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Summary. We study the asymptotic behaviour of disconnection and non-
intersection exponents for planar Brownian motion when the number of con-
sidered paths tends to in�nity. In particular, if �n (respectively �(n; p)) denotes
the disconnection exponent for n paths (respectively the non-intersection ex-
ponent for n paths versus p paths), then we show that limn→∞ �n=n= 1

2 and
that for a¿0 and b¿0, limn→∞ �([na]; [nb])=n = (

√
a+

√
b)2=2:

Mathematics Subject Classi�cation (1991): 60J65

1. Introduction

Several papers have dealt with disconnection and non-intersection exponents
for planar Brownian motion in recent years. The disconnection exponent �n
associated to n independent planar Brownian motions B1; : : : ; Bn (started away
from 0) describes the asymptotical decay of the probability

P

(
j=n⋃
j=1
Bj[0; t] does not disconnect 0 from in�nity

)

when t→∞, which is logarithmically equivalent to t−�n=2 (we say that a closed
set disconnects 0 from in�nity if it contains a closed loop around 0; see Sect. 2
for a rigorous de�nition of �n, and e.g. [23, 21] for more details). The ex-
act value of these exponents is not known, but it has been conjectured that
they are simple rational numbers and for instance that �1 = 1

4 , �2 =
2
3 (see

for instance Duplantier et al. [10], Puckette–Werner [21]; see also simulations
which support these conjectures in [21]). Lawler [14] recently proved that this
last conjecture is in fact equivalent to Mandelbrot’s conjecture [19] on the
Hausdor� dimension of the ‘frontier’ of a planar Brownian path (Mandelbrot
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conjectured that this dimension is 4
3 ). See [14] and the references therein for

more details; see also Burdzy [3], Burdzy–Lawler [5], Burdzy–Werner [7],
Lawler [12] and [15] for other related results). It is easy to see that �n5 n=2
(this corresponds to the fact that if none of the n Brownian motions B1; : : : ; Bn

hits a �xed half-line running from 0 to in�nity before time t, then 0 is not
disconnected from in�nity); see [23, 24] for rigorous bounds for �n. The �rst
purpose of this paper is to study the asymptotic behaviour of �n when n→∞,
and to prove the following result that we conjectured in [23].

Proposition 1. One has

lim
n→∞

�n
n
=
1
2
: (1)

The second result of this paper is the analogous result for non-intersection
exponents. Suppose that k= 2 is �xed, and de�ne a family of independent pla-
nar Brownian motions (Bj; l; j∈{1; : : : ; k}; l= 1) started from distinct points.
Then, if a1; : : : ; ak are positive integers, the exponent �k(a1; : : : ; ak) character-
izes the asymptotical decay of the probability

P

(
∀(j1; j2) ∈ {1; : : : ; k}2;

(
l=aj1⋃
l=1

Bj1 ; l[0; t]

)
∩
(
l=aj2⋃
l=1

Bj2 ; l[0; t]

)

= ∅ if j1- j2

)
when t→∞, which is logarithmically equivalent to t−�k (a1 ;:::; ak )=2 (see e.g.
Sect. 3, for a rigorous de�nition of this exponent). Loosely speaking, this de-
scribes the probability that k packs of respectively a1; : : : ; ak planar
Brownian motions do not intersect each other. Except for the very excep-
tional case �2(2; 1)=2 (see [11]), the exact value of these exponents is not
known; it has also been conjectured that they take rational values (see some
conjectures in [10, 21]; for simulations see: Duplantier–Kwon [9], Burdzy et
al. [6] and Li–Sokal [18]). It has also been conjectured [10, 21] that �n can be
identi�ed with the ‘formal’ value �1(n) (see Lawler [16] for recent progress
on this). For links between these exponents and analogous exponents de�ned
for discrete planar random walks, see Burdzy–Lawler [4], Cranston–Mountford
[8], Lawler–Puckette [17] and Lawler [13]).
It is not hard to see (see e.g. in Sect. 3) that

�k(a1; a2; : : : ; ak)5
(
√
a1 + · · ·+√

ak)2

2
considering the probability that each pack of Brownian motions stays in a well-
chosen cone. We are going to show that in fact, if [u] denotes the integer part
of the real number u:

Proposition 2. For all positive real numbers �1; : : : ; �k ;

lim
n→∞

�k([�1n]; : : : ; [�kn])
n

=
(
√
�1 + · · ·+√

�k)2

2
: (2)
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It turns out that the proof of (2) is much more technical than that of (1),
even if the basic ideas are similar. We make an extensive use of subadditivity
properties, combined with Beurling’s theorem to obtain (1). For (2), Beurling’s
theorem has to be replaced by some other estimates that we derive. As in
[23, 24], we also use some tools from complex analysis (extremal distance,
conformal mappings) that we combine with hitting time properties of Brownian
motion.

Notations. In this paper, we will often identify C with R2. D(z; �) (respec-
tively C(z; �)) will denote the closed disc (resp. the circle) centered at z and
with radius �¿0. We will also write C� instead of C(0; �). The frontier of
a set K ⊂C will be denoted @K . When K ⊂ C is non-empty, we de�ne the
sausage GK� of radius � around K as follows:

GK� =
⋃
z∈K
D(z; �) :

When a; b∈C, then (a; b) will denote the open interval between a and b. When
f is a function (or a process), the image of an interval I under f will often be
denoted fI =f(I). When  : I→C is a continuous path in the plane de�ned
on an open interval I , then we put �= I .
Suppose 
 is an open subset of C and that K ⊂
, K ′⊂ �
, K ′′⊂ �
. We

say that K disconnects K ′ from K ′′ in 
 if any continuous path  : (0; 1)→
,
such that � ∩ K ′-∅ and � ∩ K ′′-∅ does intersect K . When 
=C, we will
just say that K disconnects K ′ from K ′′.
We say that K ⊂C disconnects K ′⊂C from in�nity if any unbounded

continuous path  : (0; 1)→C that intersects K ′ also intersects K .
We say that a set K connects a set K ′ (respectively a point z ∈C) to a

set K ′′, if it contains a continuous path  : (0; 1)→K , which intersects both K ′

(resp. {z}) and K ′′.

