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Summary. Let (W;H; �) be an abstract Wiener space and let Tw=w + u(w),
where u is an H -valued random variable, be a measurable transformation on W.
A Sard type lemma and a degree theorem for this setup are presented and ap-
plied to derive existence of solutions to elliptic stochastic partial di�erential
equations.
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1. Introduction

Let T be a C1 map from Rn to Rn and proper (i.e. the inverse image of any
compact set is compact). The degree theorem for this map states that for any
bounded real valued function ’(x); x∈Rn, with compact support∫

Rn

J (x)’(Tx) dx= q
∫
Rn

’(x) dx ; (1.1)

where q, the degree, is an integer and does not depend on ’; J (x) is the
Jacobian of T : det([@Ti(x)]=@xj)n×n.
The degree q satis�es

q=
∑

y∈T−1{x}
sign det

(
@Ti(y)
@yj

)
n×n

(1.2)

for almost all x∈Rn. The notion of degree was extended in several direc-
tions and in particular, applied to establishing the existence of a solution x to
equations of the type f(x)= x. In 1934 the notion of degree was extended by
Leray and Schauder to a class of transformations on Banach space and applied
to the proof of existence of solutions to certain partial di�erential equations
cf. [2] or [5] and the references therein.
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The possibility of extending the theory of degree to Wiener space was
�rst pointed out by Eels and Elworthy in [7]. In 1986 E. Getzler [10] in-
troduced the notion of degree for the shift transformations Tw=w + u(w),
where u is an H -valued random variable. The results of [10] were improved
by Kusuoka [12] and �Ust�unel and Zakai [17] and Theorem 5.1 of [18]. The
results derived in these papers were extensions of (1.1) and (1.2) under strong
integrability assumptions, (cf. Theorems 3.1–3.3 in Sect. 3). In this paper we
(a) extend the Leray–Schauder theorem and some results related to the exten-
sion of (1.1) and (1.2) to shift transformation on Wiener space under weaker
and what we believe to be perhaps more natural assumptions and (b) apply
our results to establish the existence of a (not necessarily unique) solution to
an elliptic stochastic partial di�erential equation. Along the way we also de-
rive a general form of Sard’s inequality and Sard’s lemma on Wiener space
which is believed to be of independent interest. In particular it avoids the need
to restrict our results to the set on which the Radon–Nikodym derivative is
non-zero.
In the next section we present some notation and notions of the Malliavin

calculus. In Sect. 3 we restate for later reference a recent version of the change
of variables formula, some results on degree theory derived in previous papers.
Next we prove, following some results of Kusuoka, a Sard inequality which
implies the Sard lemma on the Wiener space and �nally a summary of the
Leray–Schauder degree and its properties. In Sect. 4 we state and prove the
main results of this paper. In Sect. 5 we consider the SPDE

−��(x) + g(x; �(x))= ẇ(x); x∈D ; (1.3)

x∈Rd; n=1; 2, or 3 and �|@D=0 and its extension to more general elliptic
operators. Existence and uniqueness of solutions to this equation was consid-
ered by Buckdahn and Pardoux [3], Dembo and Zeitouni [6] and Mayer-Wolf
and Zeitouni [14]. Applying the results of the previous section, the existence of
a (possibly nonunique) solution is established under assumptions which extend
in certain directions those imposed in the references cited above.

2. Notations and preliminaries

(W;H; �) denotes an abstract Wiener space, i.e., H is a separable Hilbert
space, identi�ed with its continuous dual, W is a Banach space into which
H is injected continuously and densely. � is the canonical Gaussian measure
on W whose reproducing kernel Hilbert space is H and we will call it as
the Cameron–Martin space. In the case of classical Wiener space we have
W =C([0; 1]); H = {h : [0; 1]→R: h(t)=

∫ t
0 ḣ(s) ds; ‖h‖2H =

∫ 1
0 |ḣ(s)|2 ds}. Let

X be a separable Hilbert space and a be an X -valued (smooth) polynomial
on W:

a(w)=
m∑
i=1

�i(〈h1; w〉; : : : ; 〈hn; w〉) xi ;
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with xi ∈X; hi ∈W ∗ and �i ∈C∞b (R
n). The Gross–Sobolev derivative of a is

de�ned as

∇a(w)=
m∑
i=1

n∑
j=1

@j�i(〈h1; w〉; : : : ; 〈hn; w〉)xi ⊗ hj ;

and ∇ka(w) is de�ned recursively. Thanks to the Cameron–Martin theorem,
all these operators are closable on all the Lp spaces and the Sobolev spaces
Dp; k(X ); p¿1; k ∈N, can be de�ned as the completion of X -valued smooth
polynomials with respect to the norm:

‖a‖p; k =
k∑

i=1
‖∇ia‖Lp(�;X⊗H⊗i) :

From the Meyer inequalities, it is known that the (p; k)-norm, de�ned above,
is equivalent to the following norm:

‖(I + L)k=2a‖Lp(�;X ) ;

where L is the Ornstein–Uhlenbeck operator on W (cf. e.g. [16]) and we de-
note these two norms with the same notation. Since I + L is an invertible
operator, we can also de�ne the norms for negative values of k which de-
scribe the dual spaces of the positively indexed Sobolev spaces. We denote
by D(X ) the intersection of the Sobolev spaces {Dp; k(X ); p¿1; k ∈ Z},
equipped with the intersection (i.e., projective limit) topology. The contin-
uous dual of D(X ) is denoted by D′(X ) and in case X =R we write sim-
ply Dp; k ;D;D′ for Dp; k(R);D(R);D′(R) respectively. Consequently, for any
p¿1; k ∈ Z; ∇ :Dp; k(X ) 7→ Dp; k−1(X ⊗̃H) continuously, where X ⊗̃H de-
notes the completed Hilbert–Schmidt tensor product of X and H . Therefore
�=∇∗ is a continuous operator from Dp; k(X ⊗̃H) into Dp; k−1(X ) for any
p¿1; k ∈ Z . We call � the divergence operator on W. Let us recall that, in
the case of classical Wiener space, � coincides with the Itô stochastic inte-
gral on the adapted processes. Recall that, if F is in Dp;1(H) for some p¿1,
then almost surely, ∇F is an Hilbert–Schmidt operator on H and if F is an
H -valued polynomial, then �F can be written as

