the following conditional
invariance principle.

Proposition 1. Let us denote by W�(t) the limiting process from Theorem 2,
and by Jn; J the �-�elds generated by the values of the jumps of Sn(t) and
W�(t); respectively. Almost surely

lim
n→∞ L(Sn(t)− bnt|Jn) =L(W�(t)|J) ;

where the convergence is meant as the weak convergence in D[0; 1]. Here the
symbol L(X |F) stands for the conditional distribution of X with respect to
the �-�eld F.

Proof. We may assume that the underlying probability space can be written in
the form 
 = 
1 × 
2; P=P1 × P2; where the sequences (Ui) for (�i ; �i) are
de�ned on 
1 and 
2, respectively. By Theorem 2 and the Fubini theorem,
for almost all !2 ∈
2

lim
n→∞(Sn(t)( · ; w2)− bnt) =W�(t)( · ; !2)
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P1-a.s. Now, we can observe that

L(Sn(t)− bnt |Jn) =L(Sn(t)− bnt | (�i ; �i))

and the result follows by the above stated convergence.

As mentioned in the Introduction, the above conditional principle is not
a simple consequence of the a.s. convergence of any version of the partial sum
process and so cannot be obtained by appealing to the Skorohod representation
theorem. This is in spite of the fact that one can show that ordered jumps and
their locations are continuous on D[0; 1]. The following simple example shows
that a.s. convergence of two sequences of random variables does not imply
that their conditional distributions converge to the conditional distribution of
the limits.

Example 1. Let X be a nondegenerated random variable, and let Xn =X ,
Yn =X=n. We have that limn→∞(Xn; Yn) = (X; 0) a.s. Next observe that
L(Xn |Yn) = �{X} while L(X | 0) =L(X ). Hence

lim
n→∞ L(Xn |Yn)-L(X | 0) :

Moreover, the conditional invariance principle cannot be obtained by the
following, apparently reasonable, modi�cation of our construction. Our orig-
inal representation of a sample (Xi)ni=1 relied on generating the sequence of
independent signs, and then (conditional on their values) generating absolute
values (see Lemma 3). The example below shows that reversing the order of
conditioning can lead to a version of the partial sum process for which the
conditional invariance principles do not hold.

Example 2. Consider the following two subsets of [0; 1]:

A+ =
∞⋃
n=1

(
1

2n+ 1
;

1
2n

]
; A− = [0; 1]\A+ :

Then for the function v= IA+ − IA− the random variable X = v(U )U−1, where
U is uniform on [0; 1], is from the 1-stable domain of attraction.

Now, suppose that we reverse the order of conditioning in the construction
of the partial sum process. That is, contrary to our previous approach, we
generate absolute values �rst and then, conditional on their values, we choose
the signs according to the conditional distribution sign(X ) |X |. The resulting
version of the partial sum process assumes the following form

S̃n(t) =
1
n

n∑
i=1
v(�i=�n+1)(�i=�n+1)−1 I[J ni ;1](t) :

We will show that both L(S̃n(t)− bnt |Jn) and S̃n(t)− bnt cannot con-
verge almost surely. Since any function x(t)∈D[0; 1] has a �nite number
of jumps exceeding �¿0 in absolute value, we can order the jumps of x(t)
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according to their absolute values. Let T (x(t)) denote the �rst jump of x(t)
with respect to this ordering. Next, observe that

T (S̃n(t)− bnt) =
�n+1

n�1
v(�1=�n+1) :

Thus if L(S̃n(t)− bnt |Jn) and S̃n(t)− bnt were convergent a.s., then limn→∞
v(�1=�n+1) would exist a.s. since T is a continuous functional on D[0; 1].

For any A∈ (0; 1) let

N (A) =
∞∑
n=1
I{�1=�n+1∈A} :

Note that �n+1 = �1 + �̃n with �̃n = �n+1 − �1 being consecutive arrival times of
a Poisson process with rate 1 independent of �1. Conditionally on �1, N (A) is
a Poisson point process with the intensity measure ��1(t1; t2] = �1(1=t1 − 1=t2),
0¡t1¡t2¡1. Since ��1(A+) = ��1(A−) =∞ we have N (A+) =N (A−) =∞ a.s.
which proves that i.o. v(�1=�n+1) = 1 and i.o. v(�1=�n+1) = − 1 a.s.

