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Summary. We introduce a new family of ®rst-passage percolation (FPP)
models in the context of Poisson-Voronoi tesselations of Rd . Compared to
standard FPP on Zd , these models have some technical complications but
also have the advantage of statistical isotropy. We prove two almost sure
results: a shape theorem (where isotropy implies an exact Euclidean ball for
the asymptotic shape) and nonexistence of certain doubly in®nite geodesics
(where isotropy yields a stronger result than in standard FPP).

Mathematics Subject Classi®cation (1991): Primary 60K35, 60G55; sec-
ondary 82D30.

1. Introduction

Standard ®rst-passage percolation (FPP) was originally formulated by
Hammersly and Welsh [HW] as a simpli®ed model of ¯uid ¯ow in a (ran-
dom) porous medium. One aspect of the simpli®cation was to use a deter-
ministic lattice (the graph with vertex set Zd and all nearest neighbor edges e)
with the randomness superimposed by means of i.i.d. non-negative random
variables s�e� (with common distribution F ) representing passage times (of
the ¯uid) through the edges e. The passage time T �r� along a ®nite nearest
neighbor path r is

P
e2r s�e� and the passage time T �x; y� between vertices x
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and y is the in®mum of T �r� over paths r connecting x and y. If F �0� � 0,
then T �x; y� is almost surely (a.s.) a metric on Zd . If F is continuous then
there is a.s. a unique ®nite geodesic r��x; y� connecting x and y such that
T �x; y� � T �r��x; y��.

In this paper we study a family of FPP models, based on homogeneous
Poisson processes on Rd , in which, roughly speaking, the randomness a�ects
both the graph and the edge times. We remark that a di�erent class of FPP
models, also based on Poisson processes, were introduced earlier by Vahidi-
Asl and Wierman [VW1] and other Poisson-based random metrics were
studied by Sznitman [S]. The chief advantage of such models is that they have
full (statistical) Euclidean invariance and, more particularly, isotropy (i.e.,
rotational invariance). This will allow us to avoid some serious di�culties
encountered in recent work on standard FPP (which we presently brie¯y
review) where the lack of isotropy leads to lattice e�ects which are hard to
control rigorously.

Many of the di�culties in standard FPP revolve around the lack of
qualitative information about the asymptotic shape B0, a deterministic
convex subset of Rd (depending on F ) whose existence and signi®cance are
supplied by the shape theorem [R, CD, K1]. Roughly speaking, this theorem
asserts (under mild conditions on F ) that

~Bt � fx 2 Zd : T �0; x� � tg � tB0 \ Zd :

More precisely, it asserts that, a.s., for any � 2 �0; 1�, ~Bt is contained in
�1� ��tB0 \ Zd and contains �1ÿ ��tB0 \ Zd for all su�ciently large t. Except
for certain non-continuous F 's (see [DL]), it is a natural conjecture that the
boundary of B0 is smooth and uniformly curved (as de®ned in [N]), but this
has not been proved for any F . Sadly, there are a number of interesting
results (see [N]) about standard FPP which have thus far only been proved
under the assumption that B0 is uniformly curved. The ®rst main result of this
paper (see Theorem 1 in the next section) is a shape theorem for our con-
tinuum models. Isotropy of course requires the asymptotic shape to be a
Euclidean ball, so uniform curvature is assured. We remark that for d � 2
such a shape theorem was obtained earlier by Vahidi-Asl and Wierman
[VW2] for their continuum FPP models.

The results about standard FPP which assume uniform curvature (and
which also require some less objectionable hypotheses on F ) concern (either
explicitly or implicitly) in®nite geodesics, which are semi- or doubly-in®nite
paths r such that every ®nite segment of r is the ®nite geodesic between its
endpoints. (We refer to semi-in®nite geodesics as uni-geodesics and doubly-
in®nite geodesics as bi-geodesics.) One such result is that a.s. every uni-
geodesic has an asymptotic direction x̂ (i.e., if r passes through, in order,
the vertices x1; x2; . . . then x̂ � limn xn=jxnj exists, where j � j is Euclidean
length). Another is that, a.s., for every z 2 Zd and every unit vector x̂ 2 Rd ,
there exists at least one such x̂-unigeodesic starting from z. A third result
concerns the existence of a limit (as t!1) of the surface of ~Bt in speci®c
directions.
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There are also results which are weaker than they might otherwise be
because of lack of full isotropy or because of lack of uniform curvature. One
of these (see [LN] and references cited there) concerns the conjecture, arising
from the physics of disordered systems, that (at least for low d) a.s. no bi-
geodesic exists. The result of [LN] is a partial con®rmation of that conjecture
Ð namely that for d � 2 and Lebesgue almost every x̂ and ŷ, there is a.s. no
�x̂; ŷ�± or �x̂;ÿx̂�±bi-geodesic (de®ned in the obvious way). We remark that
this result has been improved by Zerner [Z], who showed that the conclusions
are valid for all but countably many x̂'s and ŷ's. The second main result of
this paper (see Theorem 2 in the next section) is the analogue for our con-
tinuum models, but by isotropy the conclusions are valid for every x̂ and ŷ.

Other such results concern bounds for the exponents v � v�d� or n � n�d�
(see [LNP, NP] for the results and precise de®nitions of these exponents).
Roughly speaking, v and n are de®ned so that the standard deviation of
T �x; y� is of order jxÿ yjv while the ¯uctuations of r��x; y� about the straight
line from x to y are of order jxÿ yjn. In a future paper, we will present such
bounds for our continuum models, one of which is v � 1=2, originally proved
for standard FPP by Kesten [K2]. This particular bound is not improved
from the standard FPP setting because isotropy plays no role in the proof,
but this bound is an ingredient for other bounds where isotropy will be a
help.