�F =
∞∑
i=1
[(F; ei)H�ei − (∇(F; ei)H ; ei)H ] ;

where (ei; i∈N) is any complete orthonormal basis in H .
Let K be a Hilbert–Schmidt operator on H and let K̃w denote the H -valued

divergence of K . More speci�cally let ei; i=1; 2; : : : be a complete orthonormal
base on H and

w=
∑

�ei · ei
(from a theorem of Ito-Nisio, cf. [11], the above sum converges almost surely
and in Lp, for any p¿1, in the norm topology of W ) then

K̃w=: �K =
∑

�ei · Kei ; (2.1)
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K̃w=: �K is an H -valued random variable and

EK̃1w · K̃2w =
∑
i
(K1ei; K2ei)

= (K1; K2)H−S :

An X -valued random variable F is said to be in Dloc
p;1(X ) for some p¿1 if

there exists an increasing sequence of measurable subsets (Wn; n∈N) of W
and (Fn; n∈N) ⊂ Dp;1(X ) such that

⋃
n Wn = W and F = Fn on Wn almost

surely.
Let K be a Hilbert–Schmidt operator on H and denote by (�i; i∈N) its

eigenvalues according to their multiplicity. The Carleman–Fredholm determi-
nant of IH + K is de�ned as

det2(IH + K) =
∞∏
i=1
(1 + �i)e−�i :

Note that det2(IH + K)- 0 if and only if (IH + K) is invertible. For u∈
Dloc

p;1(H), �u(w) will be de�ned as

�u(w) = det2(IH +∇u(w)) exp(−�u(w)− 1
2‖u(w)‖2H ) : (2.2)

We conclude this section with some de�nitions regarding the behaviour of
u(w + h) as a function of h∈H .

De�nition 2.1 Let u(w) be an H -valued random variable.

(a) u(w) is said to be an H − C map if; for almost all w∈W; h 7→ u(w + h)
is a continuous function of h∈H .
(b) u(w) is said to be a “compact H − C map” or “H − C-compact” if u is
H − C and for almost all w; h 7→ u(w + h) is a compact function on H . (A
map g : H → H is said to be compact if it maps bounded sets into relatively
compact sets).
(c) u(w) is said to be H − C1 if it is H − C and for a.a.w. h 7→ u(w + h) is
continuously Frech�et di�erentiable on H .
(d) u(w) is said to be “locally H − C1” if there exists an almost surely strictly
positive random variable � such that h 7→ u(w + h) is C1 on the set {h∈H :
|h|¡�(w)}.
(e) u(w) is said to be “compact H − C1” if it is H − C1 and both h 7→
u(w + h) and h 7→ (∇u)(w + h) are compact functions on H for almost
all w.
(f) u(w) is said to be “representable by locally H − C1” functions if there
exists a sequence of measurable subsets of W; say Bm; such that �(

⋃
Bm) = 1

and a sequence of “locally H − C1” H-valued random functions um(w) such
that

1Bm(w)(u(w)− um(w)) = 0 a:s:

Throughout the paper; Tw will denote

Tw = w + u(w)

where u(w) is an H-valued random variable.
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3. Some preliminaries and previous results

In this section we, �rst, state a change of variables formula. Next some pre-
viously derived results on the degree theorem are presented and �nally, the
degree theory of Leray and Schauder is summarized.
The following change of variables formula is proven in Theorem 4.1 of

[18]. In fact the �rst part of it is essential for the proof of the second.

Theorem 3.1 1. Suppose that u∈Dp;1(H) for some p¿1: Assume also that
there are two positive constants c¡1 and d with

‖∇u‖5c

and
‖∇u‖25d ;

almost surely; where the �rst norm is the operator norm and the second is the
Hilbert–Schmidt norm on H . Then the map w 7→ Tw = w + u(w) is almost
surely a bijection of W; moreover; we have

E[F ◦ T |�u|] = E[F]

for any F ∈Cb(W ); where

�u = det2(IH +∇u) exp{−�u− 1
2 |u|2H} :

2. Let u(w)∈Dloc
p;1(H) for some p¿1. Assume that u(w) is representable

by locally H − C1 functions. Let M be the set {w : det2(IH +∇u(w))- 0}.
Then; for Tw = w + u(w):

(i) The cardinality of T−1{w} ∩M; denoted N (w;M) is at most countably
in�nite.

(ii) For any positive measurable bounded real random variables � and g
and �u is de�ned by (2.1):

E[�(Tw)g(w)|�u(w)|] = E

{
�(w)

∑
�∈ T−1{w}∩M

g(�)

}
(3.1)

in the sense that if one side is �nite so is the other and equality holds.

Remark. In the sequel, using the Sard lemma we shall prove that one can
omit to take into account the set of non-degeneracy M in the above formulas.
The �rst part of the following result is from [17] and presents an improved

version of results of [10] while the second part extends some results of [17].

Theorem 3.2 (a) If for some ¿0; r¿(1 + )=; u(w)∈Dr;2(H); �u ∈ L1+(�);
�u(IH +∇u) · v∈ L1+(�; H) for all non random v∈H; then

E[’(Tw)�u(w)] = E[�u]E[’] (3.2)

for all bounded and measurable ’.
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(b) Suppose that u∈Dp;1(H) for some p¿1 and that

exp(−�u+ 1
2‖∇u‖22)∈ L1+(�)

for some ¿0; where ‖ · ‖2 denotes the Hilbert–Schmidt norm. Then
E[� ◦ T�u] = E[�]

and in particular E[�u] = 1.

