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Summary. Hyperbolic branching Brownian motion is a branching di�usion
process in which individual particles follow independent Brownian paths in
the hyperbolic plane H2, and undergo binary �ssion(s) at rate �¿0. It is
shown that there is a phase transition in �: For �51=8 the number of parti-
cles in any compact region of H2 is eventually 0, w.p.1, but for �¿1=8 the
number of particles in any open set grows to ∞ w.p.1. In the subcritical case
(�51=8) the set � of all limit points in @H2 (the boundary circle at ∞) of
particle trails is a Cantor set, while in the supercritical case (�¿1=8) the set
� has full Lebesgue measure. For �51=8 it is shown that w.p.1 the Hausdor�
dimension of � is �=(1−√1− 8�)=2.

Mathematics Subject Classi�cation (1991): 60K35 (primary),
60J80 (secondary)

1 Introduction

Hyperbolic branching Brownian motion is a branching di�usion process in
which individual particles execute (independent) Brownian motion(s) in the
hyperbolic plane H2, and undergo binary �ssion(s) at exponentially distributed
random times independent of the motions. The rate � of �ssion is assumed to be
constant. The model is no di�erent from standard branching Brownian motion
(see [1, ch. VI]) except that the motion takes place in the hyperbolic plane
instead of Euclidean space.
Hyperbolic branching Brownian motion, unlike branching Brownian motion

in a Euclidean space, exhibits a phase transition in �. For �¡1=8, the process
is subcritical in the following sense: with probability 1, for any compact subset
K of the hyperbolic plane, the number of particles located in K is eventually
0. For �¿1=8 the process is supercritical: for each nonempty open set U , the
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number of particles in U is, w.p.1, eventually positive. At the critical value
�=1=8 the process dies out in compact sets. These facts follow from the
exponential decay of the heat kernel, which may be written explicitly as

pt(z; z′)= exp
{
− t
4

}( √
2

(4�t)3=2

)
∞∫

d(z; z′)

r exp
{−r2=4t}√

cosh r − cosh d(z; z′) dr ;

where d(z; z′) denotes the hyperbolic distance between z and z′: see, e.g.,
[4, ch. 7]. Elementary arguments (not using the heat kernel) will be given
below.
Similar phenomena have been observed in a number of related growth

models. Pemantle [10] found that for the contact process on a homogeneous
tree, it is possible for the population to grow exponentially (in cardinality)
but nevertheless to ultimately die out in every compact region, if the infection
rate is below a certain critical value. Results of Benjamini and Peres [3] imply
that the same is true of branching random walk on a homogeneous tree or a
hyperbolic space. The phenomenon is a manifestation of the exponential growth
of volume as a function of radius in the phase space, which forces exponential
decay of return probabilities for random walks (and Brownian motions) in
these spaces.
The main objective of this paper is to show how the phase transition man-

ifests itself in the behavior of the process “at in�nity”. The (directed) paths in
H2 traced out by the particles of a branching Brownian motion form a random
binary tree T. (More precisely, there is a continuous embedding of the full
binary tree into H2 whose nodes are located at the points of �ssion and whose
branches follow the particles’ paths.) In the supercritical regime, there are in-
�nite (directed) paths in this tree that remain forever in bounded regions of
H2 (Corollary 3 below); however, in the critical and subcritical regimes there
are no such paths – all in�nite directed paths in T diverge to the boundary
circle @H2 at ∞. De�ne � to be the set of all accumulation points of T in
@H2. Observe that, with probability 1, � is a nonempty, compact subset of
@H2. Our main result is the following.

Theorem 1 For 0¡�51=8 the Hausdor� dimension of � is; with probability
1; equal to

�= �(�)= 1
2 (1−

√
1− 8�) :(1)

The upper bound HD(�)5� will be proved in Sect. 6, and the lower bound
HD(�)=� in Sect. 7.
Note that it is irrelevant whether @H2 is viewed as the real axis (the

half-plane model of H2) or the unit circle (the disk model) because any (hy-
perbolic) isometry between the Poincar�e half-plane and the Poincar�e disk is a
linear fractional transformation with a smooth extension to the boundary, and
di�eomorphisms preserve Hausdor� dimensions. Observe that as � ↑ 1=8 the
Hausdor� dimension increases continuously to 1=2, not to 1, as one might at
�rst suspect. In the supercritical regime, the complement of � has Lebesgue
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measure 0 (see Proposition 10 below), so the Hausdor� dimension is discon-
tinuous at the critical value � = 1=8. In Sect. 8 we shall give a simple heuristic
argument (which we call the “backscattering” principle) to explain why the
Hausdor� dimension of the limit set cannot be greater than 1

2 in the subcritical
case. This argument suggests that the phenomenon may occur in a large class
of similar growth processes, including branching random walks and contact
processes. (See, for instance, Sect. 3.2 of [8], in which it is conjectured that
�(�)51=

√
d for “weakly supercritical” contact processes on a homogeneous

tree of degree d+ 1).

2 Hyperbolic Brownian motion and BBM

2.1 The hyperbolic plane

There are several representations of the hyperbolic plane, the most useful for
our purposes being the Poincar�e half-plane and the Poincar�e disk representa-
tions [2]. In the half-plane model, H2 is the complex manifold {z= x + iy :
y¿0} with the Poincar�e metric ds= |dz|=y. In the disk model, H2 is the com-
plex manifold {z= rei�: 05r¡1} with the Poincar�e metric ds=2|dz|=(1− r2).
The linear fractional transformation

’(z)=
z − i
z + i

(2)

maps the upper half-plane onto the disk and takes the Poincar�e metric for
the half-plane to the Poincar�e metric for the disk. For later reference note
that ’ maps each horocyle �t = {z : =(z)= e−t} to a circle ’(�t) inside the
unit disk tangent to the unit circle at ’(∞)= 1. The hyperbolic isometries
of the Poincar�e half-plane are precisely the linear fractional transformations
represented by matrices from the group PSL(2;R); these include
(1) translations z→ z + r; r ∈R,
(2) homotheties z→ �z; �¿0,
(3) hyperbolic rotations z→’−1(ei�’(z)), and
(4) the inversion z→ − 1=z.