We conclude this section with a brief description of the models studied in
the remainder of the paper and some related models. Precise de®nitions are
given in the next section. Basically, our models are de®ned by taking the
(random) complete graph with vertex set

Q � fparticle locations of a homogeneous Poisson process on Rdg :
For each e � fx; yg with x; y 2 Q, de®ne s�e� � jxÿ yja, and then de®ne
T �x; y� and r��x; y� by minimizing the sum of s�e� over ``paths'' connecting x
and y where paths are simply arbitrary ®nite sequences �q1; . . . ; qk� from Q
with q1 � x and qk � y. Note that if 0 � a � 1, then r��x; y� � �x; y� and the
analysis is trivial. If, on the other hand, a > 1, then large ``leaps'' between
particles in r��x; y� are discouraged. While our results are valid for any a � 2
(Theorem 1 for any a > 1), the model with a � 2 is clearly a pleasant choice.
It is also clear that our results will be valid for a much larger class of models
where s�fx; yg� � /�jxÿ yj� with other choices of / : R� ! R�. We have
not investigated the precise class of /'s to which our results apply.

There are ways to de®ne s�fx; yg� other than as just described which also
satisfy (statistical) Euclidean invariance. For example, as in [VW1], one can
replace the complete graph on Q by some (Euclidean invariant) random
subgraph such as the Voronoi graph whose edge set E0 consists of all fx; yg
such that the (closed) Voronoi region of x (those points of Rd for which x is a
nearest particle in Q) shares a (�d ÿ 1�-dimensional) face with that of y. Then
one can take i.i.d. non-negative random variables (independent of the
Poisson process), �s�e� : e 2 E0�, and proceed as in standard FPP. A partic-
ularly esthetic choice here (and non-trivial unlike the analogous choice on
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Zd) is to remove all the randomness from the s�e�'s (leaving the randomness
only in the graph) by taking the s�e�'s to be constant. For that choice, T �x; y�
is simply the usual graph distance on the random Voronoi graph �Q;E0�. We
remark that one may regard all these types of models as being de®ned on the
complete graph of Q, but with s�e� � 1 if e =2 E0. We also note that there are
interesting recent results about Bernoulli site percolation on the Voronoi
graph by Benjamini and Schramm [BS] and by Aizenman [A].

2. De®nitions and results

Let Q be a non-empty, locally ®nite, subset of Rd . We shall refer to Q as a
``con®guration'' and to the elements of Q as ``particles''. For any x 2 Rd , let
q�x� denote the particle closest to x in Euclidean distance with any ®xed rule
for tie-breaking. We note that

Rd �
[
y2Q

fx : q�x� � yg

is the Voronoi tesselation of Rd with respect to the con®guration Q (with the
speci®ed rule for allocating boundaries). We refer to these as the induced
Voronoi regions. For any x; y 2 Rd , a ®nite sequence of not necessarily
distinct particles �q1; . . . ; qk� with k � 2, q1 � q�x�, and qk � q�y� will be
referred to as a Q-path from x to y. We will use the notation �q1; . . . ; qk� to
denote the polygonal path of line segments q1q2, q2q3, . . . ; qkÿ1qk. Fix any
a > 1 and let j � j denote Euclidean length. We de®ne the passage time from x
to y through Q by

TQ�x; y� � inf

(Xkÿ1
j�1
jqj ÿ qj�1ja : k � 2

and �q1; . . . ; qk� is a Q-path from x to y

)
:

�1�

Note that if �q1; . . . ; qk� is a Q-path from x to y and �q01; . . . ; q0l� is a Q-path
from y to z, then qk � q01 and �q1; . . . ; qk; q02; . . . ; q0l� is a Q-path from x to z.
This immediately yields the triangle inequality

TQ�x; z� � TQ�x; y� � TQ�y; z� ; �2�
which is our motivation for excluding the terms jq�x� ÿ xja and jq�y� ÿ yja in
the de®nition of TQ�x; y�. Note that x and y belong to the same Voronoi
region if and only if TQ�x; y� � 0; hence TQ��; �� is a pseudometric on Rd

inducing a metric on the Voronoi regions.
We are interested in the situation where the con®guration is chosen

randomly. In particular, let �X;F;P� be a probability space on which, for
each x, Q�x� is an in®nite, locally ®nite subset of Rd de®ning a Poisson
process with unit density with respect to d-dimensional Lebesgue measure.
The speci®c construction of �X;F;P� is not relevant (although in Section 4
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making a speci®c choice facilitates a proof). In this context TQ�x��x; y� is a
family of random variables indexed by x and y 2 Rd . To simplify notion, we
will drop the subscript Q�x� and refer to T �x; y�. All `a.s.' statements are with
respect to P.

We observe that, a.s., associated with any two points x and y there is a
unique Q-path r��x; y� along which T �x; y� is realized. If such a minimizing
path did not exist for some con®guration Q, one could ®nd Q-paths begin-
ning at q�x� and passing through arbitrarily many particles but with bounded
passage time. It would follow that discs of radius � centered at Q's particles
would percolate for any choice of � > 0 violating a result of Zuev and Si-
dorenko [ZS1, ZS2]. Uniqueness follows from the continuous nature of the
Poisson process.

Our ®rst result concerns the asymptotic shape of the region of Rd that
can be reached by time t. Speci®cally, let ~Bt � fx 2 Rd : T �0; x� � tg and
B�y; a� � fx : jxÿ yj � ag where y 2 Rd and a > 0. We will show that
l � limjxj!1 T �0; x�=jxj exists a.s. and that 0 < l <1. (Here l is non-
random and depends on d and a.) By a straightforward inversion this
will yield:

Theorem 1 (Shape Theorem). Let a > 1. Then, a.s., for any � with 0 < � < lÿ1

we have B�0; �lÿ1 ÿ ��t� � ~Bt � B�0; �lÿ1 � ��t� for all su�ciently large t.

We remark that in the Voronoi graph context discussed at the end of
Section 1, Vahidi-Asl and Wierman have given optimal conditions on the
common distribution of the s�e�'s to have a shape theorem for d � 2 [VW2]
(although the precise conditions for their time constant l to be nonzero have
not been determined [VW1]).