Proof. We shall deal only with the proof of part (b): let (en; n∈N) be a
complete, orthonormal basis in H . Denote by Vn the sigma algebra generated
by {�e1; : : : ; �en} and by �n the orthogonal projection of H onto its subspace
spanned by {e1; : : : ; en}. Let un = E[P1=n�nu|Vn], where P1=n is the Ornstein–
Uhlenbeck semigroup at t = 1=n. Then, using the inequality |det2(IH + A)|5
exp 12‖A‖22 for the Hilbert–Schmidt operator A, we obtain

|�un |5 P1=nE[exp{−e1=n�u+ e−2=n1=2‖∇u‖22}|Vn] ;
hence there exists some n0 such that for n=n0, we have

E[|�un |1+�]5 E
[
exp

{
−(1− )�u+

1 + 
2

‖∇u‖22
}]

for some 0¡�¡. Therefore the sequence (�un ; n∈N) is uniformly integrable.
Now let us replace un by tun. Then from the Jensen inequality t 7→ E[�t un ] is
continuous on [0,1] (cf. Lemma 3.1 of [17]) and it is also an integer (this
follows from the �nite dimensional considerations), hence it is equal to one,
which implies also that E[�u] = 1 by the uniform integrability. The rest is
obvious from the part (a) and the uniform integrability.

Theorem 3.3 [13] Suppose that u(w) is compact H − C1 and ∇u is an
H − C1 map. Suppose; moreover; that u∈ ⋂p∈(1;∞)Dp;2(H) and for some
p∈ (1;∞) and �¿0;

E[expp( 12 (�+ ‖∇u‖H−S)2 − �u− 1
2‖u‖2H )]¡∞ ;

then E[|�u|]¡∞;
E[’ ◦ T�u] = E[�u]E[’]

and
E[�u] =

∑
�∈T−1{w}

sign det2(IH +∇u(�)) ; (3.3)

almost surely.

Theorem 3.4 [18] If u(w) is locally H − C1 and if it satis�es the assumptions
of part (a) of Theorem 3.2, then Eq. (3.3) holds provided that one replaces
in (3.3) the set on which the sum is taken by T−1{w}∩M .

Remark. As a consequence of Lemma 3.2, we will see that, in fact, one can
remove the set M , by taking a modi�cation of u.
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Note the similarity of (3.2) and (3.3) to Eqs. (1.1) and (1.2). The expo-
nential integrability conditions in Theorems 3.2–3.4 are quite di�cult to verify
in the case of non adapted shifts and consequently the applicability of these
results is limited.
In the following pages of this work we shall need Sard’s lemma that we

prove in this section. First of all we settle the problem of measurability of
the forward images of the measurable sets in the following lemma which is of
independent interest:

Lemma 3.1 Suppose that u :W →H is a measurable map. Then for any mea-
surable A⊂W; (IW + u)(A)=T (A) belongs to the universally completed (i.e.;
the universal) Borel sigma algebra of W .

Proof. Let t :W × H →H be de�ned as t(w; h)= h+ u(w + h). Then

T (A) = {w∈W : t(w; · )−1{0}∩ (A− w)-∅} :

Let � be the multifunction with values in the subsets of H , de�ned by

�(w) = t(w; · )−1{0}∩ (A− w) :

Then
T (A) = {w∈W : �(w)-∅} :

Let G(�) be the graph of �:

G(�) = {(h; w): h∈�(w)} :

Note that the projection of G(�) in W is exactly the set T (A). We have
G(�)= {(h; w): t(w; h)= 0; h+ w∈A}. Since the map (h; w) 7→ h+ w is mea-
surable on H ×W;G(�) is measurable and H is Suslin, consequently T (A) is
measurable with respect to the universally completed Borel sigma algebra of
W (cf. [4, p. 75, Theorem III.23]).

The following result is the in�nite dimensional version of the Sard inequal-
ity which implies the Sard lemma. In case u is compact H − C1, the validity of
the Sard lemma is indicated in [13]. Here we give the proof of the inequality
using the technique developed in [12], hence we will not enter too much into
technical details.

Lemma 3.2 Suppose that u :W →H is a measurable map in some Dp;1(H)
such that there exists a non-negative random variable r; with �(Q)= �{r¿0}
¿0 and the map h 7→ u(w + h) is continuously Fr�echet di�erentiable on the
random open ball {h∈H : |h|H ¡r(w)}. Then we have; for any A∈B(W );

�(T (A∩Q))5
∫

A∩Q
|�u|d� :
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Proof. Let (�n; n∈N) be a sequence of orthogonal projections of H increas-
ing to IH . De�ne

Wn;m =
{
w∈W : ‖∇u(w + h)−∇u(w)‖2¡ 1

120 ; for all |h|H ¡
8
m

}
∩
{
w∈W : |�⊥n u(w)|H ¡

1
120m

; ‖�⊥n ∇u(w)‖2 5 1
120 ; ‖∇u(w)‖2

5 m; r(w)¿
9
m

}
;

where ‖ · ‖2 denotes the Hilbert–Schmidt norm. By the H − C1 property,
(Wn;m; n; m∈N) covers almost surely Q (here, if necessary, we add a neg-
ligible set to have equality everywhere instead of almost everywhere but we
keep the same notation).
Let us denote the set A∩Wn;m by 
. Let �
(w)= inf (|h|H : h∈ (
−

w)∩H), note that |�
(w + h)− �
(w)|5 |h|H , hence |∇�
(w)|H 5 1 almost
surely (cf., [18]). De�ne G(w)= g(w)�⊥n u(w), where g(w)=�(m�
(w)). � is
chosen as a smooth function from R to [0; 1], it is equal to one on [−6; 6]
and zero outside the interval [−7; 7]. Moreover, its derivative is supposed to
be bounded by two. Then ‖∇G(w)‖25 3=10. To see this, we have

∇G = �′(m�
)m∇�
 ⊗ �⊥n u+ g�⊥n ∇u :