2. Proof of (1)

We �rst introduce some notation and recall relevant results. Let B1; : : : ; Bn;
Bn+1; : : : denote a sequence of independent planar Brownian motions started
from x1; : : : ; xn; : : : respectively under the probability measure PX (here X =
(xj)j=1). We will say that |X |=1 if |xj|=1 for all j= 1. We also de�ne the
stopping times

T jR = inf{t ¿ 0; |Bjt | = R}
for j= 1 and R¿1. Then we put

PnR = sup
|X |=1

PX

(
j=n⋃
j=1
Bj[0; T jR ] does not disconnect 0 from in�nity

)
:

The strong Markov property combined with the scaling property of planar
Brownian motion shows readily that for all R; R′¿1 and n= 1,

PnRR′ 5 PnR P
n
R′ : (3)
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By subadditivity (e.g. Lawler [11, Lemma 5.2.1]) this implies immediately that
�n= limR→∞−(ln PnR )= ln R exists and that

�n = sup
R¿1

− ln PnR
ln R

: (4)

It is also immediate to see that for all R¿1 and n; p= 1,

Pn+pR 5 PnR P
p
R (5)

so that �n+p= �n + �p: Hence, the same subadditivity argument shows that
�= limn→∞ �n=n exists and that

� = sup
n¿0

�n
n
;

combined with (4) this shows that

� = sup
n¿0

sup
R¿1

− ln PnR
n ln R

:

It is easy to check (see for instance [23]) that �n5 n=2 (this corresponds to
the fact that if none of n planar Brownian motions intersects a �xed half-line
then the union of these n paths does not disconnect 0 from in�nity), so that
�5 1

2 . It remains to check the converse inequality.
For all R¿1, we de�ne

a(R) = sup
n¿0

− ln PnR
n

so that

� = sup
R¿1

a(R)
ln R

: (6)

Subadditivity (using (5)) shows that

a(R) = lim
n→∞

− ln PnR
n

: (7)

Furthermore, (3) implies that a(RR′)= a(R) + a(R′) for all R; R′¿1, and
therefore (using the same subadditivity argument once more),

� = lim
R→∞

a(R)
ln R

: (8)

We de�ne the class F of continuous functions f : [0; 1]→R2 such that

f(0) = 0; |f(1)| = 1 and ∀s ∈ (0; 1); |f(s)| ∈ (0; 1) :
In other words, F is the class of continuous functions joining 0 to the unit
circle. We will often identify f∈F with its trace f[0; 1]. We will use the
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following easy lemma:

Lemma 1. For all �xed �¿0 and R¿1; there exists N =N (�) functions
f1; : : : ; fN in F such that for all f∈F;

fi ⊂ Gf� ; for at least one i∈{1; : : : ; N} :

Proof of the Lemma. Consider the lattice G=(�=4)Z2 and the set H of �nite
injective sequences S =(s0; s2; : : : ; sm)∈Gm+1 (the integer m depends upon S)
such that

• |si − si−1|= �=4, for all i∈{1; : : : m};
• s0 = 0 and |sm|= 1;
• |si| ∈ (0; 1) for all i∈{1; : : : ; m− 1}.
H is clearly �nite. For each S =(s0; : : : ; sm)∈H; consider the function fS ∈F
obtained by interpolating linearly the points fS(i=m)= si (for i = 0; : : : ; m− 1)
and fS(1)= sm−1=|sm−1|. It is very easy to see that if f∈F , then there exists a
sequence S =(s0; : : : ; sm)∈H such that for all i∈{0; : : : ; m}; si ∈Gf�=2. Hence,
fS ⊂Gf� ; which completes the proof of the lemma.
Conclusion of Proof of (1). We �x �¿0 and we choose �¡ 1

10 ; such that the
probability that a planar Brownian motion started from 0 and killed when it
�rst hits the unit circle, does not disconnect the disc {z; |z|5 �} from in�nity,
is smaller than �. De�ne then N and f1; : : : ; fN as in Lemma 1.
Let us de�ne, for all i∈{1; : : : ; N}, j∈{1; : : : ; n} and r¿1; the events
Eji (r) = {Bj[0; T jr ] ∩ fi = ∅} ;
Fji (r) = {Bj[0; T jr ] ∩ f = ∅ for some function f∈F such that fi ⊂ Gf� } :

Note that for all �xed i and r; the events (Fji (r); j∈{1; : : : ; n}) are independent.
Lemma 2 shows that for all R¿1;

PnR = sup
|X |=1

PX

(
∃f∈F;

(
n⋃
j=1
Bj[0; T jR ]

)
∩ f = ∅

)

5 sup
|X |=1

N∑
i=1
PX

(
∃f∈F;

(
n⋃
j=1
Bj[0; T jR ] ∩ f = ∅

)
and fi⊂Gf�

)

5 sup
|X |=1

N∑
i=1
PX (∀j∈{1; : : : ; n}; ∃f∈F; Bj[0; T jR ] ∩ f= ∅ and fi⊂Gf� )

5
N∑
i=1

sup
|X |=1

PX

(
n⋂
j=1
Fji (R)

)

=
N∑
i=1

sup
|X |=1

PX (F1i (R))
n : (9)
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We de�ne the stopping times

V (i) = inf{t ¿ 0; B1t ∈fi} ;
V ∗(i) = inf{t ¿V (i); |B1t − B1V (i)| = 1}

for i ∈ {1; : : : ; N}.
Suppose for a moment that i∈{1; : : : ; N} is �xed and that F1i (R+ 1) \