Our second result concerns geodesics for the metric induced by TQ on the
Voronoi regions. Identifying each particle q with its own Voronoi region, we
de®ne a ®nite or in®nite sequence �qj� of distinct particles to be a geodesic if,
for every l < k, the Q-path �ql; . . . ; qk� has

TQ�ql; qk� �
Xkÿ1
j�l

jqj ÿ qj�1ja :

We will call a semi-in®nite geodesic �q1; q2; . . .� a uni-geodesic and a doubly
in®nite geodesic �. . . ; qÿ1; q0; q1; . . .� a bi-geodesic. Our theorem, which
supports the conjecture that (at least for d � 2) a.s. there are no bi-geodesics,
concerns �x̂; ŷ�±bi-geodesics. These are bi-geodesics for which qj=jqjj ! x̂
(resp. ŷ) as j!1 (resp. ÿ1). The result is an improvement of the analo-
gous result of [LN] for standard FPP on Z2 because it applies to every
deterministic x̂ and ŷ.

Theorem 2. Let d � 2 and a � 2. Then for any two unit vectors x̂ and ŷ, a.s.
there is no �x̂; ŷ�±bi-geodesic.

The Shape Theorem is proved in Section 3 and Theorem 2 is proved in
Section 4.
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3. Proof of shape theorem

Lemma 1. There exist positive constants c1, c2, c3, and j depending on d and a
such that

PfT �x; y� � c1jxÿ yjg � c2 exp�ÿc3jxÿ yjj�
for all x; y 2 Rd .

Proof. By the translation and rotation invariance of the distribution of Q it
su�ces to show that

PfT �0; `ê1� � c1`g � c2 exp�ÿc3`j� ; �3�
where ê1 � �1; 0; . . . ; 0� 2 Rd and ` � 0. Let C denote the doubly in®nite
solid cylinder of radius 1=2 centered about the ®rst coordinate axis. We
de®ne the random sequence �Wn : n � 1� by

Wn � inf w > Wnÿ1 : 9 a particle in the hyperdisc C \ fx 2 Rd : x1 � wg� 	
where we take W0 � 0. It follows from elementary properties of the Poisson
process that the sequence �Wn : n � 1� increases (strictly) to in®nity and, in
fact, is a one dimensional Poisson process. Furthermore there is a unique
particle qn in each hyperdisc C \ fx 2 Rd : x1 � Wng. Put Rn � Wn ÿ Wnÿ1
and ~Rn � 2a�1� Rn�a so that Rn and ~Rn are i.i.d. sequences. With
N � minfn : Wn > `g we have

q�0� ÿ q1j j � jq�0�j � q1j j � 2 q1j j � 2�1� R1� ;
qn ÿ qn�1j j � 1� Rn�1 ;

and, for N � 2,

qNÿ1 ÿ q `ê1� �j j � qNÿ1 ÿ `ê1j j � `ê1 ÿ q `ê1� �j j � 2 qNÿ1 ÿ `ê1j j � 2 1� RN� � ;
giving for N � 3 that

T �0; `ê1� � q�0� ÿ q1j ja�
XNÿ2
n�1

qn ÿ qn�1j ja � qNÿ1 ÿ q�`ê1�j ja �
XN

n�1
~Rn :

It is easy to see that T �0; `ê1� �
P

n�N
~Rn also holds for N � 1 and N � 2.

Therefore, for any c1 > 0 and any choice of m we have

P T �0; `ê1� � c1`f g � P R1 � � � � � Rm � `f g � P ~R1 � � � � � ~Rm � c1`
� 	

:

�4�
By elementary large deviation theory, for some (large) b > 0 and c4 > 0 we
have

P R1 � � � � � Rm < bÿ1m
� 	 � exp�ÿc4m� for large m

so, with b0 > b and 0 < c04 < c4b0,

P R1 � � � � � Rbb0`c < `
� 	 � exp�ÿc04`� for large ` : �5�
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Also, the ~Rn are i.i.d. with a sub-exponential tail:

P ~Rn > r
� 	 � P Rn >

1

2
r1=a ÿ 1

� �
� em exp ÿ m

2
r1=a

� �
for r � 2a ;

where m is the d ÿ 1 dimensional volume of a ball with radius 1=2. Therefore,
for some c5; c6 > 0, we have

P ~R1 � � � � � ~Rm > c5m
� 	 � exp ÿc6m1=a

� �
for large m

(see [Na]), and choosing c1 > c5b0 and 0 < c06 < c6b0
1=a yields

P ~R1 � � � � � ~Rbb0`c > c1`
� 	 � exp ÿc06`

1=a
� �

for large ` : �6�
The Lemma follows for j � 1=a by taking m � bb0`c in (4) and applying (5)
and (6). (

Lemma 2. Suppose 0 < c < 1. Then, almost surely, jq�x� ÿ xj � jxjc whenever
jxj is su�ciently large.

Proof. It su�ces to prove the lemma only for x restricted to Zd . To see this,
for any x 2 Rd , let z 2 Zd be of minimal Euclidean distance from x. Then

jq�x� ÿ xj � jq�z� ÿ xj � jq�z� ÿ zj � jzÿ xj � 2jzjc=2 � jxjc

whenever jxj is large. The last two inequalities hold for large jxj since Lemma
2 holds (by assumption) for c=2 and large z 2 Zd and since jzÿ xj � ���

d
p

=2.
To establish the lemma restricted to Zd , note that for any x

P jq�x� ÿ xj � jxjcf g � exp ÿmjxjcd
� �

where here m is the d-dimensional volume of B�0; 1�. Since
P

z2Zd exp
�ÿmjzjcd� <1, Lemma 2 follows from an application of the Borel-Cantelli
Lemma. (

For 0 � m < n, set Xmn � T �mê1; nê1� so, by the triangle inequality (2),
X0n � X0m � Xmn. It is easy to verify that this family of random variables
satis®es the hypotheses of Liggett's version of Kingman's subadditive ergodic
theorem (see [L, Chapter VI]) giving that

l � lim
n!1X0n=n � lim

n!1EX0n=n exists a.s. and in L1 : �7�
Lemma 3. With l de®ned above, 0 < l <1.