Since ∇ is a local operator (cf., [15]), on the set 
, ∇�
 =0 almost surely.
Hence, for almost all w∈
, we have ∇G(w)= g(w)�⊥n ∇u(w), which implies
that ‖∇G(w)‖25 1

120 on 
. For those w who fall outside 
, the only contribu-
tion comes from the ones for which g(w)-0. For this condition to be realized,
we should have m�
(w)5 7. Then, by the very de�nition of �
, for any �¿0,
there exist h∈H and z ∈
, such that z − w= h and |h|H ¡ 7

m + �¡ 8
m . Hence

the norm of the �rst term at the right hand side of ∇G can be bounded as

m|�′(m�
(w))||∇�
(w)|H |�⊥n u(w)|H 5 2m|�⊥n u(w)|H :

Since w= z − h and z ∈
, we have
|�⊥n u(w)|H = |�⊥n u(z − h)|H

5 |�⊥n u(z)− �⊥n u(z − h)|H + |�⊥n u(z)|H

5 |�⊥n u(z)− �⊥n u(z − h)|H + 1
120m

:

Moreover,

|�⊥n u(z)− �⊥n u(z − h)|H 5
1∫
0
|∇h�⊥n u(z − th)|H dt

5
1∫
0
[|∇h�⊥n u(z− th)−∇h�⊥n u(z)|H + |∇h�⊥n u(z)|H ] dt

5 1
120 |h|H + 1

120 |h|H = 1
60 |h|H ;
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since |th|H 5 |h|H ¡8=m and since z ∈
. Therefore we obtain

|�⊥n u(w)|H ¡
1
60
|h|H + 1

120m
5

8
60m

+
1

120m
;

consequently

m|�′(m�
(w))||∇�
(w)|H |�⊥n u(w)|H 5 2m
17
120m

=
17
60

:

For the second term at the right hand side of ∇G(W ), we have

‖g(w)�⊥n ∇u(w)‖2 5 ‖�⊥n ∇u(z − h)‖2
5 ‖�⊥n ∇u(z − h)− �⊥n ∇u(z)‖2 + ‖�⊥n ∇u(z)‖2
5 1

120 +
1
120 =

1
60 :

Therefore, for w∈
c,

‖∇G(w)‖2 5 17
60 +

1
60 =

3
10

and for w∈
,
‖∇G(w)‖2 5 1

120 ;

hence
‖∇G(w)‖2 5 max{ 310 ; 1

120} = 3
10

for almost all w∈W . Consequently TG = IW + G is almost surely bijective
(cf. [12, 16, 18]). Making exactly the same reasoning, we can see that ‖∇(gu)‖2
is essentially bounded. Set E= TG(
), then E is measurable, and if �E(w)
5 3=m, then �
(T−1G (w))5 5=m and (IW + �⊥n u)(T−1G (w))=w for �E(w)
5 3=m. Let now k(w)=  (m�E(w));  :R→ [0; 1]; | ′|5 2;  =1 on [−1; 1],
and zero outside [−2; 2]. De�ne K(w)= k(w)(−w + T−1G (w)). Then, as we
have done for ∇G above, we can show easily that ‖∇K‖2¡1=2 almost
surely.
After all these preparations, de�ne IW + S = T ◦ TK , where TK = IW + K .

We have �S(w)=�u(TKw)�K (w). Moreover S(w)=K(w) + u(TK (w)). If
�E(w)¡1=m (in particular if w∈E), from above we have (IW + �⊥n u)(T−1G w)
=w and T−1G (w)=TK (w), hence

w = (IW + �⊥n u)(TKw)

= w + K(w) + �⊥n u(TKw)

which gives K(w)= − �⊥n u(TKw). Consequently

S(w) = K(w) + u(TKw)

= −�⊥n u(TKw) + u(TKw)

= �nu(TKw) ;
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this means that for �E(w)¡ 1
m , S(w) belongs to the �nite dimensional space

�nH . Let (ei) be a complete orthonormal basis in H corresponding to (�n).
De�ne, for given w∈W , w2 as

∑
i5n �ei(w)ei and w1 =w − w2. Denote re-

spectively by �n and �⊥n the images of � under these two maps. From the
Fubini theorem, we have

�((TS(E)) =
∫

W⊥
n ×Wn

1TS (E)(w1 + w2)�⊥n (dw1)�n(dw2)

=
∫

W⊥
n

�n((IRn + S(w1 + · ))[(E − w1) ∩ �nH ])�⊥n (dw1) :

Since w2 7→ S(w1 + w2)∈ �nH for those w2 such that w1 + w2 ∈E, we can use
the Sard inequality in �nite dimensions for Lipschitz maps (cf. [8], p. 243,
Theorem 3.2.3) to obtain

�(TS(E))5
∫

W⊥
n

�⊥n (dw1)
∫

(E−w1)∩�nH
| det(IRn +∇S(w1 + w2))|

× exp[−(S(w1 + w2); w2) + trace(∇S(w1 + w2))|�nH

−1=2|S(w1 + w2)|2H ]�n(dw2)

5
∫

W⊥
n

�⊥n (dw1)
∫

(E−w1)∩�nH
|�S(w1 + w2)|�n(dw2)

=
∫
E
|�S |�(dw)

=
∫
E
|�u(TKw)||�K (w)|�(dw) :

Recall that TK = T−1G on E. T−1G can be written as T−1G (w)=w + �(w) for
some �∈Ds;1(H) for any s¿1 (cf. [16]). From the locality of the operators
� and ∇ (cf. [15]) �K = �� and ∇K =∇� almost surely on E, hence �K =��

almost surely on E. Moreover, from the Ramer theorem for the contractive
case (cf. [18]), we have

E[f ◦ T−1G |��|] =E[f] ;

for any positive, measurable function f on W . Consequently

�(TS(E))5
∫
E
|�u ◦ TK ||�K |d�

=
∫
E
|�u ◦ T−1G ||��|d�

=
∫
W
(1
|�u|) ◦ T−1G |��|d�

=
∫
W
1
|�u|d� :