E1i (R) is true; in other words,

V (i)¡ T 1R and B1[0; T 1R+1] ∩ f = ∅
for some f∈F such that fi⊂Gf� . Then, as D(B1V (i); 1)⊂D(0; R+ 1), one has
V ∗(i)¡T 1R+1 and

(f ∩ B1[V (i); V ∗(i)]) ⊂ (f ∩ B1[0; T 1R+1]) = ∅ : (10)

The de�nition of V (i) and the fact that fi ⊂ Gf� ensure that
f ∩D(B1V (i); �)- ∅

Hence, f connects D(B1V (i); �) to C(BV (i); 1) (because it connects a point in
D(B1V (i); �) to CR+1). Combining this with (10) shows that

B1[V (i); V ∗(i)] does not disconnect D(B1V (i); �) from in�nity

(otherwise it would intersect f). The strong Markov property and the de�nition
of � implies that the probability of this event is smaller than �. Hence,

sup
|X |=1

PX (F1i (R+ 1)\E1i (R))5 � : (11)

Combining (9) and (11) shows that

PnR+15
N∑
i=1

sup
|X |=1

(PX (E1i (R)) + �)
n :

Beurling’s theorem (see e.g. [2, Sect. V-4]) shows that for all i,

sup
|X |=1

PX (E1i (R))5Px1=1(B
1[0; T 1R ] ∩ (−∞; 0]= ∅) :

It is easy to see (see e.g. �rst line of p. 374 in [23]) that this last quantity is
smaller than 4R−1=2=�. Hence,

PnR+15N
(

4

�
√
R
+ �
)n

and

lim sup
n→∞

(PnR+1)
1=n5

4

�
√
R
+ � :

As this is true for all �¿ 0, and using (7), we get

a(R+ 1)= ln

(
�
√
R
4

)
:

Combined with (8), this shows that �= 1
2 and (1) follows.
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3. Proof of (2)

3.1. Preliminaries

We �rst properly de�ne the exponents �k(a1; : : : ; ak). We suppose from now
on that k= 2 is �xed and that

X =(xj; l)j= 1; l= 1

with xj; l ∈C for all j; l. We will say that |X |=1 if |xj; l|=1 for all j= 1 and
l= 1. De�ne a family (Bj; l; j= 1; l= 1) of independent complex Brownian
motions started from B0 =X (i.e. Bj; l0 = xj; l for all j; l) under the probability
measure PX . For all R¿ 1, j= 1 and l= 1, let

T j; lR = inf{t ¿ 0; |Bj; lt |=R} :

Suppose that a1; : : : ; ak are positive integers. The exponent �k(a1; : : : ; ak) de-
scribes the asymptotic behaviour of the probabilities

Pa1 ;:::; akR = sup
|X |=1

PX (∀(j1; j2)∈{1; : : : ; k}2; ∀l15 aj1 ; ∀l25 aj2 ;

B j1 ; l1 [0; T j1 ; l1R ] ∩ Bj2 ;l2 [0; T j2 ;l2R ] = ∅ if j1-j2)

when R→∞: The strong Markov property and a scaling argument show im-
mediately that for all R; R′¿ 1

Pa1 ;:::; akRR′ 5Pa1 ;:::; akR Pa1 ;:::; akR′ ; (12)

so that the existence of

�k(a1; : : : ; ak)= lim
R→∞

− ln Pa1 ;:::; akR

ln R

follows from subadditivity. It is also immediate that for all positive integers
a′1; : : : ; a

′
k ,

Pa1+a
′
1 ; a2+a

′
2 ;:::; ak+a

′
k

R 5Pa1 ;:::; akR Pa
′
1 ;:::; a

′
k

R :

Hence, the same arguments that in Section 2 show that

lim
n→∞

�k(na1; : : : ; nak)
n

= sup
R¿1

sup
n¿1

− ln Pna1 ;:::; nakR

n ln R

= sup
R¿1

(
lim
n→∞

− ln Pna1 ;:::; nakR

n ln R

)

= lim
R→∞

(
lim
n→∞

− ln Pna1 ;:::; nakR

n ln R

)
: (13)
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3.2. Reduction

We now show that it su�ces to prove (2) in the case where �1; : : : ; �k are
positive integers: Assume that (2) is valid for all integer values of �1; : : : ; �k .
Suppose that �1; : : : ; �k are positive real numbers. For all integer M¿0, we put
(for all n¿ 0) a(n)= [n=M ]. It is obvious that limn→∞ n=a(n)=M and that

[M�1]a(n)5 [n�1]5 [M�1 + 1](a(n) + 1) :

Hence,

1
2

(√
[M�1]=M + · · ·+

√
[M�k ]=M

)2
= lim

a→∞
�k([M�1]a; : : : ; [M�k ]a)

aM

5 lim inf
n→∞

�k([n�1]; : : : ; [n�k ])
a(n)M

5 lim inf
n→∞

�k([n�1]; : : : ; [n�k ])
n

5 lim sup
n→∞

�k([n�1]; : : : ; [n�k ])
n

= lim sup
n→∞

�k([n�1]; : : : ; [n�k ])
Ma(n)

5 lim sup
a→∞

�(([M�1] + 1)(a+ 1); : : : ; ([M�k ] + 1)(a+ 1))
aM

=
1
2

(√
([M�1] + 1)=M + · · ·+

√
([M�k ] + 1)=M

)2
:

Letting M→∞ then shows (2).