Proof. The subadditive ergodic theorem gives that l < EX01, a quantity that
is easily shown to be ®nite (e.g., by Lemma 1). As for the remaining inequality,
we will show that for some positive constants c7, c8, c9 and j0 we have

P X0n � c7nf g � c8 exp ÿc9nj0
� �

�8�
yielding that l � c7.
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To see (8), let �Un : n � 1� be a sequence of independent Bernoulli ran-
dom variables with PfUn � 1g � / and PfUn � 0g � 1ÿ / and put
Vn �

P
i�n Ui and let h > 0. Then

P Vn � n=�2d�f g � eÿhn=�2d�EehVn � eÿh=�2d� 1� / eh ÿ 1
ÿ �ÿ �h in

: �9�
Clearly for any d > 0, there are h, / > 0 such that eÿh=�2d��1� /�eh ÿ 1�� < d
(choose h large, then / small).

Now partition Rd into cubes (overlapping only at their d ÿ 1 dimensional
faces), centered at the points �Zd , whose vertices collectively are
��2 ; . . . ; �2� � �Zd . (� will be chosen later.) We refer to these as the ``�-boxes''
and refer to two distinct �-boxes as contiguous if they share a face. Addi-
tionally we call any (®nite or in®nite) sequence of distinct �-boxes an ``�-box
path'' if the ®rst �-box contains the origin and they are sequentially contig-
uous. The number of �-boxes in an �-box path will be called the length of the
path. We note that there are at most �2d��2d ÿ 1�nÿ2 �-box paths of length n,
but we will use the cruder bound of �2d�n. We call an �-box occupied if there
is at least one particle in it and now let / � /� denote the probability that
any given �-box is occupied. Then for any ®xed �-box path of length n, the
probability that n=�2d� or more are occupied is bounded by the right hand
side of (9). Hence if

En � f9 an �-box path of length n with n=�2d� or more boxes occupiedg ;
then PEn �

��2d�eÿh=�2d��1� /�eh ÿ 1���n. Noting that / � /� # 0 as � # 0 we
now choose h and � so that �2d�eÿh=�2d��1� /�eh ÿ 1�� < eÿ1. For this choice
of �, PEn � eÿn. Furthermore, if

Fn � f9 an �-box path of length m � n with m=�2d�
or more boxes occupiedg ;

then PFn � �1ÿ eÿ1�ÿ1eÿn.
In establishing Lemma 3, it will be more convenient to consider the

``augmented'' passage times

X �0n � jq�0�ja � X0n � q nê1� � ÿ nê1j ja :

We observe that for any c7 > 0,

P X0n � c7nf g � P X �0n � 3c7n
� 	� P jq�0�ja � c7nf g � P q�nê1� ÿ nê1j jaf

� c7ng
� P X �0n � 3c7n

� 	� 2 exp ÿmcd=a
7 nd=a

� �
�10�

where m is the d-dimensional volume of B�0; 1�. Presently we bound
PfX �0n � 3c7ng for an appropriate c7.

Let

r� � 0; q1; . . . ; qK ; nê1� �
where �q1; . . . ; qK� is the Q-path from 0 to nê1 of minimal passage time. Form
the corresponding �-box path

160 C. D. Howard, C. M. Newman



b� � b�1; . . . ; b�M
ÿ �

as follows: b�1 is the �-box containing 0; b
�
i�1 is the �-box that r� enters when it

last exits b�i . (We note that, a.s., any segment of r� that passes from one �-box
to another passes through the (d ÿ 1 dimensional) interior of a d ÿ 1 di-
mensional face.) Observe that, by this procedure, nê1 2 b�M and M � m �
m�n� � dn�ÿ1e. For large n, on the event F c

m, there are at least m=�3d� indices i
with d

��i, i� d ÿ 1 < m, and b�j unoccupied for i � j � i� d ÿ 1.
Note that any straight line segment that passes completely through d

sequentially contiguous �-boxes (by passing through the interiors of faces) is
at least � in length. This follows from the pigeonhole principle as follows.
Each point on the line segment that belongs to a face must have one of its
coordinates of the form �

2� �some integer� � �. Since the line segment passes
through d sequentially contiguous boxes, there are at least d � 1 such points
on the line segment. Hence there are at least two distinct points x and y on
the line segment with the same coordinate of the form �

2� �some integer� � �.
These two points are at least � apart.

It follows that each portion of r� passing through one of these unoccupied
blocks of boxes contributes at least �a to the augmented passage time X �0n and
we have, for large n,

X �0n � �am=�3d� � �aÿ1n=�3d� on F c
m ;

yielding, for large n,

P X �0n �
1

3d
�aÿ1n

� �
� PFm � 1ÿ eÿ1

ÿ �
eÿm � 1ÿ eÿ1

ÿ �
exp ÿ�ÿ1nÿ �

: �11�

Combining (10) and (11) gives (8) with c7 � �aÿ1=�9d� for appropriate c8, c9,
and j0. (

Lemma 4. Almost surely, limjxj!1 T �0; x�=jxj � l.

Proof. We will show that, a.s., lim supjxj!1
��T �0; x� ÿ ljxj���jxj � 0. Fix �

with 0 < � < 1 and choose c such that 0 < ac < 1 so, additionally, 0 < c < 1.
Pick ®nitely many unit vectors û1; . . . ; ûm such that the region

R �
[1
i�1

[m
j�1

B iûj; i�
ÿ �

covers all but a bounded subset of Rd . (E.g., choose the vectors so that the
B�ûj; ��'s cover the unit sphere. Since they also cover everything within
some strictly positive distance d of the unit sphere, R will contain every-
thing beyond some ®nite distance (e.g., d1=�2d�e) from the origin.) We will
let uij denote iûj. Since the Poisson process is isotropic, it follows from (7)
that, a.s., for su�ciently large i and all j � m, jT �0; uij� ÿ ilj < i�. Cover
each B�uij; i�� with K�i; j� balls B�vijk ; ic� where 1

2 ic � jvijk ÿ uijj � i�. For an
appropriate c10 > 0 (depending on � and d) we may take K�i; j� � c10i�1ÿc�d .
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Now