Degree theory on Wiener space 269

On the other hand TS(E)=T ◦ TK (TG(
))=T ◦ T−1G (TG(
)) and T−1G ◦ TG(
)
= 
 almost surely. We can add a null set O to have the everywhere equality:
TK (TG(
))=
 ∪ O and we obtain:

�(T (
))5 �(T (
 ∪ O))5
∫


|�u|d� :

Let us now cut and paste the sequence (
n;m) to form a partition of A ∩ Q
(we keep the same notation). Then

�(T (A ∩ Q)) = �(T (∪
n;m))

= �(∪T (
n;m))

5
∑

�(T (
n;m))

5
∑ ∫


n; m

|�u|d�

=
∫

A∩Q
|�u|d� :

Theorem 3.5 Suppose that u : W →H is as in Lemma 3.2 and let T = IW + u.
For any positive; bounded; measurable functions f and g on W; we have

E[f ◦ T g 1Q|�u|] =E

[
f

∑
y∈T−1{w}∩Q

g(y)

]
:

where �u= det2(IH +∇u) exp[−�u− 1
2 |u|2H ]. Furthermore; if u is locally

H − C1; then there exists a modi�cation u′ of u (i.e.; u′= u almost surely);
such that T ′= IW + u′ satis�es

E[f ◦ T ′g|�u|] =E

[
f

∑
y∈T ′−1{w}

g(y)

]
:

If H + Q ⊂ Q; in particular when u is H − C1; then T ′(Q) ⊂ Q; hence we can
replace T ′ by the restriction of T to Q and look at (Q;H; �) as an abstract
Wiener space on which it holds that

�(T (A))5
∫
A
|�u|d� ;

for any A∈B(Q).
Proof. From Theorem 5.2 of [18], we have

E[f ◦ T g 1Q|�u|] =E

[
f

∑
y∈T−1{w}∩M∩Q

g(y)

]
:

Therefore, if g= g′ almost surely on Q then∑
y∈T−1{w}∩Q∩M

g(y)=
∑

y∈T−1{w}∩Q∩M
g′(y)
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almost surely. Moreover, we have

E

[
f

∑
y∈T−1{w}∩Mc∩Q

g(y)

]
=E

[
f1(T (Mc∩Q))c

∑
y∈T−1{w}∩Q

g(y)

]

and the �rst part of the corollary follows from Lemma 3.2. For the second
part, it su�ces to remark that from the local H − C1 property, we have Q=W
almost surely. De�ne u′(w) as u(w) on Q and zero elsewhere, then the corre-
sponding shift T ′ satis�es the claimed property.

Corollary 3.1 Suppose that u is locally H − C1 and it satis�es the hypothesis
of part (a) of Theorem 3.2. Then the modi�cation u′ of u and the correspond-
ing shift T ′ satisfy the degree identity (3.3) of Theorem 3.3. Furthermore; if
u is H − C1 then (3.3) holds also for u; i.e.;

E[�u] =
∑

y∈T−1{w}
sign �u(y) :

We have the following extension of Theorem 8.1 of [12]:

Lemma 3.3 Let u : W →H be as in the Lemma 3.2. Suppose that � is another
probability on W such that �|M∩Q and � are mutually singular. Then there
exists a universally measurable set K with �(K)= 0 and T?�(K)= �(Q). In
other words � and T?�̃ are singular where �̃ is de�ned by

�̃(A)=
�(A ∩ Q)
�(Q)

:

If u is H − C1 then one can replace Q with W .

Proof. By the hypothesis, there exists a measurable set N ⊂M ∩Q such that
�(N )= 0 and �(N )= �(M ∩ Q). From the Theorem 3.6, we have �(T (N ∪
(Mc ∩ Q)))= 0 and

T?�(T (N ∪ (Mc ∩ Q)))= �(N ∪ (Mc ∩ Q))

= �(Q) :

To complete the proof it su�ces to take K = T (N ∪ (Mc ∩ Q)).

Turning to the Leray–Schauder theory cf., e.g., [9] or [5] for a detailed
treatment: let X be a Banach space, D a bounded, open subset of X with
boundary @D. Let

 = IX +K ;

where K is a (not necessarily linear) continuous, compact map on D.  is called
a compact perturbation of the identity. Then there exists a function deg( ; D; p)
de�ned for any p∈X , satisfying p∈|  (@D) which possesses the follow-
ing properties. Furthermore, the �rst four properties determines deg( · ; · ; · )
uniquely.
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(a) deg( ; D; p) is integer valued.
(b) deg(IX ; D; p)= 1 for any p∈D.
(c) If D1; D2 are disjoint open subsets of D and p∈|  (D−D1 ∪D2) then

deg( ; D; p)= deg( ; D1; p)+ deg( ; D2; p) :

(d) Invariance under homotopy: Let G : [0; 1]×D→X be a compact map,
y : [0; 1]→X continuous and y(t)∈| (IX +G(t; · ))(@D) for any t ∈ [0; 1]; then
deg[(IX +G(t; · )); D; y(t)] is independent of t ∈ [0; 1].
(e) deg( ; D; p)- 0 implies  −1{p}- ∅.
(f) deg( ; D; p) is constant on every connected component of X −  (@D).
(g) deg(IX +K1; D; p)= deg(IX +K2; D; p) whenever K1|@D=K2|@D.
(h) If  is one to one and p∈  (D), then d( ; D; p)= ± 1.

4. A degree theorem on Wiener space

Theorem 4.1 Let u(w) be an H -valued random variable; Tw=w+ u(w).
Assume that

(1) for a:a:w; h 7→ u(w+ h) is a compact map on H .
(2) for almost all w; for any h0 ∈H

sup{|h|: h0 = h+ u(w+ h)}¡∞
(this condition is satis�ed if; e.g.; lim |hn+ u(w+ hn)|H =∞ whenever |hn|
→∞).