For any two points z1; z2 of H2 there is an isometry of H2 taking z1 to z2.
Hyperbolic circles are Euclidean circles, and vice versa. To see this, observe

that it is enough to consider the hyperbolic circles in the disk model centered
at z=0, since hyperbolic isometries, being linear fractional transformations,
map Euclidean circles to Euclidean circles. That the hyperbolic circles in the
disk model centered at z=0 are also the Euclidean circles centered at z=0
follows from the rotational invariance of the Poincar�e metric. Finally, note
that a hyperbolic circle of radius r has (hyperbolic) area 4� sinh2(r=2) and
perimeter 2� sinh r (see [2], Theorem 7.2.2).
The boundary @H2 of the hyperbolic plane H2 may be identi�ed with

the unit circle |z|=1 (in the disk model) or with R ∪ {∞} (in the half-
plane model). The topology of @H2 is that of the unit circle. Convergence
of a sequence or a continuous path in H2 to a point of the boundary @H2
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means convergence relative to the usual Euclidean metric on the closed unit
disk. (Although it will sometimes be more convenient to use the half-plane
representation, it should be understood that in either representation the topology
of H2 ∪ @H2 is that induced by the Euclidean metric on the closed unit disk.)

2.2 Hyperbolic Brownian motion
Brownian motion in the Poincar�e half-plane started at z= i may be constructed
in two di�erent ways, (1) as a solution to a stochastic di�erential equation, (2)
as a time-change of a two-dimensional (Euclidean) Brownian motion stopped
at the x-axis. Brownian motion started at any other point of the Poincar�e
half-plane may be obtained by isometry: If ’ is a hyperbolic isometry and
if Zt is a hyperbolic Brownian motion started at a point z, then ’(Zt) is a
hyperbolic Brownian motion started at ’(z).
In the �rst representation, hyperbolic Brownian motion Zt = (Xt; Yt) with

starting point z = i (written in the usual rectangular coordinates) may be de-
�ned as the solution of the stochastic di�erential equation(s)

dYt = YtdY Et ; dXt = YtdX Et
subject to the initial condition X0 = 0; Y0 = 1, where (X Et ; Y

E
t ) is an ordinary

(Euclidean) two-dimensional Brownian motion. This representation, together
with Ito’s formula, implies

Lemma 1 log Yt is a standard Brownian motion with drift − 1
2 .

Standard results for one-dimensional Brownian motion with constant drift
(see, for instance, [5, ch. 3]) therefore imply

Corollary 1 De�ne T = T (a)= inf{t : Yt = e−a} and T =∞ if there is no
such t. Then for every a-0 and �51=8;

Ee�T = exp
{a
2
(1−

√
1− 8�)

}
for a¿0 ;(3)

Ee�T1{T¡∞}= exp
{a
2
(1 +

√
1− 8�)

}
for a¡0 :(4)

For a-0 and �¿1=8 both expectations are ∞.
In the half-plane model, hyperbolic Brownian motion Zt =(Xt; Yt) started at

(0; 1) may also be de�ned by the requirement that Z�(t) be a two-dimensional
Euclidean Brownian motion, where

t=
�(t)∫
0
Y−2�(s) ds :

Note that as t→∞; �(t)→ �, where �¡∞ is the �rst passage time to the x-axis
y=0. Consequently, as t →∞; Zt converges to a unique (random) point Z∞
of the boundary R= @H2 of the hyperbolic plane. Similarly, in the disk model
hyperbolic Brownian motion Zt =(Rt;�t) started at (0; 0) may be de�ned as
a time change of Euclidean Brownian motion, with the time change depending
only on the radial process. By the rotational invariance of Euclidean Brownian
motion, the limit point Z∞ is uniformly distributed on the circle @H2.
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2.3 Hyperbolic branching Brownian motion
The most natural construction of hyperbolic branching Brownian motion uses a
countable collection of independent hyperbolic Brownian motion processes and
an independent sequence �nt of rate � Poisson processes. The initial particle
follows the �rst Brownian motion, �ssioning at the occurrence times of the
Poisson process �1. The nth particle, born at a time t¿0 and location z,
follows the nth Brownian motion, moved (by an isometry) to the starting
point z and the starting time t, and �ssions at the occurrence times of the
Poisson process �n, shifted by t. The number Nt of particles born by time t
is a binary �ssion process. Observe that if an isometry ’ of H2 is applied to
the positions of all particles in a branching Brownian motion started at z, the
resulting process is a branching Brownian motion started at ’(z).
At any time t=0 the state of the branching Brownian motion is de-

termined by the total number N (t) of particles and their current locations
Z1t ; Z

2
t ; : : : ; Z

N (t)
t . For 05t5∞, de�ne

Ft = �(N (s); Z1s ; Z
2
s ; : : : ; Z

N (s)
s )05s5t :

Observe that (Ft)t=0 is a �ltration. Consequently, by L�evy’s martingale con-
vergence theorem, for every event A∈F∞,

1A= lim
t→∞P(A |Ft) :

3 Phase transition

3.1 The Horocycle GW processes
Fix an integer n-0, and consider the following modi�cation of branching
Brownian motion started at z= i in the Poincar�e half-plane. Let the process
evolve in the usual way, but make the horocycle �n an absorbing barrier. Thus,
upon reaching �n, a particle will be “frozen” – its motion will cease, and it will
undergo no more �ssion. As t→∞, more particles will become stuck at �n. Let
Pn denote the point process consisting of the locations (x-coordinates) of all
stuck particles, and let Mn be the cardinality of Pn (note that Mn might be ∞).
Observe that a version of hyperbolic branching Brownian motion may be

constructed by attaching to each point (x; e−n), where x∈Pn, its own branching
Brownian motion (with time adjusted to account for the time the stuck particle
at (x; e−n) took to reach its position on �n). These attached branching Brownian
motions should be independent of each other and of the pre-�n branching
Brownian motion process. That this construction does in fact yield a version of
hyperbolic branching Brownian motion is a routine consequence of the strong
Markov property.

Proposition 1 The sequence Mn; n=0; is a Galton–Watson process whose
o�spring distribution is nondegenerate and has mean

�= exp
{
1
2 (1−

√
1− 8�)

}
= e�(5)

for �51=8 and �=∞ for �¿1=8.
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Proof. Consider the particles counted in Mn+1. Each particle � among these is
a descendant of a particle �∈Pn. Now the process consisting of the descendants
of � born after the time of �’s �rst visit to �n is itself a branching Brownian
motion, as noted above, with initial point located on �n. This process is (in
distribution) an isometric replica of the original branching Brownian motion;
the isometry (multiplication by en followed by a real translation) takes each
horocycle �k to the horocycle �k−n. Thus, the number M� of descendants of
� counted in Mn+1 has the same distribution as M1. Moreover, the post-�n
processes engendered by di�erent particles � counted in Mn are independent
branching Brownian motions, so the random variables M�, where � ranges over
the particles counted in Mn, are conditionally independent. It follows that Mn
is a GW process. The o�spring distribution is clearly nondegenerate since with
positive probability the initial particle may reach �1 before �ssioning.
That M1 has the advertised expectation is a routine consequence of Coro-

llary 1 above.