P T uij; vijk
ÿ � � c1 uij ÿ vijk

�� ��� 	 � c2 exp ÿ 1

2j
c3icj

� �
so

P T uij; vijk
ÿ � � c1�i

� 	 � c2 exp ÿ 1

2j
c3icj

� �
and

P
[m
j�1

[K�i;j�
k�1

T �uij; vijk� � c1�i
� 	" #

� mc2c10i�1ÿc�d exp ÿ 1

2j
c3icj

� �
: �12�

Since the right hand side of (12) is summable over i, we have, a.s., that for
large i

T uij; vijk
ÿ � � c1�i whenever j � m and k � K�i; j� : �13�

For jxj suitably large, we may choose an i � i�x�, j � j�x�, and k � k�x� so
that x 2 B�uij; i�� \ B�vijk ; ic�. Note that i�x� ! 1 as jxj ! 1. Put
u � u�x� � uij and v � v�x� � vijk . Then, with jxj large enough to additionally
ensure Lemma 2 and (13),��T �0; x� ÿ ljxj�� � ��ljxj ÿ li

��� jliÿ T �0; u�j � jT �0; u� ÿ T �0; x�j
� ljxÿ uj � �i� T �u; x�
� l�i� �i� T �u; v� � T �v; x�
� l�i� �i� c1�i� jq�v� ÿ q�x�ja
� l�i� �i� c1�i� jq�v� ÿ vj � jvÿ xj � jq�x� ÿ xj� �a
� l�i� �i� c1�i� 3ajvjca � 3aica � 3ajxjca : �14�

Since
��jvj ÿ i

�� � i�,
��jxj ÿ i

�� � i� and ca < 1, (14) yields lim supjxj!1��T �0; x� ÿ ljxj���i�x� � �l� 1� c1�� and hence lim supjxj!1
��T �0; x� ÿ ljxj���

jxj � �l� 1� c1��=�1ÿ �� from which the lemma follows. (

To complete the proof of the Shape Theorem we ``invert'' Lemma 4. Fix
any � > 0 and choose ~� > 0 so that �lÿ ~��ÿ1 � lÿ1 � � and lÿ1 ÿ � �
�l� ~��ÿ1. By Lemma 4, a.s. we may choose an L � L�x� so that��T �0; x� ÿ ljxj�� � ~�jxj whenever jxj � L. Hence, whenever jxj � L,

jxj � T �0; x��lÿ ~��ÿ1 � T �0; x� lÿ1 � �ÿ � �15�
and

T �0; x� lÿ1 ÿ �ÿ � � T �0; x��l� ~��ÿ1 � jxj : �16�
It follows from (15) that fx : jxj � Lg \ ~Bt � B�0; t�lÿ1 � ��� and since
fx : jxj < Lg � B�0; t�lÿ1 � ��� for large t, we have ~Bt � B�0; t�lÿ1 � ��� for
large t. Also, (16) gives that fx : jxj � Lg \ ~Bc

t � B�0; t�lÿ1 ÿ ���c or
B�0; t�lÿ1 ÿ ��� � fx : jxj < Lg [ ~Bt. But, a.s., fx : jxj < Lg � ~Bt for large t
completing the inversion. (
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4. Proof of Theorem 2

As in the Zd context of [N, LN], a crucial role is played by certain graphs
denoted R�q�, for each particle q, obtained as the union of all ®nite geodesics
starting from q. More precisely, R�q� is the graph whose vertex set is the set Q
of all particles and whose edge set is the set of all fq0; q00g with q0 6� q00 such
that there is some ®nite geodesic �q � q0; q1; . . . ; qk� starting from q with
fq0; q00g � fqjÿ1; qjg for some j � 1; . . . ; k. It is not hard to see that, a.s., R�q�
is a spanning tree on the vertex set Q. If one replaces each fq0; q00g in R�q� by
the line segment q0q00 inRd , there is the potential complication (for d � 2) that
two such line segments may cross so that R�q� is not embedded into Rd in the
natural way. The next lemma shows that for a � 2 this cannot be the case.

Lemma 5. Suppose d � 2 and a � 2. For a.e. con®guration Q, if �q1; q2� and
�q01; q02� are the geodesics from particles q1 to q2 and q01 to q02, respectively, then
either q1q2 and q01q

0
2 are disjoint, or they coincide, or their intersection consists

of one point which is an endpoint of both line segments.

Proof. Since, a.s., there are no four particles a, b, c, d 2 Q (at least three of
which are distinct) such that jaÿ bj � jcÿ dj, we may assume that
jq1 ÿ q2j 6� jq01 ÿ q02j. When a � 2, the direct Q-path �a; b� from particle a to
particle b can be a geodesic only if (but not necessarily if) the interior of the
disc whose diameter is the line segment ab contains no particles. (If it con-
tained such a particle c 2 Q, then the {Q-path} �a; c; b� would have smaller
passage time. This easily follows from the elementary fact that for c on the
boundary of the disc, jaÿ cj2 � jcÿ bj2 � jaÿ bj2.) The lemma follows from
the following geometric fact: If D and D0 are diameters (with unequal length)
of discs B and B0 such that D and D0 intersect at a point that is not an
endpoint of (at least one of) D or D0, then either the interior of B0 contains an
endpoint of D or the interior of B contains an endpoint of D0. (

Theorem 2 is a consequence of two other results, which we state as the next
two lemmas. We will give the proof of Theorem 2, based on these lemmas,
followed by the proofs of the lemmas. Our proof of Theorem 2 and its
attendant lemmas parallels [LN, Theorem 2].

Lemma 6. Let DU �x̂� denote the event that for every particle q there is at most
one x̂±uni-geodesic �q; q1; q2; . . .� starting at q. For d � 2, a � 2, and any unit
vector x̂ in R2, P�DU �x̂�� � 1.

For a given x̂ and any particle q, we denote by sq � sq�x̂� the a.s. unique (if
it exists) x̂±uni-geodesic starting at q. For d � 2 and a � 2 it follows from
Lemma 6 that if the polygonal paths of sq and sq0 ever meet (which, by
Lemma 5, can happen only at a particle location), they must coalesce (i.e.,
they must be the same path from that particle onward). The next lemma
shows that, for d � 2 and a � 2, they must meet (and so coalesce).

