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Summary. This paper presents some explicit lower bound estimates of log-
arithmic Sobolev constant for di�usion processes on a compact Riemannian
manifold with negative Ricci curvature. Let Ric=− K for some K¿0 and d;
D be respectively the dimension and the diameter of the manifold. If the bound-
ary of the manifold is either empty or convex, then the logarithmic Sobolev
constant for Brownian motion is not less than

max

{(
d

d+ 2

)d 1
2(d+ 1)D2

exp[−1− (3d+ 2)D2K];(
d− 1
d+ 1

)d
K exp[−4D√dK]

}
:

Next, the gradient estimates of heat semigroups (including the Neumann
heat semigroup and the Dirichlet one) are studied by using coupling method
together with a derivative formula modi�ed from [11]. The resulting estimates
recover or improve those given in [7, 21] for harmonic functions.

Mathematics Subject Classi�cation (1991): 35S15, 60J60

1 Introduction

Let M be a complete connected Riemannian manifold with dimension d
and boundary @M which may be empty. Let L = �+ Z for some C1-vector
�eld Z . For the study of logarithmic Sobolev constant (LSC), we assume
that M is compact and Z = ∇h for some h∈C 2(M) with �(dx) = ehdx being
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a probability measure. We call the logarithmic Sobolev inequality holds with
respect to � (or the L-di�usion process), if there exists a constant �¿0 such
that ∫

u2 log u2d� − ∫ u2 d� log ∫ u2 d�52
�

∫ |∇u|2 d� (1.1)

holds for all u∈C1(M) ∩ L2(�). The so called LSC is the largest possible �,
denoted by �(h).
A lot of papers have studied the lower bound estimate of �(h), especially

for @M = ∅ (see [12] for detailed references). Some previous estimates are
sharp for positive Ricci curvature case, especially, the constant is known when
M = Sd and L=� (see [1, 9]). But, to our knowledge, all the known explicit
estimates become ine�ective if the lower bound of Ricci curvature is very
negative. On the other hand, it is well known that �(h)¿0 for compact M .
The �rst aim of the paper is to present some explicit lower bound estimates
of �(h) for the negative curvature case.
For the �rst look, it seems hard to get an estimate which is meaningful for

any lower bound of Ricci curvature. The reason is that the traditional Bakry–
Emery’s argument arises trouble if the lower bound of Ricci curvature is very
negative (cf. [9]). Fortunately, some recent progress enables us to derive such
type of estimate. First, from [13, 22] we have an explicit estimate of LSC for
Ornstein–Uhlenbeck process on M (see Lemma 3.1 below). Next, by using the
comparison argument of LSC with di�erent potentials (see [9, 6]), we obtain
a lower bound of �(h) depending on c(t) which is the constant of the following
Harnack inequality:

pt(x; y)5c(t)pt(x; z); x; y; z∈M ;

where pt(x; y) is the (Neumann) heat kernel of L, i.e., the transition probability
density of the L-di�usion process (with re
ecting boundary if @M- ∅). Finally,
from the Li–Yau’s type Harnack inequality for solutions to the heat equation
of L [19], we obtain some explicit estimates of c(t) which then provides the
desired lower bounds of �(h).
Another purpose of the paper is to study the gradient estimates of heat

semigroup Pt for L. To this end, we �rst recall a derivative formula given
by Elworthy–Li [11]. Let @M = ∅ and rewrite L by ∑m

i=1 X
2
i + A for some

smooth vector �elds Xi (i5m) and C1-vector �eld A. Let xt and Ws solve the
following stochastic di�erential equations:

dxt =
√
2

m∑
i=1
Xi(xt) ◦ dbit + A(xt)dt; x0 = x ;

@Wt(v)
@t

= −Ric(Wt(v); ·)# +∇Wt(v)Z; W0(v) = v∈TxM ;

where Ric(Wt(v); ·)#∈TxtM is de�ned as 〈Ric(Wt(v); ·)#; X 〉 = Ric(Wt(v); X )
for X ∈TxtM . The solution Wt : TM → TM is called the Ricci 
ows when Z = 0
(see [10, 11]). If Ric(·; ·)− 〈∇·Z; ·〉 is bounded from below, then