The same argument proves

Proposition 2 The sequence Mn; n50; is a Galton–Watson process whose
o�spring distribution is nondegenerate and has mean

�= exp
{
− 1
2 (1 +

√
1− 8�)

}
= e�−1(6)

for �51=8 and �=∞ for �¿1=8.

3.2 Critical and subcritical cases

If �51=8 the Galton–Watson process {Mn}n50 is subcritical. Thus, extinction
is certain: with probability 1, for all su�ciently large n, M−n=0. In particular,
there is a (random) n∗ such that no particle of the branching Brownian motion
ever reaches the region above the horocycle �−n∗ .

Corollary 2 Assume that �51=8. Then for every horocycle �n the number
of particles of the branching Brownian motion above �n is eventually 0; with
probability 1. Hence; for every compact subset K of H2; the number of
particles located in K is eventually 0; with probability 1.

Proof. For any pair of integers n1; n2 there exists p=p(n2 − n1)¿0 with the
following property. For any time t=0, on the event that a particle � of the
branching Brownian motion is located on or above �n1 at time t, the conditional
probability that a post-t descendant of � will visit �n2 , given the history Ft of
the BBM up to time t, is at least p. Consequently, on the event V (n1) that
there are particles on or above the horocycle �n1 at arbitrarily large times,

lim
t→∞P(�n2 is never hit |Ft)51− p¡1 :

Since
1{�n2never hit} = lim

t→∞P(�n2 is never hit |Ft) ;
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by the martingale convergence theorem, it follows that on the event V (n1)
it is certain that every �n2 will be visited. But the event that every �n2 is
visited is the same as the event that Mn¿0 for all n¡0, and this happens
with probability 0, since the GW process {Mn}n50 is subcritical when �51=8.
Thus, for every n,

P(V (n))= 0 :

If K is a compact subset of H2, then for some integer n; K lies entirely
above �n. The event that there are particles in K at arbitrarily large times is
contained in the event V (n) that there are particles on or above �n at arbitrarily
large times; consequently, it has probability 0.

3.3 Supercritical case

When �¿1=8 both of the horocycle GW processes {Mn}n50 and {Mn}n=0 are
supercritical. Thus, particles reach every horocycle �n; n¡0, above i, and those
particles all have descendants that eventually return to �0.

Corollary 3 Assume that �¿1=8. With probability 1; there exist in�nite paths
in the tree T that remain forever in compact regions of H2.

Proof. Consider the modi�cation of the branching Brownian motion in which
particles are frozen upon reaching the horocycle �−1. By Proposition 2,
EM−1 =∞. Consequently, for k=1 su�ciently large, the expected number
of particles in P−1 whose trajectories did not reach �k before freezing at �−1
is (strictly) greater than 1.
Let C1 and C2 be hyperbolic circles with the same center iy (in the half-

plane representation) and with hyperbolic radii log y − 1 and log y + k, repec-
tively. These circles are situated so that C1 lies above and is tangent to �−1 and
C2 lies above and is tangent to �k . For large y, these circles closely approx-
imate the horocycles �−1 and �k to which they are tangent. Consequently, by
the result of the preceding paragraph and the Monotone Convergence Theorem,
if y is su�ciently large, the expected number of particles in the branching
Brownian motion that reach C1 before C2 is greater than 1. But branching
Brownian motion is invariant (in law) under hyperbolic isometries, in parti-
cular hyperbolic rotations centered at iy, so, for branching Brownian motion
started at any point on the circle C3 centered at iy with radius log y, the
number of particles that reach C1 before C2 has the same distribution F as
when the branching Brownian motion is started at i. Since the mean of F
is greater than 1, any Galton–Watson process with o�spring distribution F is
supercritical, and so may explode with positive probability.
Such a GW process is embedded in the branching Brownian motion. Let

Ca; Cb; and Cc be the circles centered at i with hyperbolic radii log y − 1; log y,
and log y + k, respectively. Follow the initial particle from its initial position
i until its �rst hit of the circle Cb; then track it and all of its subsequent
o�spring that return to Ca before hitting Cc; after their return(s) to Ca follow
these particles (ignoring their o�spring) back to Cb; etc. The number Kn of
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particles in the nth cycle of this process is the nth term of a GW process with
o�spring distribution F . On the event Kn →∞ (which has positive probability)
there is an in�nite path in T that remains forever inside the circle Cc.
It now follows that with probability 1 there is an in�nite path in T that

remains forever in a compact region of H2. If Kn→∞ there is certainly such
a path. If Kn 6→∞, start from scratch with the post-Cc branching Brownian
motion initiated by the �rst particle to reach Cc. If this process again fails to
produce an in�nite path that remains bounded, proceed to the next available
particle, etc. By the SLLN, one of these processes will produce an in�nite
bounded path.

Corollary 4 Assume that �¿1=8. Then with probability 1; for every
nonempty open subset U of H2; there are particles in U at inde�nitely large
times.

Proof. Let Br be the ball of radius r centered at the initial point i of the
B. B. M., and let Ar be the event that there are particles in Br at all times
t¿0. By the preceding corollary, P(Ar) can be made as close to 1 as desired
by making r large.
For any �xed open set U and any �xed r¿0, there exists p¿0 so that

for any z ∈Br , the probability that a hyperbolic Brownian motion started at z
will visit U at time 1 is at least p. On the event Ar , there is a particle of the
branching Brownian motion inside Br at every time n=0; 1; : : :, and conditional
on its location z its subsequent movement is a hyperbolic Brownian motion
started at z. Consequently, for each m=1; 2; : : : and each n=m,

P(U visited after time m |Fn)=p1Ar :
(Recall that Ft is the �-algebra generated by the history of the branching
Brownian motion up to time t.) But by L�evy’s martingale convergence theorem,

lim
n→∞P(U visited after time m |Fn)= 1{U visited after time m} ;

so Ar ⊂{U visited after time m}. Since P(Ar)→ 1 as r→∞, this proves that
the event {U visited after time m} has probability 1 for every m.