Lemma 7. For d � 2, a � 2, and any unit vector x̂ 2 R2, there is zero prob-
ability that there are any two disjoint x̂±uni-geodesics.
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Proof of Theorem 2. By Lemma 6, we may assume that x̂ 6� ŷ. If there were
two distinct �x̂; ŷ�±bi-geodesics, then two applications of Lemma 7 would
show that they meet at two particles q and q0 while being distinct in between.
This would violate the a.s. uniqueness of the (®nite) geodesic between q and
q0. Hence there is a.s. at most one �x̂; ŷ�±bi-geodesic. Let A be the event that
there is exactly one �x̂; ŷ�±bi-geodesic; we must show that PA � 0. For L > 0
and z 2 R2, let A�z; L� be the event that there is exactly one �x̂; ŷ�±bi-geodesic
and it passes through a particle q 2 z� �ÿL; L�2. Now choose ŵ 6� x̂ or ŷ. By
translation invariance, P�A�kŵ; L�� � P�A�0; L�� and, by ergodicity,

lim
n!1

1

n

Xnÿ1
k�0

I A�kŵ; L�� � � P�A�0; L�� a.s. �17�

By the choice of ŵ, any �x̂; ŷ�±bi-geodesics can touch particles in at most
®nitely many of the kŵ� �ÿL; L�2 yielding thatPk I �A�kŵ; L�� <1 a.s. and,
in conjunction with (17), that P�A�0; L�� � 0. But A�0; L� " A as L " 1 giving
that PA � 0. (

Proof of Lemma 6. Let ~e � �q; q0� be an ordered pair of particles. The
spanning tree R�q� contains one or more (in®nite) uni-geodesics starting from
q. If one or more of these begins with ~e, then we will de®ne a particular one,
denoted r��~e�; otherwise r��~e� will be unde®ned. The uni-geodesic
r��~e� � �q1 � q; q2 � q0; q3; . . .� is the one obtained by a ``counterclockwise
search algorithm'' within R�q�. That is, if �q1; q2; . . . ; qk; �qj� are all the pos-
sible initial segments of the uni-geodesics which begin with �q1; . . . ; qk�, then
qk�1 � �qj� where j� is chosen to maximize the angle (in �ÿp; p�) from
qk ÿ qkÿ1 to �qj ÿ qk.

If there are two distinct x̂±uni-geodesics r1 and r2 starting from some
particle q0, they must bifurcate at some particle q, going respectively to q�1�

and q�2� in their next steps. After q, the polygonal paths of r1 and r2 never
touch (by Lemma 5), and any uni-geodesic (starting from q0) caught ``be-
tween'' them must be an x̂±uni-geodesic as well. Depending on whether r1 is
asymptotically counterclockwise to r2 or vice-versa, either r���q; q�2��� or
r���q; q�1��� will be such an x̂±uni-geodesic. We conclude that DU �x̂� occurs
unless the event G�x̂�, that for some ~e, r��~e� is de®ned and is an x̂±uni-
geodesic, occurs. Now, a.s., only countably many x̂'s have the property that
some r��~e� is de®ned and is an x̂±uni-geodesic. Denoting the uniform mea-
sure on the x̂'s by dx̂, we have, by this fact and Fubini's Theorem, that

1 �
Z

P DU �x̂�� �dx̂

� 1ÿ
Z

P G�x̂�� �dx̂

� 1ÿ
Z Z

I G�x̂�� �dx̂
� �

dP � 1ÿ
Z

0dP � 1 :
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This proves that P�DU �x̂�� (which is � 1 for every x̂) must equal 1 for Le-
besgue-a.e. x̂. But by isotropy, P�DU �x̂�� is independent of x̂ and so equals 1
for every x̂, as desired. (

Proof of Lemma 7. For the given x̂, we let S � S�x̂� denote the union, over all
particles q, of sq � sq�x̂�, the (a.s. unique, if it exists) x̂±uni-geodesic starting
from q. More precisely, S is the graph whose vertices are all the particles and
whose edges are those fq0; q00g belonging to some x̂±uni-geodesic. Since sq and
sq0 must coalesce if they ever meet, it follows that S either has no edges or else
is a forest consisting of N � 1 distinct in®nite trees (plus, perhaps, some
isolated vertices). Lemma 7 is equivalent to the claim that, for d � 2 and
a � 2, PfN � 2g � 0. The proof has three parts with a structure parallel to
the proof in [BK] for uniqueness of in®nite clusters in Bernoulli percolation.
For the remainder of this section we work with the canonical realization of
our underlying Poisson process, in which each x is a locally ®nite subset of
R2 and Q�x� � x.

Part 1. PfN � 2g > 0 �) PfN � 3g > 0. We may and will assume (without
loss of generality by isotropy) that x̂ � ê1 � �1; 0�. Then any x̂±uni-geodesic
is eventually to the right of any vertical line. Translation invariance and
standard arguments show that if PfN � 2g > 0, then, for some d > 0 and
some x � �x1; x2� and x0 � �x01; x02� with x1, x01 < ÿd, P�Ad�x; x0�� > 0, where
Ad�x�1�; x�2�; . . . ; x�m�� denotes the event that: there is for 1 � j � m a unique
particle q�j� � q�x�j�� in the disc B�x�j�; d�; there is a unique x̂±uni-geodesic
s�j� � sq�j� starting from each q�j�; every particle touched by each s�j� after q�j�

has strictly positive ®rst coordinate; and the s�j�'s are all disjoint.
Since the line segment connecting the ®rst two particles of sq�x� and the

corresponding segment for sq�x0� each cross the y-axis somewhere with y-co-
ordinates we denote W �x� and W �x0�, we have also that
P�Ad�x; x0; g;w;w0�� > 0 for some g > 0 and real w, w0 with w0 ÿ w > 2g,
where Ad�x; x0; g;w;w0� (which we denote A0

d) is the intersection of Ad�x; x0�
with the events that jW �x� ÿ wj < g and jW �x0� ÿ w0j < g. (We note that to
take w0 > w in this de®nition, an interchange of x and x0 may be needed.)
Note that on A0

d, since W �x0� > W �x�, the polygonal path of sq�x0� after
crossing the y-axis is always ``above'' that of sq�x�. Choose h > w0 ÿ w� 2g
(e.g., h � 2�w0 ÿ wÿ 2g�) and now consider the translates of A0

d by nh (in the
y-direction), for integers n:

An
d � Ad�x� �0; nh�; x0 � �0; nh�; g;w� nh;w0 � nh� : �18�

By translation invariance, P�An
d� � P�A0

d� > 0 for all n, which implies that for
some n1 < n2, P�An1

d \ An2
d � > 0. We set x�1� � x� �0; n1h�, x�2� � x0 � �0; n1h�,

x�3� � x0 � �0; n2h�, and x�4� � x� �0; n2h�. The choice of h ensures that on
An1

d \ An2
d , W �x�1�� < W �x�2�� < W �x�4�� < W �x�3�� and thus that the uni-geo-

desic s�2� must be disjoint from s�3� since, if they met they would coalesce and
s�4�, trapped between them, would be forced to intersect s�3� which would
contradict the de®nition of An2

d . Thus, even though s�2� and s�4� may coalesce
(so that Ad�x�1�; x�2�; x�3�; x�4��may not occur), s�1�, s�2�, and s�3� remain distinct
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and so An1
d \ An2

d is contained in the event Ad�x�1�; x�2�; x�3�), which conse-
quently has strictly positive probability.

For the second part of the proof of Lemma 7, we let FM ;K denote the event
that some tree in S touches a particle in the rectangle RM ;K � �0;M � � �ÿK;K�
but touches no particle in f�x1; x2� 2 R2 : x1 � MgnRM ;K .

Part 2: PfN � 3g > 0 �) P�FM ;K � > 0 for some M > 0 and K > 0. Starting
from PfN � 3g > 0 or from P�Ad�x�1�; x�2�; x�3��� > 0, it follows easily that
for some d > 0, some x�1�, x�2�, x�3�, with x�j�1 < ÿd for each j, and some �x�1�,
�x�2�, �x�3� with �x�j�1 > d for each j, we have P�A0d� > d, where A0d �
A0d�x�1�; x�2�; x�3�; �x�1�;�x�2�;�x�3�� is the event that: each disc B�x�j�; d� and
B��x�j�; d� contains a unique particle q�j� or �q�j�; there is a unique x̂±uni-geo-
desic s�j� starting from each q�j� whose second particle is �q�j�; every particle in
s�j� after q�j� has strictly positive ®rst coordinate; and the three s�j�'s are
disjoint. By relabelling, we may assume that W �x�1�� < W �x�2�� < W �x�3�� so
that s�2� is the ``middle'' geodesic, ``trapped'' between the other two.

Choose c11 > max��x�1�1 ;�x�2�1 ;�x�3�1 � � d and consider the annulus of width
c11 about RÿM � �ÿ2M ; 0� � �ÿM ;M �. Speci®cally, set

AM �AE
M [AN

M [AW
M [AS

M ;

where

AE
M � �0; c11� � �ÿM ÿ c11;M � c11�;

AN
M � �ÿ2M ÿ c11; c11� � �M ;M � c11�;

AW
M � �ÿ2M ÿ c11;ÿ2M � � �ÿM ÿ c11;M � c11�; and

AS
M � �ÿ2M ÿ c11; c11� � �ÿM ÿ c11;ÿM � :

Note that, for large M , AM contains �x�1�, �x�2�, and �x�3� and the associated
particles �q�j�. Subdivide each of the four parts of AM into rectangles of size
c11 by 2cÿ111 lnM (forAE andAW ) and 2cÿ111 lnM by c11 (forAN andAS). (If
these rectangles don't ®t evenly, make the ®nal rectangle slightly larger than
the rest ± but no more than twice as large.) Then each rectangle has prob-
ability less than eÿ2 lnM � Mÿ2 of containing no particles. Since there are
O�M= lnM� � o�M2� rectangles, elementary considerations show that
P�B]M � ! 1 where B]M is the event that every rectangle in AM 's partition
contains at least one particle. We then have, using the fact that x̂ � ê1, for
su�ciently large M and then for K su�ciently large (depending on M), that
P�A0d \ B]M \ ~CM ;K � > 0 where ~CM ;K is the event that the polygonal path of
each s�j� is disjoint from f�x1; x2� : 0 � x1 � M ; jx2j � Kg.

Let

HM � RÿMn B x�1�; d
� �

[ B x�3�; d
� �� �

and, for each x 2 A0d \ B]M \ ~CM ;K , consider the modi®ed particle con®gu-
ration xnHM in which all particles in HM are deleted. By Lemma 8 below,
there is a (measurable) event A�M such that
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A�M � xnHM : x 2 A0d \ B]M \ ~CM ;K

n o
and P A�M

� �
> 0 : �19�

We make several observations about x� � xnHM 2 A�M . Since the removal of
a particle does not a�ect the minimizing character of any (®nite or in®nite)
geodesic which touched only the non-removed particles, it follows that the
outer geodesics s�1� and s�3� (for x) remain geodesics for x�. The geodesic �s�2�

(which is s�2� without its ®rst particle q�2�) is also a geodesic for x� for the
same reason. The crucial point is the claim for x� that for su�ciently large M
and then su�ciently large K, no particle q in f�x1; x2� 2 R2 : x1 � MgnRM ;K

has an x̂±uni-geodesic sq which touches the middle geodesic �s�2�. According to
this claim, for large M and then large K, A�M � FM ;K and so (19) implies
P�FM ;K � > 0 as desired.