〈∇Ptu; v〉 = 1

t
√
2
Eu(xt)

t∫
0
〈Ws; X (xs)dbs〉; v∈TxM ; (1.2)
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holds for all u∈C1b (M). Since |Wt | is bounded for each t, from (1.2) we can
estimate the gradient of Ptu. On the other hand, however, the right hand side of
(1.2) depends on the choice of Xi which comes from a certain embedding map
of M into Rm for some m=d. In Sect. 4, we prove a more natural version
of (1.2) suggested in [10; Remark 1] which depends only on the geometry
of M and leads to the exact Bismut’s formula [2] for ∇ logpt(·; y) (refer to
[10, 11]). Moreover, the formula also holds for the Neumann heat semigroup
whenever @M-∅.
Next, we know from [7, 21] that the coupling method is powerful in the

study of the gradient estimate for harmonic functions. As a continuation, we
use this method to study the gradient estimate of heat semigroups. The result-
ing estimates recover those given in [21] and especially, the gradient estimate
for the Dirichlet semigroup presented in Sect. 5 leads to an explicit gradi-
ent estimate of harmonic functions on a local domain. This can be consider
as an improvement of the previous one given in [7].

2 Harnack type inequality

Suppose that @M is either empty or convex. Let u(x; t)=0 solve the heat
equation of L:

ut(x; t) = Lu(x; t); V u|@M×(0;∞) = 0 if @M-∅ ; (2.1)

where ut = @u=@t and V is the inward normal vector �eld of @M .
For the case Z = 0; Li–Yau [16] studied the heat kernel by estimating

|∇u|=u. The resulting estimate then is improved by Davies [8] as follows: let
Ric=− K for some K=0, then

|∇u|2
u2

− �ut
u
5
d�2

2t

(
1 +

Kt
2(�− 1)

)
; �¿1 (2.2)

which implies the following parabolic Harnack type inequality

u(x; t)5u(y; t + s)
(
t + s
t

)d�=2
exp

[
��(x; y)2

4s
+

d�Ks
4(�− 1)

]
; t; s¿0; �¿1 ;

(2.3)

where � is the Riemannian distance.
For the present operator L = �+ Z , de�ne

RZ = max{0;− inf{Ric(v; v)− 〈∇vZ; v〉 − 〈Z; v〉2: v∈TM; |v| = 1}} :
The proof of [19, Theorem 7] yields (see [18] for further discussion)

u(x; t)5u(y; t + s)
(
t + s
t

)(d+1)�=2
exp

[
��(x; y)2

4s
+
�(d+ 1)RZs
4(�− 1)

]
(2.4)

for t; s¿0 and �¿1.



90 F.-Y. Wang

Now, we go to estimate the heat kernel pt(x; y) characterized as the funda-
mental solution to (2.1): for u∈C20 (M); u(x; t) :=

∫
pt(x; y)u(y)�(dy) solves

(2.1) for Z=∇h; �(dy) = eh(y) dy. The following result is a direct conse-
quence of (2.3) and (2.4).

Proposition 2.1 If D := supx; y∈M �(x; y)¡∞; choose h such that �(M) = 1.
We have

pt(x; y)5 inf
s¿0; �¿1

(
t + s
t

)(d+1)�=2
exp

[
�D2

4s
+
�(d+ 1)R∇hs
4(�− 1)

]
; (2.5)

pt(x; y)= sup
s∈(0; t); �¿1

(
t − s
t

)(d+1)�=2
exp

[
−�D

2

4s
− �(d+ 1)R∇hs

4(�− 1)
]
: (2.6)

Next; let u(x; t) = Ptu(x) for some nonnegative u∈C(M); we have

u(x; t)5u(y; t) inf
s∈(0; t); �¿1

(
t + s
t − s

)(d+1)�=2
exp

[
�D2

2s
+
�(d+ 1)R∇hs
2(�− 1) s

]
: (2.7)

Finally; if h = 0; the number “d+ 1” in (2:5)–(2:7) can be replaced by “d”.