3.3. Proof of the upper bound

De�ne b0 = 0 and for j∈{1; : : : k},

bj = 2�
∑j

u=1
√
au∑k

u=1
√
au
;

ej = exp
(
i
{
bj + bj−1

2

})
;

�j = {�ei’; �¿ 0; ’∈ (bj−1; bj)} :
Note that the cones �j are disjoint, that ej ∈�u, that the angle of �j is

’j =
2�√aj∑k
u=1

√
au
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and that
⋃ k
j=1

��j =C. De�ne X0 = (x0j; l) with x0j; l= ej, for all j= 1 and
l= 1. Then, estimates for exit probabilities of cones (see, for instance, [23])
show that

PX0 (B
j;1[0; T j;1R ]⊂�j)= 2

�
R−�=’j =

2
�
exp

{
−∑k

u=1
√
au

2√aj ln R

}
:

Hence,

Pa1 ;:::; akR = PX0 (∀j∈{1; : : : ; k}; ∀l5 aj; Bj; l[0; T j; l]⊂�j)

=
j=k∏
j=1

l=aj∏
l=1

(
2
�
exp

{
−∑k

u=1
√
au

2√aj ln R

})

=
(
2
�

)a1+···+ak
(
√
R)−(

√
a1+···+√ak )2 :

Hence, �k(a1; : : : ; ak)5 (
√
a1 + · · ·+√

ak)2=2 (the method used in [23] shows
in fact that this inequality is strict). In particular,

lim
n→∞

�k(na1; : : : ; nak)
n

5
(
√
a1 + · · ·+√

ak)2

2
¡∞ : (14)

3.4. Some applications of conformal invariance

Before deriving the converse inequality, we need to prove some intermedi-
ate results: Throughout this subsection, R¿e4� is �xed. When 
 is an open
subset of

U= {z ∈C; |z| ∈ (1; R)} ;
we de�ne

@
1 = @
 ∩ C1 and @
R= @
 ∩ CR :
Let B denote a planar Brownian motion B started from z ∈C under the prob-
ability measure Pz, and

T = inf{t ¿ 0; |Bt |=R} :
Throughout this section 
 will denote an open subset of U, which does

not disconnect C1 from CR. Our aim is to estimate the probability

p(
)= sup
|z|51

Pz(B(0; T ) ∩U⊂
) :

Let (
i)i∈I denote the family of all connected components of 
 (I is at most
countable), and de�ne

J = {j∈ I; both @
1j and @
Rj contain at least two distinct points} :
Suppose that |B0|5 1 and put

S = sup{t ¡T; |Bt |=1} :
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Note that if B(0; T ) ∩U⊂
 with |B0|5 1, then

B(S; T )⊂
i for one i∈ I : (15)

Suppose that i∈| J is �xed; then one of the two following events is almost
surely true:

• BS ∈| @
1i (this happens if @
1i contains 0 or 1 point).
• BT ∈| @
Ri (this happens if @
Ri contains 0 or 1 point).
Hence, if |B0|5 1 and B(0; T ) ∩U⊂
, then (15) is in fact valid for an i∈ J .
In particular,

p(
)=0 if J = ∅ : (16)

Suppose now that J-∅. For j∈ J , we de�ne the open set Oj as follows:
Oj =O(
j)= {z ∈U; 
j disconnects z from C1 or from CR in U} :

We now start with some elementary remarks:
Fix j∈ J for a while. As 
j does not disconnect C1 from CR, there exists

a continuous path : (0; 1)→U such that

� ∩ C1- ∅; � ∩ CR- ∅ and  ∩ 
j = ∅ :
The de�nition of Oj then readily implies that  ∩ Oj = ∅, and consequently Oj
does not disconnect C1 from CR either.
Suppose now that 
j does not disconnect the point z from C1 and from

CR in U. Then, there exists a continuous path : (0; 1)→U such that

� ∩ C1- ∅; � ∩ CR- ∅; z ∈  and  ∩ 
j = ∅ :
Then the de�nition of Oj implies that  ∩ Oj = ∅, and Oj does not disconnect
z from C1 (and from CR) in U either.
Suppose now that Oj is not simply connected. Then for some z ∈U\Oj, Oj

disconnects z from in�nity (and consequently from CR or from C1 in U). The
above then implies that 
j disconnects z from CR or from C1 in U too. But
the de�nition of Oj then implies that z ∈Oj, which contradicts the hypothesis.
Hence:

Oj is simply connected for all j∈ J :
Similarly, it is very easy to check that Oj is an open set, and that both

@O1j and @O
R
j are connected sets, which contain at least two distinct points.

Suppose for a moment that for some �xed j-j′ in J , O(
j) ∩ O(
j′)-∅.
Then, by de�nition, 
j disconnects a point z ∈O(
j′) from C1 or from CR in
U. But O(
j′) is an open connected set in U , and its frontier intersects both
C1 and CR. Hence,


j ∩ O(
j′)- ∅ :
The same argument (interchanging j and j′) then yields


j ∩ 
j′ - ∅ ;
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which contradicts the de�nition of (
j)j∈I . Hence, for all j-j′ in J ,

Oj ∩ Oj′ = ∅ :
More generally, we also de�ne

O(
)=
⋃
j ∈ J

O(
j) :

The same arguments than above imply also that if 
 and 
′ are two disjoint
open subsets of U, which do not disconnect C1 from CR, then

O(
) ∩ O(
′)= ∅ : (17)

De�ne also the measure � such that

d�(x; y)=
dx dy
x2 + y2

:

Note that �(U)= 2� ln R. We are now ready to state the main result of this
subsection.

Lemma 2. For all open set 
 ⊂ U; which does not disconnect C1 from CR
and such that J-∅;

p(
)5K exp
(−�(ln R)2
�(O(
))

)
;

where the constant K ¡∞ is independent of 
 and R¿e4�.