Let Dn denote an increasing sequence of bounded; open subsets of H; Dn↗H
as n→∞. Then; as n goes to +∞

deg(T (w+ h)−w;Dn; h0)→ q (4.1)

almost surely; where q is a non random constant. If q- 0; then {�: T (�)=w}
is a.s. non empty and the equation for �: �+ u(�)=w has a measurable
solution �(w).
If (2) is replaced by (2)′:

(2)′ for a.a. w; |u(w+ h)|H = o(|h|H ) as |h|H →∞; then (2) is also satis�ed
and q=1.

Proof. Note �rst that if �1(w), �2(w) are two measurable solutions to w=
T (�i)=�i+ u(�i), i=1; 2 on (W;H; �) then �1− �2 ∈H and in order to consider
solutions to w= �+ u(�) we have to consider solutions h0 ∈H to the equation
0= h+ u(w+ h) and then �=w+ h0. Setting g(h)= h+ u(w+ h) and �xing w,
by the Leray–Schauder theorem and our assumptions deg(g; Dk ; p) is a well
de�ned integer for every p∈H . Moreover by assumption (2), for p �xed and
some k0 which may depend on w, there is no solution to p= g(h) on @Dk for
all k= k0. Consequently, by property (c), we may de�ne deg(g; H; p) as

deg(g; Dk ; p)−−→
k→∞

deg(g; H; p) a.s. (4.2)
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Again by assumption (2) and property (d) with G independent of t, the limit
is independent of p. Moreover, for any h1; h2; h3 ∈H

lim
k→∞

deg(g+ h1; Dk + h3; p+ h2) = lim
k→∞

deg(g; Dk + h3; p+ h2− h1)

= lim
k→∞

deg(g; Dk + h3; p)

= lim
k→∞

deg(g; Dk ; p) : (4.3)

Let dg(w) denote this limit and note that dg(w)=dg(w+ h). Consequently let
A= {w: dg(w)∈ [a; b]} note that A is shift invariant (A=A+H) and conse-
quently the probability of A is zero or one. Therefore dg(w) is a.s. a (deter-
ministic) constant, say dg(w)= q and by property (e) of the Leray–Schauder
degree, if q- 0 then {�: T�=w} is non-empty.

Assuming now that (2)′ is satis�ed, set g�(h)= h+ �u(w+ h), 05 �5 1,
then by the invariance of the degree under homotopy, q=d(g)=d(g�)=
d(g0)= 1.

Finally, to show the existence of a measurable solution �(w) to the equa-
tion w= �+ u(�), let (W;B) be a measurable space and X a topological space.
Let F(w), w∈W , take values in the class of non-empty subsets of X . The
Kuratowski and Ryll-Nardzewski theorem (cf. e.g. [4]) states that if X is
Polish, for all w∈W , F(w) is closed and for all open set U in X ,

{w: F(w)∩U-�}∈B ; (4.4)

then there exists a measurable selection i.e., there exists a measurable func-
tion f(w), from (W;B) to X such that f(w)∈F(w) for all w∈W. In our case
X =H , Tw=w+ u(w) and F(w)= {h: h+ u(w+ h)= 0}. Evidently,

F(w)∩U = {h∈U : h+ u(w+ h)= 0} :

Since H is separable and U is open, there exists a sequence (hi; i= 1) which
is dense in U . Let Un= {h1; h2; : : : ; hn}. Set

�n(w)= inf
m5 n
hm∈Un

|hm+ u(w+ hm)|H : (4.5)

Then �n(w) is a random variable, �n(w)↘ �∞(w) hence �∞(w) is also a ran-
dom variable and {w: �∞(w)= 0} is a measurable set.

Since u(w+ h) is continuous in h, it follows that

{w: �∞(w)= 0}= {w: F(w)∩U-�} ; (4.6)

therefore F is a measurable multivalued map. This proves the existence of
a measurable selection and completes the proof of Theorem 4.1.

The following extends Theorem 8.2 of [12]:

Theorem 4.2 Assume that u :W→H is H −C-compact and locally H −C1

with Q+H ⊂ Q (cf. Theorem 3:5). Suppose also that sup (|h|H : h+ u(w+ h)
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= h0)¡∞ almost surely for any given h0 ∈H and that the degree of
T = IW + u is nonzero. Let M = {w∈W : det2(IH +∇u(w))- 0}. Then
1: �≈ T ∗(�|M ) with

d�
dT?�|M (w)=

[ ∑
y∈T−1{w}∩Q

1
|�u(y)|

]−1
:

2: Let S be the right inverse of T whose existence is proved in Theorem 4:1.
Then S∗�� �|M . Moreover we have the following Girsanov-type identity:

E[f ◦ T 1S(W )|�u|] =E[f] ;

for any f∈Cb(W ). This identity; combined with the absolute continuity
of S∗� implies that

dS∗�
d�|M (w)= |�u(w)|1S(W )(w) :

Proof. De�ne T ′ as T on Q and as being equal to IW otherwise. Note that
T = T ′ outside a slim set. We have, from Theorem 3.5, for any A∈B(W ),

�(T ′(A))5
∫
A
|�u|d� :

Let S be the right inverse of T, since Q + H ⊂Q; S is also the right inverse
of T ′: We have

�(A) = �(T ′(S(A)))

5
∫

S(A)
|�u|d�

5
∫
1A ◦ T |��|d� ;

hence we have ��T ∗(�|M ). We know already that T ∗�|M�� (cf. [12, 18]),
hence the �rst part of (1) follows. The expression for the density is an im-
mediate consequence of the equivalence of these two measures and of the
following formula which is proven in [18, Theorem 5.2], combined with
Theorem 3.5 (Theorem 3.5 permits us to get rid of the dependence on the
set of non-degeneracy of T ):

dT ∗(�|M )
d�

(w)=
∑

y∈T−1{w}∩Q

1
|�u(y)| :