3.4 The Horocycle GW process in the critical case

Proposition 3 Assume that �=1=8. Then limn→∞Mn=en=2 = 0.

Remarks. (1) This will be of central importance in determining the Hausdor�
dimension of � in the critical case �=1=8. (2) The critical case di�ers from
the subcritical case in this regard: it can be shown that when �¡1=8; limn→∞
Mn=en�¿0 with probability 1.

Proof of Proposition 3. Consider the modi�cation of the hyperbolic branching
Brownian motion in which the horocycles �−1and �n (for some integer n=1)
are absorbing barriers. Thus, the process evolves in the usual way, starting from
a single particle located at z= i, but particles are instantaneously “frozen” upon
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reaching either �−1 or �n. De�ne M−1; n to be the number of particles in this
process that are ultimately frozen on �−1. Then as n→∞; M−1; n ↑M−1, so by
the monotone convergence theorem,

EM−1; n ↑EM−1 = e−1=2 :

The event {limn→∞Mn=en=2¿0} has probability 0 or 1. Suppose that it has
probability 1. Since EM−1¡1, there is positive probability that M−1 = 0, and
hence that M−1; n=0 for all n=1. Consequently, for some �¿0,

P(Fn)¿� ∀n=1 ;
where

Fn=F�n = {M−1; n=0 and Mn¿�en=2} :
Consider the post-�n ∪�−1 evolution of the branching Brownian motion.

Each particle counted in Mn begets its own branching Brownian motion, started
at a point of �n, and these processes are independent (conditional on the loca-
tions of the initiating particles on �n). Moreover, each process is an isometric
replica (in law) of the original branching Brownian motion started at i. Thus,
if the particles of each of these o�spring processes are frozen upon reaching
�−1 then for each o�spring process the expected number of descendants that
are ultimately frozen on �−1 is exp{−(n+ 1)=2}. Consequently, conditional on
the event Fn, the expected total number of particles descendant from particles
counted in Mn that are ultimately frozen on �−1 is greater than �e−1=2. This
implies that

E(M−1 −M−1; n)¿�2e−1=2

for all n=1, which is a contradiction, since EM−1; n ↑EM−1.

Remark. A more arduous argument shows that in fact

lim
n→∞ nMn=e

n=2

exists and is positive, with probability 1. The proof uses the fact that the
martingale

Z(t)= −
N (t)∑
i=1
Yi(t)

1
2 log Yi(t)

has a �nite, strictly positive limit (by Theorem 1 of [7]). Here Yi(t) denotes
the y-coordinate of the ith particle in existence at time t.

4 Diameter of the limit set

Recall that T is the random binary tree embedded in H2 whose nodes are
located at the points of �ssion of the branching Brownian motion and whose
(directed) edges follow the paths of particles between successive �ssions. De-
�ne � to be the set of all points in @H2 =R∪{∞} that are accumulation
points of T, and de�ne

D=diameter(�) :
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(The diameter refers to the usual metric on R.) The following estimate on
the tail of D will be our primary tool for establishing the topological and
dimensional properties of � in the subcritical and critical regimes.

Proposition 4 For each �51=8 there exists a constant 0¡C¡∞ such that
for all su�ciently large t;

P{D=t}5Ct�−1 :
Proof. Recall that D is the diameter of � as measured using the usual
Euclidean distance on @H2 =R. On the event D=t it must be the case that
some point of � has absolute value at least t=2; consequently, it is enough to
prove that for a suitable constant C¡∞,

P(�⊆| [−t; t])5Ct�−1(7)

for all su�ciently large t.
Recall that branching Brownian motion in the Poincar�e disk may be

obtained from branching Brownian motion in the half-plane by applying
the isometry ’ de�ned by (2). The mapping ’ takes R onto the circle
|z|=1, with ’(∞)= 1; ’(i)= 0; ’(0)= − 1; the complement [−t; t]c of [−t; t]
is mapped onto an open arc of the unit circle centered at 1 with arc-
length ∼ 4=t (as t→∞). Consequently, the probability in (7) is the same
as the probability that the limit set �D of branching Brownian motion in
the Poincar�e disk intersects an open arc At of arclength ∼ 4=t centered
at z=1.
Let C1; C2; C3 be Euclidean circles of radius 2=t interior and tangent to the

unit circle at 1; z1; z2, respectively, where z1; z2 are the endpoints of the arc
At . Any continuous path from z=0 that enters a neighborhood of the arc At
must �rst intersect at least one of the circles Ci. Thus, �D ∩At-∅ only if a
particle of the branching Brownian motion hits one of the circles Ci. Because
branching Brownian motion in the disk is rotationally invariant (in law), the
probability that a particle hits Ci is the same as the probability that a particle
hits C1; hence, the probability that a particle hits one of the circles Ci is no
larger than 3 times the probability that a particle hits C1.

Now return to the Poincar�e half-plane via the mapping ’−1: this maps the
circle C1 onto the horocycle

�= {z= x + iy |y= t=2− 1} :
Consequently, the preceding paragraph implies that

P(�⊆| [−t; t])53P{a particle hits �} :
The latter probability may be bounded with the aid of the upper horocycle GW
process {Mn}n50 introduced in Sect. 3. A particle of the branching Brownian
motion reaches the horocycle �n={y=e−n} i� Mn¿0. By Proposition 2,
{Mn}n50 is a subcritical Galton–Watson process with mean o�spring num-
ber �= exp{�− 1}. Thus, by the Markov inequality, P{Mn¿0}5EMn= �|n|.
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The estimate (7) follows easily from this: for n= − [log(t=2− 1)],

P{�⊆| [−t; t]}53P{Mn¿0}53e1−�
( t
2
− 1
)�−1

:

Remark. Similar arguments give an inequality in the reverse direction: there
exists a constant C′¡∞ such that P{D¿t}=C′t�−1.
Corollary 5 If �¡1=8 then ED�+� ¡∞ for su�ciently small � ¿ 0:

Proof. Since �¡1=2 whenever �¡1=8, this follows immediately from the tail
probability estimate of Proposition 4.

5 Topological consequences

5.1 Critical and subcritical cases (�51=8)
Assume that �51=8.

Proposition 5 With probability 1; � is a totally disconnected closed subset
of @H2 with Lebesgue measure 0:

Proof. That � is closed follows from its de�nition as the set of accumulation
points of T in @H2. Proposition 4 implies that w.p.1, the point ∞∈ @H2 is
not an element of �. Now recall that branching Brownian motion is invariant
(in law) under hyperbolic rotations about the initial point. Since the point at
∞ may be mapped to any other point of @H2 by such a rotation, it follows
that for every �xed �∈ @H2,

�∈| � a:s:
Fubini’s theorem therefore implies that, w.p.1, � has Lebesgue measure 0.
Moreover, for any countable dense subset D of @H2; D∩�= ∅ almost surely,
so � is totally disconnected.