Proof of the lemma. For j∈ J , we de�ne the extremal distance dj between
@O1j and @O

R
j in Oj (we refer to Ahlfors [1] for de�nitions and properties of

extremal distance). De�ne also the conformal mapping �j, which maps Oj onto
the rectangle

Rj =(0; 2dj)× (−1; 1)
and such that �j(@O1j )= [−i; i] and �j(@ORj )= [2d− i; 2d+ i] (this mapping
exists because Oj is simply connected and @O1j (and @O

R
j ) is connected and

contains more than two points).
Recall also the following equivalent de�nition of the extremal distance dj

(see e.g. Ahlfors [1, pp. 51–53]):

dj = sup
�∈M

(inf ∈L
∫
 �(z)|dz|)2∫ ∫

Oj
�(x; y)2dx dy

; (18)

where M is the set of positive measurable functions in �Oj, and L the set of
all recti�able arcs in �Oj, which connect @O1j and @O

R
j . It is easy to see that the

‘�-length’ of any recti�able arc ∈L associated to �(z)= |z|−1 is such that
∫

�(z)|dz|= ∫



|dz|
|z| =

R∫
1

d�
�
= ln R :
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Hence (taking �(z)= |z|−1 in (18)),

dj=
(ln R)2

�(Oj)
(19)

and in particular (as �(U)= 2� ln R and R¿e4�),

dj=
(ln R)2

�(O(
))
=
(ln R)2

�(U)
=
ln R
2�

= 2 : (20)

Hence for all j∈ J , the set
Lj =�−1j (1− i; 1 + i)

is not empty. We put L=
⋃
j∈ J Lj and we de�ne the sequences of stopping

times (Un) and (Vn) as follows: V0 = 0 and for all n= 1,

Un = inf{t=Vn−1; Bt ∈ L} ;
Vn = inf{t=Un; Bt =∈ O(
)} :

We also de�ne the random number

N = sup{n= 0; Vn5 T} :
It is easy to see that if B(0; T ) ⊂ 
 then N ¡∞ almost surely. (15) shows
that if B(0; T ) ⊂ 
, then N= 1 and that VN = T . Note also that if N ¿j= 1,
then, almost surely |BVj |=1. Then, using the strong Markov property, one
gets

p(
) 5 sup
|z|=1

∞∑
n=1
Pz(N = n; Vn= T and |BVj |=1 for all j=1; : : : ; n− 1)

5
∞∑
n=1

(
sup
z∈L
Pz(|BV1 |=1)

)n−1
sup
z∈L
Pz(V1 = T ) : (21)

But for all j∈ J ,
sup
z∈Lj

Pz(|BV1 |=1) 5 sup
z∈Lj

P�j(z)(B exits Rj through [−i; i])

5 sup
z∈(1−i;1+i)

Pz(<(B) hits 0 before |=(B)| hits 1) ;

where the �rst inequality is a consequence of conformal invariance of planar
Brownian motion (here under the mapping �j). The strong Markov property
shows readily that this last supremum is obtained when z=1, and therefore,
there exists ¡ 1 ( is independent from R and 
), such that

sup
z∈L
Pz(|BV1 |=1)¡ : (22)
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On the other hand,

sup
z∈L
Pz(V1 = T ) 5 sup

j∈ J
sup
z∈Lj

Pz(B exits Oj through @ORj )

5 sup
j∈ J

sup
z∈(1−i;1+i)

Pz(B exits Rj through [2d− i; 2d+ i])

5 sup
j∈ J

sup
z∈(1−i;1+i)

Pz(<(B) hits 2dj before |=(B)| hits 1)

= sup
z∈(1−i;1+i)

Pz(<(B) hits 2d before |=(B)| hits 1) ;

where d= inf j∈ J dj: Again, the strong Markov property shows that this last
supremum is obtained when z=1 (i.e. =(B0)= 0). Eventually,

sup
z∈L
Pz(V1 = T )5P(�2d−1¡�̃1) ; (23)

where �2d−1 denotes the hitting time of 2d− 1 by the linear Brownian motion
<(B)− 1 started from 0, and where �̃1 denotes the hitting time of 1 by the
reected linear Brownian motion |=(B)| started from 0.
But we know (see e.g. [23], or Revuz–Yor [22, II.(3.7)]) that

E
(
exp
(−�2�2d−1

2

))
= exp(−�(2d− 1)) : (24)

On the other hand, an easy consequence of the decomposition of the Dirichlet
Laplacian in an interval shows (see e.g. Port–Stone [20, p. 52]), that, for all
x¿ 0,

P(�̃1¿x)5
4
�
exp
(−�2x

8

)
: (25)

Hence, using the independence between <(B) and =(B), (23)–(25), we get

sup
z∈L
Pz(V1 = T ) 5

4
�
E
(
exp
(−�2�2d−1

8

))

5
4
�
exp
(−�(2d− 1)

2

)

5
4e�=2

�
exp(−�d) : (26)

Finally, putting the pieces together using (21), (22) and (26), we get

p(
)5
4e�=2

�
∑
n=1

n−1e−�d=
4e�=2

�(1− )e
−�d :

(19) shows that

d=
(ln R)2

�(O(
))
:
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Hence,

p(
)5
4e�=2

�(1− ) exp
(−�(ln R)2
�(O(
))

)
; (27)

and the proof of the lemma is complete.