To justify the above claim, consider an sq starting from such a q. By the
de®nition of ~CM ;K and the fact that the polygonal path of sq cannot cross that
of s�1� or s�3� to reach �s�2�, it must be that for sq to reach �s�2�, there is a particle
q0 in the left half-plane f�x1; x2� : x1 < 0g and a particle q00 in the region of the
right half-plane lying between the polygonal paths of s�1� and s�3� with
fq0; q00g an edge in sq. We note that (a.s.) q0 cannot be either q�1� or q�3� (the
only particles in RÿM ) by Lemma 6 and the de®nition of A0d. Hence
q0 2 f�x1; x2� : x1 < 0gnRÿM . We will complete the justi®cation of the claim by
showing that, for large M , such an edge fq0; q00g cannot be part of any
geodesic since there is a Q-path from q0 to q00 with passage time strictly less
than jq0 ÿ q00ja.

Since the segment from q0 to q00 cannot cross the polygonal path of s�1� or
s�3�, it must cross the vertical axis between W �x�1�� and W �x�3�� and hence
between ÿc12 and c12 for some c12 that does not depend on M , e.g.,

c12 � max x�1�2
��� ���; �x�1�2

��� ���; x�3�2
��� ���; �x�3�2

��� ���� �
� d :

Now construct a new Q-path �q1 � q0; q2; . . . ; qkÿ1; qk � q00� where
q2; . . . ; qkÿ1 are in successive rectangles of AM 's partition with q2 in the ®rst
rectangle crossed by the segment from q0 to q00 and qkÿ1 in the last such
rectangle. (We are using here the fact that x� is still in B]M since in obtaining
x� from x, only particles in HM (but not in AM ) were deleted.) It follows
that, for some c13, c14, c15, and large M ,

q0 ÿ q00j j � q0 ÿ q2j j � q2 ÿ qkÿ1j j � qkÿ1 ÿ q00j j ÿ c13 lnM ;

while

q2 ÿ qkÿ1j j � c14M

and Xkÿ2
j�2

qj ÿ qj�1
�� ��a � c15�lnM�aM= lnM :

Thus, for some c16 and large M ,
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jq0 ÿ q00ja � �jq0 ÿ q2j � jqkÿ1 ÿ q00j � c16M�a
� jq0 ÿ q2ja � jqkÿ1 ÿ q00ja � ca

16M
a

> jq0 ÿ q2ja � jqkÿ1 ÿ q00ja � c15�lnM�aÿ1M

�
Xkÿ1
j�1
jqj ÿ qj�1ja: �20�

The second inequality above is valid for any a � 1 and we have a � 2. The
strict inequality (20) contradicts the assertion that fq0; q00g is an edge in sq.

We complete Part 2 by proving:

Lemma 8. With the de®nitions made above, there exists an A�M 2F satisfying
(19).

Proof. We let X1 denote all ®nite subsets of HM , F1 denote the sigma ®eld
generated by events of the form fx1 2 X1 : x1 \ B � ;g where B ranges over
all discs contained in X1, and P1 denote the probability measure on �X1;F1�
such that the outcomes are a Poisson process on HM with unit density with
respect to Lebesgue measure on HM . Also, let X2 denote all in®nite, locally
®nite, subsets of Hc

M , and de®ne F2 and P2 analogously to F1 and P1. We
identify �X;F;P� with the product space �X1 � X2;F1 �F2;P1 � P2� by
the measure-preserving bijection x 7! �x1;x2� � �x \HM ;x \Hc

M � and
observe that the inverse of this mapping is given by �x1;x2� 7! x1 [ x2.
Letting A denote the event A0d \ B]M \ ~CM ;K and using Fubini's Theorem gives
that

0 < P�A� �
Z
X1

Z
X2

IA�x1 [ x2�dP2dP1

and hence for some x�1, IA�x�1 [ x2� is an F2-measurable function and

0 <

Z
X2

IA�x�1 [ x2�dP2 � P2�A��

where A� � fx2 : x�1 [ x2 2 Ag 2F2. Since A� 2F2, we also have that
A� � X and A� 2F when each x2 2 A� is viewed as a subset of R2 (i.e., as an
element of X). Furthermore, viewing A� as an element of bothF andF2, we
have

P�A�� � P1fx1 � ;gP2�A�� > exp�ÿ4M2�P2�A�� > 0:

Finally, when viewed as an element of F, A� � fxnHM : x 2 Ag . (

Part 3: P�FM ;K � > 0 leads to a contradiction. Since each tree in S is in®nite, it
follows that for any positive integer j, F � FM ;K is the increasing limit as
l0 ! 1 (with l0 assuming integer values) of F �j; l0�, the event that some tree
in S touches a particle in RM ;K , no particles in fx � MgnRM ;K , and at least j
particles in Rl0M ;l0K . Thus q � P�F � > 0 implies that for large l0,
P�F �j; l0�� � 1

2 q > 0.

168 C. D. Howard, C. M. Newman



Consider a rectangular array of translates Ru
M ;K of RM ;K which intersect

only on their boundaries and are indexed by u 2 Z2 (in a natural way).
Consider also the corresponding translated events F u�j; l0�. If F u�j; l0� and
F v�j; l0� (with u 6� v) both occur, then the corresponding trees in S are easily
seen to be disjoint. For l � 2l0, let nl denote the number of Ru

M ;K 's in RlM ;lK

such that the corresponding translate of Rl0M ;l0K is also in RlM ;lK and let
Nl � Nl�j� denote the (random) number of the corresponding F u�j; l0�'s that
occur. Note that all the corresponding trees touch at least j particles in
RlM ;lK . Now nl � 1

2 l2 so, by translation invariance,

E�Nl�j�� � P�F �j; l0��nl � 1

2
qnl � 1

4
ql2: �21�

On the other hand by the properties of the corresponding Nl�j� trees in S, we
have that ~Nl, the total number of all particles in RlM ;lK , satis®es ~Nl � jNl�j�
so that, for all l,

jE�Nl�j�� � E�~Nl� � MKl2: �22�
By choosing j so large that 1

4 jq > MK, we obtain a contradiction between
(21) and (22), completing the proof of Part 3.

Combining Parts 1, 2, and 3 we see that PfN � 2g > 0 has been ruled
out (for d � 2 and a � 2) which, as noted earlier, is equivalent to
Lemma 7. (
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