Proof. We simply denote the desired upper bound of pt(x; y) by c(t). For �xed
y and large n∈N, take �(n)¿n−1 such that �(B(y; �(n)))5(1 + n−1)�(B
(y; n−1)). Choose un∈C∞(M) such that

05un51; un|B(y; n−1) ≡ 1; un|B(y; �(n))c ≡ 0 :
Let un(x; t) = Ptun(x)=�(un); then �(un(·; t)) = 1 and hence there exists xt such
that un(xt ; t)51. By (2.4) we obtain

�(B(y; �(n)))−1�(B(y; n−1)) inf
B(y; n−1)

pt(x; ·)5un(x; t)5c(t) ;

the desired upper bound then follows by letting n→∞. Similarly, we prove
the lower bound estimate. Similarly, the claimed estimates for the case h = 0
follows from (2.3).

3 Estimation of the logarithmic Sobolev constant

The main purpose of this section is to present some explicit estimates of �(h)
for K(∇h)¡0, where

K(Z) = − inf{Ric(v; v)− 〈∇vZ; v〉: v∈TM; |v| = 1}}
for C1-vector �eld Z . The key idea is to compare �(h) with the LSC for the
absolute distribution of the L-di�usion process.
For the case @M=∅, an explicit lower bound estimate is presented in [22]

for the logarithmic Sobolev constant with respect to �xPt , the distribution at
time t of the L-di�usion process with initial point x. See also [13] for h = 0.
Here, we claim that the same result holds for M with convex boundary.
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Lemma 3.1 Let M be a complete Riemannian manifold with convex boundary
whenever @M-∅. If K(∇h)¡∞; we have

Pt(u2 log u2)− (Ptu2) log(Ptu2)52e
2K(∇h)t − 1
K(∇h) Pt |∇u|2 (3.1)

for all u∈C1(M) with Ptu2¡∞. Here and in what follows; when K(∇h) = 0;
we take the coe�cient of the right-hand side to be the limit as
K(∇h)→ 0.

Proof. (a) We �rst recall brie
y the coupling by parallel displacement. Let
H : TM → TO(M) be the horizontal lift induced by the Riemannian connection.
Consider the stochastic di�erential equations:

d�t = H�t�t ◦ dMt

dMt =
√
2dBt +�−1t Z(xt)dt +�

−1
t V (xt)dLt; xt = ��t ;

where Bt is a Brownian motion on Rd; � is the natural projection of O(M)
onto M and Lt is an increasing process called the local time of xt on @M .
Then xt is the re
ecting L-di�usion process on M with x0 = ��0.

Next, for given y0∈M ; we construct another re
ecting L-di�usion process
yt as follows:

d	t = H	t	t ◦ dNt

dNt =
√
2d �Bt +	−1t Z(yt)dt +	

−1
t V (yt)d �Lt ;

d �Bt = 	−1t Pxt ; yt�t dBt ; yt = ��t ;

where �Lt is the local time of yt on the boundary, and Px;y : TxM → TyM is the
parallel displacement along the unique shortest geodesic from x to y whenever
y =∈C(x). As for the case yt∈C(xt), we use Cranston’s trick [7] so that yt is
constructed for ever. We call (xt ; yt) the coupling by displacement.

(b) Since the boundary is convex, we have [20, 22] (see [7, 14] for original
arguments)

d�(xt ; yt)5K(∇h)�(xt ; yt)dt ;
where �(x; y) is the Riemannian distance between x and y. Then

�(xt ; yt)5 �(x; y) exp[K(∇h)t]; t = 0 : (3.2)

Hence, for u ∈ C10 (M) we have
|Ptu(x)− Ptu(y)|

�(x; y)
5 exp[K(∇h)t]Ex;y |u(xt)− u(yt)|

�(xt ; yt)
:

By letting y → x (so yt → xt), we obtain

|∇Ptu|5 Pt |∇u| exp[K(∇h)t] :
Now, the remainder of the proof follows from Bakry’s argument (see
[13, 22]).
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Corollary 3.2 Under the assumption of Lemma 3.1. If K(∇h)¡0; we have
�(h)=−K(∇h).
Proof. Note that when K(∇h)¡0, the L-di�usion process is ergodic. Then
the corollary follows from Lemma 3.1 by letting t →∞.