3.5. Spiders and colourings

We start with some informal considerations: The main idea of the proof of the
upper bound for (2) is similar to that of the proof of (1). This time, the set F
of functions that can be avoided by a family of paths that do not disconnect
the origin has to be replaced by ‘colourings’. More precisely, if

Bj1 ; l1 [0; T j1 ; l1R ] ∩ Bj2 ; l2 [0; T j2 ; l2R ] = ∅
for all j1- j2 ∈{1; : : : ; k} and l15 aj1 , l25 aj2 , then, for some disjoint open
sets �1; : : : ;�k in D(0; R),

Bj; l[0; T j; lR ] ⊂ �j ;
for all j∈{1; : : : ; k} and l5 aj. Loosely speaking, we want to construct a de-
terministic �nite family of such partitions of D(0; R), which do cover almost
(i.e. except for a set of su�ciently small probability) all possibilities. However,
a major additional di�culty, compared with the proof of (1), is that the ‘opti-
mal’ deterministic partition is not exactly the partition of D(0; R) into cones,
that we constructed in Sect. 3.3 (in Sect. 2, we used Beurling’s Theorem, i.e.
the fact that the ‘optimal’ path in F , was the straight line). But, using Sect. 3.4,
we will loosely speaking see that it is not too far of being optimal, and this
is su�cient for our purpose.
We start with some new de�nitions (colourings etc...): In the sequel k= 2

is �xed. Suppose R¿ 1 is �xed. A leg is a continuous function f : [0; 1]→ C
such that

|f(0)|=1; |f(1)|=R and ∀s∈ (0; 1); f(s)∈U :
We will sometimes identify f with its trace f[0; 1]. An l-legged spider is a
family f=(f1; : : : ; fl) of legs such that for all 15 i¡ j5 l,

fi ∩ fj = ∅ ;
i.e. any two legs are disjoint. We will also often identify the spider with its
trace (f=

⋃l
i=1fi[0; 1])

An l-legged spider divides U into l parts (the connected components of
U\f), which we denote Cf1 ; : : : ; Cfl (in cyclic order). Suppose now that f is
an l-legged spider and that k5 l. We say that the function c :U→ {1; : : : ; k}
is a spider-k-colouring of U associated to f if:

• For all i∈{1; : : : ; l}, c is constant on Cfi : c(Cfi )= {ci}:
• For all j∈{1; : : : ; k}; there exists i∈{1; : : : ; l} such that ci= j.
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• For all i∈{1; : : : ; l− 1}, ci- ci+1 and c1- cl (i.e. two adjacent connected
components do not have the same ‘colour’).

We say that the function c :U→ {1; : : : ; k} is a k-colouring of U if there
exists a family (A1; : : : ; Ak) of open (possibly empty) subsets of U, such that

• ⋃i=ki=1 �Ai= �U:
• For all j∈{1; : : : ; k} such that Aj- ∅, c(Aj)= {j}:
• For all j∈{1; : : : ; k}, Aj is equal to the interior of �Aj.
Note that for a k-colouring c, the choice of the sets A1; : : : ; Ak is unique (Aj
is the interior of c−1({j})). We will sometimes write A1(c); : : : ; Ak(c). The
frontier @c of the k-colouring c is the set of points in U at which c is not
continuous. In other words

@c=U ∩
(
j=k⋃
j=1
@Aj

)
:

The set of all k-colourings of U will be denoted �k . Note that any spider-k-
colouring is a k-colouring and that its frontier is the trace in U of a k-legged
spider.
We can now state the following lemma.

Lemma 3. For all �¿ 0; there exists a (�nite) family of k-colourings c1; : : : ;
cN of U such that for all k-colouring c of U; there exists an i∈{1; : : : ; N}
such that

@ci ⊂ G@c�
and

∀z ∈U\G@c� ; ci(z)= c(z) :

Proof. We consider the lattice G=(�=4)Z2 and the ‘projection’ � :U→ G
de�ned as follows, for all z=(x; y)∈U:

�(x; y) =
(
�
4

[
4x
�

]
;
�
4

[
4y
�

])
∈G :

Note that |�(z)− z|5 �=2 for all z ∈U. The set �(U) is �nite, and for all
g∈�(U), we choose g∗ ∈U such that �(g∗)= g. We now de�ne

�= {L=(L(g))g∈�(U); L(g)∈{1; : : : ; k}}= {1; : : : ; k}�(U) :
For all L∈�, we de�ne the k-colouring cL as follows:

cL(z)=L(�(z)); z ∈U :
(cL; L∈�) is a �nite family of k-colourings of U, and it is easy to see that if
c0 is a k-colouring of U and if we de�ne L(c0)∈� by

L(c0)(g)= c0(g∗)
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then
@cL(c0) ⊂ G@c0�

and
∀z ∈U\G@c0� ; cL(c0)(z)= c0(z) ;

and the lemma is proved.

Let us now state the following result:

Lemma 4. For all c∈�k ; and for K de�ned as in Lemma 2,

k∏
j=1
p(Aj(c))aj 5Ka1+···+ak exp

(−(√a1 + · · ·+√
ak)2 ln R

2

)
: (28)

Proof. Suppose for a moment that Ai(c) disconnects C1 from CR for some
i∈{1; : : : ; k}. Then, it is easy to see that for i′ ∈{1; : : : ; k}\{i}, p(Ai′(c))= 0,
because Ai(c) and Ai′(c) are disjoint. As k= 2, this shows that

k∏
j=1
p(Aj(c))aj =0 :

We now assume that Ai(c) does not disconnect C1 from CR for all
i∈{1; : : : ; k}. We can also assume that O(Aj(c))- ∅ for all j∈{1; : : : ; k}, as
otherwise (cf. (16)), p(Aj(c))= 0. As (A1(c); : : : ; Ak(c)) are disjoint, Eq. (17)
implies that (O(A1(c)); : : : ; O(An(c))) are also disjoint open subsets of U.
Hence

i=k∑
i=1
�(O(Ai(c)))5 �(U)= 2 � ln R : (29)

Using Lemma 2, we get

j=k∏
j=1
p(Aj(c))aj 5Ka1+···+ak exp

(
−�(ln R)2

j=k∑
j=1

aj
�(O(Aj(c)))

)
:

The Cauchy–Schwarz inequality and (29) show that

j=k∑
j=1

aj
�(O(Aj(c)))

=

(
j=k∑
j=1

aj
�(O(Aj(c)))

)
(
∑j=k

j=1 �(O(Aj(c))))

2� ln R

=
1

2� ln R

(
j=k∑
j=1

√
aj

)2
and the lemma follows.