De�ne a path in T to be a continuous function 
 : R+→T such that the
arcs of 
 between successive nodes follow the Brownian trajectories at their
natural speed. It follows from Corollary 2 that, under the assumption �51=8,
in�nite paths 
 in T must eventually exit any compact subset of H2 and
therefore converge (as t→∞) to @H2.

Proposition 6 With probability 1; every in�nite continuous path 
(t) in the
tree T converges to a unique point of @H2.

Proof. Since w.p.1 every continuous path in T eventually exits every com-
pact subset of H2, by Corollary 2, it su�ces to show that with probability 1
no continuous path in T has more than one accumulation point in @H2. Sup-
pose that 
 is a continuous path in H2 that eventually exits every compact
subset of H2 and has two distinct accumulation points �1; �2 in @H2. Then

 accumulates at every point on one of the two arcs of @H2 connecting �1
and �2. But this contradicts Proposition 5, which asserts that w.p.1 � is totally
disconnected.



182 S.P. Lalley, T. Sellke

Proposition 7 With probability 1; for every �∈� there is an in�nite path 

in the tree T that converges to �.

Proof. If �∈� then there is a sequence zn of points in (the image of) T that
converge to �. For each n there is a �nite path 
n in T that terminates at zn.
Let Dm be the hyperbolic disk of radius m centered at the initial point of the
branching Brownian motion. Since zn→ @H2, for every m all but �nitely many
of the paths 
n must exit Dm a �rst time. But there are only �nitely many �nite
paths in T that stay in Dm and terminate on the boundary of Dm, in view of
Corollary 2; consequently, for each m there is a �nite path �m in T that stays
in Dm and terminates on the boundary of Dm such that in�nitely many of the
paths 
n begin with the segment �m. Moreover, these may be chosen so that
for each m; �m+1 is an extension of �m. Thus, there is an in�nite path in T
that extends all of the �nite paths �m. By Proposition 6, � converges to a
unique point �∈�.
That �= � follows from Proposition 5. If � were distinct from �, then for

every neighborhood U of � and every neighborhood V of � there would be a
path in T beginning in U and ending in V ( just take the appropriate terminal
segments of the paths 
n). These paths would have to accumulate on one of
the boundary arcs connecting � and �. But this is impossible, because � is
totally disconnected.

Proposition 8 With probability 1; � is a perfect set; i.e.; every point �∈� is
an accumulation point of �− {�}.
Proof. Suppose that �∈� is an isolated point of �. Then there is an in�nite
path 
 in T that converges to �. There are in�nitely many points of �ssion
along this path, because w.p.1 there are no particles that fail to �ssion in an
in�nite time interval.
From every �ssion emerge two particles, each of which initiates its own

branching Brownian motion from the point of �ssion, independent of the other.
The particles themselves follow (conditionally) independent Brownian paths
to (random) points of @H2, and the distribution(s) of these exit points are
absolutely continuous. Let �1; �2; : : : be the termination points of the trajectories
of particles 1; 2; : : :. Then w.p.1, �n-�m for all n-m; �; �∈ @H2.
Now take a sequence of �ssions along 
 leading to �, and let �n be the

termination points of the trajectories of the particles born at these �ssion points.
By the previous paragraph, the points �n are distinct, and they are certainly
elements of �. The points �n must converge to �, because otherwise there
would be a sequence of trajectories in T accumulating along a nonempty
open arc of @H2, contradicting Proposition 5.

5.2 Supercritical case (�¿1=8)

Assume now that �¿1=8. Then the GW process {Mn}n50 is supercritical, with
probability of extinction 0. Consequently, every horocycle is visited by particles
of the branching Brownian motion. It follows that ∞ is a cluster point of the
tree T. The following is a stronger assertion.



Hyperbolic branching Brownian motion 183

Proposition 9 With probability 1 there is a path in T that converges to ∞.
Proof. Recall that M−1 is the number of particles “frozen” upon reaching �−1.
Since EM−1 =∞, the monotone convergence theorem implies that there exists
an integer k=1 such that EM (k)

−1¿1, where M
(k)
−1 is the number of particles

counted in M−1 that reach �−1 without �rst having visited �k . Consequently, a
GW process with o�spring distribution L(M (k)

−1) is supercritical. Such a pro-
cess is contained in {Mn}n50: beginning with M−1, throw away all particles
and their descendants that visit �k before being frozen at �−1; then at each
subsequent �−n, throw away all particles (not already thrown away) and their
descendants that visit �−n+k before being frozen at �−n (and after being “un-
frozen” from �−n+1).
The GW process so constructed is supercritical, but may reach extinction.

However, each of the particles in the branching Brownian motion begets its
own branching Brownian motion, and embedded in each of these is a copy of
the GW process built above. By the ergodic theorem, at least one of these will
explode. Now any path 
 that follows a sequence of nodes corresponding to
the particles in such an exploding GW process must converge to ∞, because
after reaching each horocycle �n; n¡0, it never again drops below �n+k .

Proposition 10 De�ne �0 to be the set of points in @H2 to which paths in
T converge. With probability 1; the complement of �0 in @H2 has Lebesgue
measure 0.

Proof. Here it is convenient to work in the disk model. Since hyperbolic
branching Brownian motion is rotationally invariant (in law), Proposition 9
implies that for every �∈ @H2, with probability one, there is a path in T that
converges to �. Fubini’s theorem therefore implies that with probability 1 the
set �0 has full Lebesgue measure.

Corollary 6 With probability 1; �= @H2.

Proof. Clearly, �0⊂�. By the preceding proposition, with probability 1, the
complement of �0 is a set of Lebesgue measure 0; hence, with probability 1,
the complement of � has Lebesgue measure 0. Since � is necessarily closed,
it follows that with probability 1 its complement is empty.