For @M = ∅, Corollary 3.2 is a simple consequence of Bakry–Emery cri-
terion. But, the estimate may fail if @M is not convex. Actually, due to
a famous example by Calabi (see [3, p. 342]), for any �¿0, there exists
a regular domain 
 ⊂ M such that the �rst Neumann eigenvalue of L on 
 is
less than �.
Note that Ptu(x) =

∫
pt(x; y)u(y)eh(y) dy, Lemma 3.1 yields

�(h+ logpt(x; · ))= K(∇h)
e2K(∇h)t − 1 ; x ∈ M; t¿0 : (3.3)

From a comparison argument between logarithmic Sobolev constants with dif-
ferent potentials (see [6] or [9]), it follows that

�(h)= sup
t¿0

{
K(∇h)

e2K(∇h)t − 1 inf
y; z∈M

pt(x; y)
pt(x; z)

}
; x ∈ M : (3.4)

By combining this with Proposition 2.1, we obtain the following result.

Theorem 3.3 Suppose that M is a compact connected Riemannian manifold
with convex boundary whenever @M- ∅. We have

�(h)= sup
t¿s¿0; �¿1

K(∇h)
e2K(∇h)t − 1

(
t − s
t + s

)(d+1)�=2
exp

[
−�D

2

2s
− �(d+ 1)R∇hs

2(�− 1)
]
:

When h = 0; the number “d+ 1” can be replaced by “d”. Especially; take
� = 2; s = D 2; t = (d+ 1)D 2; we obtain

�(0)=
(

d
d+ 2

)d K
e2K(d+1)D 2 − 1 exp[−1− D

2dK+] :

Corollary 3.4 Under the assumption of Theorem 3.3. If K = 0; then

�(h)=
(

d
d+ 2

)d 1
2(d+ 1)D 2

exp[−1− �(h)− (3d+ 2)D 2K] :

Proof. The corollary follows from Theorem 3.3 together with the facts �(h)=
exp[−�(h)]�(0) and e� − 15 �e� for �= 0.

Remark. Suppose that K¿0 and h = 0, by taking � = 2; s = D=
√
dK and

t = D
√
d=
√
K , Theorem 3.3 yields

�(0)=
(
d− 1
d+ 1

)d
K exp[−4D

√
dK] : (3.5)

As K →∞, this lower bound decays with the same order as that of the �rst
eigenvalue given in [5, 20].
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4 Gradient estimates of heat semigroups

We begin this section with a new version of (1.2) which is also valid for
manifold with boundary.
Given v0 ∈ Tx0M , let yl0 = exp[lv0] and (xt ; ylt ) be the coupling by parallel

displacement. De�ne vt ∈ TxtM by

〈vt ;∇u(xt)〉 = lim
l→0

u(ylt )− u(xt)
l

:

It is proved in [13] that vt is just the Ricci 
ows when @M = ∅ and Z = 0.
Then the following result leads to the exact Bismut’s formula given in [2,
Theorem 2.71] for heat kernel (refer to [10, p. 68]).

Theorem 4.1 For u ∈ C1b (M); we have

〈∇Ptu(x0); v0〉 = 1

t
√
2
Eu(xt)

t∫
0
〈vs;�s dBs〉; v0 ∈ Tx0M

provided
∫ t
0 〈vs;�s dBs〉 is a martingale.