3.6. Choice of �

Suppose that R¿2 and de�ne the set

U2 = {z ∈C; |z| ∈ (2; R)} :
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De�ne a planar Brownian motion B started from z ∈C under the probability
measure Pz and the hitting times Tr = inf{t¿0; |Bt |= r}, for r=0. Suppose
that z ∈U2 and de�ne the conditional probability

P∗z ( · )=Pz( · |TR¡T1) :
The skew-product decomposition of B (see below) shows immediately that for
all z ∈U2,

Pz(TR¡T1)=
ln |z|
ln R

=
ln 2
ln R

:

Suppose now that � is �xed, and chose �= �(R; �) in such a way that

P0(B[0; T1=4] does not disconnect D(0; �) from in�nity)5
� ln 2
ln R

:

Then, for any z ∈U2, if T z1=4 = inf{t¿0; |Bt − z|=1=4},
P∗z (B[0; T

z
1=4] does not disconnect D(z; �) from D(z; 1=4))5 � : (30)

Suppose now that R¿4 is �xed and let

S = sup{t5 TR; |Bt |=1} ;
S ′ = inf{t¿S; |Bt |=2} :

Recall the skew-product decomposition of B (see e.g. Revuz–Yor [22, Ch. V,
Theorem (2.11)]):

Bt = exp(XAt + iYAt ) ;

where (X + iY ) is a complex Brownian motion, and where

At =
t∫
0
|Bs|−2ds :

We de�ne the times

�= ATR = inf{t¿0; Xt = ln R} ;
�= AS = sup{t¡�; Xt =0} ;
�′ = AS′ = inf{t¿�; Xt = ln 2} :

Williams’ decomposition of the Brownian path (see Revuz–Yor [22, Ch. VII,
Theorem (4.9)]) shows that (�t)= (X�+t ; t ∈ [0; �− �]) is a three-dimensional
Bessel process stopped at its hitting time of ln R, which is independent of
(Xt; t5 �). As �′ − � is a stopping time for �, it follows that (Xt; t ∈ [0; �′])
and (Xt; t ∈ [�′; �]) are independent. Moreover (using standard properties of
the three-dimensional Bessel processes), the law of (Xt; t ∈ [�′; �]) is identical
to that of linear Brownian motion started from ln 2 and conditioned on hitting
ln R before 0. In other words (and using the independence between X and Y ),
if z=2, then B[0; T ] under the probability measure P∗z is identical in law to
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B[S ′; T ], conditioned on {BS′ = z}. In particular, if 
 is a �xed open subset of
U2, then:

sup
|z|=1

Pz(B[S ′; T ] ∩U2 ⊂ 
)5 sup
|z|=2

P∗z (B[0; TR] ∩U2 ⊂ 
)

5
ln R
ln 2

sup
|z|=2

Pz(B[0; TR] ∩U2 ⊂ 
) : (31)

3.7. Conclusion of the proof

We are now ready to proceed to the proof of (2). Suppose for a while that
R¿2e4� and � are �xed. De�ne � as in the previous section, and then N ,
c1; : : : ; cN as in Lemma 3. Suppose that |X |=1 and that (B0)=X (i.e. all
Brownian motions are started on the unit circle {z; |z|=1}. De�ne the times
(for all j, l and R¿1)

S j; l = sup{t¡T j; lR ; |Bj; lt |=1} ;
S j; l2 = inf{t¿Sj; l; |Bj; lt |=2} ;
T j; l∗R = inf{t¿T j; lR ; |Bj; lt − Bj; l

T j; lR

|¿1=2} :

Suppose now that for all 15 j1¡j25 k, l15 naj1 , l25 naj2 ,

Bj1 ; l1 [0; T j1 ; l1R+1 ] ∩ Bj2 ; l2 [0; T j2 ; l2R+1 ]= ∅ :
Then, there exists a spider k-colouring c of U (associated to a spider f) such
that, for all 15 j5 k and for all 15 l5 naj,

c(Bj; l(S j; l; T j; lR ))= {j} :
Furthermore, it is easy to see that it is possible to choose c in such a way that

Bj; l(S j; l; T j; l∗R ) ∩ @c= ∅ :
Lemma 3 ensures that for at least one i∈{1; : : : ; N},

ci= c on U\Gf� and @ci ⊂ Gf� :
De�ne for i∈{1; : : : ; N}, the set
�ik = {c∈�k ; c is a spider k-colouring, ci= c on U\G@c� and @ci ⊂ G@c� }

and the events (for all j∈{1; : : : ; k} and l= 1)

F j; li = {∃c∈�ik ; c(Bj; l(S j; l; T j; lR ))= {j} and @c ∩ Bj; l(S j; l; T j; l∗R )= ∅} :
Note that for a �xed i, the sets (F j; li ; l= 1; j∈{1; : : : ; k}) are independent.
The above implies that

Pna1 ;:::; nakR+1 5 sup
|X |=1

PX

(
N⋃
i=1

(
k⋂
j=1

naj⋂
l=1
F j; li

))
;
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and consequently,

Pna1 ;:::; nakR+1 5 sup
|X |=1

(
N∑
i=1
PX

(
k⋂
j=1

naj⋂
l=1
F j; li

))

5
N∑
i=1

(
k∏
j=1

sup
|X |=1

PX (F
j;1
i )naj

)
: (32)

De�ne the times:

W j;1
i = inf{t¿Sj;1; Bj;1t ∈U2 and ci(Bj;1t )- j} ;

W j;1∗
i = inf{t¿W j;1

i ; |Bj;1t − Bj;1
Wj; 1
i

|=1=4} :