6 Hausdor� dimension: the upper bound

Assume that �51=8. To show that the Hausdor� dimension of � is no larger
than the constant � de�ned by (1) it su�ces to exhibit, for each small �¿0
and each n=1, a covering Cn of � by arcs Jnk such that w.p.1

Mn∑
k=1

|Jnk |�+�−→ 0(8)

as n→∞. (For any arc J; |J | is its length.) It is su�cient to show convergence
in probability, because this implies the existence of an almost surely convergent
subsequence.
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6.1 Coverings of �

We will work in the Poincar�e half-plane model. Fix an integer n=1 and con-
sider again the modi�cation of the branching Brownian motion process in
which particles are “frozen” upon reaching �n (Sect. 3). Recall that to construct
a version of the entire branching Brownian motion process (with no freezing),
one attaches to each particle in Pn its own branching Brownian motion, each
independent of the rest and of the pre-�n process. For each of these attached
branching Brownian motions there will be a limit set �nk , and clearly

�=
Mn⋃
k=1

�nk :

Conditional on Mn, the random sets �nk ; 15k5Mn, are independent and iden-
tically distributed. Moreover, conditional on Mn, the random sets �nk are in-
dependent scaled replicas (in distribution) of �, with scale factor e−n. (This
is because the branching Brownian motion engendered by a particle in Pn is
an isometric replica of the whole branching Brownian motion, via an isometry
gotten by composing translations with the homothety z→ enz.)

De�ne Jnk to be the smallest closed interval in @H2 =R that contains �nk .
Then for each integer n=1, the collection

Cn= {Jnk}15k5Mn
is a covering of � by intervals. We will prove that for every su�ciently small
�¿0, (8) holds for this sequence of coverings.

6.2 Subcritical case

Assume now that �¡1=8. In this case, by Corollary 5,

ED�+�¡∞
for some �¿0. De�ne Dnk = en|Jnk | to be the scaled diameter of the interval
Jnk ; then, conditional on Mn, the random variables Dnk are independent and
identically distributed, with the same distribution as D. Proposition 1 implies
that EMn= en�. Consequently, for each n=1,

E
(

Mn∑
k=1

|Jnk |�+�
)
= e−n�ED�+� :(9)

As n→∞, this converges to zero. It follows that (8) holds in probability.
This argument may be modi�ed to yield a sharper result:

Proposition 11 If �¡1=8 then with probability 1;

H�(�)¡∞ :

Proof. First, observe that (9) implies that

max
15k5Mn

|Jnk | −→ 0
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in probability. Since this maximum is nonincreasing in n, it must in fact con-
verge to 0 with probability 1. Now by Corollary 5, ED�¡∞, and by the same
argument as used in proving (9),

E
(

Mn∑
k=1

|Jnk |�
)
=ED� :

Thus, by Fatou’s Lemma,

E
(
lim inf
n→∞

Mn∑
k=1

|Jnk|�
)
5ED� ;

in particular, the lim inf is almost surely �nite. Since maxk |Jnk|→ 0 as n→∞,
this proves, by de�nition of the outer �-dimensional Hausdor� measure, that
H�(�)¡∞ almost surely.

6.3 Critical Case

Assume that �=1=8. Then �=1− �= 1
2 , so the argument used in the sub-

critical case breaks down. The tail probability estimate given in Proposition 4
must now be used in a more delicate manner.

Lemma 2 There is a constant C¡∞ such that for every �¿0 and n=1;

E{e−nD1{e−nD51}} 12 +�5C
(
1 + 2�
2�

)
exp

{
−n
2

}
+ exp

{
−n
2
− n�

}
:

Proof. Let C¡∞ be the constant in Proposition 4. Then

E{e−nD1{e−nD51}} 12 +�5 exp
{
−n
2
− n�

} en=2+n�∫
0
P{D 1

2 +�¿t} dt

5 exp
{
−n
2
− n�

} en=2+n�∫
1
Ct−

1
1+2� dt + exp

{
−n
2
− n�

}

5C
(
1 + 2�
2�

)
exp

{
−n
2

}
+ exp

{
−n
2
− n�

}
:

To prove that (8) holds in probability it su�ces to prove

Lemma 3 For every �¿0 and �¿0;

lim
n→∞P

{
Mn∑
k=1

|Jnk| 12 +�¿�
}
=0 :(10)
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Proof. For any �¿0,

P
{

Mn∑
k=1

|Jnk| 12 +�¿�
}
5 P{Mn¿�en=2}

+P
(
max
k
|Jnk|=1 |Mn5�en=2

)

+P
(∑

k
|Jnk| 12 +�1 {|Jnk|¡1}¿� |Mn5�en=2

)
:

Proposition 3 implies that for every �¿0,

lim
n→∞P{Mn ¿ �en=2}=0 :

Conditional on Mn, the random variables Dnk = en|Jnk| are independent and
identically distributed, with the same distribution as D, so Proposition 4 implies
that

P
(
max
k
|Jnk|=1 |Mn5�en=2

)
5�en=2P{D=en}5C� ;

which is small when �¿0 is small. Finally, by the Markov inequality and
Lemma 2,

P
(

Mn∑
k=1

|Jnk| 12 +�1{|Jnk|¡1}¿� |Mn5�en=2
)

5�−1E
(∑

k
|Jnk| 12 +�1{|Jnk|¡1} |Mn5�en=2

)
5�−1�en=2E(e−nD1{e−nD51}) 12+�

5�−1�
(
C
(
1 + 2�
2�

)
+ e−n�

)
;

which is also small when �¿0 is small.

7 Hausdor� dimension: the lower bound

7.1 Frostman’s Lemma

Assume that �51=8. To show that the Hausdor� dimension of � is no smaller
than the constant � de�ned by (1), we will use the following variation of a
well known criterion due to Frostman.

Lemma 4 (Frostman) Let A be a compact subset of a Euclidean space. If
there exists a probability measure � with support contained in A such that
for �-a.e. x;

It(�; x)=
∫ |x − y|−t d�(y)¡∞

then the Hausdor� dimension of A is at least t.
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Proof. The usual Frostman Lemma states that if there is a probability measure
�∗ such that

It(�∗)=
∫
It(�∗; x)d�∗(x)¡∞

then the Hausdor� dimension of A is at least t: see, e.g., [6], Corollary 6.6.
Suppose, then, that � is a probability measure for which It(�; x)¡∞ for �-
a.e. x. Choose a¡∞ so large that �(Ba)¿0, where Ba= {x : It(�; x)¡a}, and
de�ne a probability measure �∗ by �∗(A)= �(A∩Ba)=�(Ba). Then∫ ∫ |x − y|−t d�∗(x)d�∗(y)5 1

�(Ba)2
∫
Ba

∫
Ba

|x − y|−t d�(x)d�(y)5 a
�(Ba)2

:

7.2 Construction of measures �m on �

The use of Frostman’s Lemma requires suitable probability measures on the
set �. We will de�ne a sequence of probability measures �m on �, each the
exit measure of a certain random walk on the tree of the branching Brownian
motion. For each measure �m we will then estimate the energies I�−�(�m; x) in
Sect. 7.3 below.
It is most convenient to work in the half-plane representation. Recall that

Pn is the set of (x-coordinates of) particles “frozen” on the horocycle �n in
the modi�cation of the branching Brownian motion introduced in Sect. 3. Fix
m=1, and �x a realization of the entire branching Brownian motion. Con-
ditional on this realization, construct random variables X1; X2; : : : as follows.
First, choose an element X1 of Pm at random. Conditional on X1, choose an
element X2 at random from among those elements of P2m representing particles
descendant from the particle at (X1; e−m). Conditional on X1; X2; : : : ; Xk , choose
an element Xk+1 at random from among those elements of Pkm+m representing
particles descendant from the particle at (Xk; e−km).

Lemma 5 With probability 1; limk→∞ Xk = � exists; and (�; 0)∈�.
Proof. By construction, for each k the particle at location (Xk; e−km) is a (post-
�km−m) descendant of the particle at (Xk−1; e−km+m). Thus, for each k there
is a �nite path 
k in T terminating at (Xk; e−km), and for each k the path

k+1 is an extension of 
k . The paths 
k , k¡∞, may be knitted together to
form an in�nite path 
 in T. By Proposition 6, 
 converges to a unique point
(�; 0)∈�. Since the points (Xk; e−km) converge to @H2 and are all on 
, it
must be that Xm→ �:

De�ne �m to be the conditional distribution of � given the realization of
the branching Brownian motion. Call the sequence Xk a Pm random walk on
the tree T, and � the exit point of the random walk.

Note. The random measure �m is a function of the Galton–Watson tree, which
in turn is dependent on the particle histories, which also determine distances
in the limit set �. Thus, our computation of the energy I�−�(�m; x) in Sect. 7.3
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below is somewhat more complicated than might at �rst be expected (e.g.,
compare with the super�cially similar computation of the Hausdor� dimension
of harmonic measure in [9]).

Observe that the construction just outlined does not require that the initial
point of the branching Brownian motion be at z= i: If T′ is the tree of a
BBM started at any point z= x + ie−nm of a horocycle �nm; n=0; 1; 2; : : :, a
Pm-random walk on T′ will converge w.p.1 to an exit point (�; 0)∈�. Note,
however, that the unconditional distribution of � depends on the initial point
z. In fact, if � and �′ are the exit points of Pm-random walks on the trees of
branching Brownian motions started at z= i and z= x + ie−nm, respectively,
then �′ has the same distribution as e−nm�+ x.

Lemma 6 The unconditional distribution of � has a bounded density with
respect to Lebesgue measure on R= @H2 (in the upper half-plane represen-
tation of H).

Proof. Assume that the branching Brownian motion is de�ned on a probabil-
ity space su�ciently large to accomodate an independent random variable U
with density 2x for 0¡x¡1. Let Cr and Br be the hyperbolic circle and disk,
respectively, of radius r centered at i. Consider two modi�cations of branching
Brownian motion started at i: in the �rst, particles are “frozen” upon reaching
the circle C1; in the second, particles are “frozen” upon reaching the circle
CU . Since U51, the mean number � of particles created in the �rst modi�-
cation is no smaller than the mean number of particles created in the second
modi�cation. Let Q be the point process consisting of the positions on CU of
all particles created in the second modi�cation. Then the intensity measure of
Q has a density relative to Lebesgue measure on the ball B1 that is bounded
by � – this follows from the rotational symmetry of B.B.M. and the choice of
density of U .
Now consider the modi�ed branching Brownian motion in H2 de�ned in

Sect. 3, in which particles are frozen upon reaching the horocycle �m. A version
of this process may be obtained from the second modi�cation of the previous
paragraph by attaching to each particle in Q its own branching Brownian mo-
tion (independent of the others, and of the pre-CU process), with time shifted
to account for the time it took to reach CU , and freezing particles when they
hit �m. Consider the intensity measure �m of the point process Pm of particles
frozen at �m: Since each of these particles is an o�spring of one of the particles
in Q,

�m=
∫
B1

�zm dIQ(z)5�
∫
B1

�zm dz ;

where dz denotes Lebesgue measure on the ball B1, IQ the intensity measure
of Q, and �zm the intensity measure of the point process of frozen particles in
�m descended from a single ancestor located originally at z. Observe that (a)
if z= x + iy and z′= x′ + iy then �z

′
m is the x′ − x translate of �zm; and (b)

the total mass of �zm is bounded above by E|Pm+1|= em�+�, for every z ∈B1.
It therefore follows by an easy argument from the integral representation of
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�m above that �m has a bounded density h(x)=d�m=dx relative to Lebesgue
measure on the horocycle �m.

Finally, consider the exit random variable � for a Pm-random walk Xk . The
�rst step X1 is to a point of Pm, chosen at random; conditional on X1 = x, the
distribution of � is the same as the unconditional distribution of e−m(�− x).
Thus, the distribution of � may be bounded above by summing the conditional
distributions over all x∈Pm, then integrating against the distribution of Pm.
Consequently, for any Borel subset B of R,

P{�∈B}5∫ P{e−m(�− x)∈B}h(x)dx :
This shows that � has a density bounded by maxx h(x):

Corollary 7 Let �; �′ be the exit points of independent Pm-random walks
(Xk)k=0 and (X ′k )k=0 on the (same) tree T of a branching Brownian motion
started at z= i. For i=1; 2; : : : ; let Ni=Nmi denote the number of descendants
in Pmi of the particle with x-coordinate Xi−1 in Pmi−m; and de�ne G to be
the �-algebra generated by the random variables Xk and Ni. For k=0; de�ne
events

Ak = {Xk =X ′k} ;
Bk =Ak ∩Ack+1 :

Then there exists a constant C¡∞ such that for all k=0 and all �¿0;

P(|�− �′|¡� |G ∨ Bk)5Cekm� :
Here G ∨ Bk denotes the smallest �-algebra containing G and Bk .
Proof. On the event Bk the random walks Xj; X ′j follow the same path through
T for the �rst k steps, then proceed through the (di�erent) subtrees attached
at the distinct points Xk+1; X ′k+1 ∈Pkm+m. Now the event Bk and the random
variables Xk+1; X ′k+1 depend only on the pre-Pkm+m section of T, and condi-
tional on the pre-Pkm+m process, the subtrees attached at distinct points x; x′

of Pkm+m are conditionally independent B.B.M. trees. Therefore, conditional
on G ∨ Bk , the exit random variable �′, scaled by ekm+m, has the same law as
(a translate of) the exit random variable for a branching Brownian motion
started at i. The result now follows from the preceding lemma.