Proof. The proof is similar to that of [11, Theorem 2.1]. It follows from Itô’s
formula that

dPt−su(xs) = 〈∇Pt−su(xs);
√
2�s dBs〉 :

By integrating over s from 0 to t; we obtain

u(xt) = Ptu(x0) +
t∫
0
〈∇Pt−su(xs);

√
2�s dBs〉 : (4.1)

Hence
1√
2
Eu(xt)

t∫
0
〈vs;�s dBs〉 = E

t∫
0
〈∇Pt−su(xs); vs〉 ds

= E
t∫
0
lim
l→0

Pt−su(yls)− Pt−su(xs)
l

=
t∫
0
lim
l→0

Ptu(yl0)− Ptu(x0)
l

= t〈∇Ptu(x0); v0〉 :

Corollary 4.2 Suppose that @M is either convex or empty. If K(Z)¡∞; we
have

|∇Ptu(x)|5 ((2n− 1)!!)1=2n
2t

√
exp[2K(Z)t]− 1

K(Z)

× (Ptu2n=(2n−1)(x))(2n−1)=2n; n ∈ N :

Proof. Let Rt =
√
2
∫ t
0 (vs;�s dBs〉. Note that (3.2) implies |vs|5 exp[K(Z)s],

then Rt is a martingale and Theorem 4.1 yields

|∇Ptu(x)|5 1
2t
(Ptu2n=(2n−1)(x))(2n−1)=2n(ER2nt )

1=2n : (4.2)



94 F.-Y. Wang

By Itô’s formula we obtain

dR2nt 5 2nR2n−1t dRt + 2n(2n− 1)R2(n−1)t exp[2K(Z)t] dt :

Hence

ER2nt 5 2n(2n− 1)
t∫
0
ER2(n−1)s exp[2K(Z)s] ds :

Now, the corollary follows from this and (4.2) by inducing in the num-
ber n.

Next, we go to study the gradient estimate by using coupling. The original
idea of the study is due to [7]. Let (xt ; yt) be a coupling of the L-di�usion
process with re
ecting boundary whenever @M-∅, and let T ={t=0: xt=yt}
be the coupling time. We have

|Ptu(x)− Ptu(y)|
�(x; y)

=
|PsPt−su(x)− PsPt−su(y)|

�(x; y)

5 Ex;y
|Pt−su(xs)− Pt−su(ys)|

�(x; y)

5 �(Pt−su)
Px;y(T ¿s)
�(x; y)

; t¿s¿0 :

Hence

|∇Ptu(x)|5 �(Pt−su)lim
y→x

P x;y(T ¿s)
�(x; y)

; t¿s¿0 : (4.3)

Now, the next step is to estimate the distribution of the coupling time.
Let (xt ; yt) be the coupling by re
ection [7, 14], if @M is either convex or

empty, we have (see [5, 20])

d�(xt ; yt)5 2
√
2 dbt + 
(�(xt ; yt)) dt ; (4.4)

where bt is an one-dimensional Brownian motion and


(r) = min
{
K(Z)r; 2

√
K+(d− 1) tanh

[ r
2

√
K+=(d− 1)

]
−2
√
K−(d− 1) tan

[ r
2

√
K−=(d− 1)

]
+ a(r)

}
with a(r) ∈ C(R+) so that

a(r)= sup
�(x; y)= r

(Z�( · ; y)(x) + Z�(x; · )(y)); r¿0 :

Set D = supx; y∈M �(x; y) and de�ne

C(r) = exp
[
1
4

r∫
0

(u)du

]
; f(r) =

r∫
0

1
C(u)

du; g(r) =
r∫
0
C(u)du;

FN (r) =
r∫
0

1
C(s)

ds
N∫
s
C(u)du; N; r ∈ [0; D] :
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Lemma 4.3 Suppose that @M is either convex or empty. For the coupling by
re
ection; we have

Px;y(T¿t)5 inf
N∈[�(x; y); D]

{
inf

�∈[0;4FN (N )−1)
�FN (�(x; y))
4− �FN (N ) (e

� t−1)−1+f(�(x; y))
f(N )

}
:

Especially; if FD(D)¡∞ (it is the case when D¡∞); we have

P x;y(T ¿t)5 inf
�∈[0;4FD(D)−1)

�FD(�(x; y))
4− �FD(D) (e

� t − 1)−1; t¿0 :

Proof. (a) For given N ∈ [�(x; y); D]; (4.4) yields

dFN (�(xt ; yt))5 2
√
2F ′N (�(xt ; yt)) dbt − 4 dt :