Suppose now for a moment that F j; li is true and that

{Wj;1
i ¡TR} :

De�ne the spider k-colouring c as in the de�nition of F j; li . Then for a sequence
hn→ 0+,

ci(Bj;1
Wj; 1
i +hn

)-j= c(Bj;1
Wj; 1
i +hn

) :

As ci= c on U\G@c� , this implies that
Bj;1
Wj; 1
i

∈G@c� ;

and hence, there exists z0 ∈ @c, such that
|z0 − Bj;1Wj; 1

i

|5 � :

The de�nitions of Wj;1∗
i and T j;1∗R , and the fact that Wj;1

i ¡TR imply that

Wj;1∗
i ¡T j;1∗R :

Combining this with our choice of c shows that

(Bj;1[Wj;1
i ; W j;1∗

i ] ∩ @c) ⊂ (Bj;1(S j;1; T j;1∗R ) ∩ @c)= ∅ :
But, as c is a spider k-colouring of U and z0 ∈ @c, @c connects z0 to the circles
C1 and CR. As R¿4, this implies in particular that @c connects z0 to the circle
C(z0; 1=2). Hence,

Bj;1[Wj;1
i ; W j;1∗

i ] does not disconnect D(Bj;1
Wj; 1
i

; �) from C(Bj;1
Wj; 1
i

; 14 ) :

The choice of � ensures that the probability of this event is smaller than � (it
is easy to check that Wj;1

i − S j;1 is a stopping time for the Markov process
(Bj;1S j; 1+t ; t= 0)). Finally, we get

sup
|X |=1

PX (F
j;1
i )5 �+ sup

|X |=1
PX (T

j;1
R ¡Wj;1

i )
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and (using (32)),

Pna1 ;:::; nakR+1 5
N∑
i=1

k∏
j=1

(
�+ sup

|X |=1
PX (T

j;1
R ¡Wj;1

i )

)naj
:

Note that if T j;1R ¡Wj;1
i then

ci(Bj;1(S j;12 ; T
j;1
R ) ∩U2)= {j} :

Consequently,

lim sup
n→∞

(Pna1 ;:::; nakR+1 )1=n5 sup
c∈�k

k∏
j=1

(
sup
|X |=1

PX (c(Bj;1(S
j;1
2 ; T

j;1
R ))= {j}) + �

)aj
:

As this is true for all �¿0,

lim sup
n→∞

(Pna1 ;:::; nakR+1 )1=n5 sup
c∈�k

k∏
j=1

sup
|X |=1

PX (Bj;1(S
j;1
2 ; T

j;1
R ) ∩U2 ⊂ Aj(c))aj :

(31) implies that

lim sup
n→∞

(Pna1 ;:::; nakR+1 )1=n

5
(
ln R
ln 2

)a1+···+ak
sup
c∈�k

k∏
j=1

sup
|X |=2

PX (Bj;1(0; T
j;1
R ) ∩U2 ⊂ Aj(c))aj :

Note that the restriction of c to U2 is a k-colouring of U2 (with obvious
de�nitions). Using the scaling property and Lemma 4 shows eventually that

lim sup
n→∞

(Pna1 ;:::; nakR+1 )1=n

5
(
K ln R
ln 2

)a1+···+ak
exp

(
− (
√
a1 + · · ·+√

ak)2

2
ln(R=2)

)
:

Combining this with (13) and (14) completes the proof of (2).

4. Remarks

Remark 1. Proposition 2 shows in particular that

lim
n→∞

�2(n; 2n)
n

=
3
2
+
√
2 ;

which is an irrational number. This implies that �2(n; p) (as a function of n; p)
cannot be the ratio of two polynoms (in n and p) with integer coe�cients (in
other words, �2(n; p) |∈Z(n; p)).
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Remark 2. Note that in particular, for a1 = · · · = ak =1,

lim
n→∞

�k(n; : : : ; n)
n

=
k2

2
;

which is consistent with the following conjecture made in [21]:

�k(n; : : : ; n)=
n(((n+ 1)k)2 − 1)
2(n+ 1)(n+ 2)

:

Remark 3. Note also that if 0¡�¡�′5 1=2 then,

lim
n→∞

�2([�n]; [(1− �)n])
n

=
1 + 2

√
�(1− �)
2

5
1 + 2

√
�′(1− �′)
2

= lim
n→∞

�2([�′n]; [(1− �′)n])
n

;

which does not contradict the conjecture (6) in [23] (i.e. �2(N − n; n)¡�2(N −
n′; n′) as soon as 15 n¡n′5N=2).

Remark 4. We believe that the following result is true: (�n; n= 1) is a convex
function of n (i.e. �n+1 − �n is increasing), in which case (1) would imply
that

lim
n→∞ (�n+1 − �n)=

1
2 : (33)

Similarly, it is likely that for �xed positive integers a1; : : : ; ak , the di�erence

�k((n+ 1)a1; : : : ; (n+ 1)ak)− �k(na1; : : : ; nak)
is an increasing function of n, and that consequently

lim
n→∞

(�k((n+ 1)a1; : : : ; (n+ 1)ak)− �k(na1; : : : ; nak)) = (
√
a1 + · · ·+√

ak)2

2
:

(34)

Note that on the other hand, for �xed positive integers n1; : : : ; nu (u= 1), the
function

�u+1(n1; : : : ; nu; an)

is a concave function of n (this is a straightforward application of the Cauchy–
Schwarz inequality). In fact, Greg Lawler [16] proved that this function is
strictly concave.
On the other hand, one also has, for u= 1, v= 1, (this can be derived,

using (2) for the lower bound, and a similar argument than in Sect. 3.3 for
the upper bound) that

lim
n→∞

�u+v(n1; : : : ; nu; a1n; : : : ; av n)
n

=
(
√
a1 + · · ·+√

av )2

2
: (35)
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