To prove the second part, since, S−1(A)⊂ T ′(A), we have

�(S−1(A))5
∫
A
|�u|d� ;

hence S∗���|M .
From Theorem 3.5, we have, for any f∈C+

b (W ),

E[f ◦ T1S(W )|�u|] =E

[
f

∑
y∈T−1{w}∩Q

1S(W )(y)

]
:



274 A.S. �Ust�unel, M. Zakai

It is easy to see that ∑
y∈T−1{w}∩Q

1S(W )(y)= 1Q(Sw)= 1

�-almost surely by S∗���. Therefore we obtain

E[f ◦ T1S(W )|�u|] =E[f] :

To calculate the Radon–Nikodym density, we have, from Theorem 3.5,

E[f1S(W )|�u|] = E

[ ∑
y∈T−1{w}∩Q

f(y)1S(W )(y)

]

= E

[ ∑
y∈T−1{w}∩Q

f(Sw)1S(W )(y)

]

= E

[
f(Sw)

∑
y∈T−1{w}∩Q

1S(W )(y)

]

= E[f(Sw)1Q(Sw)]

= E[f(Sw)] ;

which completes the proof.

Remark. If we suppose that u is H − C 1 then the hypothesis Q + H ⊂Q is
automatically satis�ed. Moreover, if we make the aesthetical convention that
Q=W , then we can replace everywhere above the set Q with W.

In the sequel we shall use the notations N+(w); N−(w); N (w) de�ned as
following

N+(w)=The cardinality of {�: T�=w and det2(IH +∇u(�))¿0} ;

N−(w)=The cardinality of {�: T�=w and det2(IH +∇u(�))¡0} ;

N (w)=N+(w) + N−(w) :

In the following theorem the convention sign(0)= 0 is used:

Theorem 4.3 Assume that conditions (1), (2) of Theorem 4.1 are satis�ed.
Further assume that u is locally H − C 1. Then for any f∈C+

b (W )

lim
k→∞

E[(f1N¡k) ◦ T�u] = qE[1N¡∞f ] (4.7)

and if �{w: N (w)¡∞}-0 then for almost all w in {w: N (w)¡∞}
q=N+(w)− N−(w) ;

namely;
q=

∑
�∈T−1{w}

sign �u(�) : (4.8)
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If moreover; for some positive; bounded; measurable function f on W; we
have E[f ◦ T |�u|] =E[fN ]¡∞; then

E[f ◦ T�u] = qE[f] :

Proof. From Theorem 3.1, we have

E[(f1{N5k}) ◦ T |�u|] =E[f1{N5k}N ]¡∞ ;

moreover, replacing g by sign �u there, we obtain

E[(f1{N5k}) ◦ T�u] =E[f1{N5k}(N+ − N−)] :

From Theorem 4.1 and the de�nition of the Leray–Schauder degree, with the
notations of the proof of Theorem 4.1, we have

qk =
∑

h∈Dk ; h+u(w+h)=0
sign det2(IH +∇u(w + h)) ;

and qk → q stationarily, hence we should have q=N+ − N−, which is almost
surely a constant. Consequently

E[(f1{N5k}) ◦ T�u] = E[f1{N5k}(N+ − N−)]

= qE[f1{N5k}] :

If q=0, there is nothing to prove, if not, dividing both sides of the above equa-
tion by q we obtain positive functionals, hence we can pass to monotone limit
which proves the �rst claim. From the argument above, the second claim is ob-
vious. To prove the last claim, remark that, from the hypothesis E[fN ]¡∞,
hence f should be zero almost surely on the set {N =∞}. Therefore,

E[f(N+ − N−)] = E[f(N+ − N−)1{N ¡∞}]
= qE[f1{N¡∞}]

= qE[f] :

5. An application

We start with the following corollary to Theorem 4.1.

Corollary 5.1 Let K be a linear Hilbert–Schmidt operator on H and G(h)
a continuous function from H to itself such that |G(h)|H = o(|h|H ) as
|h|H →∞. Then the equation for y:

y + KG(y)= K̃w; (5.1)

where K̃ is as de�ned by Eq. (2.1), possesses a measurable H -valued solution.
If we suppose further that G is Fr�echet di�erentiable; then the law of y(w)
is absolutely continuous with respect to the law of K̃(w) and we have

E[F(y(w))]=E[F(K̃w)|�K |] ;
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where

�K (w)= det2(IH + KDG(K̃w)) exp−�(G ◦ K̃)− 1=2|G ◦ K̃ |2H :

Proof. Consider the shift:

Tw=w + G(K̃w) : (5.2)

Since K is compact, G(K̃w) satis�es the requirements on u(w) in Theorem 4.1.
Therefore the equation T�=w has a measurable solution, say �= T−1w. Re-
placing w with T−1w in (5.2) and operating with K̃ yields

K̃w = K̃(T−1w + G(K̃T−1w))

= K̃T−1w + KG(K̃T−1w)

comparing with (5.1) yields that y= K̃T−1w solves (5.1). The expression for
the law of y(w) follows from Theorem 4.2.

Let D be a bounded domain in Rd, ẇ a white noise on Rd and Ho will
denote the Hilbert space of real valued functions L2(D). Let g(x; r); x∈D, be
real valued and such that for any f∈Ho; g(x; f(x)); x∈Rd is a continuous
and bounded transformation from Ho to itself satisfying the assumption on G
imposed in Corollary 5.1 with H replaced by Ho. We want to consider the
stochastic partial di�erential equation

−��(x) + g(x; �(x))= ẇ; x∈D ; (5.3)

where � is the Laplace operator on D with the boundary condition

�|@D=0 : (5.4)

We restrict d to be 1; 2 or 3 since, as shown by Buckdahn and Pardoux [3],
K =(−�)−1 subject to the boundary condition (5.4) is a strictly positive
Hilbert–Schmidt kernel and this is needed later. Eqs. (5.3), (5.4) can, therefore,
be written as

�(x) + Kg(x; �(x))=Kẇ : (5.5)