Take G�(t; r)=e� tFN (r); �∈ [0; 4FN (N )−1). Let SN =inf{t=0: �(xt ; yt)=N}.
We have

dG�(t; �(xt ; yt))5 dMt + (�e� tFN (�(xt ; yt))− 4e� t) dt
for some martingale Mt . Then

05 Ex;yG�(t ∧ T ∧ SN ; �(xt∧T∧SN ; yt∧T∧SN ))

= Ex;y
t∧T∧SN∫
0

dG�(s; �(xs; ys)) + G�(0; �(x; y))

5 �−1(�FN (N )− 4)Ex;y(e�(t∧T∧SN ) − 1) + FN (�(x; y)) :
By letting t →∞ we obtain

Ex;y(e�(T∧SN ) − 1)5 �FN (�(x; y))
4− �FN (N ) :

Hence

P x;y(T ∧ SN ¿t)5 inf
�∈[0;4FN (N )−1)

�FN (�(x; y))
4− �FN (N ) (e

� t − 1)−1; t¿0 : (4.5)

(b) Note that (4.4) yields d f (xt ; yt)5 2
√
2f′(�(xt ; yt)) dbt , we have

f(�(x; y))= Ex;yf(�(xt∧T∧SN ; yt∧T∧SN ))= f(N )Px;y(t ∧ T = SN ) :

Then P x;y(T = SN )5 f(�(x; y))=f(N ). By combining this with (4.5), we
obtain

Px;y(T ¿t) = Px;y(T ¿t; SN ¿t) + P x;y(T ¿t; SN 5 t)

5 P x;y(T ∧ SN ¿t) + P x;y(T = SN )

5 inf
�∈[0;4FN (N )−1)

�FN (�(x; y))
4− �FN (N ) (e

� t − 1)−1 + f(�(x; y))
f(N )

:
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Finally, if D¡∞, the second estimate follows from (a) by replacing t ∧
T ∧ SN with t ∧ T . Next, if D =∞, we have SN →∞ as N →∞ for the
non-explosion of the process, the second estimate then follows from (4.5) by
letting N →∞.

Remark. The argument of (a) was used by Y.Z. Wang to study the exponential
convergence in total variation norm for di�usions on compact manifolds. Let
�xPt be the distribution at time t of the L-di�usion process with initial point x,
then

‖�xPt − �yPt‖var 5 2Px;y(T ¿t) :

So Lemma 4.3 provides a rate for the process to converge in total variation
norm. This improves the main results of [17] in which this topic was studied
for Brownian motion on a convex polyhedron of spheres and torus.

By combining (4.3) with Lemma 4.3, we obtain the following result.

Theorem 4.4 Suppose that @M is either convex or empty. For nonnegative
u ∈ C1b (M); we have

‖∇Ptu‖∞
‖Pt−su‖∞ 5 inf

N∈(0; D)

{
inf

�∈[0;4FN (N )−1)
�g(N )

4− �FN (N ) (e
�s − 1)−1 + 1

f(N )

}
for all t¿s¿0. If in addition FD(D)¡∞; then

‖∇Pt−su‖∞ 5 ‖Pt−su‖∞ inf
�∈[0;4FD(D)−1)

�g(D)
4− �FD(D) (e

�s − 1)−1; t¿s¿0 :

Remark. Suppose that u= 0 is L-harmonic, i.e., Lu = 0. Then Ptu = u for
all t. By letting �rst t ↑ ∞ then N ↑ ∞; Theorem 4.4 yields

‖∇u‖∞ 5 ‖u‖∞=f(∞)

which is exactly the main estimate of [21] and hence improves the correspond-
ing one given in [7].

Corollary 4.5 Suppose that M is compact with convex boundary whenever
@M-∅. We have

|∇Ptu(x)|5 c(t)Ptu(x); u∈C1(M); t¿0

with

c(t) = inf
�∈(0;1); �∈[0;4FD(D)−1)

�g(D)(1− �)−(d+1)
(4− �FD(D))(e��t − 1) exp

[
D2

2�t
+
(d+ 1)RZ�t

2

]
:

Proof. The corollary follows from (2.4) and Theorem 4.4 by taking � = 2 and
s = �t.
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Remark. Under the assumption of Corollary 4.5, we have

|∇pt( · ; y)(x)|5 c(t)pt(x; y); x; y∈M :

Actually, for given y, let us(x) = ps(x; y), s∈(0; t). Then pt(x; y) = Pt−sus(x)
and the above estimate follows from Corollary 4.5 by letting s→ 0.