7.3 Energy of �m
By Frostman’s Lemma, to prove that the Hausdor� dimension of � is almost
surely at least � it su�ces to prove

Lemma 7 For every �¿0 su�ciently small; there exists an integer m=1
such that with probability 1; for �m-a.e. x;

I�−�(�m; x)¡∞:

Proof. Let F∞ be the �-algebra generated by the entire history of the branch-
ing Brownian motion, and let � and �′ be conditionally independent given



190 S.P. Lalley, T. Sellke

F∞, each with conditional distribution �m. It su�ces to show that for any
�∈ (0; �=3), if m is su�ciently large then

E(|�− �′|−�+3� |F∞ ∨ �)¡∞ a.s:(11)

Let X1; X2; : : : and X ′1 ; X
′
2 ; : : : be conditionally independent Pm-random walks on

T. De�ne H to be the �-algebra generated by the branching Brownian motion
and the random walk (Xk)k=1, and de�ne G to be the �-algebra generated
by the random walk (Xk)k=1 and the random variables (Ni)i=1 de�ned in
Corollary 7. Note that F∞⊂H and G⊂H, and that H=F∞ ∨ � (because
for any given value of � there is only one path through T that converges to
�, so the steps of the random walk Xk are determined by �). Let the events
Ak; Bk be as in Corollary 7; then

P(Ak |H)= 1
/

k∏
i=1
Ni=P(Ak |G) ;

the last because the random variables Ni are measurable relative to G. Uncon-
ditionally, (Ni)i=1 are independent and identically distributed, each with the
same distribution as Mm. By the SLLN,

lim
k→∞

(
k∏
i=1
Ni

)1=k
= exp{E logMm}

almost surely, and by Lemma 8 below,

lim
m→∞m

−1E logMm= �:

Consequently, for each �¿0 there exists m and a �nite, nonnegative, G-
measurable random variable �= �� such that for every k=1, with probabil-
ity 1,

P(Ak |G)5� exp{−km(�− �)}:
Now let �n= {|�− �′|¡e−nm}. By Corollary 7, for any n=1,

P(�n |G) =
∞∑
k=0
E(P(�n |G ∨ Bk)1Bk |G)

5
n−1∑
k=0
E(P(�n |G ∨ Bk)1Ak |G) + P(An|G)

5
n∑
k=0
Ce−(n−k)mP(Ak |G)

5
n∑
k=0
(Ce−(n−k)m)(�e−km(�−�))

5 C′�e−nm(�−2�) :

Thus, for all �¿0,
E(|�− �′|−�+3� |G)¡∞ :

Since G⊂H=F∞ ∨ �, (11) follows.
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Lemma 8 Let Zn be a Galton–Watson process whose o�spring distribution
has mean e�¿1 and is supported by {1; 2; : : :} (i.e.; there is no extinction):
Then

lim
n→∞ n−1E log Zn= � :

Proof. By Jensen’s inequality, E log Zn5n� for every n. Thus, it su�ces
to show that lim inf n−1E log Zn=�. Routine arguments using the generating
function ’ of the o�spring distribution (or alternatively the Seneta–Heyde theo-
rem) show that for any �¿0,

Zn=en�−n�→∞
in probability. Consequently, for all su�ciently large n,

n−1E log Zn=�− � :

8 The backscattering principle

That the Hausdor� dimension of the limit set � increases to 1
2 , and not 1, as

� ↑ 18 is rather striking, especially in view of a recent conjecture of Liggett [8]
concerning “weakly supercritical” contact processes on homogeneous trees.
Liggett’s conjecture1 states (in equivalent form) that the limit set of such a
contact process cannot have Hausdor� dimension larger than 1

2 the Hausdor�
dimension of the boundary of the tree. In this section, we give a simple heuris-
tic argument that explains why the limit set of a subcritical hyperbolic branch-
ing Brownian motion cannot have Hausdor� dimension larger than 1

2 . It is
possible that this argument may be adapted to other growth processes on state
spaces with exponential volume growth.
Consider subcritical branching Brownian motion (�51=8) in the hyperbolic

plane H2, viewed as the Poincar�e disk. Assume, as usual, that the process is
initiated by a single particle located at 0. Suppose that particles are “frozen”
upon reaching the circle Cn of (hyperbolic) radius n centered at 0; then eventu-
ally all particles will be frozen. Let Nn be the total number of frozen particles
on Cn. Observe that the original branching Brownian motion (with no freezing)
may be obtained by attaching conditionally independent branching Brownian
motions to each of the Nn frozen particles on Cn.

Lemma 9 limn→∞ 1
n logNn= � a.s.

This lemma may be deduced from Propositions 1 and 2 by trapping a long
arc of the circle Cn between the horocycles �n and �(1−�)n.
Lemma 9 implies that, for every �¿0 and every arc A of Cn with

(hyperbolic) length 1, the expected number of frozen particles in A is at
least exp n(�− �− 1), provided n is su�ciently large, because the branching
Brownian motion is radially symmetric, and because the hyperbolic arclength

1 This conjecture has now been proved by the authors.
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of Cn is ∼ en. Now consider the post-Cn branching Brownian motions initiated
from the frozen particles in Cn; each of these is, in law, an isometric replica
of the original B.B.M. Suppose that each of these post-Cn B.B.M.s is run un-
til “freezing” at a circle of hyperbolic radius n centered at the initial point
z ∈Cn; then for each the expected number of descendants located at positions
at distance 51 from 0 is at least exp n(�− �− 1), by the argument above.
But there are Nn such processes, and, by Lemma 9, Nn= exp n(�− �) for all
su�ciently large n. Thus, the expected number of particle trails that reach Cn
and then return to the ball of radius 1 centered at 0 is, for large n, at least

exp n(2�− 2�− 1) :
If it were the case that �¿ 1

2 , so that, for su�ciently small �¿0, �− �¿ 1
2 ,

then one should expect large numbers of particle trails returning to a neighbor-
hood of the origin after reaching Cn. This would contradict the “subcriticality”
of the process.
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