Application: We extend the option pricing formula from [16], which was
assumed a binomial model of stock price movements with condition that in-
crements of logarithms of prices follow a symmetric Pareto distribution. For
detailed discussion of the model as well as a survey of results related to stock
price processes see [8, 16]. The aim of this section is to derive the option
pricing formula but with more general assumptions about increments. Namely,
we consider logarithm-price increments to be properly normalized i.i.d. random
variables from the domain of attraction of a stable law.

Now, let us recall the model studied in [16]. Without losing generality we
can assume that the time of expiration of the call option equals to one. Next,
let us assume that there are n movements of the stock price until the expi-
ration time. The consecutive price movements at moment k=n are determined
by

Sk = S0

k∏
i=1
Uri
i D

1−ri
i ; 15 k5 n

where ri’s are i.i.d. r.v.’s with P(ri = 0) = 1=2, P(ri = 1) = 1=2, independent of
positive random variables Ui and Di of the form

Ui = exp(�|Xi|= an); Di = exp(−�|Xi|= an) ;
where Xi are i.i.d. from the domain of a symmetric �-stable law, �¿0, and
the normalizing constants an are de�ned as before ([16] studied the case
G(x) = min(1; x−�) and an = n1=�). Thus

Sk = S0 exp
(
�
an

k∑
i=1

(2ri − 1)|Xi|
)
:

The random riskless interest rate at the ith period Ri is the average of the
price up and down movement, i.e. Ri = (Di + Ui)=2.
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Now, we can write down the option pricing formula from [16]

Cn =E
[

(Sn − K)+

R1 : : : Rn

]
;

where K is a striking price at the expiration time (after n movements). Denot-
ing |Xn|= (|Xi|)ni=1 we can write

R1 : : : Rn =
1
2n

n∏
i=1

(exp(−�|Xi|=an) + exp(�|Xi|=an)) =E

(
exp
(
�
an

n∑
i=1
Xi

)∣∣∣∣∣|Xn|
)
:

Thus

Cn =E
[S0 exp(�=an

∑n
i=1 Xi)− K ]+

E(exp(�=an
∑n

i=1 Xi) |Xn|)
(24)

As the next step we want to derive a limiting pricing formula taking n→∞.
In order to do that we will have to change the form of the expression under
expected value without changing its distribution. The order statistics of |Xn|
have the same distribution as (G−1(�i=�n+1))ni=1 and the sums in (24) are not
sensitive to permutations of |Xn|. Thus,

Cn =E
E([S0 exp(�

∑n
i=1 �iG

−1(�i=�n+1))=an)− K]+ �)

E(exp(
∑n

i=1 �iG
−1(�i=�n+1))=an) �)

(25)

Theorem 4. With the above notation we have

lim
n→∞Cn =C =E

[S0 exp(�
∑∞

i=1 �i=�
1=�
i )− K]+

E(exp(�
∑∞

i=1 �i=�
1=�
i ) �)

:

Proof. Note that the ratio under the expectation in (25) is bounded by S0.
Thus by the Dominated Convergence Theorem it is enough to show that for
a �xed value of � the sequences in the numerator and denominator of (25)
are convergent. Of course, it is enough to show that for the latter sequence.

The convergence is not a direct consequence of Proposition 1 since the
exponent function is not bounded. However note that

∑n
i=1[G−1(�i=�n+1)]2=a2

n
is convergent a.s. which together with the inequality

P(Wn¿x)5 2 exp
(
−(�x)2=2

n∑
i=1

[G−1(�i=�n+1)]2=a2
n

)
implies uniform integrability of exp(Wn), where Wn = �

an

∑n
i=1 �iG

−1(�i=�n+1).
Consequently,

lim
n→∞E

(
exp

(
�
an

n∑
i=1

�iG−1(�i=�n+1)

)∣∣∣∣∣�
)

=E

(
exp
(
�

n∑
i=1
�i=�

1=�
i

)∣∣∣∣∣�
)
:
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Remark 4. The result establishes existence of a unique price independent of
a distribution of logarithm of price increments from the domain of a symmetric
� stable distribution, where �∈ (0; 2) is �xed. The formula poses interesting
practical di�culties in computing the conditional expectation E(exp(�

∑∞
i=1

�i=�
1=�
i ) �) =

∏∞
i=1 cosh(��−1=�

i ), which we do not address here.

An application of the conditional invariance principle to resampling by
signs and permutations in multiple linear regression is given in [13].
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