Before ending this section, we consider the exponential convergence for
the gradient of heat semigroup. Theorem 4.4 shows that, when FD(D)¡∞,
‖∇Ptu‖∞ goes to zero exponentially fast as t →∞. But the condition
F∞(∞)¡∞ is usually too strong for noncompact manifolds. We present here
another su�cient condition.

Theorem 4.6 Under the assumption of Theorem 4:4. If D =∞ and
lim supr→∞ 
(r)=r¡0; then there exists c; �¿0 such that

‖∇Ptu‖∞ 5 ‖u‖∞ce−�t
holds for all nonnegative u∈C1b (M) and large t.
Proof. (a) By taking t = s = 1, N = 1 and � = 0, Theorem 4.4 yields

‖P1u‖∞ 5 ‖u‖∞(g(1)=4 + f(1)−1) : (4.6)

Next, let (xt ; yt) be the coupling by re
ection. For t¿1 we have

|Ptu(x)− Ptu(y)|
�(x; y)

5
Ex;y|P1u(xt−1)− P1u(yt−1)|

�(x; y)

5 ‖∇P1u‖∞E
x;y�(xt−1; yt−1)
�(x; y)

:

Hence

|∇Ptu(x)|5 ‖u‖∞
(
g(1)
4
+

1
f(1)

)
lim sup
y→x

Ex;y�(xt−1; yt−1)
�(x; y)

: (4.7)

(b) Since lim supr→∞ 
(r)=r¡0, there exist r0; �0¿0 such that 
(r)5 −�0r
for r = r0. De�ne

�1 = exp
[
−1
4

r0∫
0
[�0s+ 
(s)]+ ds

]
;

G(r) =
r∫
0
exp

[
−1
4

s∫
0
[�0t + 
(t)]+ dt

]
ds; r¿0 :

Then
lim
r→0

G(r)=r = 1 and r = G(r)= �−11 r : (4.8)

Next, by (4.4) we obtain

dG(�(xt ; yt))5 dMt − �0�1�(xt ; yt)5 dMt − �0�1G(�(xt ; yt))
for some martingale Mt . Then

Ex;y�(xt ; yt)5 �−11 E
x;yG(�(xt ; yt))5 �−11 G(�(x; y))e

−�0�1t ; t = 0 :

The proof is completed by combining this with (4.7) and (4.8).
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5 Gradient estimates of Dirichlet heat semigroup

Suppose that @M-∅ and |Z |5b. Let xt be the L-di�usion process and � =
inf{t = 0: xt∈@M} be the exit time. The Dirichlet heat semigroup is de-
�ned as

PDt u(x) = E
xu(xt∧ �); t = 0; x∈M; u∈C(M) :

We also use the coupling method developed in [7]. Let (xt ; yt) be the
coupling by re
ection with coupling time T , denote by �x and �y respectively
the exit times of the two marginal processes. For u= 0, we have

|PDt u(x)− PDt (y)|5 Ex;y|u(xt∧�x)− u(yt∧�y)|5 ‖u‖∞Px;y(T ¿t ∧ �x ∧ �y) :

Hence

|∇PDt u(x)|5 ‖u‖∞ lim sup
y→x

Px;y(T ¿t ∧ �x ∧ �y)=�(x; y) : (5.1)

Next, let �x = dist(x; @M). For any �∈(0; �x], de�ne

��x = inf{t = 0: �(x; xt)= �}; ��y = inf{t = 0: �(x; yt)= �}

and let �� = T ∧ ��x ∧ ��y. Then

Px;y(T ¿t ∧ �x ∧ �y) 5 Px;y(T ¿t ∧ ��x ∧ ��y)
5 Px;y(��¿t) + Px;y(T ¿��x ∧ ��y)
5 Px;y(��¿t) + Px;y(�(x; x��)= �)