Let Rd
x denote {y: yi5xi; ∀i5d}. De�ne the Cameron–Martin space H in-

duced by Ho as follows:

�(x)=
∫

Rd
x ∩D

�(y)dy ; (�1; �2)H =(�1; �2)Ho : (5.6)

Set
(G1(�))(x)=

∫
Rd

x ∩D
g(y; �(y))dy ; (5.7)

and
(K1�)(x)=

∫
Rd

x ∩D

∫
D

K(y1; y2)�(y2)dy2 dy1 : (5.8)

Then Eq. (5.5) is equivalent to:

�+ K1G1(�)= K̃1w (5.9)

and the existence of a measurable solution to (5.9) follows from Corollary 5.1.
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In order to extend the application of the degree theorem to more general
elliptic stochastic partial di�erential equations, we �rst reformulate
Corollary 5.1 as follows. Let D denote a bounded domain in Rd. For
a multi-index �, D� denotes the corresponding partial di�erentiation. For
�∈Cm(D); ‖�‖m;2 denotes the norm

‖�‖m;2 =

( ∑
05�5m

‖D��‖22
)1=2

:

We de�ne now, Hm
o and �Hm

o as follows. Set Hm
o to be the completion of

{�∈Cm(D)} with respect to the ‖ · ‖m;2 norm and �Hm
o the completion on the

elements of Cm(D) with compact support in D. Let Hm and �Hm denote the
Cameron–Martin subspaces associated with Hm

o and �Hm
0 respectively,

Hm = {�(x); x∈Rd: �(x) =
∫

D∩Rd
�

�(y) dy; �∈Hm
o } (5.10)

with ‖�‖Hm = ‖�‖m;2; �Hm is de�ned similarly by (5.10) but with Hm
o replaced

by �Hm
o .
The superscript m will be dropped whenever m = 0.

Corollary 5.2 Let K1 be a bounded linear operator from H to Hm;m= 1
and assume that embedding of Hm into H is Hilbert–Schmidt; the operator
from H to H induced by K1 will also be denoted K1. Further assume that
G(z) is a continuous function from Hm to H and that |G(z)|H = o(|z|Hm) as
|z|Hm →∞. Then the equation

y + K1G(y) = K̃1w : (5.11)

possesses an Hm-valued solution.

Proof. Note that K̃1w as de�ned by Eq. (2.1) is an Hm-valued random vari-
able. The rest of the proof is the same as that of Corollary 5.1 and therefore
omitted.

Consider, now, the elliptic di�erential operator on D:

P =
∑

05|�|52m
��(x)D�; x∈D

also consider g(x; u; : : : @�u : : :) where g is a function of x∈D and u and its
partial derivatives up to the order �. We want to consider the SPDE

Pu+ g( · ; u; : : : @�u : : :) = ẇ (5.12)

subject to zero Dirichlet Boundary Conditions. For this purpose we list the
following restrictions. D will be assumed to be a bounded open set.

a) Assume that the coe�cients ��(x) are in C|�|−m for m ¡ |�|52m. Then
(5.12) can be written as

Pu =
∑

05|�|; |�|5m
(−1)|�|D�a��D�u : (5.13)
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Further assume that P is uniformly strongly elliptic on D: ∀x∈D∑
|�|=|�|=m

x�a��x� = E0 · |x|2m; E0¿0 (5.14)

b) a��(x) are uniformly continuous on D for |�| = |�| = m:
c) a��(x) is bounded and measurable for |�|+ |�|5 2m.
d) For u; v∈C∞0 (D), set

B(v; u) = (v; Pu)

where (g; h) =
∫
D
g(x)h(x)dx, and assume that for all ’∈ �Hm

o

B(’; ’)= C‖’‖2m;2 :

e) The function g(x; u; : : : ; @�u; : : :); |�|5 m− 1; u∈Hm
o , takes values in Ho

and
‖g(z)‖Ho = o(‖z‖Hm

o
) :

Theorem 5.1 Let D be a bounded domain and P and g satisfy assumptions
a)–e). Assume then @D possesses the �nite cone property (there exists a �nite
cone C such that every x∈D is the vertex of a �nite cone Cx congruent to
C) and m¿d=2. Then there exists an �Hm

o -valued r.v. which solves

(Pu)(x) + g(x; u; : : : ; @�u · · ·) = ẇ; x∈D : (5.15)

Proof. Under the above assumptions K = P−1 is a bounded linear transfor-
mation from H0 to �Hm

o (cf. [2, Theorem 8.2, p. 101]). Moreover, since D
was assumed to possess the �nite cone property, it follows from Maurin’s
theorem ([1, Theorem 6.53]), that the embedding from Hm to H is Hilbert–
Schmidt. Consequently K when considered as a transformation from H to H
is the product of a bounded operator and an H–S operator. Consequently K is
Hilbert–Schmidt. Eq. (5.15) together with the homogeneous Dirichlet boundary
condition is equivalent to u+ K ◦ g = Kẇ, or by Eq. (5.6)–(5.8), (5.10) it is
equivalent to

�+ K1G1(�) = K̃1w

and the result follows from Corollary 5.2.

The restriction m¿d=2 of Theorem 5.1, can be improved if some conditions
of smoothness are imposed on @D and on the coe�cients a��:

Theorem 5.2 Assume that conditions a), c) and d) are satis�ed. Assume also
that condition (e) is satis�ed with m and replaced by 2m. Further assume
f) D is of class C2m (in the sense de�ned in [2, p. 128]);
g) the coe�cients a�� are bounded and measurable on D and a�� ∈C|�| for
all |�|¿0.
Then; for all 2m ¿ d=2; there exists an �H2m

o -valued random variable which
solves Eq. (5.9).

Proof. Applying Theorems 8.2 and 9.8 of [2], it follows that P−1 is a bounded
linear transformation from Ho to �H2m

o . The rest is the same as in the proof of
Theorem 5.1.
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