+Px;y(�(x; y��)= �) : (5.2)

Note that (4.4) holds up to T ∧ �x ∧ �y (see [7]), by replacing t ∧ T ∧ SN with
t ∧ ��, the proof of Lemma 4.3 gives

Px;y(��¿t)5 inf
�∈[0;4F2�(2�)−1)

�F2�(�(x; y))
4− �F2�(2�) (e

�t − 1)−1; t¿0 : (5.3)

Finally, de�ne

j(r) =


sin(r

√−K=(d− 1)) if K¡0 ;

r if K = 0 ;

sinh(r
√
K=(d− 1)) if K¿0 :

J (r) =
r∫
0
j(s)d−1e−bs ds

s∫
0
j(u)d−1ebu du; r∈ [0; D] :

We have the following result.
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Lemma 5.1 For �∈(0; �x) and �(x; y)¡�; we have

Px;y(�(x; x��)= �)5
F2�(�(x; y))
4J (�)

;

Px; y(�(x; y��)= �)5
F2�(�(x; y)) + 4J (�(x; y))

4J (�)
:

Proof. By Laplacian comparison theorem we have

��(x; · )(y)5 (d− 1)j′(�(x; y))=j(�(x; y)) ;
then (see [15])

d�(x; xt)5
√
2dbt + [(d− 1)j′(�(x; xt))=j(�(x; xt)) + b] dt ;

where bt is an one-dimensional Brownian motion. By Itô’s formula we obtain

dJ (�(x; xt))5
√
2J ′(�(x; xt))dbt + dt

which implies Ex;yJ (�(x; x��))5 Ex;y��.
Next, by replacing T ∧ SN with �� and taking � = 0 in the proof of

Lemma 4.3, we obtain Ex;y�� 5 1
4F2�(�(x; y)). Therefore

Px;y(�(x; x��)= �)5
Ex;yJ (�(x; x��))

J (�)
5
F2�(�(x; y))
4J (�)

:

Finally, the proof of the second inequality is similar, the only di�erence is that

Ex;yJ (�(x; y��))5 Ex;y�� + J (�(x; y)) :

By (5.1), (5.2), (5.3) and Lemma 5.1, we obtain the following result im-
mediately.

Theorem 5.2 Let u= 0; then

|∇PDt u(x)|5 ‖u‖∞ inf
�5�x

{
inf

�∈[0;4F2�(2�)−1)
�g(2�)

4− �F2�(2�) (e
�t − 1)−1 + g(2�)

2J (�)

}
:

Proof. Simply note that limr→0 J (r)=r = 0.

Corollary 5.3 If u= 0 and Lu = 0; then

|∇u(x)|5 ‖u‖∞ inf
�5�x

g(2�)
2J (�)

5 2demax{
√
K+(d− 1) + 2b; �−1x }‖u‖∞ :

Proof. Note that PDt u = u, then the �rst estimate follows from Theorem 5.2
by letting t →∞. Next, since Ric= −K+, we assume that K = 0.
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Note that 
(r)5 2[
√
K(d− 1) + b], then

g(2�)5
2�∫
0
exp

[ r
2
(
√
K(d− 1) + b)

]
dr 5 2� exp[�(

√
K(d− 1) + b)] :

On the other hand,

J (�) =
�∫
0
ebr{sinh[r

√
K=(d− 1)]}1−d

r∫
0
ebs{sinh[s

√
K=(d− 1)]}d−1 ds

= e−b�
�∫
0
r1−d

r∫
0
sd−1 ds =

�2

2d
e−b� :

Then the proof is completed by taking � = �x ∧ (
√
K(d− 1) + 2b)−1 in the

�rst inequality.

Recall that for K = 0, it is proved in [7] that there exists c(K; d; b) such
that

|∇u|5 c(K; d; b)(1 + �−1x )‖u‖∞
holds for all u= 0 with Lu = 0. Hence, Corollary 5.3 can be considered as
an improvement of this result.
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